

FULL TITLE: rWind: Download, edit and include wind data in ecological and evolutionary analysis.

AUTHOR LIST

Javier Fernández-López, Real Jardín Botánico (CSIC), Madrid, Spain.

ORCID ID: <https://orcid.org/0000-0003-4352-0252>

Klaus Schliep, University of Massachusetts Boston, Boston MA, USA

ORCID ID: <https://orcid.org/0000-0003-2941-0161>

Corresponding author: Javier Fernández-López E-mail: javfer05@ucm.es

ABSTRACT

1. Wind connectivity has been identified as a key factor driving many biological processes.
2. Existing software available for managing wind data are often overly complex for studying many ecological processes and cannot be incorporated into a broad framework.
3. Here we present rWind, an R language package to download and manage surface wind data from the Global Forecasting System and to compute wind connectivity between locations.
4. Data obtained with rWind can be used in a general framework for analysis of biological processes to develop hypotheses about the role of wind in driving ecological and evolutionary patterns.

KEYWORDS

R, wind connectivity, landscape genetics

SOFTWARE AVAILABILITY

The stable version of rWind is released regularly on the Comprehensive R Archive Network (CRAN):

<https://CRAN.R-project.org/package=rWind>

and can be installed in R by typing the following command:

```
install.packages("rWind")
```

The development version of rWind is hosted on github:

<https://github.com/jabiologo/rWind>

rWind is distributed under GNU Public Licence (GPL) version 3 or greater.

Further examples can be found on the blog of the first author:

<http://allthiswasfield.blogspot.com/>

DECLARATIONS

Acknowledgments – Wind data in rWind are kindly provided by the Pacific Islands Ocean Observing System (PacIOOS), funded through the National Oceanic and Atmospheric Administration (NOAA) as a Regional Association within the U.S. Integrated Ocean Observing System (IOOS). PacIOOS is coordinated by the University of Hawaii School of Ocean and Earth Science and Technology (SOEST). We thank Conor Delaney and Jacob van Etten for help and advices with weather data and the raster and gdistance packages. We also thanks Kristin M. Winchell and Liam Revell for their comments and suggestions. Dr Brody Sandel and another anonymous reviewer contributed to improve this manuscript.

Funding – J.F.L. was supported by Predoctoral Grants from the Spanish Ministry of Economy and Competitiveness (CGL2012-35559; CGL2015-67459-P; BES-2013-066429). This work was partially made during a J.F.L. short stay (EEBB-I-17-12634), hosted in Revell Lab at University of Massachusetts, Boston. This work was supported in part by a grant from the National Science Foundation (DEB 1350474 to Liam Revell).

Author Contributions – J.F.L. conceived the ideas and wrote the first version of rWind R package; K.S. improved rWind functions and wrote new code to increase the package performance; J.F.L. and K.S. led the writing of the manuscript. Both authors contributed critically to the drafts and gave final approval for publication.

Conflicts of interest – Nothing to disclosure.

1 FULL TITLE: rWind: Download, edit and include wind data in ecological and evolutionary
2 analysis.

3 ABSTRACT

4 1. Wind connectivity has been identified as a key factor driving many
5 biological processes.

6 2. Existing software available for managing wind data are often overly
7 complex for studying many ecological processes and cannot be incorporated
8 into a broad framework.

9 3. Here we present rWind, an R language package to download and
10 manage surface wind data from the Global Forecasting System and to compute
11 wind connectivity between locations.

12 4. Data obtained with rWind can be used in a general framework for
13 analysis of biological processes to develop hypotheses about the role of wind in
14 driving ecological and evolutionary patterns.

15 KEYWORDS

16 R, wind connectivity, landscape genetics

17

18 INTRODUCTION

19 The bulk movement of air across the surface of the Earth, that is, wind, has been broadly
20 recognized as an important influence in biological processes related to species distribution and
21 biogeography (Hooker, Fitch and Brothers 1844, Freeman 1945, Winkworth et al. 2002,
22 Sanmartín, Wanntorp and Winkworth 2007). For example, wind currents can play a decisive
23 role in driving patterns in bird migration (Felicísimo, Muñoz and González-Solis 2008,
24 Vansteelant, Kekkonen and Byholm 2017), island colonization (Harvey 1994, Juan et al. 2000),
25 gene flow between populations (Calsbeek and Smith 2003), and dispersal ecology (Muñoz et al.

26 2004, Nathan 2006). Models of wind-mediated processes are frequently criticized due to the
27 lack of available empirical wind data and their inherent infalsifiability (J J Morrone and Crisci
28 1995, Ebach and Williams 2010). However, in recent decades the development of modern
29 monitoring systems for atmospheric conditions and the public availability of these data from
30 these systems (Shamoun-Baranes, Bouter and van Loon 2010) have promoted the incorporation
31 of quantitative wind data into research (Kemp et al. 2010, Tøttrup et al. 2017). The development
32 of tools to access and manage these data has also increased, and several models and R packages
33 have been created in order to study the effect of wind on specific biological processes (e.g. bird
34 migration (Kemp et al. 2012a,b). However, these models are often very specialized and usually
35 require input data such as radio-tracked locations or bird flying altitudes, which are not always
36 available. In addition, it is usually quite difficult to adapt these models into a more general
37 framework in order to analyze the role of wind connectivity in evolutionary processes such as
38 alternative population genetics models (e.g. landscape ecology), or species dispersal versus
39 vicariance models in biogeography (e.g. oceanic island colonizations, Queiroz 2005).

40 In this context, a simpler approach is useful in order to formulate hypotheses about connectivity
41 between individuals, populations or communities to be later tested with any source of
42 information, from simple presence records, to genetic data (microsatellite data, NGS data, etc.).
43 Presently, available software to compute connectivity in ecology, including Circuitscape
44 (McRae 2006, McRae et al. 2008), gdistance (Etten 2017) or GLFOW (Leonard et al. 2017), are
45 based primarily on the inclusion of friction layers: maps with habitat suitability or any other
46 geographical/ecological characteristic that may influence dispersal or movement ability. Least
47 cost path or connectivity are then computed taking into account these layers via multiple
48 algorithms (e.g. Dijkstra algorithm, (Dijkstra 1959)). However, wind data have several
49 peculiarities that make them not particularly adaptable to these models (Etten, personal
50 communication). First, wind connectivity depends on two factors obtained from the same data:
51 wind speed and direction. Second, wind based connectivity is directional and place dependent.
52 i.e., it not only depends on the wind speed and direction at source cell, but also the location of
53 the target cell.

54 Here we introduce rWind, a package in the R language for statistical computing and graphics (R
55 Development Core Team 2008), designed specifically to download and process wind data from
56 the Global Forecasting System. From these data, users can obtain wind speed and direction
57 layers in order to compute connectivity values between locations. rWind fills the gap between
58 wind data accessibility and their inclusion in a general framework to be applied broadly in
59 ecological or evolutionary studies.

60 In the following section, we describe the data used by rWind, provide a brief description of the
61 functions in the library, and detail the algorithm used to compute connectivity values. Finally,
62 we provide three examples to illustrate the general functionality of the package.

63 DESCRIPTION

64 The Global Forecasting System wind data

65 The Global Forecasting System (GFS) atmospheric model is a dataset from the National
66 Oceanic and Atmospheric Administration (NOAA) and National Centers for Environmental
67 Prediction (NCEP). In this database, wind is stored as velocity vector components (U:
68 eastward_wind and V: northward_wind) at 10 meters above the Earth's surface. The resolution
69 of the data is 0.5 degrees, approximately 50 km. Wind velocities have been registered six times
70 per day (00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC)), since May 6th
71 2011 and is updated daily. In rWind, these data are obtained via queries to The Pacific Islands
72 Ocean Observing System, coordinated by the University of Hawaii School of Ocean and Earth
73 Science and Technology (SOEST). A raw plain text file with gridded data is obtained for each
74 dataset requested by the user, with the date and time of the data, the location (longitude and
75 latitude coordinates) the wind vectors (U and V components) and wind speed and direction.
76 These data can either be exported in a .csv file or stored internally as an “rWind data frame” in
77 R. In Table 1 we present the functions contained in rWind package, with a brief description of
78 each.

79 [table 1 about here]

80 Cost/connectivity computation

81 One of the most important functions of the rWind package is the computation of a cost matrix

82 between selected locations based on wind data (“flow.dispersion” function).

83 To calculate the movement cost from any starting cell to one of its 8 adjacent cells (Moore

84 neighborhood), we take three parameters: wind speed at starting cell, wind direction at the

85 starting cell (azimuth), and the position of the target cell.

