1	The conserved role of YidC in membrane protein biogenesis
2	Sri Karthika Shanmugam and Ross E. Dalbey*
3	
4	Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
5	43210
6	
7	*correspondence: dalbey@chemistry.ohio-state.edu (Ross E. Dalbey)
8	
9	Keywords (YidC; Oxa1; Alb3; membrane protein insertion; membrane insertase)
10	
11	
12	
13	
14	
15	
16	
17	

Abstract

YidC insertase plays a pivotal role in the membrane integration, folding and assembly of
several proteins including energy-transducing respiratory complexes, both autonomously
and in concert with the SecYEG channel in bacteria. The YidC family of proteins are widely
conserved in all domains of life with new members recently identified in the eukaryotic ER
membrane. Bacterial and organellar members share the conserved 5 TM core which forms a
unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and
the lipid phase. In this chapter, we discuss the YidC family of proteins focusing on its
mechanism of substrate insertion independently and in association with the Sec translocon.

Introduction

42	Membrane proteins constitute about 30% of the cellular proteome (1) and perform critical
43	functions like signal transduction, molecular transport and cell adhesion. The molecular
44	machineries that catalyse their targeting, insertion and assembly in the different cellular and
45	subcellular membranes are remarkably conserved. Sec translocon is responsible for moving
46	the majority of the proteins across/into the bacterial, archaeal, thylakoidal and ER
47	membranes in an unfolded state (2). In bacteria, it is proposed to form a holo-complex
48	composed of the heterotrimeric protein channel SecYEG, and the accessory elements
49	SecDFYajC, SecA ATPase and YidC (3).
50	As part of the holo-complex, YidC operates in various capacities ranging from assisting in
51	the membrane insertion process and the lateral clearance of the substrate TM segments
52	from the channel to serving as a foldase for Sec-dependent proteins (4). In addition to this,
53	YidC facilitates the membrane insertion of small membrane protein substrates independently
54	(5). While larger proteins are typically targeted by the SRP-FtsY partnership to the Sec
55	holotranslocon, smaller substrates that cannot engage SRP are post-translationally delivered
56	to YidC (6). However, certain YidC-only substrates like MscL (7) and the tail-anchored
57	proteins TssL (8), DjlC and Flk (9) employ SRP for targeting.
58	YidC/Alb3/Oxa1 family proteins are highly conserved insertases that operate in the bacterial,
59	thylakoidal and mitochondrial inner membrane respectively (10). Structurally, they are helical
60	bundles formed by 5 core TM segments (Fig 1). YidC is required for the insertion and
61	assembly of several respiratory and energy-transducing proteins (11) like the subunits of the
62	F1F _O ATPase (12), Cytochrome o Oxidase (13) and NADH dehydrogenase (14). In Gram-
63	negative bacteria, YidC has an additional N-terminal TM segment that acts as a membrane
64	anchor followed by a large beta-sandwich fold within the first periplasmic domain (15).
65	Although these regions are largely non-essential for function (16), they have contact sites to
66	SecY (17) and SecDF (18), suggesting a kinetic role in the protein insertion and substrate
67	folding process. Most Gram-positive bacteria possess two paralogs: YidC1 and YidC2. While

