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ABSTRACT

L. Wind connectivity has been identified as a key factor driving many biological processes.

2. Existing software available for managing wind data are often overly complex for

studying many ecological processes and cannot be incorporated into a broad framework.

3. Here we present iWind, an R langauge package to download and manage surface wind

data from the Global Forecasting System and to compute wind connectivity between locations.

4. Data obtained with rWind can be used in a general framework for analysis of biological
processes to develop hypotheses about the role of wind in driving ecological and evolutionary

patterns.
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SOFTWARE AVAILABILITY

The stable version of rWind is released regularly on the Comprehensive R Archive Network (CRAN):

https://CRAN.R-project.org/package=rWind



and can be installed in R by typing the following command:

install.packages("rWind")

The development version of rfWind is hosted on github:

https://github.com/jabiologo/rWind

rWind is distributed under GNU Public Licence (GPL) version 3 or greater.

Further examples can be found on the blog of the first author:

http://allthiswasfield.blogspot.com/
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FULL TITLE: rWind: Download, edit and include wind data in ecological and evolutionary

analysis.

ABSTRACT

KEYWORDS

1. Wind connectivity has been identified as a key factor driving many
biological processes.
2. Existing software available for managing wind data are often overly

complex for studying many ecological processes and cannot be incorporated

into a broad framework.

3. Here we present rWind, an R langauge package to download and
manage surface wind data from the Global Forecasting System and to compute

wind connectivity between locations.

4. Data obtained with rWind can be used in a general framework for
analysis of biological processes to develop hypotheses about the role of wind in

driving ecological and evolutionary patterns.

R, wind connectivity, landscape genetics

INTRODUCTION

The bulk movement of air across the surface of the Earth, that is, wind, has been broadly

recognized as an important influence in biological processes related to species distribution and

biogeography (Hooker, Fitch and Brothers 1844, Freeman 1945, Winkworth et al. 2002,

Sanmartin, Wanntorp and Winkworth 2007). For example, wind currents can play a decisive

role in driving patterns in bird migration (Felicisimo, Mufioz and Gonzalez-Solis 2008,

Vansteelant, Kekkonen and Byholm 2017), island colonization (Harvey 1994, Juan et al. 2000),

gene flow between populations (Calsbeek and Smith 2003), and dispersal ecology (Muiioz et al.
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2004, Nathan 2006). Models of wind-mediated processes are frequently criticized due to the
lack of available empirical wind data and their inherent infalsifiability (J J Morrone and Crisci
1995, Ebach and Williams 2010). However, in recent decades the development of modemn
monitoring systems for atmospheric conditions and the public availability of these data from
these systems (Shamoun-Baranes, Bouten and van Loon 2010) have promoted the incorporation
of quantitative wind data into research (Kemp et al. 2010, Tettrup et al. 2017). The development
of tools to access and manage these data has also increased, and several models and R packages
have been created in order to study the effect of wind on specific biological processes (e.g. bird
migration (Kemp et al. 2012a,b). However, these models are often very specialized and usually
require input data such as radio-tracked locations or bird flying altitudes, which are not always
available. In addition, it is usually quite difficult to adapt these models into a more general
framework in order to analyze the role of wind connectivity in evolutionary processes such as
alternative population genetics models (e.g. landscape ecology), or species dispersal versus

vicariance models in biogeography (e.g. oceanic island colonizations, Queiroz 2005).

In this context, a simpler approach is useful in order to formulate hypotheses about connectivity
between individuals, populations or communities to be later tested with any source of
information, from simple presence records, to genetic data (microsatellite data, NGS data, etc.).
Presently, available software to compute connectivity in ecology, including Circuitscape
(McRae 2006, McRae et al. 2008), gdistance (Etten 2017) or GLFOW (Leonard et al. 2017), are
based primarily on the inclusion of friction layers: maps with habitat suitability or any other
geographical/ecological characteristic that may influence dispersal or movement ability. Least
cost path or connectivity are then computed taking into account these layers via multiple
algorithms (e.g. Dijkstra algorithm, (Dijkstra 1959)). However, wind data have several
peculiarities that make them not particularly adaptable to these models (Etten, personal
communication). First, wind connectivity depends on two factors obtained from the same data:
wind speed and direction. Second, wind based connectivity is directional and place dependent.
i.e., it not only depends on the wind speed and direction at source cell, but also the location of

the target cell.
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Here we introduce rWind, a package in the R language for statistical computing and graphics (R
Development Core Team 2008), designed specifically to download and process wind data from
the Global Forecasting System. From these data, users can obtain wind speed and direction
layers in order to compute connectivity values between locations. rWind fills the gap between
wind data accessibility and their inclusion in a general framework to be applied broadly in

ecological or evolutionary studies.

