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ABSTRACT 

1. Wind connectivity has been identified as a key factor driving many biological processes. 

2. Existing  software  available  for  managing  wind  data  are  often  overly  complex  for 

studying many ecological processes and cannot be incorporated into a broad framework. 

3. Here we present rWind, an R langauge package to download and manage surface wind 

data from the Global Forecasting System and to compute wind connectivity between locations. 

4. Data obtained with rWind can be used in a general framework for analysis of biological 

processes to develop hypotheses about the role of wind in driving ecological and evolutionary 

patterns. 

KEYWORDS  
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SOFTWARE AVAILABILITY 

The stable version of rWind is released  regularly on the Comprehensive R Archive Network (CRAN): 

https://CRAN.R-project.org/package=rWind 



and can be installed in R by typing the following command: 

install.packages("rWind") 

The development version of rWind is hosted on github: 

https://github.com/jabiologo/rWind 

rWind is distributed under GNU Public Licence (GPL) version 3 or greater. 

Further examples can be found on the blog of the first author: 

http://allthiswasfield.blogspot.com/ 
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FULL  TITLE:  rWind:  Download,  edit  and  include  wind  data  in  ecological  and    evolutionary 1 

analysis. 2 

ABSTRACT 3 

1. Wind  connectivity  has  been  identified  as  a  key  factor  driving  many 4 

biological processes. 5 

2. Existing  software  available  for  managing  wind  data are  often  overly 6 

complex  for  studying  many  ecological  processes  and  cannot  be  incorporated 7 

into a broad framework. 8 

3. Here  we  present  rWind,  an  R  langauge  package  to  download  and 9 

manage surface wind data from the Global Forecasting System and to compute 10 

wind connectivity between locations. 11 

4. Data  obtained  with  rWind  can  be  used  in  a  general  framework  for 12 

analysis of biological processes to develop hypotheses about the role of wind in 13 

driving ecological and evolutionary patterns. 14 

KEYWORDS  15 

 R, wind connectivity, landscape genetics 16 

 17 

INTRODUCTION 18 

The  bulk  movement  of  air  across  the  surface  of  the  Earth,  that  is,  wind,  has  been  broadly 19 

recognized as an important influence in biological processes related to species distribution and 20 

biogeography (Hooker,  Fitch  and  Brothers  1844,  Freeman  1945,  Winkworth et  al.  2002, 21 

Sanmartín,  Wanntorp  and  Winkworth  2007).  For  example,  wind  currents  can  play  a  decisive 22 

role  in  driving  patterns  in  bird  migration  (Felicísimo,  Muñoz  and  González-Solis  2008, 23 

Vansteelant, Kekkonen and Byholm 2017), island colonization (Harvey 1994, Juan et al. 2000), 24 

gene flow between populations (Calsbeek and Smith 2003), and dispersal ecology (Muñoz et al. 25 
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2004,  Nathan  2006).  Models  of  wind-mediated  processes  are  frequently  criticized  due  to  the 26 

lack of available empirical wind data and their inherent infalsifiability (J J Morrone and Crisci 27 

1995,  Ebach  and  Williams  2010).  However,  in  recent  decades  the  development  of    modern 28 

monitoring  systems  for  atmospheric  conditions  and  the  public  availability  of  these  data  from 29 

these systems (Shamoun-Baranes, Bouten and van Loon 2010) have promoted the incorporation 30 

of quantitative wind data into research (Kemp et al. 2010, Tøttrup et al. 2017). The development 31 

of tools to access and manage these data has also increased, and several models and R packages 32 

have been created in order to study the effect of wind on specific biological processes (e.g. bird 33 

migration (Kemp et al. 2012a,b). However, these models are often very specialized and usually 34 

require input data such as radio-tracked locations or bird flying altitudes, which are not always 35 

available.  In  addition,  it  is  usually  quite  difficult  to  adapt  these  models  into  a  more  general 36 

framework in order to analyze the role of wind connectivity in evolutionary processes such as 37 

alternative  population  genetics  models  (e.g.  landscape  ecology),  or  species  dispersal  versus 38 

vicariance models in biogeography (e.g. oceanic island colonizations, Queiroz 2005). 39 

In this context, a simpler approach is useful in order to formulate hypotheses about connectivity 40 

between  individuals,  populations  or  communities  to  be  later  tested  with  any  source  of 41 

information, from simple presence records, to genetic data (microsatellite data, NGS data, etc.). 42 

Presently,  available  software  to  compute  connectivity  in  ecology,  including  Circuitscape 43 