86 To compute this cost, we implemented the algorithm proposed by Muñoz et al. (2004) and their

87 variation in Felicísimo, Muñoz and González-Solis (2008) (Equations adapted from Felicísimo,

88 Muñoz and González-Solis 2008, González-Solis et al. 2009, Muñoz et al., 2004),

$$89 \quad Cost = \frac{HF}{S} \quad (1)$$

90 where HF is the horizontal factor and S the wind speed at the starting cell. Equation 2 shows

91 how the horizontal factor is obtained:

$$92 \quad HF = \begin{cases} 0.1 & \text{if } HRMA = 0 \\ 2 \times HRMA & \text{if } HRMA \neq 0 \end{cases} \quad (2)$$

93 where HRMA (Horizontal Relative Moving Angle) is the angle in degrees between the azimuth

94 and the direction of the movement trajectory to the target cell. This difference is used to

95 penalize the connectivity (increasing the cost) between both cells when deviations from the

96 exact wind vector azimuth increases. If the Horizontal Relative Moving Angle is zero (i.e.

97 movement is in the exactly same direction as azimuth), the parameter called Horizontal Factor

98 (HF) is set to 0.1. Otherwise, Horizontal Factor is equal to two times Horizontal Relative

99 Moving Angle (HRMA) (see equation 2). This algorithm is used to compute “active” movement

100 costs. In other words, it allows the organism to move against wind directions as birds do during

101 migration.

102 To compute “passive” movement cost, that is avoiding movement against wind, we use a

103 variation of equation 2

$$104 \quad HF = \begin{cases} 0.1 & \text{if } HRMA = 0 \\ \infty & \text{if } > 90 \\ 2 \times HRMA & \text{if } 0 < HRMA \leq 90 \end{cases} \quad (3)$$

105

106 where Horizontal Factor is set to ∞ for all cases in which the Horizontal Relative Moving Angle
 107 is more than 90 degrees (Muñoz et al. 2004).

108 Two outputs are possible from the "flow.dispersion" function. First, the "raw" mode creates a
 109 sparse matrix (class "dgCMatrix") from the Matrix R package with transition costs between all
 110 cells at the study area. Second, the "transitionLayer" mode creates a TransitionLayer object with
 111 conductance values (1/cost) between cells which can be used with the "gdistance" R package
 112 (Etten 2017) to compute the shortest path or movement cost between two locations.

113 EXAMPLES

114 To illustrate some functionalities of rWind, we have designed three brief, fully reproducible
 115 examples. In the first, we show the very basic functionality of rWind to download and manage
 116 wind data and to compute the shortest paths between two points with the help of gdistance
 117 package. In the second, we use rWind to download and plot wind data during hurricanes that
 118 occurred in the Caribbean during the month of September, 2017. Finally, in the third example,
 119 we show how rWind can be used to obtain wind connectivity between mainland and islands to
 120 test hypotheses about evolutionary processes in wind-dispersed plants.

121 Example 1: Getting shortest wind paths from across Strait of Gibraltar

122 The Strait of Gibraltar is an important geographical connection point between Europe and
 123 Africa. Many birds and other organisms use this point to complete their migratory routes
 124 between both continents, since the minimum distance between both coasts is around 14 km
 125 (Bernis and Tellería 1981). For this reason, the study wind patterns in this region is relevant to
 126 understanding how they affect animal migratory behavior or other ecological processes
 127 (Richardson 1990). In this simple example, we introduce the most basic functionality of rWind,

128 to obtain the anisotropic (direction-dependent) shortest paths between two points across the
129 Strait of Gibraltar. The following code produces Fig. 1, for an extended example see the
130 Supporting Information 1.

131 # First, we load the packages that we will use

132 library(rWind)

133 library(raster)

134 library(rworldmap)

135 library(gdistance)

136 library(fields)

137 library(lubridate)

138 library(shape)

139

140 # Now, we download wind data for the Strait of Gibraltar at the

141 # selected date and time (in our example, 2015 February 2nd at 12:00PM.)

142 w <- wind.dl(2015, 2, 12, 12, -7, -4, 34.5, 37.5)

143 # Next, we create a raster stack with wind direction and speed.

144 wind_layer <- wind2raster(w)

145 # With this raster stack, we can compute conductance values (1/cost)

146 # to be used later to get the shortest paths between the two points using gdistance package.

147 Conductance <- flow.dispersion(wind_layer, "active", "transitionLayer")

148 AtoB <- shortestPath(Conductance, c(-5.5, 37), c(-5.5, 35), output = "SpatialLines")

```

149 BtoA <- shortestPath(Conductance, c(-5.5, 35), c(-5.5, 37), output = "SpatialLines")

150 # Finally, we can plot the wind data with the shortest paths.

151 image.plot(sl, col = terrain.colors(10), zlim = c(0,7),
152 xlab = "longitude", ylab = "latitude")

153 lines(getMap(resolution = "low"), lwd = 4)

154 points(-5.5, 37, pch = 19, cex = 3.4, col = "red")

155 points(-5.5, 35, pch = 19, cex = 3.4, col = "blue")

156 lines(AtoB, col = "red", lwd = 4, lty = 2)

157 lines(BtoA, col = "blue", lwd = 4, lty = 2)

158 Arrowhead(w$lon, w$lat, angle = arrowDir(w), arr.length = 0.4, arr.type = "curved")

159 [Fig. 1 about here]

160 Example 2: Monitoring and plotting the Caribbean hurricanes Irma, José, and Katia (September
161 2017) .

162 During the first days of September 2017, three hurricanes (named Irma, José, and Katia) hit the
163 Caribbean at the same time. In this brief example we use rWind to display hurricanes in a
164 straightforward way (Fig. 2). In the Supporting Information, we show with this example how
165 rWind can be used to export .png images prepared to be converted in a GIF animation (see
166 Supporting Information 1 and 2).

167 # First, use lubridate R package to create a sequence of dates.

168 dt <- seq(ymd_hms(paste(2017, 9, 3, 00, 00, 00, sep = "-")),
169 ymd_hms(paste(2017, 9, 11, 21, 00, 00, sep = "-")), by = "3 hours")

170 # Then, we download the data using wind.dl_2 and the sequence of dates, and we create the

```

```

171  # raster stacks for each date and time

172  wind_series <- wind.dl_2(dt, -103, -53, 13, 32)

173  wind_series_layer <- wind2raster(wind_series)

174  # Finally, plot the hurricanes.

175  image.plot(wind_series_layer[[45]]$wind.speed,
176    col = bpy.colors(1000, alpha = 0.8), zlim = c(0, 40),
177    main = wind_series[[45]]$time[1], xlab = "Longitude",
178    ylab = "Latitude", cex.lab = 1.5, cex.axis = 1.5)

179  alpha <- arrowDir(wind_series[[45]])

180  Arrowhead(wind_series[[45]]$lon, wind_series[[45]]$lat, angle = alpha,
181    arr.length = 0.12, arr.type = "curved")

182  lines(getMap(resolution = "low"), lwd = 2)

183  text(-99, 23.5, labels = "Katia", cex = 2, col = "white", font = 2)

184  text(-71, 25, labels = "Irma", cex = 2, col = "white", font = 2)

185  text(-59, 19.5, labels = "José", cex = 2, col = "white", font = 2)

186

187  [Fig. 2 about here]

188

189  Example 3: Measuring wind connectivity between northwestern Africa and southern
190  Micronesian islands (Canary Islands and Cape Verde)

```

191 In this example, we focus on *Periploca laevigata* (Aiton, 1789), a Mediterranean wind-
192 dispersed shrub (Zito, Dötterl and Sajeva 2015) found in the southern Mediterranean and West
193 African regions, and on the Macaronesian Islands. Specifically, we compare the genetic
194 structure of northwestern African and Macaronesian populations of *P. laevigata* obtained by
195 García-Verdugo et al. (2017) with wind connectivity between those areas computed with rWind.