In the following section, we describe the data used by rWind, provide a brief description of the
functions in the library, and detail the algorithm used to compute connectivity values. Finally,

we provide three examples to illustrate the general funcionality of the package.
DESCRIPTION
The Global Forecasting System wind data

The Global Forecasting System (GFS) atmospheric model is a dataset from the National
Oceanic and Atmospheric Administration (NOAA) and National Centers for Environmental
Prediction (NCEP). In this database, wind is stored as velocity vector components (U:
eastward wind and V: northward wind) at 10 meters above the Earth’s surface. The resolution
of the data is 0.5 degrees, approximately 50 km. Wind velocities have been registered six times
per day (00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC)), since May 6™
2011 and is updated daily. In rWind, these data are obtained via queries to The Pacific Islands
Ocean Observing System, coordinated by the University of Hawaii School of Ocean and Earth
Science and Technology (SOEST). A raw plain text file with gridded data is obtained for each
dataset requested by the user, with the date and time of the data, the location (longitude and
latitude coordinates) the wind vectors (U and V components) and wind speed and direction.
These data can either be exported in a .csv file or stored internally as an “rWind data frame” in
R. In Table 1 we present the functions contained in rWind package, with a brief description of

each.

[table 1 about here]
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Cost/connectivity computation

One of the most important functions of the rWind package is the computation of a cost matrix

between selected locations based on wind data (“flow.dispersion” function).

To calculate the movement cost from any starting cell to one of its 8 adjacent cells (Moore
neighborhood), we take three parameters: wind speed at starting cell, wind direction at the

starting cell (azimuth), and the position of the target cell.

To compute this cost, we implemented the algorithm proposed by Muiloz et al. (2004) and their
variation in Felicisimo, Muifloz and Gonzalez-Solis (2008) (Equations adapted from Felicisimo,

Muiioz and Gonzalez-Solis 2008, Gonzalez-Solis et al. 2009, Muiloz et al., 2004),

HF
COSt = T (1)

where HF is the horizontal factor and S the wind speed at the starting cell. Equation 2 shows

how the horizontal factor is obtained:

— {0‘1 if HRMA =0

2x HRMA it HRMA#0 @)
where HRMA (Horizontal Relative Moving Angle) is the angle in degrees between the azimuth
and the direction of the movement trajectory to the target cell. This difference is used to
penalize the connectivity (increasing the cost) between both cells when deviations from the
exact wind vector azimuth increases. If the Horizontal Relative Moving Angle is zero (i.e.
movement is in the exactly same direction as azimuth), the parameter called Horizontal Factor
(HF) is set to 0.1. Otherwise, Horizontal Factor is equal to two times Horizontal Relative
Moving Angle (HRMA) (see equation 2). This algorithm is used to compute “active” movement

costs. In other words, it allows the organism to move against wind directions as birds do during

migration.

To compute “passive” movement cost, that is avoiding movement against wind, we use a

variation of equation 2
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HF ={ if > 90
2x HRMA if0<HRMA <90 3)

where Horizontal Factor is set to oo for all cases in which the Horizontal Relative Moving Angle

is more than 90 degrees (Muiloz et al. 2004).

Two outputs are possible from the “flow.dispersion™ function. First, the "raw" mode creates a
sparse matrix (class "dgCMatrix") from the Matrix R package with transition costs between all
cells at the study area. Second, the"transitionLayer" mode creates a TransitionLayer object with
conductance values (1/cost) between cells which can be used with the "gdistance" R package

(Etten 2017) to compute the shortest path or movement cost between two locations.
EXAMPLES

To illustrate some functionalities of TWind, we have designed three brief, fully reproducible
examples. In the first, we show the very basic functionality of rWind to download and manage
wind data and to compute the shortest paths between two points with the help of gdistance
package. In the second, we use rWind to download and plot wind data during hurricanes that
occurred in the Caribbean during the month of September, 2017. Finally, in the third example,
we show how rWind can be used to obtain wind connectivity between mainland and islands to

test hypotheses about evolutionary processes in wind-dispersed plants.
Example 1: Getting shortest wind paths from across Strait of Gibraltar

The Strait of Gibraltar is an important geographical connection point between Europe and
Africa. Many birds and other organisms use this point to complete their migratory routes
between both continents, since the minimum distance between both coasts is around 14 km
(Bernis and Telleria 1981). For this reason, the study wind patterns in this region is relevant to
understanding how they affect animal migratory behavior or other ecological processes

(Richardson 1990). In this simple example, we introduce the most basic functionality of rWind,
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to obtain the anisotropic (direction-dependent) shortest paths between two points across the
Strait of Gibraltar. The following code produces Fig. 1, for an extended example see the

Supporting Information 1.

# First, we load the packages that we will use
library(rWind)

library(raster)

library(rworldmap)

library(gdistance)

library(fields)

library(lubridate)

library(shape)

# Now, we download wind data for the Strait of Gibraltar at the

# selected date and time (in our example, 2015 February 2™ at 12:00PM.)

w <- wind.d1(2015, 2, 12, 12, -7, -4, 34.5, 37.5)

# Next, we create a raster stack with wind direction and speed.

wind layer <- wind2raster(w)

# With this raster stack, we can compute conductance values (1/cost)

# to be used later to get the shortest paths between the two points using gdistance package.
Conductance <- flow.dispersion(wind layer, "active", "transitionLayer")

AtoB <- shortestPath(Conductance, c(-5.5, 37), c(-5.5, 35), output = "SpatialLines")
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BtoA <- shortestPath(Conductance, c(-5.5, 35), ¢(-5.5, 37), output = "SpatialLines")

# Finally, we can plot the wind data with the shortest paths.

image.plot(sl, col = terrain.colors(10), zlim = ¢(0,7),

xlab = "longitude", ylab = "latitude")

lines(getMap(resolution = "low"), Iwd = 4)

points(-5.5, 37, pch = 19, cex = 3.4, col = "red")

points(-5.5, 35, pch = 19, cex = 3.4, col = "blue")

lines(AtoB, col ="red", lwd =4, Ity =2)

lines(BtoA, col = "blue", lwd =4, Ity =2)

Arrowhead(w$lon, w$lat, angle = arrowDir(w), arr.length = 0.4, arr.type = "curved")

[Fig. 1 about here]

Example 2: Monitoring and plotting the Caribbean hurricanes Irma, José, and Katia (September

2017) .