68 YidC1 is constitutively expressed, YidC2 gene expression is controlled by a MifM sensor protein in B. subtilis (19). Though the paralogs are functionally exchangeable, YidC1 is 69 70 specifically required for the sporulation process (20). 71 In archaea, DUF106 protein has a three-TM core with a low structural homology to the 72 bacterial YidC, but its protein insertion function remains to be tested (21). Eukaryotes 73 contain multiple YidC paralogs and some of them can replace E. coli YidC at least partially, 74 indicating shared functionality in the cell (22-24). In plants, the paralogs Alb3 and Alb4 exist 75 in the thylakoid membrane of chloroplasts (25, 26). The primary substrates of Alb3 are a subset of the light-harvesting chlorophyll binding protein subunits (27), whereas Alb4 is 76 77 involved in the biogenesis of chloroplast F1F_OATPase assembly (28). A prominent feature of 78 Alb3 is the presence of a long cytoplasmic C-terminal domain which acts as an anchor for 79 SRP43 (29). Both post-translational and co-translational targeting occurs and Alb3 is known 80 to interact with the chloroplast SecYE translocon like its bacterial counterparts (30). Oxa1 81 and Oxa2 paralogs are found in the mitochondrial inner membrane of eukaryotic cells (31, 32). Sec is absent in this membrane, so Oxa1 is believed to facilitate the insertion of all 82 mitochondrial DNA encoded membrane proteins independently (33). Oxa1 has a C-terminal 83 extension which is the ribosome-docking site for translating substrates that are co-84 85 translationally inserted (34). Oxa2 performs similar insertion function for certain respiratory proteins post-translationally (35). 86 87 Until recently the presence of YidC homologs in the ER was unknown (36). Anghel et al (37) employed phylogenic homology studies and identified three Oxa1-like highly conserved 88 proteins: TMCO1, EMC3 and Get1 which are all involved in the ER membrane protein 89 translocation process in eukaryotes. The study found that Get1 was evolutionarily related to 90 91 the DUF106 group of proteins, which consisted of EMC3 and the archaeal DUF106 protein. 92 Get1 is a part of the tail-anchored protein insertion complex and substrates of this pathway 93 have a C-terminally located TM segment that is post-translationally targeted to the ER 94 membrane (38). The ER Membrane Complex 3 (EMC3) promotes the co-translational

membrane insertion of multi-pass ER proteins with charged TM segments (39, 40). TMCO1 is predicted to insert newly synthesized ER membrane proteins co-translationally, but it also engages with the Sec translocon like YidC (37).

YidC's function was first annotated in 2000 (5); it was shown to be essential in E.coli and

YidC-only Pathway

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

required for the insertion of phage proteins Pf3 coat and M13 Procoat which were previously thought to insert by an unassisted mechanism. The minimal functional unit is monomeric (41) even though YidC can dimerize under certain conditions (42). It was shown using reconstituted proteoliposomes that YidC is sufficient for the membrane integration of Pf3 (43). In addition to this, YidC is responsible for the membrane insertion of subunit c of ATP synthase (12), the mechanosensitive channel protein MscL (7) and the C-terminal tailanchored proteins TssL (44), DjlC and Flk (9). A common feature of the YidC-only pathway substrates is that they contain short translocated regions followed by one or two TM segments (45). Crystal structures of YidC from Gram-positive (46) and Gram-negative bacteria (47) uncovered important mechanistic details about its function. The conserved 5 TM core of YidC forms a unique hydrophilic cavity in the inner leaflet facing the cytoplasm but is closed from the periplasmic side. The groove contains a conserved positive charge which was shown to be critical for function in gram-positive bacteria but not in the gram-negative homolog (48). Kumazaki et al showed that MifM substrate could be crosslinked to the groove (46). Hence it is proposed that the positive charge interacts electrostatically with the charges on the substrate hydrophilic regions to recruit it into the groove and reduce its membranecrossing distance (Fig 2). Consistent with this, negative charges on the substrate N-tail or TM segment have been proposed to act as YidC-only pathway determinants (49, 50). The proton motive force (PMF) is implied to play a role in releasing the hydrophilic domain from the groove but it is unclear whether this occurs and, if so, how it occurs. Further reduction in

membrane crossing distance for the substrate was suggested by MD simulation studies (51) which found thinning of the membrane region around YidC.

The major substrate contact sites of YidC are the hydrophobic residues found in TM3 and TM5 that were shown by crosslinking studies to bind the substrate TM segment of Pf3 coat (52) and MscL (53). This suggests that YidC facilitates substrate insertion through hydrophobic interactions via a greasy-sliding mechanism (Fig 2). In line with this, Cryo-EM studies showed that the TM segment of the F0c substrate is in proximity to the greasy slide (54). Substrate insertion kinetics was studied in real-time using time resolved single-molecule FRET analysis (55) which showed that the entire process of substrate contact, insertion and separation from YidC occurred within 20 ms and Pf3 inserted into reconstituted YidC proteoliposomes at the rate of 500 molecules per second.