(McRae 2006, McRae et al. 2008), gdistance (Etten 2017) or GLFOW (Leonard et al. 2017), are 44 

based  primarily  on  the  inclusion  of  friction  layers:  maps  with  habitat  suitability  or  any  other 45 

geographical/ecological characteristic  that  may  influence  dispersal  or  movement  ability.  Least 46 

cost  path  or  connectivity  are  then  computed  taking  into  account  these  layers  via  multiple 47 

algorithms  (e.g.  Dijkstra  algorithm,  (Dijkstra  1959)).  However,  wind  data  have  several 48 

peculiarities  that  make  them  not  particularly  adaptable  to  these  models  (Etten,  personal 49 

communication). First, wind connectivity depends on two factors obtained from the same data: 50 

wind speed and direction. Second, wind based connectivity is directional and place dependent. 51 

i.e., it not only depends on the wind speed and direction at source cell, but also the location of 52 

the target cell. 53 
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Here we introduce rWind, a package in the R language for statistical computing and graphics (R 54 

Development Core Team 2008), designed specifically to download and process wind data from 55 

the  Global  Forecasting    System.  From  these  data,  users  can  obtain  wind  speed  and  direction 56 

layers in order to compute connectivity values between locations. rWind fills the gap between 57 

wind  data  accessibility  and  their  inclusion  in  a  general  framework  to  be  applied  broadly  in 58 

ecological or evolutionary studies. 59 

In the following section, we describe the data used by rWind, provide a brief description of the 60 

functions in the library, and detail the algorithm used to compute connectivity values. Finally, 61 

we provide three examples to illustrate the general funcionality of the package. 62 

DESCRIPTION 63 

The Global Forecasting  System wind data 64 

The  Global  Forecasting  System  (GFS)  atmospheric  model  is  a  dataset  from  the  National 65 

Oceanic  and  Atmospheric  Administration  (NOAA)    and    National  Centers  for  Environmental 66 

Prediction  (NCEP).  In  this  database,  wind  is  stored  as  velocity  vector  components  (U: 67 

eastward_wind and V: northward_wind) at 10 meters above the Earth’s surface. The resolution 68 

of the data is 0.5 degrees, approximately 50 km. Wind velocities have been registered six times 69 

per day (00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC)), since May 6th 70 

2011 and is updated daily. In rWind, these data are obtained via queries to The Pacific Islands 71 

Ocean Observing System, coordinated  by the University of Hawaii School of Ocean and Earth 72 

Science and Technology (SOEST). A raw plain text file with gridded data is obtained for each 73 

dataset  requested  by  the  user,  with  the  date  and  time  of  the  data,  the  location  (longitude  and 74 

latitude  coordinates)  the  wind  vectors  (U  and  V  components)  and  wind  speed  and  direction. 75 

These data can either be exported in a .csv file or stored internally as an “rWind data frame” in 76 

R. In Table 1 we present the functions contained in rWind package, with a brief description of 77 

each. 78 

[table 1 about here] 79 
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Cost/connectivity computation 80 

One of the most important functions of the rWind package is the computation of a cost matrix 81 

between selected locations based on wind data (“flow.dispersion” function).  82 

To  calculate  the  movement  cost  from  any  starting  cell  to  one  of  its  8  adjacent  cells  (Moore 83 

neighborhood),  we  take  three  parameters:  wind  speed  at  starting  cell,  wind  direction  at  the 84 

starting cell (azimuth), and the position of the target cell.  85 

To compute this cost, we implemented the algorithm proposed by Muñoz et al. (2004) and their 86 

variation in Felicísimo, Muñoz and González-Solis (2008) (Equations adapted from Felicísimo, 87 

Muñoz and González-Solis 2008, González-Solís et al. 2009, Muñoz et al., 2004), 88 

                  (1) 89 

where HF is the horizontal factor and S the wind speed at the starting cell. Equation 2 shows 90 

how the horizontal factor is obtained: 91 

                                                                   (2) 92 

where HRMA (Horizontal Relative Moving Angle) is the angle in degrees between the azimuth 93 

and  the  direction  of  the  movement  trajectory  to  the  target  cell.  This  difference  is  used  to 94 

penalize  the  connectivity  (increasing  the  cost)  between  both  cells  when  deviations  from  the 95 

exact  wind  vector  azimuth  increases.  If  the  Horizontal  Relative  Moving  Angle  is  zero  (i.e. 96 

movement is in the exactly same direction as azimuth), the parameter called Horizontal Factor 97 

(HF)  is  set  to  0.1.  Otherwise,  Horizontal  Factor  is  equal  to  two  times  Horizontal  Relative 98 

Moving Angle (HRMA) (see equation 2). This algorithm is used to compute “active” movement 99 

costs. In other words, it allows the organism to move against wind directions as birds do during 100 

migration. 101 

To  compute  “passive”  movement  cost,    that  is  avoiding  movement  against  wind,  we  use  a 102 

variation of equation 2 103 
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           (3) 104 

   105 

where Horizontal Factor is set to ∞ for all cases in which the Horizontal Relative Moving Angle 106 

is more than 90 degrees (Muñoz et al. 2004). 107 

Two outputs are possible from the “flow.dispersion” function. First, the "raw" mode creates a 108 

sparse matrix (class "dgCMatrix") from the Matrix R package with transition costs between all 109 

cells at the study area. Second, the"transitionLayer" mode creates a TransitionLayer object with 110 

conductance  values  (1/cost)  between  cells  which  can  be  used  with  the  "gdistance"  R  package 111 