During the first days of September 2017, three hurricanes (named Irma, José, and Katia) hit the
Caribbean at the same time. In this brief example we use rWind to display hurricanes in a
straightforward way (Fig. 2). In the Supporting Information, we show with this example how
rWind can be used to export .png images prepared to be converted in a GIF animation (see

Supporting Information 1 and 2).

# First, use lubridate R package to create a sequence of dates.

dt <- seq(ymd_hms(paste(2017, 9, 3, 00, 00, 00, sep ="-")),

ymd hms(paste(2017, 9, 11, 21, 00, 00, sep ="-")), by ="3 hours")

# Then, we downlad the data using wind.dl 2 and the sequence of dates, and we create the
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# raster stacks for each date and time

wind_series <- wind.dl 2(dt, -103, -53, 13, 32)

wind_series layer <- wind2raster(wind series)

# Finally, plot the hurricanes.

image.plot(wind_series layer[[45]]$wind.speed,

col = bpy.colors(1000, alpha = 0.8), zlim = ¢(0, 40),

main = wind_series[[45]]$time[1], xlab = "Longitude",

ylab = "Lattitude", cex.lab= 1.5, cex.axis = 1.5)

alpha <- atrowDir(wind series[[45]])

Arrowhead(wind_series[[45]]$1lon, wind_series[[45]]$lat, angle = alpha,

arr.length = 0.12, arr.type = "curved")

lines(getMap(resolution = "low"), Iwd = 2)

text(-99, 23.5, labels = "Katia", cex = 2, col = "white", font = 2)

text(-71, 25, labels = "Irma", cex = 2, col = "white", font = 2)

text(-59, 19.5, labels = "José", cex = 2, col = "white", font = 2)

[Fig. 2 about here]

Example 3: Measuring wind connectivity between northwestern Africa and southern

Micronesian islands (Canary Islands and Cape Verde)
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In this example, we focus on Periploca laevigata (Aiton, 1789), a Mediterranenan wind-
dispersed shrub (Zito, Détter] and Sajeva 2015) found in the southern Mediterranean and West
African regions, and on the Macaronesian Islands. Specifically, we compare the genetic
structure of northwestern African and Macaronesian populations of P. laevigata obtained by

Garcia-Verdugo et al. (2017) with wind connectivity between those areas computed with rWind.

In their research, Garcia-Verdugo et al. detected a close genetic relation between northwestern
African populations, eastern Canary Islands populations and Cape Verde populations (Garcia-
Verdugo et al. 2017, figure 2-A-B-C). In this example we compute wind connectivity from
locations sampled on the African mainland by Garcia-Verdugo et al. (2017) with their sampled
islands of Fuerteventura (eastern Canary Islands), Gran Canaria and Tenerife (central Canary
Islands), L.a Palma (western Canary Islands), and Santo Antdo and Fogo (Cape Verde). A
complete script with analyses and plots created for this example is included in the Supporting
Information 1. Fig. 3 shows a wind-connectivity graph from the mainland Africa locations
(AGA, TAN, WSAH A, WSAH B, see Apendix S1 in Garcia-Verdugo et al. (2017)) to all the
island locations. Our analyses showed that wind connectivity observed between mainland
Africa locations and Cape Verde islands is higher than those between Africa and Canary
Islands. Western/central Canary Islands showed the lowest values of wind connectivity, while
the Eastern Canary Islands were connected only with Moroccan mainland. These results are in
agreement the with the P. laevigata genetic structure measured in Garcia-Verdugo et al. (2017),
figure 2-A-B-C, suggesting wind connection may play a role in genetic structuring. Although in
this simple example several important issues are not taken into account, such as spatio-temporal
scales and the lack of a specific statistical framework (e.g. Mantel test, Mantel 1967), this
preliminary analysis shows how rWind can be useful in the formulation of new hypotheses in

biogeographical studies.

[Fig. 3 about here]
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CONCLUSIONS

Wind is known to be a key factor underlying many ecological, evolutionary and, particularly,
biogeographical processes and patterns. Therefore it is important to include wind data in
analyses of evolutionary history, dispersal, and phylogeography to help understand and test the
role that wind plays in shaping biological patterns. rtWind provides new tools to include wind
data in ecological, evolutionary, and biogeographic studies, computing connectivity matrices
that can be easily applied to many existing analyses, from landscape ecology to bird migration
models. Although other software exists to manage atmospheric data (RNCEP (Kemp et al.
2012a), IDV (Murray et al. 2003)), rWind uses a simpler model to compute wind mediated
connectivity which does not require additional data. Moreover, rWind is specifically designed to
interact with other R packages such as raster and gdistance (Etten 2017), which allows it to take
advantage of the diverse functionality of these libraries, and to easily export of wind data in a
raster format to be used in a Geographic Information System (GIS) environment. In addition, it
also provides the option to export data as plain text files, and therefore to be ported into any
other software. We plan to extend functionalities of rWind to model connectivity from other

sources such as sea currents and fluvial networks.