196 In their research, García-Verdugo et al. detected a close genetic relation between northwestern
197 African populations, eastern Canary Islands populations and Cape Verde populations (García-
198 Verdugo et al. 2017, figure 2-A-B-C). In this example we compute wind connectivity from
199 locations sampled on the African mainland by García-Verdugo et al. (2017) with their sampled
200 islands of Fuerteventura (eastern Canary Islands), Gran Canaria and Tenerife (central Canary
201 Islands), La Palma (western Canary Islands), and Santo Antão and Fogo (Cape Verde). A
202 complete script with analyses and plots created for this example is included in the Supporting
203 Information 1. Fig. 3 shows a wind-connectivity graph from the mainland Africa locations
204 (AGA, TAN, WSAH_A, WSAH_B, see Appendix S1 in García-Verdugo et al. (2017)) to all the
205 island locations. Our analyses showed that wind connectivity observed between mainland
206 Africa locations and Cape Verde islands is higher than those between Africa and Canary
207 Islands. Western/central Canary Islands showed the lowest values of wind connectivity, while
208 the Eastern Canary Islands were connected only with Moroccan mainland. These results are in
209 agreement with the *P. laevigata* genetic structure measured in García-Verdugo et al. (2017),
210 figure 2-A-B-C, suggesting wind connection may play a role in genetic structuring. Although in
211 this simple example several important issues are not taken into account, such as spatio-temporal
212 scales and the lack of a specific statistical framework (e.g. Mantel test, Mantel 1967), this
213 preliminary analysis shows how rWind can be useful in the formulation of new hypotheses in
214 biogeographical studies.

215

216 [Fig. 3 about here]

217

218 CONCLUSIONS

219 Wind is known to be a key factor underlying many ecological, evolutionary and, particularly,
220 biogeographical processes and patterns. Therefore it is important to include wind data in
221 analyses of evolutionary history, dispersal, and phylogeography to help understand and test the
222 role that wind plays in shaping biological patterns. rWind provides new tools to include wind
223 data in ecological, evolutionary, and biogeographic studies, computing connectivity matrices
224 that can be easily applied to many existing analyses, from landscape ecology to bird migration
225 models. Although other software exists to manage atmospheric data (RNCEP (Kemp et al.
226 2012a), IDV (Murray et al. 2003)), rWind uses a simpler model to compute wind mediated
227 connectivity which does not require additional data. Moreover, rWind is specifically designed to
228 interact with other R packages such as raster and gdistance (Etten 2017), which allows it to take
229 advantage of the diverse functionality of these libraries, and to easily export of wind data in a
230 raster format to be used in a Geographic Information System (GIS) environment. In addition, it
231 also provides the option to export data as plain text files, and therefore to be ported into any
232 other software. We plan to extend functionalities of rWind to model connectivity from other
233 sources such as sea currents and fluvial networks.

234

235 REFERENCES

Bernis, F. and Tellería, J. L. 1981. La migración de las aves en el Estrecho de Gibraltar:(época posnupcial): Migración de cigüeñas y falconiformes por Gibraltar v. 2. La migración de las aves no planeadoras por Gibraltar. – Cátedra de Zoología de Vertebrados, Facultad de Biología, Univ. Complutense.

Calsbeek, R. and Smith, T. B. 2003. Ocean currents mediate evolution in island lizards. –

Nature 426: 552–555. DOI: <https://doi.org/10.1038/nature02143>

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. – *Numer. Math.* 1: 269–271. DOI: 10.1007/BF01386390

Ebach, M. C. and Williams, D. M. 2010. Systematics and Biogeography: Cladistics and Vicariance. – *Syst. Biol.* 59: 612–614. <https://doi.org/10.1093/sysbio/syq050>

Etten, J. van. 2017. R Package gdistance: distances and routes on geographical grids. – *J. Stat. Softw.* 76: 1–21. DOI: 10.18637/jss.v076.i13

Felicísimo, Á. M., Muñoz, J. and González-Solis, J. 2008. Ocean surface winds drive dynamics of transoceanic aerial movements. – *PLoS One* 3: 1–7. DOI: <https://doi.org/10.1371/journal.pone.0002928>

Freeman, J. A. 1945. Studies in the distribution of insects by aerial currents. – *J. Anim. Ecol.* 14: 128–154. DOI: 10.1111/j.1365-2311.1986.tb00304.x

García-Verdugo, C., Mairal, M., Monroy, P., Sajeva, M. and Caujapé-Castells, J. 2017. The loss of dispersal on islands hypothesis revisited: Implementing phylogeography to investigate evolution of dispersal traits in *Periploca* (Apocynaceae). – *J. Biogeogr.* 44: 2595–2606. DOI: <https://doi.org/10.1111/jbi.13050>

González-Solis, J., Felicísimo, A., Fox, J. W., Afanasyev, V., Kolbeinsson, Y. and Muñoz, J. 2009. Influence of sea surface winds on shearwater migration detours. – *Mar. Ecol. Prog. Ser.* 391: 221–230. DOI: <https://doi.org/10.3354/meps08128>

Harvey, L. E. 1994. Spatial patterns of inter-island plant and bird species movements in the Galápagos Islands. – *J. R. Soc. N. Z.* 24: 45–63.

Hooker, J. D., Fitch, W. H. and Brothers, R. 1844. The botany of the Antarctic voyage of H.M. discovery ships Erebus and Terror in the Years 1839-1843: under the command of Captain Sir James Clark Ross. – London :Reeve Brothers,1844-1860. DOI: <https://doi.org/10.5962/bhl.title.16029>

Morrone, J. J. and Crisci, J. V. 1995. Historical Biogeography: Introduction to Methods. –

Annu. Rev. Ecol. Syst. 26: 373–401. DOI:

<https://doi.org/10.1146/annurev.es.26.110195.002105>

Juan, C., Emerson, B. C., Oromí, P. and Hewitt, G. M. 2000. Colonization and diversification:

towards a phylogeographic synthesis for the Canary Islands. – Trends Ecol. Evol. 15:

104–109. DOI: [https://doi.org/10.1016/S0169-5347\(99\)01776-0](https://doi.org/10.1016/S0169-5347(99)01776-0)

Kemp, M. U., Shamoun-Baranes, J., Van Gasteren, H., Bouten, W. and Loon, E.E. 2010. Can

wind help explain seasonal differences in avian migration speed? – J. Avian Biol. 41:

672–677. DOI: <https://doi.org/10.1111/j.1600-048X.2010.05053.x>

Kemp, M. U., Loon, E. E., Shamoun-Baranes, J. and Bouten, W. 2012a. RNCEP: global

weather and climate data at your fingertips. – Methods Ecol. Evol. 3: 65–70. DOI:

<https://doi.org/10.1111/j.2041-210X.2011.00138.x>

Kemp, M. U., Shamoun-Baranes, J., Loon, E. E., McLaren, J. D., Dokter, A. M. and Bouten, W.

2012b. Quantifying flow-assistance and implications for movement research. – J. Theor.

Biol. 308: 56–67. DOI: [10.1016/j.jtbi.2012.05.026](https://doi.org/10.1016/j.jtbi.2012.05.026)

Leonard, P. B., Duffy, E. B., Baldwin, R. F., McRae, B. H., Shah, V. B. and Mohapatra, T. K.

2017. gflow: software for modelling circuit theory-based connectivity at any scale. –

Methods Ecol. Evol. 8: 519–526. DOI: <https://doi.org/10.1111/2041-210X.12689>

Mantel, N. 1967 The detection of disease clustering and a generalized regression approach. –

Cancer Res. 27: 209–220. DOI: [10.1158/0008-5472](https://doi.org/10.1158/0008-5472)

McRae, B. H. 2006. Isolation by resistance. – Evolution 60: 1551–1561. DOI:

<https://doi.org/10.1111/j.0014-3820.2006.tb00500.x>

McRae, B. H., Dickson, B. G., Keitt, T. H. and Shah, V. B. 2008. Using circuit theory to model

connectivity in ecology, evolution, and conservation. – Ecology 89: 2712–2724. DOI:

<https://doi.org/10.1890/07-1861.1>

Muñoz, J., Felicísimo, A. M., Cabezas, F., Burgaz, A. R. and Martínez, I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. – *Science* 304: 1144–1147. DOI: 10.1126/science.1095210

Murray, D., McWhirter, J., Wier, S. and Emmerson, S. 2003. The integrated data viewer: a web-enabled application for scientific analysis and visualization. – 19th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc.

Nathan, R. 2006. Long-distance dispersal of plants. – *Science* 313: 786–788. DOI: 10.1126/science.1124975

Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. – *Trends Ecol. Evol.* 20: 68–73. DOI: <https://doi.org/10.1016/j.tree.2004.11.006>

R Development Core Team. 2008. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.