(Etten 2017) to compute the shortest path or movement cost between two locations. 112 

EXAMPLES 113 

To  illustrate  some  functionalities  of  rWind,  we  have  designed  three  brief,  fully  reproducible 114 

examples. In the first, we show the very basic functionality of rWind to download and manage 115 

wind  data  and  to  compute  the  shortest  paths  between  two  points  with  the  help  of  gdistance 116 

package.  In  the  second,  we  use  rWind to  download and  plot  wind  data  during hurricanes  that 117 

occurred in the Caribbean during the month of September, 2017. Finally, in the third example, 118 

we show how rWind can be used to obtain wind connectivity between mainland and islands to 119 

test hypotheses about evolutionary processes in wind-dispersed plants. 120 

Example 1: Getting shortest wind paths from across Strait of Gibraltar   121 

The  Strait  of  Gibraltar  is  an  important  geographical  connection  point  between  Europe  and 122 

Africa.  Many  birds  and  other  organisms  use  this  point  to  complete  their  migratory  routes 123 

between  both  continents,  since  the  minimum  distance  between  both  coasts  is  around  14  km 124 

(Bernis and Tellería 1981). For this reason, the study wind patterns in this region is relevant to 125 

understanding  how  they  affect  animal  migratory  behavior  or  other  ecological  processes 126 

(Richardson 1990). In this simple example, we introduce the most basic functionality of rWind, 127 
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to  obtain  the  anisotropic  (direction-dependent)  shortest  paths  between  two  points  across  the 128 

Strait  of  Gibraltar.  The  following  code  produces  Fig.  1,  for  an  extended  example  see  the 129 

Supporting Information 1. 130 

# First, we load the packages that we will use 131 

library(rWind) 132 

library(raster) 133 

library(rworldmap) 134 

library(gdistance) 135 

library(fields) 136 

library(lubridate) 137 

library(shape) 138 

 139 

# Now, we download wind data for the Strait of Gibraltar at the 140 

# selected date and time (in our example, 2015 February 2nd at 12:00PM.) 141 

w <- wind.dl(2015, 2, 12, 12, -7, -4, 34.5, 37.5) 142 

# Next, we create a raster stack with wind direction and speed. 143 

wind_layer <- wind2raster(w) 144 

# With this raster stack, we can compute conductance values (1/cost) 145 

# to be used later to get the shortest paths between the two points using gdistance package. 146 

Conductance <- flow.dispersion(wind_layer, "active", "transitionLayer") 147 

AtoB <- shortestPath(Conductance, c(-5.5, 37), c(-5.5, 35), output = "SpatialLines") 148 
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BtoA <- shortestPath(Conductance, c(-5.5, 35), c(-5.5, 37), output = "SpatialLines") 149 

# Finally, we can plot the wind data with the shortest paths. 150 

image.plot(sl, col = terrain.colors(10), zlim = c(0,7), 151 

 xlab = "longitude", ylab = "latitude") 152 

lines(getMap(resolution = "low"), lwd = 4) 153 

points(-5.5, 37, pch = 19, cex = 3.4, col = "red") 154 

points(-5.5, 35, pch = 19, cex = 3.4, col = "blue") 155 

lines(AtoB, col = "red", lwd = 4, lty = 2) 156 

lines(BtoA, col = "blue", lwd = 4, lty = 2) 157 

Arrowhead(w$lon, w$lat, angle = arrowDir(w), arr.length = 0.4, arr.type = "curved") 158 

[Fig. 1 about here] 159 

Example 2: Monitoring and plotting the Caribbean hurricanes Irma, José, and Katia (September 160 

2017) . 161 

During the first days of September 2017, three hurricanes (named Irma, José, and Katia) hit the 162 

Caribbean  at  the  same  time.  In  this  brief  example  we  use  rWind  to  display  hurricanes  in  a 163 

straightforward  way  (Fig.  2).  In  the  Supporting  Information,  we  show  with  this  example  how 164 

rWind  can  be  used    to  export  .png  images  prepared  to  be  converted  in  a  GIF animation  (see 165 