REFERENCES

Bernis, F. and Telleria, J. L. 1981. La migracion de las aves en el Estrecho de Gibraltar:(época
posnupcial): Migracion de cigiiefias y falconiformes por Gibraltar v. 2. L.a migracion de
las aves no planeadoras por Gibraltar. — Catedra de Zoologia de Vertebrados, Facultad

de Biologia, Univ. Complutense.

Calsbeek, R. and Smith, T. B. 2003. Ocean currents mediate evolution in island lizards. —

Nature 426: 552—555. DOI: https://doi.org/10.1038/nature02143

10



Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. — Numer. Math. 1:

269-271. DOL: 10.1007/BF01386390

Ebach, M. C. and Williams, D. M. 2010. Systematics and Biogeography: Cladistics and

Vicariance. — Syst. Biol. 59: 612—614. https://doi.org/10.1093/sysbio/syq050

Etten, J. van. 2017. R Package gdistance: distances and routes on geographical grids. — J. Stat.

Softw. 76: 1-21. DOI: 10.18637/js5.v076.113

Felicisimo, A. M., Muiioz, J. and Gonzalez-Solis, J. 2008. Ocean surface winds drive dynamics
of transoceanic aerial movements. — PLoS One 3: 1-7. DOI:

https://doi.org/10.1371/journal.pone.0002928

Freeman, J. A. 1945. Studies in the distribution of insects by aerial currents. — J. Anim. Ecol.

14: 128-154. DOI: 10.1111/.1365-2311.1986.tb00304.x

Garcia-Verdugo, C., Mairal, M., Monroy, P., Sajeva, M. and Caujapé-Castells, J. 2017. The loss
of dispersal on islands hypothesis revisited: Implementing phylogeography to
investigate evolution of dispersal traits in Periploca (Apocynaceae). — J. Biogeogr. 44:

2595-2606. DOT: https://doi.org/10.1111/jbi.13050

Gonzalez-Solis, J., Felicisimo, A., Fox, J. W., Afanasyev, V., Kolbeinsson, Y. and Muiloz, J.
2009. Influence of sea surface winds on shearwater migration detours. — Mar. Ecol.

Prog. Ser. 391: 221-230. DOI: https://doi.org/10.3354/meps08128

Harvey, L. E. 1994. Spatial patterns of inter-island plant and bird species movements in the

Galapagos Islands. —J. R. Soc. N. Z. 24: 45-63.

Hooker, J. D., Fitch, W. H. and Brothers, R. 1844. The botany of the Antarctic voyage of H.M.
discovery ships Erebus and Terror in the Years 1839-1843: under the command of
Captain Sir James Clark Ross. — London :Reeve Brothers,1844-1860. DOI:

https://doi.org/10.5962/bhl.title.16029

11



Morrone, J. J. and Crisci, J. V. 1995. Historical Biogeography: Introduction to Methods. —
Annu. Rev. Ecol. Syst. 26: 373-401. DOL:

https://doi.org/10.1146/annurev.es.26.110195.002105

Juan, C., Emerson, B. C., Oromi, P. and Hewitt, G. M. 2000. Colonization and diversification:
towards a phylogeographic synthesis for the Canary Islands. — Trends Ecol. Evol. 15:

104-109. DOL https://doi.org/10.1016/S0169-5347(99)01776-0

Kemp, M. U., Shamoun-Baranes, J., Van Gasteren, H., Bouten, W. and Loon, E.E. 2010. Can
wind help explain seasonal differences in avian migration speed? — J. Avian Biol. 41:

672—677. DOL https://doi.org/10.1111/j.1600-048X.2010.05053 x

Kemp, M. U., Loon, E. E., Shamoun-Baranes, J. and Bouten, W. 2012a. RNCEP: global
weather and climate data at your fingertips. — Methods Ecol. Evol. 3: 65-70. DOL:

https://doi.org/10.1111/5.2041-210X.2011.00138.x

Kemp, M. U., Shamoun-Baranes, J., Loon, E. E., McLaren, J. D., Dokter, A. M. and Bouten, W.
2012b. Quantifying flow-assistance and implications for movement research. — J. Theor.