Richardson, W. 1990. Wind and orientation of migrating birds: a review. – *Experientia* 46: 416–425. DOI: 10.1007/BF01952175

Sanmartín, I., Wanntorp, L. and Winkworth, R. C. 2007. West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. – *J Biogeogr* 34: 398–416. DOI: <https://doi.org/10.1111/j.1365-2699.2006.01655.x>

Shamoun-Baranes, J., Bouten, W. and Loon, E. E. 2010. Integrating Meteorology into research on migration. – *Integr. Comp. Biol.* 50: 280–292. DOI: 10.1093/icb/icq011

Tøttrup, A. P., Pedersen, L., Onrubia, A., Klaassen, R. H. G. and Thorup, K. 2017. Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? – *J. Avian Biol.*, 48: 149–154. DOI: 10.1111/jav.01352

Vansteelant, W. M. G., Kekkonen, J. and Byholm, P. 2017. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa. – Proc Biol Sci. 284: 20170387 DOI: 10.1098/rspb.2017.0387

Winkworth, R. C., Wagstaff, S. J., Glenny, D. and Lockhart, P. J. 2002. Plant dispersal N.E.W.S from New Zealand. – Trends Ecol. Evol. 17: 514–520. DOI: [https://doi.org/10.1016/S0169-5347\(02\)02590-9](https://doi.org/10.1016/S0169-5347(02)02590-9)

Zito, P., Dötterl, S. and Sajeva, M. 2015. Floral volatiles in a *Sapromyiophilous* plant and their importance in attracting house fly pollinators. – J. Chem. Ecol. 41: 340–349. DOI: 10.1007/s10886-015-0568-8

237 Table 1: Brief description of the main functions included in the R library rWind.

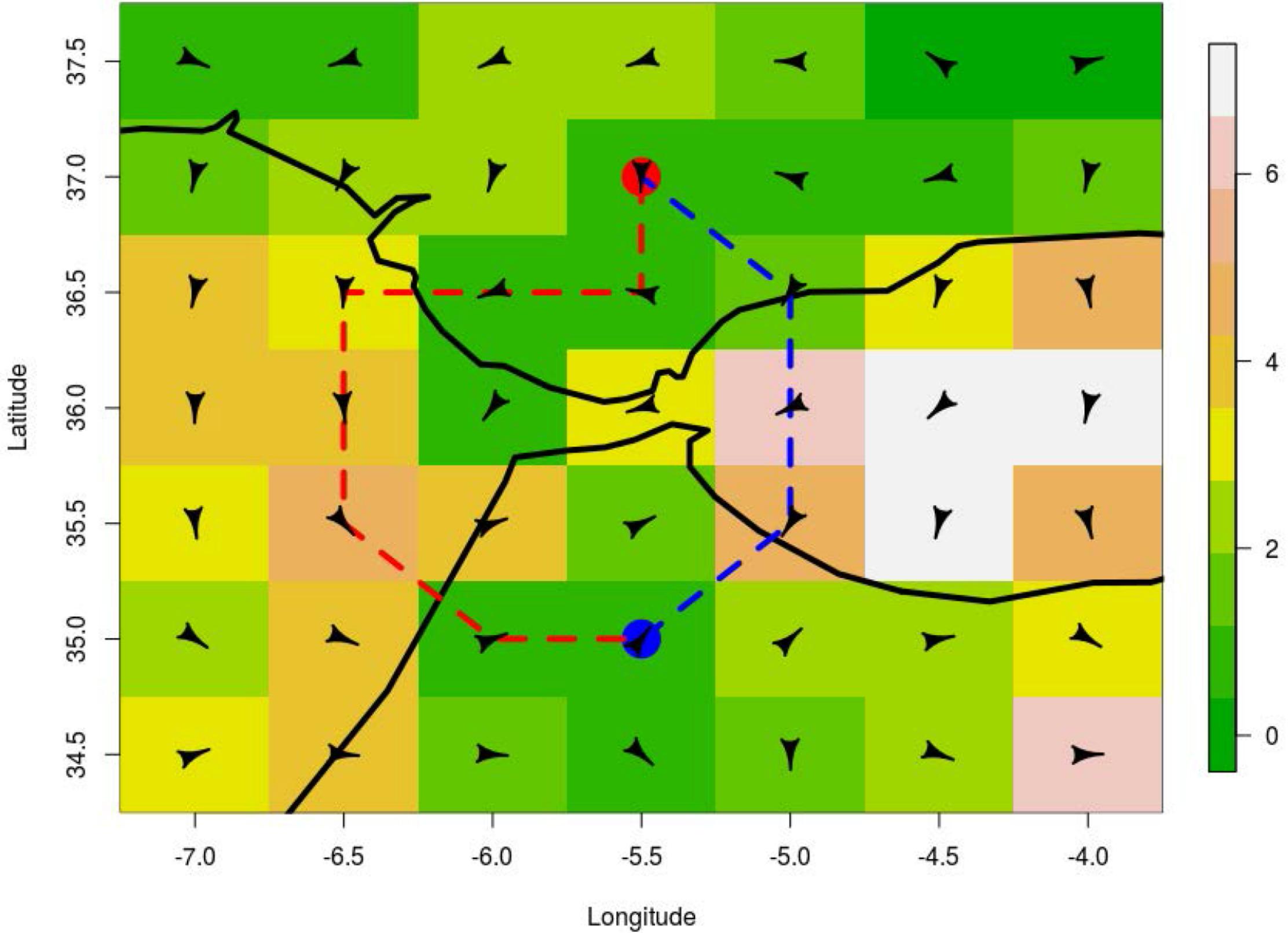
function	description
wind.dl	downloads wind data from the Global Forecast System (GFS) of the USA's National Weather Service (NWS)
wind.dl_2	(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs) and returns either a .csv file or a data.frame.
wind.mean	Takes a list of wind data downloaded with wind.dl_2 and returns the mean (average) of the time series in a data.frame.
tidy	Takes an “rWind_series” object from wind.dl_2 and joint and tidy up wind data in a single data.frame.
wind2raster	wind2raster creates a raster stack file (gridded) from wind data downloaded, with two raster layers: wind direction and wind speed.
flow.dispersion	It takes input from raster stack with two raster layers: direction and speed. flow.dispersion computes movement conductance through a flow either, sea or wind currents. It returns either, a sparse cost matrix or a conductance TransitionLayer object.

239 Figure 1: Shortest paths following wind speed and direction of 2015 12th of February at 12:00
240 (UTM) between two points across Strait of Gibraltar.

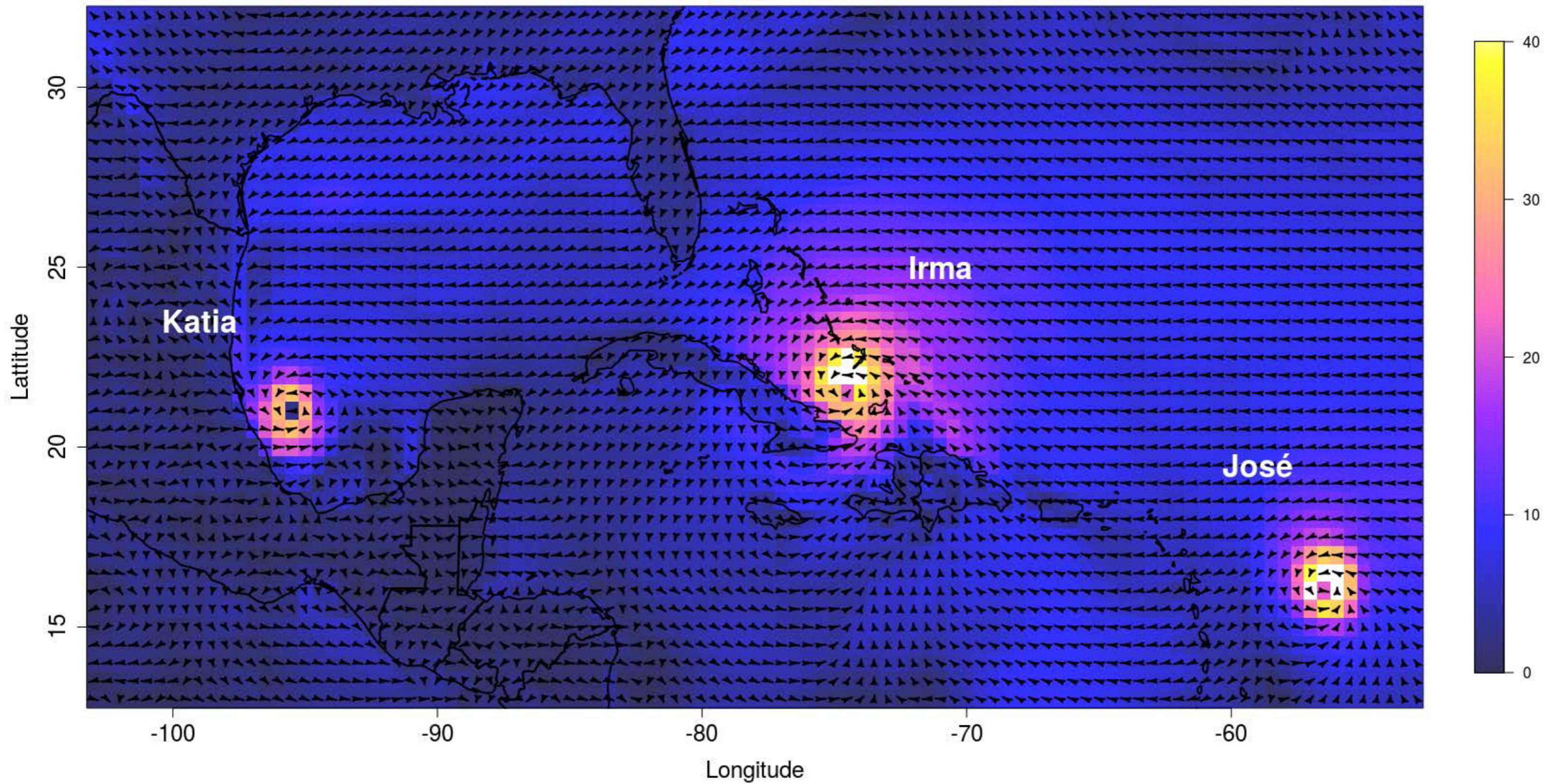
241 Figure 2: Snapshot of the wind speed and direction from September 8th 2017 showing hurricanes
242 Irma, José, and Katia. Wind speed is given in meters per second and a cut off at 40 m/s was
243 added.