Supporting Information 1 and 2). 166 

# First, use lubridate R package to create a sequence of dates. 167 

dt <- seq(ymd_hms(paste(2017, 9, 3, 00, 00, 00, sep = "-")), 168 

ymd_hms(paste(2017, 9, 11, 21, 00, 00, sep = "-")), by = "3 hours") 169 

# Then, we downlad the data using wind.dl_2 and the sequence of dates, and we create the 170 
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# raster stacks for each date and time 171 

wind_series <- wind.dl_2(dt, -103, -53, 13, 32) 172 

wind_series_layer <- wind2raster(wind_series) 173 

# Finally, plot the hurricanes. 174 

image.plot(wind_series_layer[[45]]$wind.speed,  175 

col = bpy.colors(1000, alpha = 0.8), zlim = c(0, 40), 176 

main = wind_series[[45]]$time[1], xlab = "Longitude", 177 

ylab = "Lattitude", cex.lab = 1.5, cex.axis = 1.5) 178 

alpha <- arrowDir(wind_series[[45]]) 179 

Arrowhead(wind_series[[45]]$lon, wind_series[[45]]$lat, angle = alpha,  180 

arr.length = 0.12, arr.type = "curved") 181 

lines(getMap(resolution = "low"), lwd = 2) 182 

text(-99, 23.5, labels = "Katia", cex = 2, col = "white", font = 2) 183 

text(-71, 25, labels = "Irma", cex = 2, col = "white", font = 2) 184 

text(-59, 19.5, labels = "José", cex = 2, col = "white", font = 2) 185 

 186 

[Fig. 2 about here] 187 

 188 

Example  3:  Measuring  wind  connectivity  between  northwestern  Africa  and  southern 189 

Micronesian islands (Canary Islands and Cape Verde) 190 
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In  this  example,  we  focus  on Periploca  laevigata (Aiton,  1789), a  Mediterranenan  wind-191 

dispersed shrub (Zito, Dötterl and Sajeva 2015) found in the southern Mediterranean and West 192 

African  regions,  and  on  the  Macaronesian  Islands.  Specifically,  we  compare  the  genetic 193 

structure  of  northwestern  African  and  Macaronesian  populations  of P.  laevigata obtained  by 194 

García-Verdugo et al. (2017) with wind connectivity between those areas computed with rWind.  195 

In their research, García-Verdugo et al. detected a close genetic relation between northwestern 196 

African populations, eastern Canary  Islands populations and Cape Verde populations (García-197 

Verdugo et  al.  2017,  figure  2-A-B-C).  In  this  example  we  compute  wind connectivity  from 198 

locations sampled on the African mainland by García-Verdugo et al. (2017) with their sampled 199 

islands  of  Fuerteventura  (eastern  Canary  Islands),  Gran  Canaria  and  Tenerife  (central  Canary 200 

Islands),  La  Palma  (western  Canary  Islands),  and  Santo  Antão  and  Fogo  (Cape  Verde).  A 201 

complete script with analyses and plots created for this example is included in the Supporting 202 

Information  1.  Fig.  3  shows  a  wind-connectivity  graph  from  the  mainland  Africa  locations 203 

(AGA, TAN, WSAH_A, WSAH_B, see Apendix S1 in García-Verdugo et al. (2017)) to all the 204 

island  locations.  Our  analyses  showed  that  wind  connectivity  observed  between  mainland 205 

Africa  locations  and  Cape  Verde  islands  is  higher  than  those  between  Africa  and  Canary 206 

Islands. Western/central Canary Islands showed the lowest values of wind connectivity, while 207 

the Eastern Canary Islands were connected only with Moroccan mainland. These results are in 208 

agreement the with the P. laevigata genetic structure measured in García-Verdugo et al. (2017), 209 

figure 2-A-B-C, suggesting wind connection may play a role in genetic structuring. Although in 210 

this simple example several important issues are not taken into account, such as spatio-temporal 211 

scales  and  the  lack  of  a  specific  statistical  framework  (e.g.  Mantel  test,  Mantel  1967),  this 212 

preliminary analysis shows how rWind can be useful in the formulation of new hypotheses in 213 

biogeographical studies. 214 

 215 

[Fig. 3 about here] 216 
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 217 

CONCLUSIONS 218 

Wind is known to be a key factor underlying  many  ecological, evolutionary and, particularly, 219 

biogeographical  processes  and  patterns.  Therefore  it  is  important  to  include  wind  data  in 220 

analyses of evolutionary history, dispersal, and phylogeography to help understand and test the 221 

role that wind plays in shaping biological patterns. rWind provides  new  tools to  include  wind 222 

data  in  ecological,  evolutionary,  and  biogeographic  studies,  computing  connectivity  matrices 223 

that can be easily applied to many existing analyses, from landscape ecology to bird migration 224 

models.  Although  other  software  exists  to  manage  atmospheric  data  (RNCEP (Kemp et  al. 225 

2012a), IDV (Murray et  al.  2003)),  rWind  uses  a  simpler  model  to  compute  wind  mediated 226 

connectivity which does not require additional data. Moreover, rWind is specifically designed to 227 

interact with other R packages such as raster and gdistance (Etten 2017), which allows it to take 228 

advantage of the diverse functionality of these libraries, and to easily export of wind data in a 229 

raster format to be used in a Geographic Information System (GIS) environment. In addition, it 230 

also  provides  the  option  to  export  data  as  plain  text  files,  and  therefore  to  be  ported  into  any 231 

other  software.  We  plan  to  extend  functionalities  of  rWind  to  model  connectivity  from  other 232 

sources such as sea currents and fluvial networks. 233 

 234 
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Table 1: Brief description of the main functions included in the R library rWind. 237 

function description 

wind.dl 

wind.dl_2 

downloads wind data from the Global Forecast System (GFS) of the 

USA's  National  Weather  Service  (NWS) 

( https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs) and returns either a .csv file or a 

data.frame. 