Another feature of YidC is the cytosolic loops C1, C2 and the C-terminal tail region, of which the latter two constitute the protein docking sites for receiving its translating substrates. C1 loop forms a helical hairpin that is essential for function (48) and is believed to be highly

its role in recruiting substrates (17). Similarly, Driessen et al found that the C2 loop and C-terminal region of YidC provide stable docking sites for ribosome nascent chain complexes (56). These studies define the role played by the different regions of YidC leading to a better understanding of the mechanism of its insertion function.

dynamic based on their relative positions in the crystal structures. Crosslinking studies

performed by Koch's group show that the C1 loop interacts with SRP and FtsY, highlighting

YidC-Sec Pathway

Substrate specificity studies indicate that YidC has limited potential to function independently and the translocation of energetically unfavourable regions of substrates require both YidC and Sec (57). Several essential inner membrane proteins like ATP synthase subunit a, b (6, 58) and subunit II of Cytochrome b0 oxidase (13, 59), TatC (60, 61) and anaerobic respiratory protein NuoK (50) are inserted by the combined efforts of YidC and Sec. This

phenomenon may also occur in higher eukaryotes in the ER and thylakoidal membrane where YidC and Sec homologs are known to interact. The bacterial holo-translocon (HTL), made up of SecYEG, SecDFYajC and YidC, is proposed to be an efficient insertion machine for the membrane protein substrates of the YidC-Sec pathway (62). 150 SecYEG forms a channel through which substrate polar domains are exported across the membrane whereas the TM segments exit the channel with the help of YidC via a lateral gate formed by TM 2b and TM7 of SecY (63, 64) (Fig 3). Consistent with this, lateral gate of SecY can be photo-crosslinked to YidC (65). It is predicted that the greasy slide of YidC might contact the SecY lateral gate and move the substrate TM segment via hydrophobic interactions from within the channel and into the lipid bilayer. Recent insight into how this partnership works has revealed that the first TM of E.coli YidC contacts SecY and SecG (17). It is proposed that this TM may enter the channel and draw the TM segments out through the lateral gate, but this remains to be tested. The study also reported C1 loop as a contact site for SecY. In addition to this, YidC is also known to act as a folding and packaging site for Secdependent proteins (66). Nagamori et al (67) found that LacY protein required YidC to achieve its functional folded form using monoclonal antibodies recognizing specific conformational domains. Strikingly, the translocation of the six periplasmic domains of LacY required only SecYEG while the folding of the protein was dependent on YidC (68). YidC's role in folding LacY was further explored by Serduik et al by using single molecule force spectroscopy (69). A mechanical pulling force was applied on a single LacY molecule to unfold it and extract it from a membrane using the stylus of a cantilever. This protein was then slowly allowed to refold into another membrane in the presence of YidC. The study showed that only in the presence of YidC, LacY could fold back to its stable form in the membrane. The accessory elements SecDFYajC is believed to promote YidC's interaction with the Sec

channel (70). SecDF was shown to contact the periplasmic domain of E. coli YidC using

147

148

149

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

affinity pull-down experiments (18). This interaction may indicate the shared functional role of SecDF and periplasmic domain of YidC in the substrate folding process. The crystal structure of SecDF and electrophysiological experiments revealed a proton-transport mechanism which could provide the energetic driving force for pulling the substrate out of the Sec channel during translocation and prevent its back-sliding (71). Substrates of this pathway are targeted to the holotranslocon by SRP and its membrane-associated receptor FtsY for co-translational insertion (6).

Conclusion

YidC family of proteins catalyse the unfavourable movement of polar domains of membrane proteins across the hydrophobic lipid bilayer and function as a chaperone for a subset of proteins to ensure that their functional conformation is reached as well. The complex interplay between the various components of the insertion pathway have been explored in recent research. Though the crystal structure of YidC advanced our understanding of how these insertases function, the exact mechanism by which the substrate moves through YidC or the YidC/Sec Holocomplex during the membrane insertion process needs to be elucidated. It is anticipated that the mechanistic details unravelled in *E. coli* could be applied to similar pathways operating in higher organisms due to the conserved nature of the proteins involved.

Acknowledgements

This work was supported by National Science Foundation grant MCB-1814936 to R.E.D.

