
K‑means Data Clustering with Memristor Networks

YeonJoo Jeong,†,§ Jihang Lee,†,‡,§ John Moon,† Jong Hoon Shin,† and Wei D. Lu*,†

†Department of Electrical Engineering and Computer Science and ‡Department of Materials Science and Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States

*S Supporting Information

ABSTRACT: Memristor-based neuromorphic networks have
been actively studied as a promising candidate to overcome the
von-Neumann bottleneck in future computing applications.
Several recent studies have demonstrated memristor network’s
capability to perform supervised as well as unsupervised
learning, where features inherent in the input are identified and
analyzed by comparing with features stored in the memristor
network. However, even though in some cases the stored
feature vectors can be normalized so that the winning neurons
can be directly found by the (input) vector−(stored) vector
dot-products, in many other cases, normalization of the feature
vectors is not trivial or practically feasible, and calculation of
the actual Euclidean distance between the input vector and the stored vector is required. Here we report experimental
implementation of memristor crossbar hardware systems that can allow direct comparison of the Euclidean distances without
normalizing the weights. The experimental system enables unsupervised K-means clustering algorithm through online learning,
and produces high classification accuracy (93.3%) for the standard IRIS data set. The approaches and devices can be used in
other unsupervised learning systems, and significantly broaden the range of problems a memristor-based network can solve.

KEYWORDS: Unsupervised learning, Euclidean distance, neuromorphic computing, analog switching, RRAM, Ta2O5

N euromorphic computing systems based on emerging
devices such as memristors have attracted great interest,

especially following recent advances of experimental demon-
strations at the network-level aimed for practical tasks.1−7 As a
hardware system that offers co-location of memory and logic
and highly parallel processing capability, memristor-based
networks enable efficient implementation of machine learning
algorithms.8−12 Among the approaches, unsupervised learning
is of growing importance since it relies on an unlabeled training
data set,13 which is far cheaper to obtain than those required by
supervised learning algorithms.14−16 During training, unsuper-
vised learning rules rely on indicators of similarity between the
input feature vectors and the learned feature vectors (dictionary
elements), e.g., distance between these vectors in Euclid space,
to identify the dictionary element that best matches the input
and subsequently adjust the weights accordingly.17−19 If the
dictionary elements are normalized, finding the shortest
Euclidean distance is equivalent to finding the smallest dot-
product between the input vector and the dictionary element
vector, which can be readily obtained in a memristor
crossbar.1,2,4 However, when the dictionary elements cannot
be normalized during learning, finding the shortest Euclidean
distance is no longer trivial, and can cause significant overhead
in hardware implementation.
In this study, we propose and experimentally demonstrate an

approach that directly compares the shortest Euclidean distance
in a memristor crossbar hardware system, without normalizing
the weights. As a test case, we use this approach to implement

the K-means algorithm,17 one of the most widely used
unsupervised methods in cluster analysis,20,21 experimentally
in a memristor crossbar array. The network successfully
performs cluster analysis through online training for different
kinds of inputs regardless of the initial centroid locations. When
used to analyze the standard IRIS data set,22 a 93.3%
classification accuracy was obtained experimentally in the
hardware system based on a Ta2O5‑x memristor array,
comparable with software-based results in ideal conditions.

Mapping K-means onto Memristor Array Network.
The K-means17 algorithm aims to partition a set of vector
inputs into K clusters through exploratory data analysis, as
schematically shown in Figure 1a (for K = 3). From the random
initial centroid locations, the network evolves as input data
points are assigned to different clusters based on the distances
between the input data point and the different centroid
locations, followed by updating the centroid locations of the
clusters. With a relatively simple form, K-means provides a
comparable solution to more complex approaches such as
autoencoders23 for preclustering of unlabeled data set through
online training, and reduces the original input space into
disjoint smaller subspaces for subsequent use of fine clustering
algorithms or data classification through another supervised
layer.24,25

Received: April 16, 2018
Revised: May 29, 2018
Published: June 7, 2018

Letter

pubs.acs.org/NanoLettCite This: Nano Lett. 2018, 18, 4447−4453

© 2018 American Chemical Society 4447 DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

D
o
w

n
lo

ad
ed

 v
ia

 U
N

IV
 O

F
 M

IC
H

IG
A

N
 A

N
N

 A
R

B
O

R
 o

n
 A

p
ri

l
8
,
2
0
1
9
 a

t
2
1
:2

8
:1

2
 (

U
T

C
).