 

wind.mean Takes a list of wind data downloaded with wind.dl_2 and retunrs the 

mean (average) of the time series in a data.frame. 

 

tidy Takes  an “rWind_series”  object  from  wind.dl_2  and  joint  and  tidy 

up wind data in a single data.frame. 

wind2raster wind2raster  crates  a  raster  stack  file  (gridded)  from  wind  data 

downloaded, with two raster layers: wind direction and wind speed. 

 

flow.dispersion It takes input from raster stack with two raster layers: direction and 

speed.  flow.dispersion  computes  movement  conductance  through  a 

flow  either,  sea  or  wind  currents.  It  returns  either,  a  sparse  cost 

matrix or a conductance TransitionLayer object. 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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Figure 1: Shortest paths following wind speed and direction of 2015 12th of February at 12:00 239 

(UTM) between two points across Strait of Gibraltar. 240 

Figure 2: Snapshot of the wind speed and direction from September 8th 2017 showing hurricanes 241 

Irma,  José,  and Katia. Wind  speed  is  given  in  meters  per second  and  a  cut off at  40  m/s  was 242 

added. 243 

Figure  3:  Wind  connectivity  graph  from  northwestern  Africa  mainland  and  southern 244 

Macaronesian  Islands  for  the  period  of  April – August  of  2012 – 2017.  This  graph  shows  a 245 

higher connectivity of north western Africa mainland (Mr1, Mr3, WS1, WS2) with Cape Verde 246 

islands  (Fog,  S_A)  than  with  Canary  Islands  (Frt,  G_C,  Tnr,  L_P),  even  when  the  distance 247 

between  African  and  Canary  Island  locations  is  smaller.  Mainland  connectivity  average  is 248 

showed over each island locality (connectivity is measured in arbitrary units × 100). 249 

 250 
 251 









rWindvignette

LOADINGPACKAGES

First,weloadthemainpackageswewilluseinthisvignette.ThisvignettewaswrittenundertherWind
version1.0.0

#useinstall.packages()ifsomeisnotinstalled
#andyoucaninstallthelatestdevelopmentversionusingthecommand
#devtools::install_github("jabiologo/rWind")
library(rWind)
library(raster)
library(gdistance)

EXAMPLE1: AnisotropicshortestpathsacrossStraitofGibraltar

Inthissimpleexample,weintroducethemostbasicfunctionalityofrWind,togettheshortestpathsbetween
twopointsacrossStraitofGibraltar.Noticethat,aswindconnectivityisanisotropic(directiondependent),
shortestpathfromAtoBusuallydoesnotmatchwithshortestpathfromBtoA.

First,wewilldownloadwinddataofaselecteddate(e.g.2015February12th)andwewillfixandtransform
themintotworasterlayers,withvaluesofwinddirectionandwindspeed.

w<-wind.dl(2015,2,12,12,-7,-4,34.5,37.5)

##[1]"2015-02-12"
##[1]"2015-02-1212:00:00downloading..."

wind_layer<-wind2raster(w)

Then,wewilluseflow.dispersionfunctiontoobtainatransitionLayerobjectwithconductancevalues,
whichwillbeusedlatertoobtaintheshortestpaths.

Conductance<-flow.dispersion(wind_layer,"active","transitionLayer")

Now,wewilluseshortestPathfunctionfromgdistancepackagetocomputeshortestpathfromour
Conductanceobjectbetweenthetwoselectedpoints.

AtoB<-shortestPath(Conductance,
c(-5.5,37),c(-5.5,35),output="SpatialLines")

BtoA<-shortestPath(Conductance,
c(-5.5,35),c(-5.5,37),output="SpatialLines")

Finally,weplotthemapandwewilladdtheshortestpathsaslinesandsomeotherfeatures.

library(fields)
library(shape)
library(rworldmap)

image.plot(wind_layer$wind.speed,main="leastcostpathsbywinddirectionandspeed",
col=terrain.colors(10),xlab="Longitude",ylab="Lattitude",zlim=c(0,7))

lines(getMap(resolution="low"),lwd=4)

points(-5.5,37,pch=19,cex=3.4,col="red")
points(-5.5,35,pch=19,cex=3.4,col="blue")
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lines(AtoB,col="red",lwd=4,lty=2)
lines(BtoA,col="blue",lwd=4,lty=2)

alpha<-arrowDir(w)
Arrowhead(w$lon,w$lat,angle=alpha,arr.length=0.4,arr.type="curved")

text(-5.75,37.25,labels="Spain",cex=2.5,col="red",font=2)
text(-5.25,34.75,labels="Morocco",cex=2.5,col="blue",font=2)
legend("toprigh",legend=c("FromSpaintoMorocco","FromMoroccotoSpain"),

lwd=4,lty=1,col=c("red","blue"),cex=0.9,bg="white"
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EXAMPLE2: Hurricanesvisualization

ThisexampleshowshowtodownloadatimeseriesdatawithrWindandeditthemtoobtainagifmapwith
windspeedanddirections.Forthisexample,wewillusehurricaneswinddataocurredduringthefirstdays
ofSeptember2017.