Figure 1. YidC family of proteins. Top panel: Structural homology in the YidC/Alb3/Oxa1 family shown by highlighting the conserved TMs in Green (TM1), Red (TM2), Cyan (TM3), Purple (TM4) and Yellow (TM5) respectively. YidC structure is adapted from the crystal structure solved in *Bacillus halodurans* (PDB: 3WO7); Alb3 and Oxa1 structures are 3D computational models made using SWISS-MODEL workspace as described in (72). Bottom panel: Newly identified members of Oxa1 superfamily highlighting the conserved three TM segments in Green (TM1), Red (TM2) and Yellow (TM3) respectively. Archaeal DUF106 structure is adapted from the crystal structure solved in *Methanocaldococcus jannaschii* (PDB: 5C8J); Yeast Get1, Human TMCO1 and Human EMC3 structures are evolutionary covariance-based 3D models adapted from (36, 37). The cytoplasmic regions of these models were modified as described in (36).

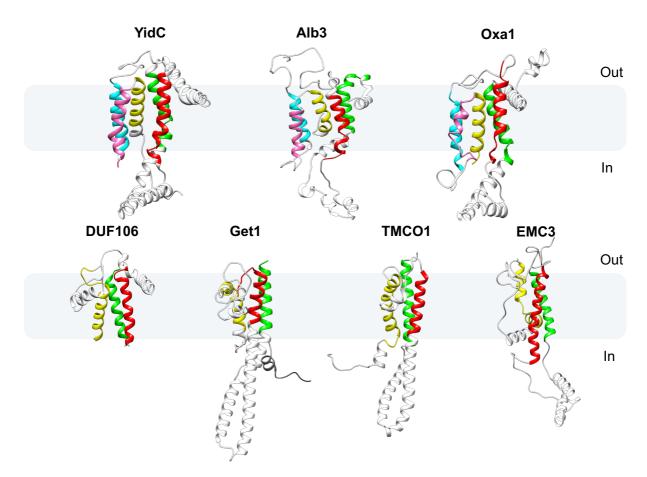
Figure 2. Model of YidC-mediated membrane insertion of Pf3 coat protein. This figure is adapted from a review by Kiefer *et al* (73) (A) Binding of Pf3 coat protein to YidC. (B) Pf3 TM segment interacts with the cytoplasmic part of the greasy slide and the N-terminal tail of Pf3 (blue) enters the hydrophilic cavity of YidC possessing the conserved Arg residue (red). (C) Pf3 coat TM segment inserts across the YidC "greasy slide" formed by TM3 and TM5 (purple) and release of the N-tail into the periplasmic space. (D) Release of Pf3 into the bilayer.

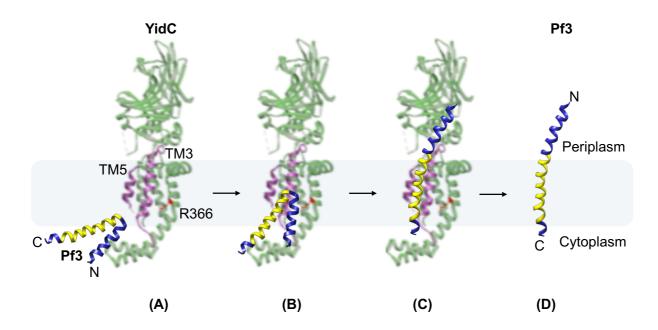
Figure 3. Model of YidC-Sec insertion pathway. (A) SRP-bound substrate is cotranslationally targeted to the Sec holotranslocon (SecDFYajC not represented) via the membrane-associated SRP-receptor FtsY. (B) Substrate amino-terminal TM segment exit the SecYEG channel through a lateral gate with the assistance of YidC and the second TM

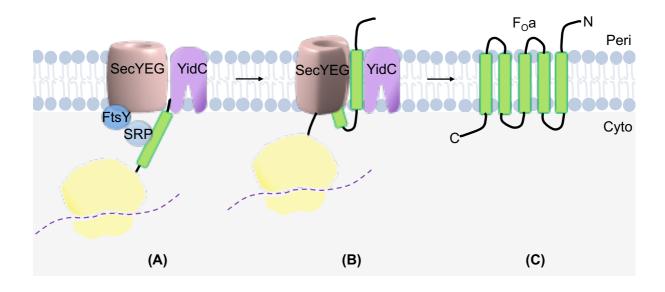
- segment initiates translocation. (C)The model substrate shown here, Foa, is inserted into the
- 225 bilayer.