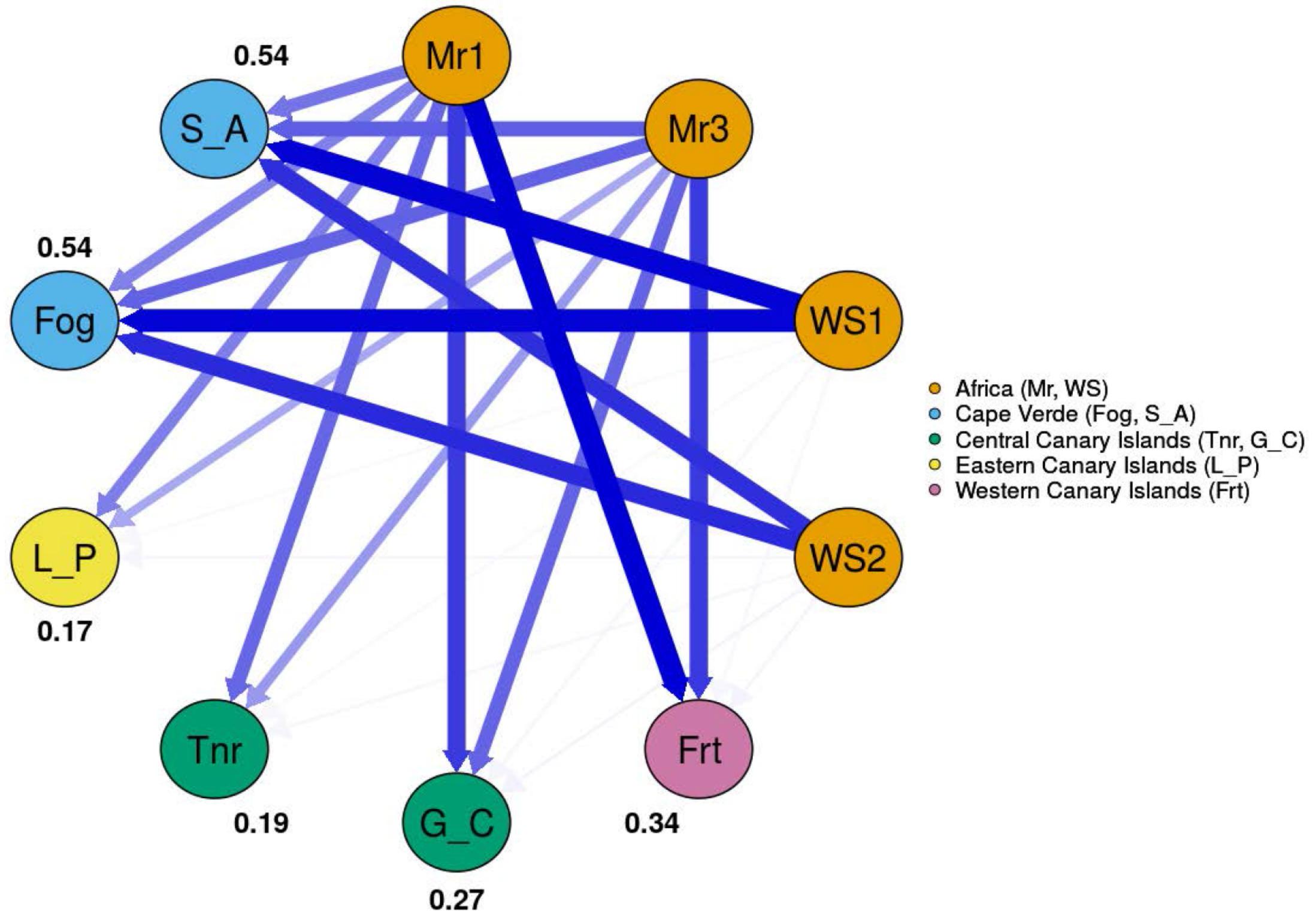
244 Figure 3: Wind connectivity graph from northwestern Africa mainland and southern
245 Macaronesian Islands for the period of April – August of 2012 – 2017. This graph shows a
246 higher connectivity of north western Africa mainland (Mr1, Mr3, WS1, WS2) with Cape Verde
247 islands (Fog, S_A) than with Canary Islands (Frt, G_C, Tnr, L_P), even when the distance
248 between African and Canary Island locations is smaller. Mainland connectivity average is
249 showed over each island locality (connectivity is measured in arbitrary units $\times 100$).

250
251



2017-09-08 12:00:00





rWind vignette

LOADING PACKAGES

First, we load the main packages we will use in this vignette. This vignette was written under the rWind version 1.0.0

```
# use install.packages() if some is not installed
# and you can install the latest development version using the command
# devtools::install_github("jabilogio/rWind")
library(rWind)
library(raster)
library(gdistance)
```

EXAMPLE 1: Anisotropic shortest paths across Strait of Gibraltar

In this simple example, we introduce the most basic functionality of rWind, to get the shortest paths between two points across Strait of Gibraltar. Notice that, as wind connectivity is anisotropic (direction dependent), shortest path from A to B usually does not match with shortest path from B to A.

First, we will download wind data of a selected date (e.g. 2015 February 12th) and we will fix and transform them into two raster layers, with values of wind direction and wind speed.

```
w<-wind.dl(2015,2,12,12,-7,-4,34.5,37.5)

## [1] "2015-02-12"
## [1] "2015-02-12 12:00:00 downloading..."
wind_layer<-wind2raster(w)
```

Then, we will use `flow.dispersion` function to obtain a `transitionLayer` object with conductance values, which will be used later to obtain the shortest paths.

```
Conductance<-flow.dispersion(wind_layer,"active", "transitionLayer")
```

Now, we will use `shortestPath` function from `gdistance` package to compute shortest path from our `Conductance` object between the two selected points.

```
AtoB<- shortestPath(Conductance,
                      c(-5.5, 37), c(-5.5, 35), output="SpatialLines")
BtoA<- shortestPath(Conductance,
                      c(-5.5, 35), c(-5.5, 37), output="SpatialLines")
```