S

ee
 h

tt
p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r

o
p
ti

o
n
s

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e
p
u
b
li

sh
ed

 a
rt

ic
le

s.

However, there are two challenges for experimentally
implementing algorithms such as K-means in memristor-
based systems. The first challenge is obtaining the Euclidean
distance directly in hardware. Memristor arrays can readily
implement vector−vector dot-product operations.1,2,26,27 How-
ever, when the weights are not normalized, the feature vector
that produces the largest dot-product with the input vector is
not necessarily the one having the shortest distance to the
input, as will be discussed in detail below. The second challenge
is related to the fact that K-means is not aimed at minimizing an
error/cost. In previously demonstrated systems, the operation
of the memristor network is to minimize a cost function based
on the learning rule: either the output label error for supervised
learning1,3 or the cost function for representing the input in
certain unsupervised learning cases.2 As a result, the algorithm
relies on a known reference (either the output label or the
original input) to calculate the error/cost. The reference in turn
provides a feedback mechanism that helps the network
converge near the targeted solution, even in the presence of
sizable device variations.28,29 This feedback mechanism,
however, is missing in many unsupervised learning and
arithmetic operation processes, including the K-means
approach, since such algorithms do not explicitly aim to
minimize an error against a reference, and thus hardware
demonstration will post more stringent requirements on the
device performance.
Here we address these challenges and experimentally

implement the K-means algorithm in memristor crossbar
array-based hardware as a test case. In the implementation,
locations of the K centroids are directly mapped as weights in
the memristor array in column-wise fashion, i.e., Wmn at cross-
point (m, n) in the memristor array corresponds to the mth

coordinate value of the nth centroid. The weights are in turn
represented by the state variable (w) in the device model (eqs
S1 and S2 in the Supporting Information), which is linearly
mapped onto the device conductance. With the input vector set
U and a randomly generated initial weight matrix W, the K-
means algorithm iteratively performs two successive operations
to assign the inputs to the appropriate clusters. The first
process, the search step, is to find the nearest centroid for a
given input and assign the input to the associated cluster. It is
then followed by the second process, the update (learning)
step, which updates the selected centroid coordinates due to
changes in the cluster composition. The crossbar structure as
shown in Figure 1b is extremely efficient in implementing
vector-matrix multiplication operation, which is one of the core
operations1−4 in neuromorphic systems, through simple Ohm’s
raw and Kirchhoff’s law, i.e., the current (or charge) collected at
each output neuron (= ∑ ·I V Wn j j jn) represents the dot-

product of the input voltage vector and the stored conductance
vector. In general, vector−vector dot-product operation
provides a good indication of the similarity between the input
vector and the stored vector, and thus can be viewed as
performing a pattern-matching operation and is commonly
used in machine-learning algorithms, particularly if the stored
feature vectors can be readily normalized. However, algorithms
such as K-means rely on finding the exact Euclidean distances,
not just the similarity between the vectors, to decide the
winning neurons and perform the updates.
The Euclidean distance of the input vector U and the weight

vector Wn for the nth centroid is determined by eq 1

|| − || = − · +U W U U W W2n n n
2 2 2

(1)