References

- Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, p 567-80, J Mol Biol, 2001/01/12 ed, vol 305.
- 230 2. Pohlschroder M, Prinz WA, Hartmann E, Beckwith J. 1997. Protein translocation in the three domains of life: variations on a theme. Cell 91:563-6.
- Duong F, Wickner W. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756-68.
- 234 4. Dalbey RE, Kuhn A. 2004. YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol 166:769-74.
- Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE. 2000.
 YidC mediates membrane protein insertion in bacteria. Nature 406:637-41.
- 238 6. Yi L, Celebi N, Chen M, Dalbey RE. 2004. Sec/SRP requirements and energetics of membrane 239 insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 240 279:39260-7.
- Facey SJ, Neugebauer SA, Krauss S, Kuhn A. 2007. The mechanosensitive channel protein
 MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia
 coli. J Mol Biol 365:995-1004.
- 244 8. Pross E, Soussoula L, Seitl I, Lupo D, Kuhn A. 2016. Membrane Targeting and Insertion of the C-Tail Protein SciP. J Mol Biol 428:4218-4227.
- Peschke M, Le Goff M, Koningstein GM, Karyolaimos A, de Gier JW, van Ulsen P, Luirink J.
 2018. SRP, FtsY, DnaK and YidC Are Required for the Biogenesis of the E. coli Tail-Anchored
 Membrane Proteins DjlC and Flk. J Mol Biol 430:389-403.
- 10. Hennon SW, Soman R, Zhu L, Dalbey RE. 2015. YidC/Alb3/Oxa1 Family of Insertases. J Biol Chem 290:14866-74.
- van der Laan M, Urbanus ML, Ten Hagen-Jongman CM, Nouwen N, Oudega B, Harms N,
 Driessen AJ, Luirink J. 2003. A conserved function of YidC in the biogenesis of respiratory
 chain complexes. Proc Natl Acad Sci U S A 100:5801-6.
- van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ. 2004. F1F0 ATP synthase subunit
 c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol
 165:213-22.
- du Plessis DJ, Nouwen N, Driessen AJ. 2006. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J Biol Chem 281:12248-52.
- 259 14. Price CE, Driessen AJ. 2008. YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J Biol Chem 283:26921-7.
- 261 15. Ravaud S, Stjepanovic G, Wild K, Sinning I. 2008. The crystal structure of the periplasmic 262 domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding 263 cleft. J Biol Chem 283:9350-8.
- Jiang F, Chen M, Yi L, de Gier JW, Kuhn A, Dalbey RE. 2003. Defining the regions of
 Escherichia coli YidC that contribute to activity. J Biol Chem 278:48965-72.
- Petriman NA, Jauss B, Hufnagel A, Franz L, Sachelaru I, Drepper F, Warscheid B, Koch HG.
 2018. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the
 SRP receptor FtsY. Sci Rep 8:578.
- Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A. 2006. Different regions of the nonconserved
 large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and
 membrane insertase activity. Biochemistry 45:13401-8.