Biol. 308: 56-67. DOI: 10.1016/j.jtbi.2012.05.026

Leonard, P. B., Duffy, E. B., Baldwin, R. F., McRae, B. H., Shah, V. B. and Mohapatra, T. K.
2017. gflow: software for modelling circuit theory-based connectivity at any scale. —

Methods Ecol. Evol. 8: 519-526. DOI: https://doi.org/10.1111/2041-210X.12689

Mantel, N. 1967 The detection of disease clustering and a generalized regression approach. —

Cancer Res. 27: 209-220. DOI: 10.1158/0008-5472

McRae, B. H. 2006. Isolation by resistance. — Evolution 60: 1551-1561. DOL:

https://doi.org/10.1111/7.0014-3820.2006.tb00500.x

McRae, B. H., Dickson, B. G., Keitt, T. H. and Shah, V. B. 2008. Using circuit theory to model

connectivity in ecology, evolution, and conservation. — Ecology 89: 2712-2724. DOL:

12



https://doi.org/10.1890/07-1861.1

Muiloz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R. and Martinez, 1. 2004. Wind as a long-
distance dispersal vehicle in the Southern Hemisphere. — Science 304: 1144—1147. DOIL:

10.1126/science.1095210

Murray, D., McWhirter, J., Wier, S. and Emmerson, S. 2003. The integrated data viewer: a web-
enabled application for scientific analysis and visualization. — 19th Int. Conf. on
Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography,

and Hydrology, Long Beach, CA, Amer. Meteor. Soc.

Nathan, R. 2006. Long-distance dispersal of plants. — Science 313: 786—788. DOL:

10.1126/science.1124975

Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. — Trends

Ecol. Evol. 20: 68-73. DOI: https://doi.org/10.1016/j.tree.2004.11.006

R Development Core Team. 2008. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

Richardson, W. 1990. Wind and orientation of migrating birds: a review. — Experientia 46: 416—

425. DOI: 10.1007/BF01952175

Sanmartin, I., Wanntorp, L. and Winkworth, R. C. 2007. West Wind Drift revisited: testing for
directional dispersal in the Southern Hemisphere using event-based tree fitting. — J

Biogeogr 34: 398-416. DOI: https://doi.org/10.1111/j.1365-2699.2006.01655 x

Shamoun-Baranes, J., Bouten, W. and Loon, E. E. 2010. Integrating Meteorology into research

on migration. — Integr. Comp. Biol. 50: 280-292. DOI: 10.1093/icb/icq011

Tettrup, A. P., Pedersen, L., Onrubia, A., Klaassen, R. H. G. and Thorup, K. 2017. Migration of
red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? — J.

Avian Biol., 48: 149-154. DOI: 10.1111/jav.01352

13



Vansteelant, W. M. G., Kekkonen, J. and Byholm, P. 2017. Wind conditions and geography
shape the first outbound migration of juvenile honey buzzards and their distribution
across sub-Saharan Africa. — Proc Biol Sci. 284: 20170387 DOI:

10.1098/rspb.2017.0387

Winkworth, R. C., Wagstaff, S. J., Glenny, D. and Lockhart, P. J. 2002. Plant dispersal N.E.-W.S
from New Zealand. — Trends Ecol. Evol. 17: 514-520. DOI:

https://doi.org/10.1016/S0169-5347(02)02590-9

Zito, P., Détterl, S. and Sajeva, M. 2015. Floral volatiles in a Sapromyiophilous plant and their

importance in attracting house fly pollinators. — J. Chem. Ecol. 41: 340-349. DOI:

10.1007/s10886-015-0568-8

236

14



237

Table 1: Brief description of the main functions included in the R library rWind.

function description

wind.dl downloads wind data from the Global Forecast System (GFS) of the
USA's National Weather Service (NWS)

wind.dl 2
( https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs) and returns either a .csv file or a
data.frame.

wind.mean Takes a list of wind data downloaded with wind.dl 2 and retunrs the
mean (average) of the time series in a data.frame.

tidy Takes an “rWind series” object from wind.dl 2 and joint and tidy
up wind data in a single data.frame.

wind2raster wind2raster crates a raster stack file (gridded) from wind data

flow.dispersion

downloaded, with two raster layers: wind direction and wind speed.

It takes input from raster stack with two raster layers: direction and
speed. flow.dispersion computes movement conductance through a
flow either, sea or wind currents. It returns either, a sparse cost

matrix or a conductance TransitionLayer object.
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Figure 1: Shortest paths following wind speed and direction of 2015 12" of February at 12:00

(UTM) between two points across Strait of Gibraltar.

Figure 2: Snapshot of the wind speed and direction from September 8 2017 showing hurricanes
Irma, José, and Katia. Wind speed is given in meters per second and a cut off at 40 m/s was

added.

Figure 3: Wind connectivity graph from northwestern Africa mainland and southemn
Macaronesian Islands for the period of April — August of 2012 — 2017. This graph shows a
higher connectivity of north western Africa mainland (Mrl, Mr3, WS1, WS2) with Cape Verde
islands (Fog, S A) than with Canary Islands (Frt, G C, Tnr, L. P), even when the distance
between African and Canary Island locations is smaller. Mainland connectivity average is

showed over each island locality (connectivity is measured in arbitrary units x 100).
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rWind vignette

LOADING PACKAGES

First, we load the main packages we will use in this vignette. This vignette was written under the rWind
version 1.0.0

# use install.packages() if some is not installed

# and you can install the latest developmeni version using the command
# devtools::install_github("jabiologo/rWind")

library(rWind)

library(raster)

library(gdistance)

EXAMPLE 1: Anisotropic shortest paths across Strait of Gibraltar

In this simple example, we introduce the most basic functionality of rWind, to get the shortest paths between
two points across Strait of Gibraltar. Notice that, as wind connectivity is anisotropic (direction dependent),
shortest path from A to B usually does not match with shortest path from B to A.