Figure 1. Experimental setup of K-means implementation. (a) Schematic of the K-means algorithm showing the evolution of the K centroid
locations during online learning. (b) Mapping the proposed algorithm onto the memristor array. The coordinates of a centroid is stored as the
memristor conductance values in the corresponding column in the W-matrix. The W2 information for the centroid is stored by the memristor
conductance in the S matrix in the same column. The input values are coded as pulses with different widths and are applied to the rows of the
expanded matrix. The accumulated charges at the columns’ outputs allow direct comparison of the Euclidean distances. (c) Simulation showing the
proposed W2 scheme can lead to correct centroid evolutions, whereas without the S matrix (blue circle symbol) only one centroid was trained. (d)
Flowchart of the online learning algorithm. Both the search and update operations are implemented in memristor hardware.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4448

Beside the dot-product term U·Wn, two other terms, U2 and
Wn

2, are required to obtain the Euclidean distance ∥U − Wn∥.
The U2 term depends on the input only and thus is a constant
for all centroids and will not affect the comparison when

determining the winning neuron. However, the = ∑W Wn j jn
2 2

term, representing the L2 norm of the weight vector associated
with centroid n, can in general be different for each centroid.
Only in certain conditions will the weight vector be naturally
normalized (e.g., when the weight update follows the Oja’s
rule29). Numerically normalizing the weight vectors is
expensive, and if not performed, the dot-product U·Wn will
not in general correctly represent the Euclidean distance due to
differences in the Wn

2 term.
Below we show that Euclidean distance comparisons can still

be obtained in memristor crossbar-based implementations. We
note that if the array matrix is expanded to include one
additional row representing theW2 term (called the W2 scheme
approach for convenience), results from eq 1 can still be
obtained in the memristor array during a single read operation
using the same vector-matrix multiplication approach. Here, the
new matrix consists of both the original W matrix (sized M ×

N) and a new S matrix (sized 1 × N) (Figure 1b). The S matrix
in this case is a single row and stores the average value of the

squared weight ⟨ ⟩ = ∑ ⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟Wn j

W

M

2 jn
2

for the nth centroid. The

key is then to obtain the desired output using this expanded
matrix and to allow the S matrix to be updated correctly during
unsupervised online learning.

During Euclidean distance calculation, the input vector will
now include the original input U (applied to the rows of the
original W matrix), and an additional, constant element −M/2
that will be applied to the S matrix, as shown in Figure 1b. Here
M is the number of rows in the W matrix. The choice of the
input and the S matrix is to ensure the values of the elements in
the S matrix are in the same range as the values in theW matrix,
so that the same type of memristor devices can be used for the
expanded matrix. Experimentally, the elements in the input
vector are implemented with voltage pulses having a fixed
amplitude (Vread = 0.3 V in our study) and variable widths
proportional to the desired input values. The input voltage
pulses are applied to the network to perform the vector-matrix
multiplication, and the charge Qn accumulated at each output
will represent the distance between the original input vector U

and the weight vector Wn since = ∑ · −⎜ ⎟
⎛

⎝

⎞

⎠
Q U W

n j j jn

W

2

jn
2

differs

from the exact expression (1) only by a (−) sign and a constant
U2. As a result, the higher the output charge obtained from a
particular column in the memristor array, the shorter the
distance is between the input U and the centroid represented
by the column.
After identifying the nearest centroid, the second step is to

update both the weights associated with the centroid
(representing the coordinates of the centroid location) in the
original W matrix and the S matrix representing the ⟨W2⟩ term.
We have developed a learning rule that can be readily
implemented in the memristor hardware, shown in eq 2 and
eqs S3−S6 in the Supporting Information.