Finally, we plot the map and we will add the shortest paths as lines and some other features.

```
library(fields)
library(shape)
library(rworldmap)

image.plot(wind_layer$wind.speed, main="least cost paths by wind direction and speed",
           col=terrain.colors(10), xlab="Longitude", ylab="Latitude", zlim=c(0,7))

lines(getMap(resolution = "low"), lwd=4)

points(-5.5, 37, pch=19, cex=3.4, col="red")
points(-5.5, 35, pch=19, cex=3.4, col="blue")
```

```

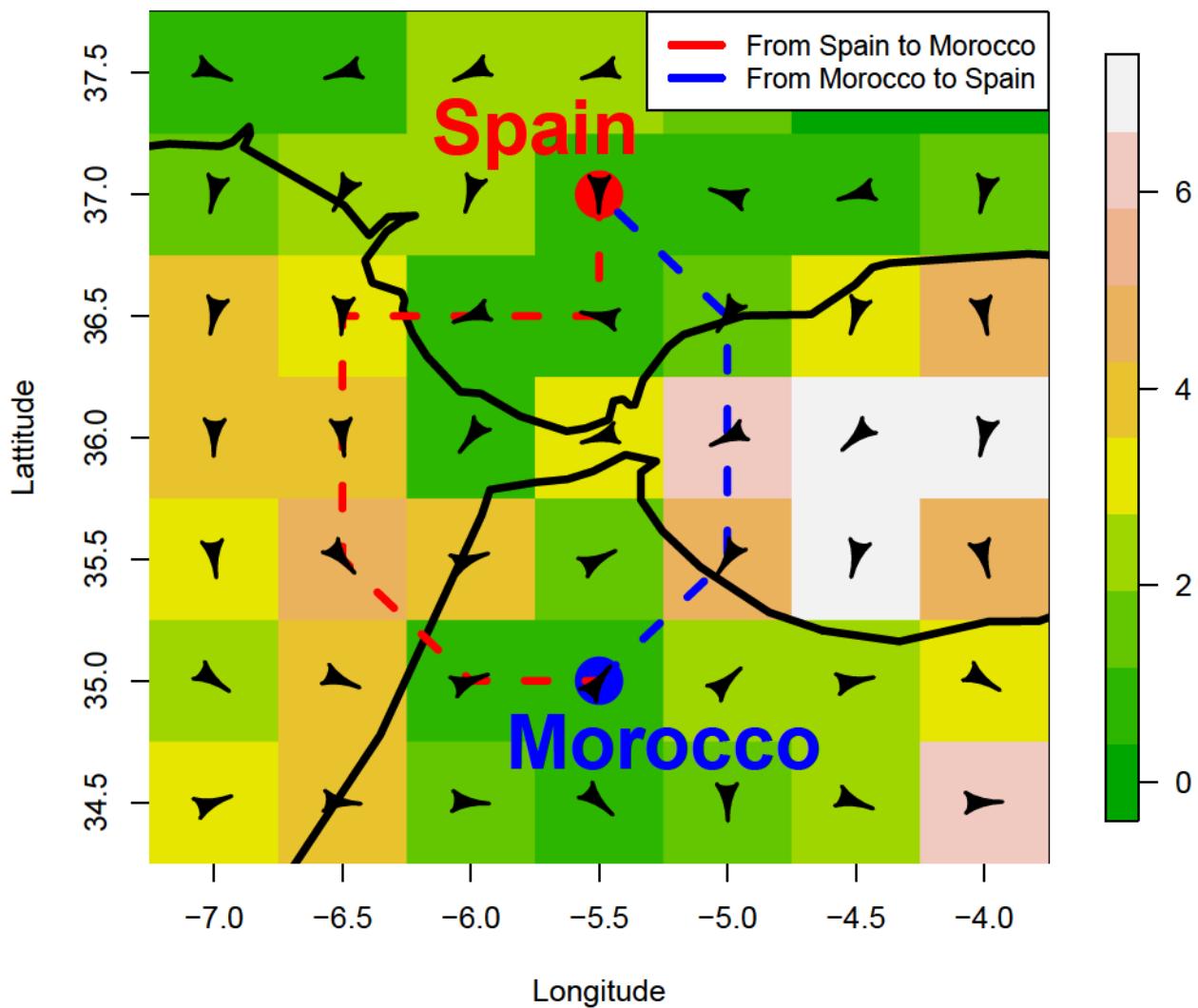
lines(AtoB, col="red", lwd=4, lty=2)
lines(BtoA, col="blue", lwd=4, lty=2)

alpha <- arrowDir(w)
Arrowhead(w$lon, w$lat, angle=alpha, arr.length = 0.4, arr.type="curved")

text(-5.75, 37.25, labels="Spain", cex= 2.5, col="red", font=2)
text(-5.25, 34.75, labels="Morocco", cex= 2.5, col="blue", font=2)
legend("toprigh", legend = c("From Spain to Morocco", "From Morocco to Spain"),
lwd=4 ,lty = 1, col=c("red","blue"), cex=0.9, bg="white")

```

least cost paths by wind direction and speed



EXAMPLE 2: Hurricanes visualization

This example shows how to download a time series data with rWind and edit them to obtain a gif map with wind speed and directions. For this example, we will use hurricanes wind data occurred during the first days of September 2017.

First, we will download wind data from 3rd to 11th of September 2017 by each three hours using `wind.dl_2`. To do that, we will use `lubridate` package to create a list of dates/times to be used by `wind.dl_2`. It could take a while...

```
library(lubridate)
dt <- seq(ymd_hms(paste(2017,9,3,00,00,00, sep="-")),
          ymd_hms(paste(2017,9,11,21,00,00, sep="-")), by="3 hours")
wind_series <- wind.dl_2(dt, -103, -53, 13, 32)
```

In a second step, we will obtain raster layers for wind speed and direction of each date-time downloaded. `wind2raster` can take a list as argument.

```
wind_series_layer <- wind2raster(wind_series)
```

Finally, we will export the entire time series as PNG format. You should check your current work directory (`getwd`) to know where the PNG files will be stored.

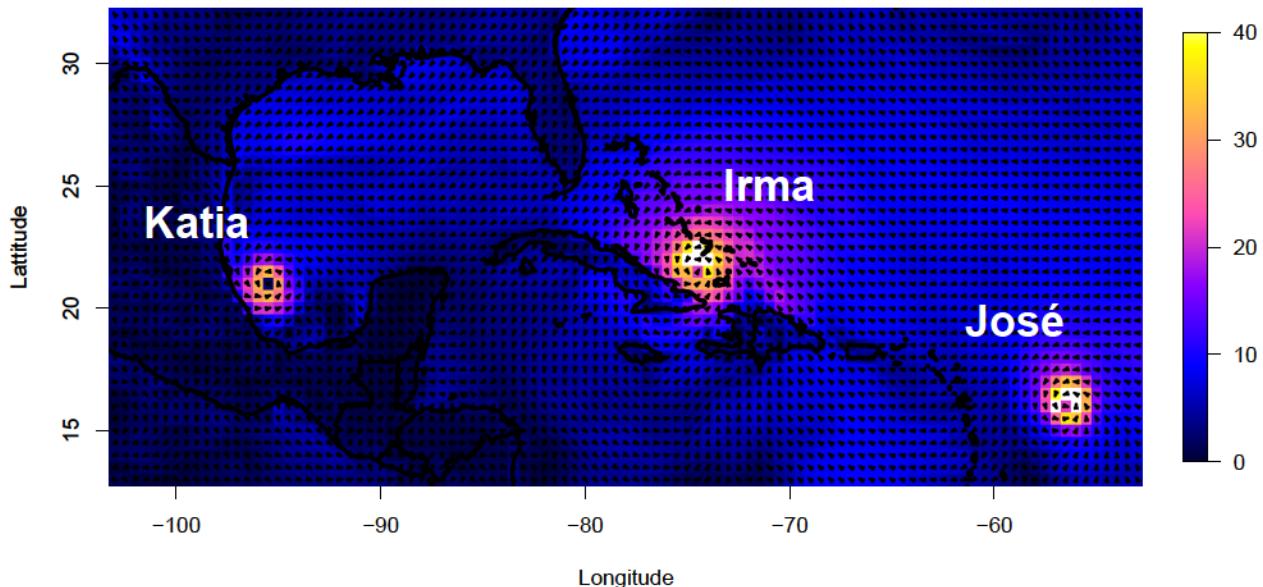
```
id<-0
for (i in 1:72) {
  id <- sprintf("%03d", i)
  png(paste("hurricane",id,".png", sep=""), width=1100, height=570, units="px",
       pointsize=18)
  image.plot(wind_series_layer[[i]]$wind.speed, col=bpy.colors(1000),
             zlim=c(0,40), main =wind_series[[i]]$time[1])
  lines(getMap(resolution = "low"), lwd=3)
  dev.off()
}
```

The exported PNG files can be converted into a GIF format using several softwares. You can use `imaggmagick convert -delay 10 *.png hurricane.gif` which will result in an animation like the Supporting Information 2

The following code is used to create figure 2 in the manuscript.

```
image.plot(wind_series_layer[[45]]$wind.speed, col=bpy.colors(1000), zlim=c(0,40),
            main =wind_series[[45]]$time[1], xlab="Longitude",
            ylab="Latitude")
alpha <- arrowDir(wind_series[[45]])
Arrowhead(wind_series[[45]]$lon, wind_series[[45]]$lat, angle=alpha, arr.length = 0.07,
          arr.type="curved")
lines(getMap(resolution = "low"), lwd=3)
text(-99, 23.5, labels="Katia", cex= 2, col="white", font=2)
text(-71, 25, labels="Irma", cex= 2, col="white", font=2)
text(-59, 19.5, labels="José", cex= 2, col="white", font=2)
```

2017-09-08 12:00:00



In addition, we can compute some statistics from the wind data downloaded.