First, we will download wind data of a selected date (e.g. 2015 February 12th) and we will fix and transform
them into two raster layers, with values of wind direction and wind speed.

w<-wind.d1(2015,2,12,12,-7,-4,34.5,37.5)

## [1] "2015-02-12"
## [1] "2015-02-12 12:00:00 downloading..."

wind_layer<-wind2raster (w)

Then, we will use flow.dispersion function to obtain a transitionLayer object with conductance values,
which will be used later to obtain the shortest paths.

Conductance<-flow.dispersion(wind_layer,"active", "transitionLayer")

Now, we will use shortestPath function from gdistance package to compute shortest path from our
Conductance object between the two selected points.
AtoB<- shortestPath(Conductance,
c(-5.5, 37), c(-5.5, 35), output="SpatialLines")
BtoA<- shortestPath(Conductance,
c(-5.5, 35), c(-5.5, 37), output="SpatialLines")

Finally, we plot the map and we will add the shortest paths as lines and some other features.

library(fields)
library(shape)
library(rworldmap)

image.plot(wind_layer$wind.speed, main="least cost paths by wind direction and speed",
col=terrain.colors(10), xlab="Longitude", ylab="Lattitude", zlim=c(0,7))

lines(getMap(resolution = "low"), lwd=4)

points(-5.5, 37, pch=19, cex=3.4, col="red")
points(-5.5, 35, pch=19, cex=3.4, col="blue")



lines(AtoB, col="red", lwd=4, lty=2)
lines(BtoA, col="blue", lwd=4, lty=2)

alpha <- arrowDir(w)
Arrowhead(w$lon, w$lat, angle=alpha, arr.length = 0.4, arr.type="curved")

text(-5.75, 37.25,labels="Spain", cex= 2.5, col="red", font=2)

text(-5.25, 34.75,labels="Morocco", cex= 2.5, col="blue", font=2)

legend("toprigh", legend = c("From Spain to Morocco", "From Morocco to Spain"),
lwd=4 ,1ty = 1, col=c("red","blue"), cex=0.9, bg="white")

least cost paths by wind direction and speed

=== From Spain to Morocco —
=== From Morocco to Spain

37.0 37.5

36.5

Lattitude
36.0

35.0 35.5

34.5

Longitude

EXAMPLE 2: Hurricanes visualization

This example shows how to download a time series data with rWind and edit them to obtain a gif map with
wind speed and directions. For this example, we will use hurricanes wind data ocurred during the first days
of September 2017.



First, we will download wind data from 3rd to 11th of September 2017 by each three hours using wind.dl_ 2.
To do that, we will use lubridate package to create a list of dates/times to be used by wind.dl_2. It could
take a while. ..

library(lubridate)
dt <- seq(ymd_hms (paste(2017,9,3,00,00,00, sep="-")),

ymd_hms (paste (2017,9,11,21,00,00, sep="-")),by="3 hours")
wind_series <- wind.dl_2(dt,-103,-53,13,32)

In a second step, we will obtain raster layers for wind speed and direction of each date-time downloaded.
wind2raster can take a list as argument.

wind_series_layer <- wind2raster(wind_series)

Finally, we will export the entire time series as PNG format. You should check your current work directory
(getwd) to know where the PNG files will be stored.
id<-0
for (i in 1:72) {
id <- sprin‘tf(" %03d", i)
png(paste("hurricane",id,".png", sep=""), width=1100, height=570, units="px",
pointsize=18)
image.plot(wind_series_layer[[i]]$wind.speed, col=bpy.colors(1000),
zlim=c(0,40), main =wind_series[[i]]$time[1])
lines(getMap(resolution = "low"), lwd=3)
dev.off()
}

The exported PNG files can be converted into a GIF format using several softwares. You can use imagmagick
convert -delay 10 *.png hurricane.gif which will result in an animation like the Supporting Information

2

The following code is used to create figure 2 in the manusecript.

image.plot(wind_series_layer[[45]]$wind.speed, col=bpy.colors(1000), zlim=c(0,40),
main =wind_series[[45]]1$time[1], xlab="Longitude",
ylab="Lattitude")

alpha <- arrowDir(wind_series[[45]])

Arrowhead(wind_series[[45]]$lon, wind_series[[45]]$lat, angle=alpha, arr.length = 0.07,
arr.type="curved")

lines(getMap(resolution = "low"), lwd=3)

text(-99, 23.5,labels="Katia", cex= 2, col="white", font=2)

text(-71, 25,labels="Irma", cex= 2, col="white", font=2)

text(-59, 19.5,labels="José", cex= 2, col="white", font=2)
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In addition, we can compute some statistics from the wind data downloaded.