Figure 2. Ta2O5−x memristor crossbar characteristics. (a) Scanning electron micrograph (SEM) image of a fabricated crossbar array used in this
study. Upper left inset: schematic of the device structure. Lower left inset: Photo of the test board. The memristor array is wire-bonded (upper right
inset) and integrated into the board system. (b) DC I−V curves during the forming cycle and the subsequent switching cycle. The low forming
voltage is critical to enable all devices in the crossbar to be properly formed without damaging the devices that have been formed earlier. (c) Device
yields from 5 different arrays, showing the percentage of successful forming and the percentage of fully functional devices after all devices in the
crossbar have gone through the forming process. (d) Analog conductance update characteristics obtained from 30 devices in the array, showing
reliable incremental conductance changes and tight device distribution. Red curve: average conductance during the measurement obtained from the
30 devices. The devices were programmed by 300 consecutive write pulses (1.15 ± 0.1 V, 1 μs), followed by 300 erase pulses (−1.4 ± 0.1 V, 1 μs).
(e) Cycling curves showing reliable analog conductance updates can be maintained after 1.2 × 105 write/erase pulses. (f) Distribution of the forming,
write and erase voltages, obtained from the 16 × 3 array. We used a 4 × 3 array having narrow voltage range in the K-means experiments.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4449

ηΔ = · −W W(input)n n (2a)

∑Δ = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟S

W

M
Sn

j

jn

n

2

(2b)

Here η is a constant and represents the learning rate for the W
matrix. Note that an update is only performed for the column
corresponding to the nearest centroid, and both the W matrix
and the S matrix are updated simultaneously. By repeating the
iterative training process with the search step and the update
step as described in Figure 1d, the network stabilizes and learns
the centroids of the K clusters.
To verify the proposed method, we first performed

simulations based on a realistic device model (eqs S1 and S2
in the Supporting Information). As shown in Figure 1c, without
the S matrix and simply comparing the dot-products between
the input vector and the centroid weight vectors, the network
could not correctly identify the nearest centroid, and the
centroid that happens to have a high initial weight vector length
by chance is always picked and updated due to its larger output
of the dot-product. Two of the three centroids never got
trained as a result. By contrast, with the same starting
conditions, the proposed W2 scheme correctly identifies the
nearest centroid and properly updates the centroid locations,
leading to successful clustering of the data after 30 iterations.
Note that from a mathematical point of view, the added S

matrix can be considered as a bias term in neural networks.
Implementation of the bias term in memristor networks has
been reported previously1,30 However, there are important

differences. The S matrix has specific physical meaning,W2, and
requires a different training algorithm than the weight update,
contrary to generic bias terms added to the network output. As
such, direct comparison of the Euclidean distances can be
obtained in our proposed approach, enabling the experimental
implementations of algorithms such as K-means clustering in
memristor arrays for the first time.

Analog Memristor Array Implementation. Experimental
implementation is based on an optimized Ta2O5‑x memristor
structure having low forming voltage and reliable analog
conductance modulations. A scanning electron microscopy
(SEM) image of the as-fabricated 16 × 3 crossbar array is
shown in Figure 2a, along with a schematic showing the device
structure consisting of a resistive Ta2O5‑x layer and a scavenging
Ta layer (detailed fabrication methods can be found in
Supporting Information). Before reliable switching, the as-
fabricated devices generally need to undergo a forming step.
However, in a passive crossbar, the high voltage used during
forming of one device can damage the already-formed, half-
selected devices sharing the same word-line or bit-line
electrode, even with a protective scheme (Figure S4). A thin
oxide layer can reduce the forming voltage, but can also reduce
device yield due to stuck-at-1 (SA1) issues during switching
(Figure S3a). We addressed this issue by using a thin oxide (3.5
nm) deposited with extremely low sputtering power and rate
(30W, 1.1 Å/min). The low deposition rate allows better
control of the oxide film quality and stoichiometry, and helps
mitigating the SA1 problem and allows both low forming
voltage and high array yield, as shown in Figure 2b,c (additional
discussions are in the Supporting Information). In addition, a

