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Abstract 18	

YidC insertase plays a pivotal role in the membrane integration, folding and assembly of 19	

several proteins including energy-transducing respiratory complexes, both autonomously 20	

and in concert with the SecYEG channel in bacteria. The YidC family of proteins are widely 21	

conserved in all domains of life with new members recently identified in the eukaryotic ER 22	

membrane. Bacterial and organellar members share the conserved 5 TM core which forms a 23	

unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and 24	

the lipid phase. In this chapter, we discuss the YidC family of proteins focusing on its 25	

mechanism of substrate insertion independently and in association with the Sec translocon.  26	
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Introduction 41	

Membrane proteins constitute about 30% of the cellular proteome (1) and perform critical 42	

functions like signal transduction, molecular transport and cell adhesion. The molecular 43	

machineries that catalyse their targeting, insertion and assembly in the different cellular and 44	

subcellular membranes are remarkably conserved. Sec translocon is responsible for moving 45	

the majority of the proteins across/into the bacterial, archaeal, thylakoidal and ER 46	

membranes in an unfolded state (2). In bacteria, it is proposed to form a holo-complex 47	

composed of the heterotrimeric protein channel SecYEG, and the accessory elements 48	

SecDFYajC, SecA ATPase and YidC (3).  49	

As part of the holo-complex, YidC operates in various capacities ranging from assisting in 50	

the membrane insertion process and the lateral clearance of the substrate TM segments 51	

from the channel to serving as a foldase for Sec-dependent proteins (4). In addition to this, 52	

YidC facilitates the membrane insertion of small membrane protein substrates independently 53	

(5). While larger proteins are typically targeted by the SRP-FtsY partnership to the Sec 54	

holotranslocon, smaller substrates that cannot engage SRP are post-translationally delivered 55	

to YidC (6). However, certain YidC-only substrates like MscL (7) and the tail-anchored 56	

proteins TssL (8), DjlC and Flk (9) employ SRP for targeting.  57	

YidC/Alb3/Oxa1 family proteins are highly conserved insertases that operate in the bacterial, 58	

thylakoidal and mitochondrial inner membrane respectively (10). Structurally, they are helical 59	

bundles formed by 5 core TM segments (Fig 1). YidC is required for the insertion and 60	

assembly of several respiratory and energy-transducing proteins (11) like the subunits of the 61	

F1FOATPase (12), Cytochrome o Oxidase (13) and NADH dehydrogenase (14). In Gram-62	

negative bacteria, YidC has an additional N-terminal TM segment that acts as a membrane 63	

anchor followed by a large beta-sandwich fold within the first periplasmic domain (15). 64	

Although these regions are largely non-essential for function (16), they have contact sites to 65	

SecY (17) and SecDF (18), suggesting a kinetic role in the protein insertion and substrate 66	

folding process. Most Gram-positive bacteria possess two paralogs: YidC1 and YidC2. While 67	
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YidC1 is constitutively expressed, YidC2 gene expression is controlled by a MifM sensor 68	

protein in B. subtilis (19). Though the paralogs are functionally exchangeable, YidC1 is 69	

specifically required for the sporulation process (20).  70	

In archaea, DUF106 protein has a three-TM core with a low structural homology to the 71	

bacterial YidC, but its protein insertion function remains to be tested (21). Eukaryotes 72	

contain multiple YidC paralogs and some of them can replace E. coli YidC at least partially, 73	

indicating shared functionality in the cell (22-24). In plants, the paralogs Alb3 and Alb4 exist 74	

in the thylakoid membrane of chloroplasts (25, 26). The primary substrates of Alb3 are a 75	

subset of the light-harvesting chlorophyll binding protein subunits (27), whereas Alb4 is 76	

involved in the biogenesis of chloroplast F1FOATPase assembly (28). A prominent feature of 77	

Alb3 is the presence of a long cytoplasmic C-terminal domain which acts as an anchor for 78	

SRP43 (29). Both post-translational and co-translational targeting occurs and Alb3 is known 79	

to interact with the chloroplast SecYE translocon like its bacterial counterparts (30). Oxa1 80	

and Oxa2 paralogs are found in the mitochondrial inner membrane of eukaryotic cells (31, 81	

32). Sec is absent in this membrane, so Oxa1 is believed to facilitate the insertion of all 82	

mitochondrial DNA encoded membrane proteins independently (33). Oxa1 has a C-terminal 83	

extension which is the ribosome-docking site for translating substrates that are co-84	

translationally inserted (34). Oxa2 performs similar insertion function for certain respiratory 85	

proteins post-translationally (35). 86	

Until recently the presence of YidC homologs in the ER was unknown (36). Anghel et al (37) 87	

employed phylogenic homology studies and identified three Oxa1-like highly conserved 88	

proteins: TMCO1, EMC3 and Get1 which are all involved in the ER membrane protein 89	

translocation process in eukaryotes. The study found that Get1 was evolutionarily related to 90	

the DUF106 group of proteins, which consisted of EMC3 and the archaeal DUF106 protein. 91	