2



First,wewilldownloadwinddatafrom3rdto11thofSeptember2017byeachthreehoursusingwind.dl_2.
Todothat,wewilluselubridatepackagetocreatealistofdates/timestobeusedbywind.dl_2.Itcould
takeawhile...

library(lubridate)
dt<-seq(ymd_hms(paste(2017,9,3,00,00,00,sep="-")),

ymd_hms(paste(2017,9,11,21,00,00,sep="-")),by="3hours")
wind_series<-wind.dl_2(dt,-103,-53,13,32)

Inasecondstep,wewillobtainrasterlayersforwindspeedanddirectionofeachdate-timedownloaded.
wind2rastercantakealistasargument.

wind_series_layer<-wind2raster(wind_series)

Finally,wewillexporttheentiretimeseriesasPNGformat.Youshouldcheckyourcurrentworkdirectory
(getwd)toknowwherethePNGfileswillbestored.

id<-0
for(iin1:72){
id<-sprintf("%03d",i)
png(paste("hurricane",id,".png",sep=""),width=1100,height=570,units="px",

pointsize=18)
image.plot(wind_series_layer[[i]]$wind.speed,col=bpy.colors(1000),

zlim=c(0,40),main=wind_series[[i]]$time[1])
lines(getMap(resolution="low"),lwd=3)
dev.off()

}

TheexportedPNGfilescanbeconvertedintoaGIFformatusingseveralsoftwares.Youcanuseimagmagick
convert-delay10*.pnghurricane.gifwhichwillresultinananimationliketheSupportingInformation
2

Thefollowingcodeisusedtocreatefigure2inthemanuscript.

image.plot(wind_series_layer[[45]]$wind.speed,col=bpy.colors(1000),zlim=c(0,40),
main=wind_series[[45]]$time[1],xlab="Longitude",
ylab="Lattitude")

alpha<-arrowDir(wind_series[[45]])
Arrowhead(wind_series[[45]]$lon,wind_series[[45]]$lat,angle=alpha,arr.length=0.07,

arr.type="curved")
lines(getMap(resolution="low"),lwd=3)
text(-99,23.5,labels="Katia",cex=2,col="white",font=2)
text(-71,25,labels="Irma",cex=2,col="white",font=2)
text(-59,19.5,labels="José",cex=2,col="white",font=2)

3



−100 −90 −80 −70 −60

1
5 

2
0 

2
5 

3
0

2017−09−08 12:00:00

Longitude

L
at
tit
u
d
e

0

10

20

30

40

Katia
Irma

José

Inaddition,wecancomputesomestatisticsfromthewinddatadownloaded.

First,wecanusewind.meantocomputespeedanddirectionaveragesforeachlocationinourstudyarea:

mean_wind<-wind.mean(wind_series)
head(mean_wind)

## timelat lon ugrd10m vgrd10m dir speed
##12017-09-03 13257.0 0.6798113-2.2501722163.18962.350621
##22017-09-03 13257.5-2.1322760 0.7382131289.09632.256448
##32017-09-03 13258.0-1.9516941 1.1400587300.29082.260275
##42017-09-03 13258.5-1.9550353 1.1605026300.69322.273528
##52017-09-03 13259.0-2.0296657 1.1105695298.68612.313635
##62017-09-03 13259.5-2.1109363 1.0253549295.90752.346786

Wecanalsouse tidyfunctiontoputallthedatainasingledata.frameandusedplyrpackagetocompute
maximumspeed,forexample:

t_wind_series<-tidy(wind_series)

library(dplyr)

##
##Attachingpackage:'dplyr'

##Thefollowingobjectsaremaskedfrom'package:igraph':
##
## as_data_frame,groups,union

##Thefollowingobjectsaremaskedfrom'package:raster':
##
## intersect,select,union

##Thefollowingobjectsaremaskedfrom'package:stats':
##
## filter,lag
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##Thefollowingobjectsaremaskedfrom'package:base':
##
## intersect,setdiff,setequal,union

g_wind_series<-t_wind_series%>%group_by(lat,lon)

max_ww<-g_wind_series%>%summarise(speed=max(speed))

maxw<-cbind(max_ww$lon,max_ww$lat,max_ww$speed)

head(maxw)

## [,1][,2] [,3]
##[1,]-103.0 13 4.509488
##[2,]-102.5 13 5.205593
##[3,]-102.0 13 5.026556
##[4,]-101.5 13 4.746515
##[5,]-101.0 13 7.129943
##[6,]-100.5 1311.128306