Figure 3. Experimental implementation of K-means using the memristor crossbar. (a) Evolution of the three centroid locations during training, for
three cases with different initial configurations: (i) all three centroids were located at the same position outside the data set; (ii) all three centroids
were located at the same position inside the data set; (iii) randomly assigned initial positions. The final locations of the centroids are represented by
the stars. (b) Evolution of the W elements Wx, and Wy (representing the centroid coordinates) for centroid 1 in case I, along with the centroid’s S
element, and a reference showing the calculated ⟨W2⟩ during training. Each iteration includes 50 training operations for a given input data set. (c)
Difference between the stored S element and the calculated ⟨W2⟩ for the three centroids, showing a rapid decrease after only a few training steps. (d)
Success rate of correctly finding the nearest centroid using the memristor network, as a function of the iteration number during training. The success
rate becomes >95% after 4 iterations.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4450

Ta electrode is used to form an oxygen-deficient layer above the
Ta2O5−x switching layer. The Ta electrode was deposited under
a low power (100W, 0.5 Å/s) condition to minimize the defect
creation in the Ta2O5−x switching layer (e.g., due to Ta atom
injection during deposition). These measures improved the
quality of the Ta2O5−x layer, so that switching will be driven by
electrically controlled oxygen vacancy exchange between the
Ta2O5−x switching layer and the oxygen deficient layer adjacent
to the Ta electrode, rather than less controllable intrinsic
vacancies in the as-deposited oxide.31,32

With these optimizations, improved analog switching
behaviors with high yield can be obtained from the memristor
array. The long-term potentiation/depression (LTP/LTD)
curves of 30 cells from a total of 600 consecutive write and
erase pulses are shown in Figure 2d, highlighting gradual and
uniform switching behavior (Figure S3). As shown in Figure 2e,
reliable analog switching behaviors can be maintained after 1.2
× 105 programming cycles. Figure 2f shows the distribution of
the forming, write and erase voltage values measured from the
16 × 3 array, showing tight voltage range (σ = 0.1 V) for Vwrite

and Verase. These devices were used for the K-means analysis.
Experimental Implementation of the K-means Algo-

rithm. The K-means algorithm was experimentally imple-
mented using the memristor array and a custom-built test board
(Figure 2a and S4). The test board allows arbitrary pulse signals
to be sent to and electronic current collected from either
individual devices or multiple devices in multiple rows and
columns simultaneously in parallel.
A simple two-dimensional (2D) data set was first used to test

the system. Specifically, 50 2D data points that can be explicitly
partitioned into three clusters, i.e., K = 3, were manually
generated in the study to verify the operation of the memristor

network. Figure 3a shows the evolution of the learned centroid
positions obtained from the memristor-based K-means system,
using online unsupervised training for three different initial
weights conditions. During training, the closest centroid to an
input is first determined from the memristor array using the W2

approach, followed by updates of the W and S elements for the
selected centroid based on eq 2. For example in case (i), the
three centroids were initially placed at the same location, i.e.,
having nearly identical W vectors in the memristor matrix (with
the small differences due to device variations among the
different columns). During training, centroid 2 moved in the
left direction toward one group, while centroid 3 moved in the
up direction. Centroid 1 moved in the upper left direction with
relatively large movements at the beginning of training, and
turned left toward the group of data farthest from the initial
point. After training, the three centroids settled to the centers
of the respective clusters, and every point in the data set can be
properly assigned to one of the three clusters. Other initial
centroid locations, such as having all centroids located in the
center of the data set (case (ii)), and having the centroids
randomly distributed (case (iii)) have also been tested, and the
memristor network can successfully perform K-means cluster-
ing in all cases (Figure 3a and Figure S5 in the Supporting
Information) using our experimental setup, demonstrating the
reliability of the proposed training algorithm and the hardware
implementation using physical memristor crossbar arrays, even
with non-normalized weights.
We note that the reliability of the K-means algorithm

implementation depends critically on how accurately theW and
S elements are modulated during training, since errors in these
elements directly affect the obtained Euclidean distance and the
subsequent identification of the winning centroid. The