Get1 is a part of the tail-anchored protein insertion complex and substrates of this pathway 92	

have a C-terminally located TM segment that is post-translationally targeted to the ER 93	

membrane (38). The ER Membrane Complex 3 (EMC3) promotes the co-translational 94	
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membrane insertion of multi-pass ER proteins with charged TM segments  (39, 40). TMCO1 95	

is predicted to insert newly synthesized ER membrane proteins co-translationally, but it also 96	

engages with the Sec translocon like YidC (37).  97	

YidC-only Pathway 98	

YidC’s function was first annotated in 2000 (5); it was shown to be essential in E.coli and 99	

required for the insertion of phage proteins Pf3 coat and M13 Procoat which were previously 100	

thought to insert by an unassisted mechanism. The minimal functional unit is monomeric 101	

(41) even though YidC can dimerize under certain conditions (42). It was shown using 102	

reconstituted proteoliposomes that YidC is sufficient for the membrane integration of Pf3 103	

(43). In addition to this, YidC is responsible for the membrane insertion of subunit c of ATP 104	

synthase (12), the mechanosensitive channel protein MscL (7) and the C-terminal tail-105	

anchored proteins TssL (44), DjlC and Flk (9). A common feature of the YidC-only pathway 106	

substrates is that they contain short translocated regions followed by one or two TM 107	

segments (45).  108	

Crystal structures of YidC from Gram-positive (46) and Gram-negative bacteria (47) 109	

uncovered important mechanistic details about its function. The conserved 5 TM core of 110	

YidC forms a unique hydrophilic cavity in the inner leaflet facing the cytoplasm but is closed 111	

from the periplasmic side. The groove contains a conserved positive charge which was 112	

shown to be critical for function in gram-positive bacteria but not in the gram-negative 113	

homolog (48). Kumazaki et al showed that MifM substrate could be crosslinked to the groove 114	

(46). Hence it is proposed that the positive charge interacts electrostatically with the charges 115	

on the substrate hydrophilic regions to recruit it into the groove and reduce its membrane-116	

crossing distance (Fig 2). Consistent with this, negative charges on the substrate N-tail or 117	

TM segment have been proposed to act as YidC-only pathway determinants (49, 50). The 118	

proton motive force (PMF) is implied to play a role in releasing the hydrophilic domain from 119	

the groove but it is unclear whether this occurs and, if so, how it occurs. Further reduction in 120	
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membrane crossing distance for the substrate was suggested by MD simulation studies (51) 121	

which found thinning of the membrane region around YidC. 122	

The major substrate contact sites of YidC are the hydrophobic residues found in TM3 and 123	

TM5 that were shown by crosslinking studies to bind the substrate TM segment of Pf3 coat 124	

(52) and MscL (53). This suggests that YidC facilitates substrate insertion through 125	

hydrophobic interactions via a greasy-sliding mechanism (Fig 2). In line with this, Cryo-EM 126	

studies showed that the TM segment of the F0c substrate is in proximity to the greasy slide 127	

(54).  Substrate insertion kinetics was studied in real-time using time resolved single-128	

molecule FRET analysis (55) which showed that the entire process of substrate contact, 129	

insertion and separation from YidC occurred within 20 ms and Pf3 inserted into reconstituted 130	

YidC proteoliposomes at the rate of 500 molecules per second.  131	

Another feature of YidC is the cytosolic loops C1, C2 and the C-terminal tail region, of which 132	

the latter two constitute the protein docking sites for receiving its translating substrates. C1 133	

loop forms a helical hairpin that is essential for function (48) and is believed to be highly 134	

dynamic based on their relative positions in the crystal structures. Crosslinking studies 135	

performed by Koch’s group show that the C1 loop interacts with SRP and FtsY, highlighting 136	

its role in recruiting substrates (17). Similarly, Driessen et al found that the C2 loop and C-137	

terminal region of YidC provide stable docking sites for ribosome nascent chain complexes 138	

(56). These studies define the role played by the different regions of YidC leading to a better 139	

understanding of the mechanism of its insertion function.  140	

YidC-Sec Pathway 141	

Substrate specificity studies indicate that YidC has limited potential to function independently 142	

and the translocation of energetically unfavourable regions of substrates require both YidC 143	

and Sec (57). Several essential inner membrane proteins like ATP synthase subunit a, b (6, 144	

58) and subunit II of Cytochrome b0 oxidase (13, 59), TatC (60, 61) and anaerobic 145	

respiratory protein NuoK (50) are inserted by the combined efforts of YidC and Sec. This 146	
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phenomenon may also occur in higher eukaryotes in the ER and thylakoidal membrane 147	

where YidC and Sec homologs are known to interact. The bacterial holo-translocon (HTL), 148	

made up of SecYEG, SecDFYajC and YidC, is proposed to be an efficient insertion machine 149	

for the membrane protein substrates of the YidC-Sec pathway (62).  150	

SecYEG forms a channel through which substrate polar domains are exported across the 151	

membrane whereas the TM segments exit the channel with the help of YidC via a lateral 152	

gate formed by TM 2b and TM7 of SecY (63, 64) (Fig 3). Consistent with this, lateral gate of 153	