40

30

20

10

First, we can use wind.mean to compute speed and direction averages for each location in our study area:

mean_wind <- wind.mean(wind_series)
head (mean_wind)

#3#
#3#
#3#
#3#
#3#
#3#
#3#

time
2017-09-03
2017-09-03
2017-09-03
2017-09-03
2017-09-03
2017-09-03

DU W

lat
13
13
13
13
13
13

lon

257.
257.
258.
258.
259.
259.

oo oo ;o

ugrdiOm

.6798113
.1322760
.9516941
.95560353
.0296657
.1109363

e i e =]

vgrdiOm

.2501722
.7382131
.1400587
.1605026
.1105695
.0263549

163.
289.
300.
300.
298.
295.

dir
1896
0963
2908
6932
6861
9075

2
2
2
2
2
2

speed

.350621
.256448
.260275
.273528
.313635
.346786

We can also use tidy function to put all the data in a single data.frame and use dplyr package to compute
maximum speed, for example:

t_wind_series <- tidy(wind_series)

library(dplyr)

#3#
#3#

#3#
#3#
#3#

#3#
#3#
#3#

#3#
#3#
#3#

Attaching package:

'dplyr’

The following objects are masked from 'package:igraph':

as_data_frame, groups, union

The following objects are masked from 'package:raster':

intersect, select, union

The following objects are masked from 'package:stats':

filter, lag



## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

g_wind_series <- t_wind_series %>} group_by(lat, lon)
max_ww <- g_wind_series %>} summarise(speed = max(speed))

maxw <- cbind(max_ww$lon, max_ww$lat, max_ww$speed)

head (maxw)

## [,11 [,2] [,3]
## [1,]1 -103.0 13 4.509488
## [2,]1 -102.5 13 5.205593
## [3,]1 -102.0 13 5.026556
## [4,] -101.5 13 4.746515
## [5,]1 -101.0 13 7.129943

## [6,] -100.5 13 11.128306

Finally, we can transform this data into a raster file to be ploted and “track” the maximum speed recorded in
our study area for our time lapse.

rmax <- rasterFromXYZ(maxw)
image.plot(rmax, col=bpy.colors(1000), zlim=c(0,40),
main = "Maximum wind speed recorded", xlab="Longitude",

ylab="Lattitude")
lines(getMap(resolution = "low"), lwd=3)
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EXAMPLE 3: Measuring wind connectivity between northwestern Africa and
southern Macaronesian islands (Canary Islands and Cape Verde)

Wind currents are often thought to play a key role in species dispersal processes, particulary in oceanic
island colonization. In this example, we will compare genetic structure of the wind-dispersed shrub Periploca
laevigata obtained by Garcia-Verdugo et al. (2017) with wind connectivity between northwestern Africa
and Canary and Cape Verde archipelagos using rWind package. Although in this simple example several
important issues are not taken into account, such as spatio-temporal scales and the lack of a specific statistical
framework (e.g. Mantel test, etc.), this preliminary analysis shows how tWind can be useful in the formulation
of new hypotheses in biogeographical studies.

First, we set the locations used by Garcia-Verdugo et al. (2017). Since the rWind data resolution is about 50
km, some close sampled locations were merged.

loc <- matrix(c(-9.4729, -11.0422, -14.0443, -13.0395, -14.0000, -15.6000,
-16.6000, -17.8600, -24.3800, -25.1800, 30.3331, 28.3376,
26.2368, 26.3028, 28.4000, 28.0000, 28.2700, 28.7300, 14.9300,
17.0700), 10, 2)
colnames(loc) <- c("lon", "lat")
rownames (loc) <- c("Moroccol", "Morocco3", "WSaharal", "WSahara2",
"Fuerteventura", "Gran_Canaria", "Tenerife", "La_Palma",
"Fogo", "San_Antonio")

Second, we define the temporal scale of wind data. Since P. laevigata fruits are available from spring to
summer, we select May, June, July and August winds from 2012 to 2017. We sample wind once per day each
5 days. Wind sampling could be more intense, but we reduce it for computation reasons. The spatial window
is set between -27 and -7 longitudinal degrees and 14 and 31 latitudinal degrees. We will get a total of 150
wind data for this region.

dt <- c(seq(ymd_hms(paste(2012,5,3,00,00,00, sep="-")),
ymd_hms (paste (2012,8,31,12,00,00, sep="-")),by="5 days"),
seq(ymd_hms (paste (2013,5,3,00,00,00, sep="-")),
ymd_hms (paste (2013,8,31,12,00,00, sep="-")),by="5 days"),
seq(ymd_hms (paste (2014,5,3,00,00,00, sep="-")),
ymd_hms (paste (2014,8,31,12,00,00, sep="-")),by="5 days"),
seq(ymd_hms (paste (2015,5,3,00,00,00, sep="-")),
ymd_hms (paste (2015,8,31,12,00,00, sep="-")),by="5 days"),
seq(ymd_hms (paste (2016,5,3,00,00,00, sep="-")),
ymd_hms (paste (2016,8,31,12,00,00, sep="-")),by="5 days"),
seq(ymd_hms (paste (2017,5,3,00,00,00, sep="-")),
ymd_hms (paste (2017,8,31,12,00,00, sep="-")),by="5 days"))

Next, we create two objects to store costs obtained for each wind data between all locations and path lines
between two selected locations as an example (Western Sahara and Santo Antao, Cape Verd)

paths <- 1list(1:150)
cost_list <- array(NA_real , dim=c(10,10,150))
Now, we will execute the next actions:
1. Download wind data (wind.d1_2()).
2. Transform data in raster layers (speed and direction, wind2raster()).
3. Get Conductance matrices for each wind data downloaded.
4. Compute Costs between locations and store them in a cost_list object.
5

. If the Cost is not Inf, get the shortest path between selected locations, and store it into paths object.