Finally,wecantransformthisdataintoarasterfiletobeplotedand“track”themaximumspeedrecordedin
ourstudyareaforourtimelapse.

rmax<-rasterFromXYZ(maxw)

image.plot(rmax,col=bpy.colors(1000),zlim=c(0,40),
main="Maximumwindspeedrecorded",xlab="Longitude",
ylab="Lattitude")

lines(getMap(resolution="low"),lwd=3
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EXAMPLE3: MeasuringwindconnectivitybetweennorthwesternAfricaand
southern Macaronesianislands(CanaryIslandsandCapeVerde)

Windcurrentsareoftenthoughttoplayakeyroleinspeciesdispersalprocesses,particularyinoceanic
islandcolonization.Inthisexample,wewillcomparegeneticstructureofthewind-dispersedshrubPeriploca
laevigataobtainedbyGarcía-Verdugoetal.(2017)withwindconnectivitybetweennorthwesternAfrica
andCanaryandCapeVerdearchipelagosusingrWindpackage.Althoughinthissimpleexampleseveral
importantissuesarenottakenintoaccount,suchasspatio-temporalscalesandthelackofaspecificstatistical
framework(e.g.Manteltest,etc.),thispreliminaryanalysisshowshowrWindcanbeusefulintheformulation
ofnewhypothesesinbiogeographicalstudies.

First,wesetthelocationsusedbyGarcía-Verdugoetal.(2017).SincetherWinddataresolutionisabout50
km,someclosesampledlocationsweremerged.

loc<-matrix(c(-9.4729,-11.0422,-14.0443,-13.0395,-14.0000,-15.6000,
-16.6000,-17.8600,-24.3800,-25.1800,30.3331, 28.3376,
26.2368,26.3028,28.4000,28.0000,28.2700,28.7300,14.9300,
17.0700),10,2)

colnames(loc)<-c("lon","lat")
rownames(loc)<-c("Morocco1","Morocco3","WSahara1","WSahara2",

"Fuerteventura","Gran_Canaria","Tenerife","La_Palma",
"Fogo","San_Antonio")

Second,wedefinethetemporalscaleofwinddata.SinceP.laevigatafruitsareavailablefromspringto
summer,weselectMay,June,JulyandAugustwindsfrom2012to2017. Wesamplewindonceperdayeach
5days. Windsamplingcouldbemoreintense,butwereduceitforcomputationreasons.Thespatialwindow
issetbetween-27and-7longitudinaldegreesand14and31latitudinaldegrees. Wewillgetatotalof150
winddataforthisregion.

dt<-c(seq(ymd_hms(paste(2012,5,3,00,00,00,sep="-")),
ymd_hms(paste(2012,8,31,12,00,00,sep="-")),by="5days"),

seq(ymd_hms(paste(2013,5,3,00,00,00,sep="-")),
ymd_hms(paste(2013,8,31,12,00,00,sep="-")),by="5days"),

seq(ymd_hms(paste(2014,5,3,00,00,00,sep="-")),
ymd_hms(paste(2014,8,31,12,00,00,sep="-")),by="5days"),

seq(ymd_hms(paste(2015,5,3,00,00,00,sep="-")),
ymd_hms(paste(2015,8,31,12,00,00,sep="-")),by="5days"),

seq(ymd_hms(paste(2016,5,3,00,00,00,sep="-")),
ymd_hms(paste(2016,8,31,12,00,00,sep="-")),by="5days"),

seq(ymd_hms(paste(2017,5,3,00,00,00,sep="-")),
ymd_hms(paste(2017,8,31,12,00,00,sep="-")),by="5days"))

Next,wecreatetwoobjectstostorecostsobtainedforeachwinddatabetweenalllocationsandpathlines
betweentwoselectedlocationsasanexample(WesternSaharaandSantoAntao,CapeVerd)

paths<-list(1:150)
cost_list<-array(NA_real_,dim=c(10,10,150))

Now,wewillexecutethenextactions:

1.Downloadwinddata(wind.dl_2()).

2.Transformdatainrasterlayers(speedanddirection,wind2raster()).

3.GetConductancematricesforeachwinddatadownloaded.

4.ComputeCostsbetweenlocationsandstoretheminacost_listobject.