- 272 19. Chiba S, Ito K. 2015. MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J Bacteriol 197:99-107.
- 274 20. Errington J, Appleby L, Daniel RA, Goodfellow H, Partridge SR, Yudkin MD. 1992. Structure
 275 and function of the spollIJ gene of Bacillus subtilis: a vegetatively expressed gene that is
 276 essential for sigma G activity at an intermediate stage of sporulation. J Gen Microbiol
 277 138:2609-18.
- 278 21. Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, Keenan RJ. 2015. A YidC-like Protein in the Archaeal Plasma Membrane. Structure 23:1715-1724.
- Jiang F, Yi L, Moore M, Chen M, Rohl T, Van Wijk KJ, De Gier JW, Henry R, Dalbey RE. 2002.
 Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion
 strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins.
 J Biol Chem 277:19281-8.
- 284 23. Preuss M, Ott M, Funes S, Luirink J, Herrmann JM. 2005. Evolution of mitochondrial oxa
 285 proteins from bacterial YidC. Inherited and acquired functions of a conserved protein
 286 insertion machinery. J Biol Chem 280:13004-11.
- 24. van Bloois E, Koningstein G, Bauerschmitt H, Herrmann JM, Luirink J. 2007. Saccharomyces
 288 cerevisiae Cox18 complements the essential Sec-independent function of Escherichia coli
 YidC. FEBS J 274:5704-13.
- 290 25. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G. 1997. ALBINO3, an
 291 Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast
 292 protein that shows homology to proteins present in bacterial membranes and yeast
 293 mitochondria. Plant Cell 9:717-30.
- 294 26. Gerdes L, Bals T, Klostermann E, Karl M, Philippar K, Hunken M, Soll J, Schunemann D. 2006.
 295 A second thylakoid membrane-localized Alb3/Oxal/YidC homologue is involved in proper
 296 chloroplast biogenesis in Arabidopsis thaliana. J Biol Chem 281:16632-42.
- 27. Woolhead CA, Thompson SJ, Moore M, Tissier C, Mant A, Rodger A, Henry R, Robinson C.
 298 2001. Distinct Albino3-dependent and -independent pathways for thylakoid membrane
 299 protein insertion. J Biol Chem 276:40841-6.
- 300 28. Benz M, Bals T, Gugel IL, Piotrowski M, Kuhn A, Schunemann D, Soll J, Ankele E. 2009. Alb4 of
 301 Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding
 302 photosynthetic complex, the CF1CF0-ATP synthase. Mol Plant 2:1410-24.
- Falk S, Ravaud S, Koch J, Sinning I. 2010. The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J Biol Chem 285:5954-62.
- 30. Klostermann E, Droste Gen Helling I, Carde JP, Schunemann D. 2002. The thylakoid
 306 membrane protein ALB3 associates with the cpSecY-translocase in Arabidopsis thaliana.
 307 Biochem J 368:777-81.
- 308 31. Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G. 1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 239:201-12.
- 31. Funes S, Nargang FE, Neupert W, Herrmann JM. 2004. The Oxa2 protein of Neurospora crassa plays a critical role in the biogenesis of cytochrome oxidase and defines a ubiquitous subbranch of the Oxa1/YidC/Alb3 protein family. Mol Biol Cell 15:1853-61.
- 314 33. Ott M, Herrmann JM. 2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta 1803:767-75.
- 316 34. Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA. 2003. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438-47.
- 35. Fiumera HL, Broadley SA, Fox TD. 2007. Translocation of mitochondrially synthesized Cox2 domains from the matrix to the intermembrane space. Mol Cell Biol 27:4664-73.
- 321 36. Chen Y, Dalbey RE. 2018. Oxa1 Superfamily: New Members Found in the ER. Trends Biochem Sci 43:151-153.


- 323 37. Anghel SA, McGilvray PT, Hegde RS, Keenan RJ. 2017. Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum. Cell Rep 21:3708-3716.
- 325 38. Srivastava R, Zalisko BE, Keenan RJ, Howell SH. 2017. The GET System Inserts the Tail-326 Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes. Plant Physiol 173:1137-327 1145.
- 39. Guna A, Volkmar N, Christianson JC, Hegde RS. 2018. The ER membrane protein complex is a transmembrane domain insertase. Science 359:470-473.
- 330 40. Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J,
 331 Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky JL,
 332 Frost A, Borner GH, Weissman JS. 2018. The ER membrane protein complex interacts
 333 cotranslationally to enable biogenesis of multipass membrane proteins. Elife 7.
- Spann D, Pross E, Chen Y, Dalbey RE, Kuhn A. 2018. Each protomer of a dimeric YidC
 functions as a single membrane insertase. Sci Rep 8:589.
- Boy D, Koch HG. 2009. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 20:1804-15.
- Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A. 2004.
 Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294-340
 301.
- 44. Aschtgen MS, Zoued A, Lloubes R, Journet L, Cascales E. 2012. The C-tail anchored TssL
 subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion
 system, is inserted by YidC. Microbiologyopen 1:71-82.
- 344 45. Dalbey RE, Kuhn A, Zhu L, Kiefer D. 2014. The membrane insertase YidC. Biochim Biophys Acta 1843:1489-96.
- 46. Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N,
 347 Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani
 348 R, Tsukazaki T, Nureki O. 2014. Structural basis of Sec-independent membrane protein
 349 insertion by YidC. Nature 509:516-20.
- 47. Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, Tsukazaki T,
 Nureki O. 2014. Crystal structure of Escherichia coli YidC, a membrane protein chaperone
 and insertase. Sci Rep 4:7299.
- 48. Chen Y, Soman R, Shanmugam SK, Kuhn A, Dalbey RE. 2014. The role of the strictly
 354 conserved positively charged residue differs among the Gram-positive, Gram-negative, and
 355 chloroplast YidC homologs. J Biol Chem 289:35656-67.
- 356 49. Zhu L, Wasey A, White SH, Dalbey RE. 2013. Charge composition features of model single 357 span membrane proteins that determine selection of YidC and SecYEG translocase pathways
 358 in Escherichia coli. J Biol Chem 288:7704-16.
- 359 50. Price CE, Driessen AJ. 2010. Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. J Biol Chem 285:3575-81.
- 51. Chen Y, Capponi S, Zhu L, Gellenbeck P, Freites JA, White SH, Dalbey RE. 2017. YidC Insertase
 of Escherichia coli: Water Accessibility and Membrane Shaping. Structure 25:1403-1414 e3.
- Klenner C, Yuan J, Dalbey RE, Kuhn A. 2008. The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 582:3967-72.
- Neugebauer SA, Baulig A, Kuhn A, Facey SJ. 2012. Membrane protein insertion of variant MscL proteins occurs at YidC and SecYEG of Escherichia coli. J Mol Biol 417:375-86.
- Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb
 DC, Beckmann R. 2016. Structural Dynamics of the YidC:Ribosome Complex during
 Membrane Protein Biogenesis. Cell Rep 17:2943-2954.
- Winterfeld S, Ernst S, Borsch M, Gerken U, Kuhn A. 2013. Real time observation of single
 membrane protein insertion events by the Escherichia coli insertase YidC. PLoS One
 8:e59023.