SecY can be photo-crosslinked to YidC (65). It is predicted that the greasy slide of YidC 154	

might contact the SecY lateral gate and move the substrate TM segment via hydrophobic 155	

interactions from within the channel and into the lipid bilayer. Recent insight into how this 156	

partnership works has revealed that the first TM of E.coli YidC contacts SecY and SecG 157	

(17). It is proposed that this TM may enter the channel and draw the TM segments out 158	

through the lateral gate, but this remains to be tested. The study also reported C1 loop as a 159	

contact site for SecY.  160	

In addition to this, YidC is also known to act as a folding and packaging site for Sec-161	

dependent proteins (66). Nagamori et al (67) found that LacY protein required YidC to 162	

achieve its functional folded form using monoclonal antibodies recognizing specific 163	

conformational domains. Strikingly, the translocation of the six periplasmic domains of LacY 164	

required only SecYEG while the folding of the protein was dependent on YidC (68).  YidC’s 165	

role in folding LacY was further explored by Serduik et al by using single molecule force 166	

spectroscopy (69). A mechanical pulling force was applied on a single LacY molecule to 167	

unfold it and extract it from a membrane using the stylus of a cantilever. This protein was 168	

then slowly allowed to refold into another membrane in the presence of YidC. The study 169	

showed that only in the presence of YidC, LacY could fold back to its stable form in the 170	

membrane. 171	

The accessory elements SecDFYajC is believed to promote YidC’s interaction with the Sec 172	

channel (70). SecDF was shown to contact the periplasmic domain of E. coli YidC using 173	
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affinity pull-down experiments (18). This interaction may indicate the shared functional role 174	

of SecDF and periplasmic domain of YidC in the substrate folding process. The crystal 175	

structure of SecDF and electrophysiological experiments revealed a proton-transport 176	

mechanism which could provide the energetic driving force for pulling the substrate out of 177	

the Sec channel during translocation and prevent its back-sliding (71). Substrates of this 178	

pathway are targeted to the holotranslocon by SRP and its membrane-associated receptor 179	

FtsY for co-translational insertion (6).  180	

Conclusion 181	

YidC family of proteins catalyse the unfavourable movement of polar domains of membrane 182	

proteins across the hydrophobic lipid bilayer and function as a chaperone for a subset of 183	

proteins to ensure that their functional conformation is reached as well. The complex 184	

interplay between the various components of the insertion pathway have been explored in 185	

recent research. Though the crystal structure of YidC advanced our understanding of how 186	

these insertases function, the exact mechanism by which the substrate moves through YidC 187	

or the YidC/Sec Holocomplex during the membrane insertion process needs to be 188	

elucidated. It is anticipated that the mechanistic details unravelled in E. coli could be applied 189	

to similar pathways operating in higher organisms due to the conserved nature of the 190	

proteins involved.  191	
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Figure 1. YidC family of proteins. Top panel: Structural homology in the YidC/Alb3/Oxa1 200	

family shown by highlighting the conserved TMs in Green (TM1), Red (TM2), Cyan (TM3), 201	

Purple (TM4) and Yellow (TM5) respectively. YidC structure is adapted from the crystal 202	

structure solved in Bacillus halodurans (PDB: 3WO7); Alb3 and Oxa1 structures are 3D 203	

computational models made using SWISS-MODEL workspace as described in (72). Bottom 204	

panel: Newly identified members of Oxa1 superfamily highlighting the conserved three TM 205	

segments in Green (TM1), Red (TM2) and Yellow (TM3) respectively. Archaeal DUF106 206	

structure is adapted from the crystal structure solved in Methanocaldococcus jannaschii 207	

(PDB: 5C8J); Yeast Get1, Human TMCO1 and Human EMC3 structures are evolutionary 208	

covariance-based 3D models adapted from (36, 37). The cytoplasmic regions of these 209	

models were modified as described in (36). 210	

 211	

Figure 2. Model of YidC-mediated membrane insertion of Pf3 coat protein. This figure is 212	

adapted from a review by Kiefer et al (73) (A) Binding of Pf3 coat protein to YidC. (B) Pf3 TM 213	

segment interacts with the cytoplasmic part of the greasy slide and the N-terminal tail of Pf3 214	

(blue) enters the hydrophilic cavity of YidC possessing the conserved Arg residue (red). (C) 215	

Pf3 coat TM segment inserts across the YidC “greasy slide” formed by TM3 and TM5 216	

(purple) and release of the N-tail into the periplasmic space. (D) Release of Pf3 into the 217	

bilayer. 218	

 219	

Figure 3. Model of YidC-Sec insertion pathway. (A) SRP-bound substrate is co-220	

translationally targeted to the Sec holotranslocon (SecDFYajC not represented) via the 221	

membrane-associated SRP-receptor FtsY. (B) Substrate amino-terminal TM segment exit 222	

the SecYEG channel through a lateral gate with the assistance of YidC andthe second TM 223	
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segment initiates translocation. (C)The model substrate shown here, FOa, is inserted into the 224	

bilayer.  225	
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