First, we can use `wind.mean` to compute speed and direction averages for each location in our study area:

```
mean_wind <- wind.mean(wind_series)
head(mean_wind)

##           time  lat    lon    ugrd10m    vgrd10m      dir    speed
## 1 2017-09-03 13 257.0  0.6798113 -2.2501722 163.1896 2.350621
## 2 2017-09-03 13 257.5 -2.1322760  0.7382131 289.0963 2.256448
## 3 2017-09-03 13 258.0 -1.9516941  1.1400587 300.2908 2.260275
## 4 2017-09-03 13 258.5 -1.9550353  1.1605026 300.6932 2.273528
## 5 2017-09-03 13 259.0 -2.0296657  1.1105695 298.6861 2.313635
## 6 2017-09-03 13 259.5 -2.1109363  1.0253549 295.9075 2.346786
```

We can also use `tidy` function to put all the data in a single `data.frame` and use `dplyr` package to compute maximum speed, for example:

```
t_wind_series <- tidy(wind_series)

library(dplyr)

##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:igraph':
## 
##     as_data_frame, groups, union
##
## The following objects are masked from 'package:raster':
## 
##     intersect, select, union
##
## The following objects are masked from 'package:stats':
## 
##     filter, lag
```

```

## The following objects are masked from 'package:base':
##
##     intersect, setdiff, setequal, union
g_wind_series <- t_wind_series %>% group_by(lat, lon)

max_ww <- g_wind_series %>% summarise(speed = max(speed))

maxw <- cbind(max_ww$lon, max_ww$lat, max_ww$speed)

head(maxw)

##      [,1] [,2]      [,3]
## [1,] -103.0 13 4.509488
## [2,] -102.5 13 5.205593
## [3,] -102.0 13 5.026556
## [4,] -101.5 13 4.746515
## [5,] -101.0 13 7.129943
## [6,] -100.5 13 11.128306

```

Finally, we can transform this data into a raster file to be plotted and “track” the maximum speed recorded in our study area for our time lapse.

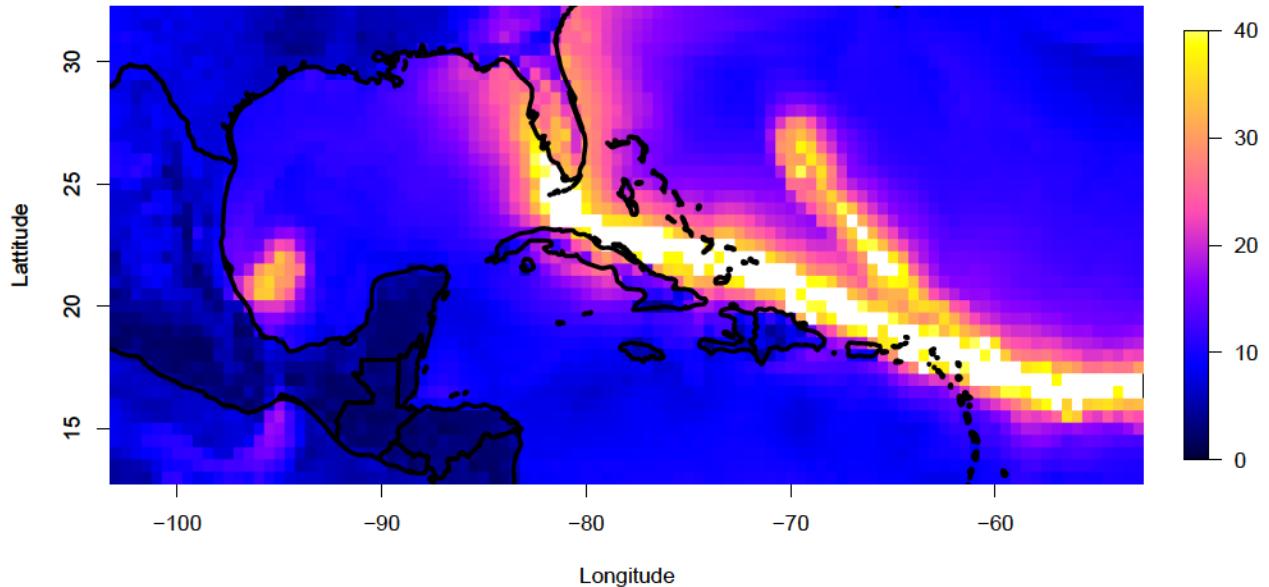
```

rmax <- rasterFromXYZ(maxw)

image.plot(rmax, col=bpy.colors(1000), zlim=c(0,40),
           main = "Maximum wind speed recorded", xlab="Longitude",
           ylab="Latitude")
lines(getMap(resolution = "low"), lwd=3)

```

Maximum wind speed recorded



EXAMPLE 3: Measuring wind connectivity between northwestern Africa and southern Macaronesian islands (Canary Islands and Cape Verde)

Wind currents are often thought to play a key role in species dispersal processes, particularly in oceanic island colonization. In this example, we will compare genetic structure of the wind-dispersed shrub *Periploca laevigata* obtained by García-Verdugo et al. (2017) with wind connectivity between northwestern Africa and Canary and Cape Verde archipelagos using rWind package. Although in this simple example several important issues are not taken into account, such as spatio-temporal scales and the lack of a specific statistical framework (e.g. Mantel test, etc.), this preliminary analysis shows how rWind can be useful in the formulation of new hypotheses in biogeographical studies.

First, we set the locations used by García-Verdugo et al. (2017). Since the rWind data resolution is about 50 km, some close sampled locations were merged.

```
loc <- matrix(c(-9.4729, -11.0422, -14.0443, -13.0395, -14.0000, -15.6000,
                 -16.6000, -17.8600, -24.3800, -25.1800, 30.3331, 28.3376,
                 26.2368, 26.3028, 28.4000, 28.0000, 28.2700, 28.7300, 14.9300,
                 17.0700), 10, 2)
colnames(loc) <- c("lon", "lat")
rownames(loc) <- c("Morocco1", "Morocco3", "WSahara1", "WSahara2",
                    "Fuerteventura", "Gran_Canaria", "Tenerife", "La_Palma",
                    "Fogo", "San_Antonio")
```

Second, we define the temporal scale of wind data. Since *P. laevigata* fruits are available from spring to summer, we select May, June, July and August winds from 2012 to 2017. We sample wind once per day each 5 days. Wind sampling could be more intense, but we reduce it for computation reasons. The spatial window is set between -27 and -7 longitudinal degrees and 14 and 31 latitudinal degrees. We will get a total of 150 wind data for this region.

```
dt <- c(seq(ymd_hms(paste(2012,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2012,8,31,12,00,00, sep="-")), by="5 days"),
        seq(ymd_hms(paste(2013,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2013,8,31,12,00,00, sep="-")), by="5 days"),
        seq(ymd_hms(paste(2014,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2014,8,31,12,00,00, sep="-")), by="5 days"),
        seq(ymd_hms(paste(2015,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2015,8,31,12,00,00, sep="-")), by="5 days"),
        seq(ymd_hms(paste(2016,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2016,8,31,12,00,00, sep="-")), by="5 days"),
        seq(ymd_hms(paste(2017,5,3,00,00,00, sep="-")),
            ymd_hms(paste(2017,8,31,12,00,00, sep="-")), by="5 days"))
```

Next, we create two objects to store costs obtained for each wind data between all locations and path lines between two selected locations as an example (Western Sahara and Santo Antao, Cape Verd)

```
paths <- list(1:150)
cost_list <- array(NA_real_, dim=c(10,10,150))
```

Now, we will execute the next actions:

1. Download wind data (`wind.dl_2()`).
2. Transform data in raster layers (speed and direction, `wind2raster()`).
3. Get Conductance matrices for each wind data downloaded.
4. Compute Costs between locations and store them in a `cost_list` object.
5. If the Cost is not `Inf`, get the shortest path between selected locations, and store it into `paths` object.