Geng Y, Kedrov A, Caumanns JJ, Crevenna AH, Lamb DC, Beckmann R, Driessen AJ. 2015.
 Role of the Cytosolic Loop C2 and the C Terminus of YidC in Ribosome Binding and Insertion

376 Activity. J Biol Chem 290:17250-61.

- Soman R, Yuan J, Kuhn A, Dalbey RE. 2014. Polarity and charge of the periplasmic loop
 determine the YidC and sec translocase requirement for the M13 procoat lep protein. J Biol
 Chem 289:1023-32.
- 58. Kol S, Majczak W, Heerlien R, van der Berg JP, Nouwen N, Driessen AJ. 2009. Subunit a of the
 F(1)F(0) ATP synthase requires YidC and SecYEG for membrane insertion. J Mol Biol 390:893 901.
- Celebi N, Yi L, Facey SJ, Kuhn A, Dalbey RE. 2006. Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. J Mol Biol 357:1428-36.
- 386 60. Zhu L, Klenner C, Kuhn A, Dalbey RE. 2012. Both YidC and SecYEG are required for
 387 translocation of the periplasmic loops 1 and 2 of the multispanning membrane protein TatC.
 388 J Mol Biol 424:354-67.
- Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Muller M, Warscheid B, Drepper F, Koch HG.
 2012. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the
 Escherichia coli signal recognition particle. Mol Biol Cell 23:464-79.
- Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S, Gold VA, Lycklama ANJA, Huard K,
 Berger I, Schaffitzel C, Collinson I. 2014. Membrane protein insertion and proton-motive force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC.
 Proc Natl Acad Sci U S A 111:4844-9.
- Egea PF, Stroud RM. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 107:17182-7.
- 398 64. Van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427:36-44.
- Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T, Knapp B, Drepper F, Warscheid B, Koch
 HG. 2013. YidC occupies the lateral gate of the SecYEG translocon and is sequentially
 displaced by a nascent membrane protein. J Biol Chem 288:16295-307.
- 403 66. Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Muller M. 2001. YidC, an assembly site for 404 polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE 405 translocon and lipids. EMBO Rep 2:709-14.
- 406 67. Nagamori S, Smirnova IN, Kaback HR. 2004. Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53-62.
- 408 68. Zhu L, Kaback HR, Dalbey RE. 2013. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J Biol Chem 288:28180-94.
- 410 69. Serdiuk T, Mari SA, Muller DJ. 2017. Pull-and-Paste of Single Transmembrane Proteins. Nano 411 Lett 17:4478-4488.
- 412 70. Nouwen N, Driessen AJ. 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 44:1397-405.
- Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235-8.
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296-W303.
- 420 73. Kiefer D, Kuhn A. 2018. YidC-mediated membrane insertion. FEMS Microbiol Lett 365.