5.IftheCostisnotInf,gettheshortestpathbetweenselectedlocations,andstoreitintopathsobject.
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WARNING:Noticethatyouwilldownloadandmanagge150winddatasets,soitcouldtakeawhile...you
canreducewindsizesample(e.g.samplingeach10days),butitcouldaffecttoconnectivityvalues. We
advicetouseasmuchdataaspossibleinordertoobtainaccurateresults

w<-wind.dl_2(dt,-27,-7,14,31)

path_layers<-wind2raster(w)

Conductance<-flow.dispersion(path_layers,"passive",output="transitionLayer")

for(iin1:150){
cost_list[,,i]<-costDistance(Conductance[[i]],loc)
if(costDistance(Conductance[[i]],loc[3,],loc[9,])!=Inf){
paths[[i]]<-shortestPath(Conductance[[i]],loc[3,],loc[9,],

output="SpatialLines")
}

}

connectivity<-1/cost_list

Now,weobtaintheconnectivityaveragebetweenlocationsandrenamecolumnsandrows.

conn_avg<-apply(connectivity,c(1,2),mean,na.rm=TRUE)
rownames(conn_avg)<-rownames(loc)
colnames(conn_avg)<-rownames(loc)

SinceinthisexamplewearespeciallyinterestedinwindconnectivityfromAfricamainlandtoislands,we
selectjustthispartofthematrix.Then,webuildanewmatrixwhitthosevaluesinthelowtriangle,ready
tobeplottedwithqgraphRpackage

mat<-matrix(0,10,10)
mat[5:10,1:4]<-t(conn_avg[1:4,5:10])
colnames(mat)<-c(colnames(t(conn_avg[1:4,5:10])),

rownames(t(conn_avg[1:4,5:10])))
rownames(mat)<-c(colnames(t(conn_avg[1:4,5:10])),

rownames(t(conn_avg[1:4,5:10])))
mat[5:10,1:4]

## Morocco1 Morocco3 WSahara1 WSahara2
##Fuerteventura0.0073190830.0056589420.00023794330.0003069165
##Gran_Canaria 0.0056252200.0044536750.00027830370.0003479783
##Tenerife 0.0043505460.0029441650.00020907460.0002624865
##La_Palma 0.0036700160.0024917260.00019690590.0002472273
##Fogo 0.0036173350.0044975060.00721497080.0061264604
##San_Antonio 0.0039580450.0045969270.00724397310.0059671579

Now,wecanuseqgraphRpackagetoplotagraphwithwindconnectivityfromlocationsinAfricamainland
toMacaronesianislandsandcomparethisconnectivitywithanothersourceofdata,asgeneticstructureofP.
laevigatafromGarcía-Verdugoetal.(2017).Thefollowingcodeisusedtocreatefigure2inthemanuscript.

library(qgraph)

gr<-as.factor(c("Africa","Africa","Africa","Africa","WesternCanaryIslands",
"CentralCanaryIslands","CentralCanaryIslands",
"EasternCanaryIslands","CapeVerde","CapeVerde"))

qgraph(t(mat),layout="circle",groups=gr,theme="colorblind",vsize=8,
edge.width=1.7)
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text(0.5,-1,round(mean(mat[5,1:4]),4),cex=1.5,font=2)
text(0,-1.2,round(mean(mat[6,1:4]),4),cex=1.5,font=2)
text(-0.5,-1,round(mean(mat[7,1:4]),4),cex=1.5,font=2)
text(-1,-0.5,round(mean(mat[8,1:4]),4),cex=1.5,font=2)
text(-1,0.5,round(mean(mat[9,1:4]),4),cex=1.5,font=2)
text(-0.5,1,round(mean(mat[10,1:4]),4),cex=1.5,font=2
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0.0034

0.0027

0.0019

0.0017

0.0054

0.0054

)

Finally,wecanusetheshortestpathsstoredbetweenthetwoselectedlocations(WesternSaharaandSanto
Antao(CapeVerd))toplotthemasalineskernelsoveramap.

First,weshouldremovetheNULLentriesfromthepathobject(theywerecreatedifInfcostwasobtained).
Next,wemergeallthepathlinesinthepaths_mergedobject

paths_clean<-paths[!sapply(paths,is.null)]
paths_merged<-paths_clean[[1]]

for(hin2:length(paths_clean)){
paths_merged<-rbind(paths_merged,paths_clean[[h]])

}

Now,weuseRpackagespatstattocreateakerneldistributionoflineswiththefunctiondensityand
thentransformthisobjectintoarasterlayer. Wecanapplyheretransformationorthresholdsforbetter
representation. Weremoveallkerneldensityunderthe10%ofthemaximumkernelvalue.

library(spatstat)

paths_psp<-as(paths_merged,"psp")
lines_kernel<-density(paths_psp,sigma=0.4,dimyx=c(350,410))
kernel<-raster(lines_kernel)
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kernel[kernel<(maxValue(kernel)*0.1)]<-NA

Finally,weuseggmappackagetoplotourpathskerneldensityoveramap

library(ggmap)
polyg<-rasterToPolygons(kernel)
polyg@data$id<-1:nrow(polyg@data)

polygFort<-fortify(polyg,data=polyg@data)
polygFortMer<-merge(polygFort,polyg@data,by.x='id',by.y='id')

study_area<-ggmap(get_map(location=c(-29,10,-5,36),maptype="hybrid"))

study_area+
geom_polygon(data=polygFortMer,

aes(x=long,y=lat,group=group,fill=layer),
alpha=0.7,size=0)+

scale_fill_gradientn(colours=bpy.colors(255
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