WARNING: Notice that you will download and manage 150 wind datasets, so it could take a while... you can reduce wind size sample (e.g. sampling each 10 days), but it could affect to connectivity values. We advice to use as much data as possible in order to obtain accurate results

```
w <- wind.dl_2(dt,-27,-7,14,31)

path_layers <- wind2raster(w)

Conductance <- flow.dispersion(path_layers,"passive", output="transitionLayer")

for (i in 1:150){
  cost_list[,,i] <- costDistance(Conductance[[i]],loc)
  if (costDistance(Conductance[[i]],loc[3,], loc[9,]) != Inf){
    paths[[i]] <- shortestPath(Conductance[[i]], loc[3,], loc[9,],
                                output="SpatialLines")
  }
}

connectivity <- 1/cost_list
```

Now, we obtain the connectivity average between locations and rename columns and rows.

```
conn_avg <- apply(connectivity, c(1, 2), mean, na.rm = TRUE)
rownames(conn_avg) <- rownames(loc)
colnames(conn_avg) <- rownames(loc)
```

Since in this example we are specially interested in wind connectivity from Africa mainland to islands, we select just this part of the matrix. Then, we build a new matrix with those values in the low triangle, ready to be plotted with `qgraph` R package

```
mat <- matrix(0,10,10)
mat[5:10,1:4] <- t(conn_avg[1:4,5:10])
colnames(mat) <- c(colnames(t(conn_avg[1:4,5:10])), 
  rownames(t(conn_avg[1:4,5:10])))
rownames(mat) <- c(colnames(t(conn_avg[1:4,5:10])), 
  rownames(t(conn_avg[1:4,5:10])))
mat[5:10,1:4]

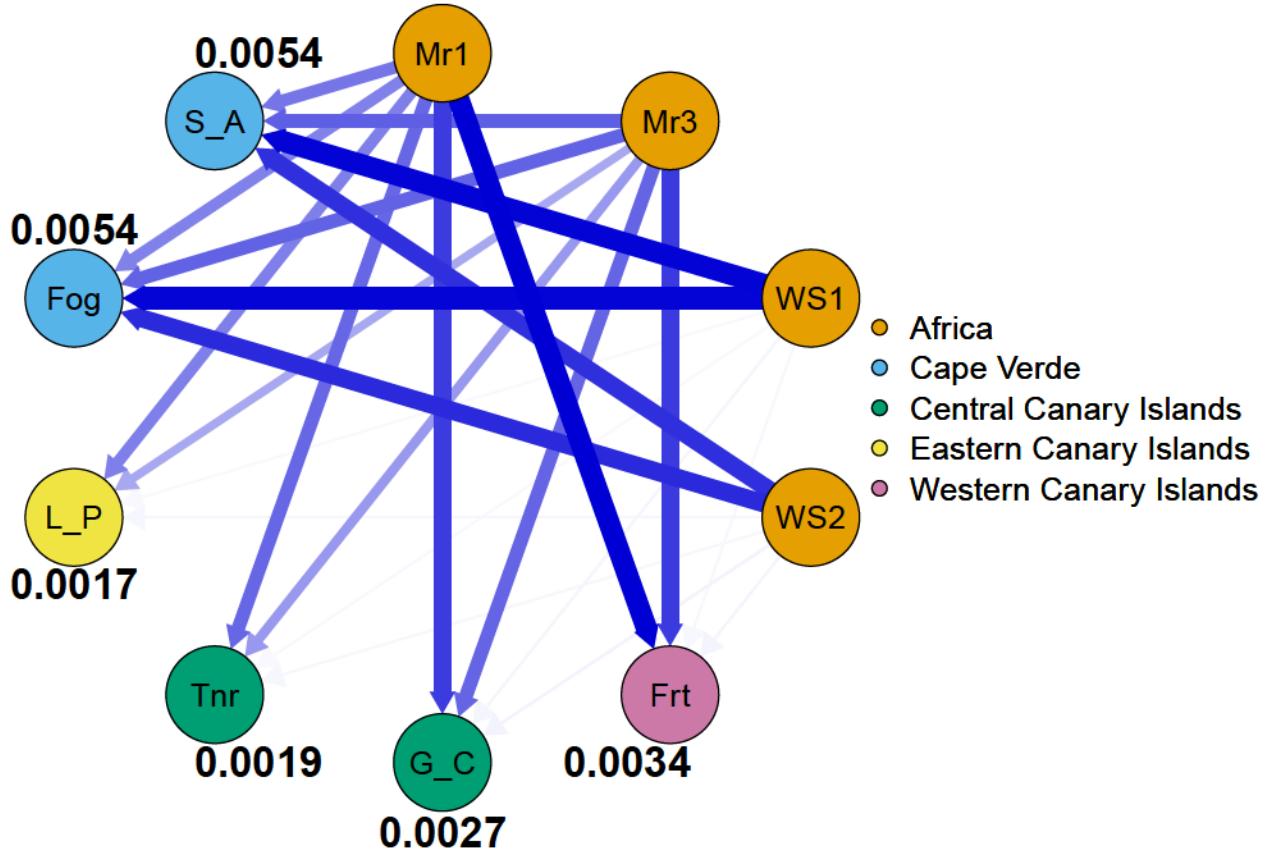
##           Morocco1    Morocco3    WSahara1    WSahara2
## Fuerteventura 0.007319083 0.005658942 0.0002379433 0.0003069165
## Gran_Canaria  0.005625220 0.004453675 0.0002783037 0.0003479783
## Tenerife      0.004350546 0.002944165 0.0002090746 0.0002624865
## La_Palma      0.003670016 0.002491726 0.0001969059 0.0002472273
## Fogo          0.003617335 0.004497506 0.0072149708 0.0061264604
## San_Antonio   0.003958045 0.004596927 0.0072439731 0.0059671579
```

Now, we can use `qgraph` R package to plot a graph with wind connectivity from locations in Africa mainland to Macaronesian islands and compare this connectivity with another source of data, as genetic structure of *P. laevigata* from García-Verdugo et al. (2017). The following code is used to create figure 2 in the manuscript.

```
library(qgraph)

gr <- as.factor(c("Africa","Africa","Africa","Africa","Western Canary Islands",
  "Central Canary Islands","Central Canary Islands",
  "Eastern Canary Islands","Cape Verde","Cape Verde"))
qgraph(t(mat), layout= "circle", groups=gr, theme="colorblind", vsize=8,
  edge.width=1.7)
```

```
text( 0.5,-1, round(mean(mat[5,1:4]), 4), cex=1.5, font=2)
text( 0,-1.2, round(mean(mat[6,1:4]), 4), cex=1.5, font=2)
text( -0.5,-1, round(mean(mat[7,1:4]), 4), cex=1.5, font=2)
text( -1,-0.5, round(mean(mat[8,1:4]), 4), cex=1.5, font=2)
text( -1,0.5, round(mean(mat[9,1:4]), 4), cex=1.5, font=2)
```



Finally, we can use the shortest paths stored between the two selected locations (Western Sahara and Santo Antao (Cape Verd)) to plot them as a lines kernels over a map.

First, we should remove the NULL entries from the `path` object (they were created if `Inf` cost was obtained). Next, we merge all the path lines in the `paths_merged` object

```
paths_clean <- paths[!sapply(paths, is.null)]
paths_merged <- paths_clean[[1]]

for (h in 2:length(paths_clean)) {
  paths_merged <- rbind(paths_merged, paths_clean[[h]])
}
```

Now, we use R package `spatstat` to create a kernel distribution of lines with the function `density` and then transform this object into a raster layer. We can apply here transformation or thresholds for better representation. We remove all kernel density under the 10% of the maximum kernel value.

```
library(spatstat)

paths_psp <- as(paths_merged, "psp")
lines_kernel <- density(paths_psp, sigma=0.4, dimyx=c(350,410))
kernel <- raster(lines_kernel)
```

```
kernel[kernel<( maxValue(kernel)*0.1)]<-NA
```

Finally, we use `ggmap` package to plot our paths kernel density over a map

```
library(ggmap)
polyg <- rasterToPolygons(kernel)
polyg@data$id <- 1:nrow(polyg@data)

polygFort <- fortify(polyg, data = polyg@data)
polygFortMer <- merge(polygFort, polyg@data, by.x = 'id', by.y = 'id')

study_area <- ggmap(get_map(location = c(-29,10,-5,36), maptype = "hybrid"))

study_area +
  geom_polygon(data = polygFortMer,
               aes(x = long, y = lat, group = group, fill = layer),
               alpha = 0.7, size = 0) +
  scale_fill_gradientn(colours = bpy.colors(255))
```