WARNING: Notice that you will download and managge 150 wind datasets, so it could take a while... you
can reduce wind size sample (e.g. sampling each 10 days), but it could affect to connectivity values. We
advice to use as much data as possible in order to obtain accurate results

w <- wind.dl_2(dt,-27,-7,14,31)
path_layers <- wind2raster(w)
Conductance <- flow.dispersion(path_layers,"passive", output="transitionLayer")

for (i in 1:150){
cost_list[,,i] <- costDistance(Conductance[[i]],loc)
if (costDistance(Conductance[[i]],loc[3,] , loc[9,]) != Inf){
paths[[i]] <- shortestPath(Conductance[[i]], loc[3,], loc[9,],
output="SpatialLines")
}
}

connectivity <- 1/cost_list

Now, we obtain the connectivity average between locations and rename columns and rows.

conn_avg <- apply(comnectivity, c(1, 2), mean, na.rm = TRUE)
rownames (conn_avg) <- rownames(loc)

colnames (conn_avg) <- rownames(loc)

Since in this example we are specially interested in wind connectivity from Africa mainland to islands, we
select just this part of the matrix. Then, we build a new matrix whit those values in the low triangle, ready
to be plotted with qgraph R package

mat <- matrix(0,10,10)

mat[5:10,1:4] <- t(conn_avg[1:4,5:10])
colnames(mat) <- c(colnames(t(conn_avg[1:4,5:10])),
rownames (t (conn_avg[1:4,5:10])))
c(colnames (t(conn_avg[1:4,5:10])),
rownames (t (conn_avg[1:4,5:10])))

rownames (mat) <-

mat[5:10,1:4]

## Moroccol Morocco3 WSaharal WSahara2
## Fuerteventura 0.007319083 0.005658942 0.0002379433 0.0003069165
## Gran_Canaria 0.005625220 0.004453675 0.0002783037 0.0003479783
## Tenerife 0.004350546 0.002944165 0.0002090746 0.0002624865
## La_Palma 0.003670016 0.002491726 0.0001969059 0.0002472273
## Fogo 0.003617335 0.004497506 0.0072149708 0.0061264604
## San_Antonio 0.003958045 0.004596927 0.0072439731 0.0059671579

Now, we can use qgraph R package to plot a graph with wind connectivity from locations in Africa mainland
to Macaronesian islands and compare this connectivity with another source of data, as genetic structure of P.
laevigata from Garcia-Verdugo et al. (2017). The following code is used to create figure 2 in the manuscript.

library(qgraph)

gr <- as.factor(c("Africa","Africa","Africa","Africa","Western Canary Islands",
"Central Canary Islands","Central Canary Islands",
"Eastern Canary Islands","Cape Verde","Cape Verde"))
ggraph(t(mat), layout= "circle", groups=gr, theme="colorblind", vsize=8,

edge.width=1.7)



text( 0.5,-1, round(mean(mat[5,1:4]), 4), cex=1.5, font=2)
text( 0,-1.2, round(mean(mat[6,1:4]), 4), cex=1.5, font=2)
text( -0.5,-1, round(mean(mat[7,1:4]), 4), cex=1.5, font=2)
text( -1,-0.5, round(mean(mat[8,1:4]), 4), cex=1.5, font=2)
text( -1,0.5, round(mean(mat[9,1:4]), 4), cex=1.5, font=2)

Africa

Cape Verde

Central Canary Islands

Eastern Canary Islands
Western Canary Islands

0.0027

Finally, we can use the shortest paths stored between the two selected locations (Western Sahara and Santo
Antao (Cape Verd)) to plot them as a lines kernels over a map.

First, we should remove the NULL entries from the path object (they were created if Inf cost was obtained).
Next, we merge all the path lines in the paths_merged object

paths_clean <- paths[!sapply(paths, is.null)]
paths_merged <- paths_clean[[1]]

for (h in 2:length(paths_clean)) {
paths_merged <- rbind(paths_merged,paths_clean[[h]])
}

Now, we use R package spatstat to create a kernel distribution of lines with the function density and
then transform this object into a raster layer. We can apply here transformation or thresholds for better
representation. We remove all kernel density under the 10% of the maximum kernel value.

library(spatstat)
paths_psp <- as(paths_merged, "psp")

lines_kernel <- density(paths_psp, sigma=0.4, dimyx=c(350,410))
kernel <- raster(lines_kernel)



kernel [kernel< (maxValue (kernel)*0.1)]<-NA

Finally, we use ggmap package to plot our paths kernel density over a map
library(ggmap)

polyg <- rasterToPolygons(kernel)

polyg@data$id <- 1:nrow(polyg@data)

polygFort <- fortify(polyg, data = polyg@data)
polygFortMer <- merge(polygFort, polyg@data, by.x = 'id', by.y = 'id')

study_area <- ggmap(get_map(location = c¢(-29,10,-5,36), maptype = "hybrid"))

study_area +
geom_polygon(data = polygFortMer,
aes(x = long, y = lat, group = group, fill = layer),
alpha = 0.7, size = 0) +
scale_fill_gradientn(colours = bpy.colors(255))

lat

lon
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