Figure 4. K-means analysis of the IRIS data set. (a) Evolution of the centroid locations during online training with the unlabeled 3D IRIS data set.
Inset: features in the IRIS data set, including the length and the width of the sepal and the petal. In this work, only the three features (the sepal
width, the petal width, and the petal length) that produce the highest accuracy were used. (b) Clustering results using the memristor-based network
after training. The final positions of the three centroids are represented by large circles, and the data points that are partitioned into the three clusters
depending on the nearest means are represented by small circles with different colors. (c) Results from K-means analysis obtained from software.
Inset: Comparison of results obtained from software- and memristor-based methods for the 3 types of flowers, with reference to the ground truth.
(d) Simulation results showing the effects on K-means analysis accuracy as a function of device variation. High device uniformity achieved in this
study is critical to obtain the desired accuracy.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4451

experimentally obtained evolution of the W and S elements
during training are shown in Figure 3b. One can see that as aW
vector (e.g., Wx and Wy of centroid 1 in case (i) shown in
Figure 3b) is updated when a new data point is added to the
cluster, the corresponding S element is properly adjusted based
on the proposed algorithm, and the learned S elements in the
memristor network following the proposed eq 2b are indeed in
good agreement with the calculated value of ⟨W2⟩. Specifically,
Figure 3c shows the difference between the stored S values and
the calculated ⟨W2⟩ value (numerically calculated from the
measured values of the W matrix) in case (i). The error is large
in the beginning because the S elements were not initialized
according to the W matrix values. Importantly, the error drops
rapidly with only a few training steps and remains very low, due
to the excellent incremental conductance modulation capability
of the physical device as shown in Figure 2d. As a result, the
system can correctly find the nearest centroid with over 95%
success rate after 4 iterations as shown in Figure 3d, verifying
that the proposed W2 scheme can be used to efficiently
calculate distances between vectors without compute-intensive
normalization processes.
Analysis of the IRIS Data Set. Based on the successful

analysis of the test data set, we applied the memristor-based
hardware system to perform K-means analysis of the IRIS
flower data set,22 a widely used data set in machine learning.
The IRIS data set includes data from four features such as the
length and the width of the sepal and the petal (inset of Figure
4a), measured from 150 samples from each of the three iris
flower species: setosa, virginica, and versicolor. The goal is to
successfully separate the three species based on these measured
data. Figure 4a shows the evolution of the three centroids
(representing the three species) obtained from the memristor
system during training. Following standard practice, only three
features (the sepal width, the petal width, and the petal length)
that produce the highest classification accuracy were used in the
analysis. Even though the boundary between virginica and
versicolor is inherently complex in the IRIS data set (Figure
S6a), the three centroids were updated properly in the
memristor-system with initially randomized W and S matrices,
and led to a final configuration that enabled proper clustering of
the unlabeled data. The final cluster analysis obtained from the
trained memristor-based network is shown in Figure 4b and S6,
corresponding to a classification accuracy of 93.3%. This
experimental result is comparable to the result (95.3%)
obtained from a software-based method (Figure 4c),
demonstrating the feasibility of the experimental memristor
network system with the proposed W2 scheme for data-
intensive cluster analysis.
Since K-means analysis is based solely on the Euclidean

distances between the input and the dictionary vectors, and
does not rely on minimizing an output label error or a cost
function which can provide a feedback mechanism to help
network stabilization,1−3 more accurate vector-matrix multi-
plication and weight modulation operations are required. In this
case, effects such as cycle-to-cycle and device-to-device
variations can significantly affect the accuracy of the clustering
analysis during experimental implementation. Importantly, the
memristor devices used in this work with improved switching
uniformity has a device variation of ∼10% (characterized by the
standard deviation during LTP/LTD measurements), as shown
in Figure 2d, which enabled us to achieve the high clustering
accuracy observed experimentally. To verify the effect of device
variations, detailed simulations that incorporate device variation

effects (Figure S1) were performed. The accuracy of K-means
analysis was found to significantly degrade when device-to-
device variation is larger than 20% (Figure 4d and S1),
confirming our hypothesis and experimental findings. The high
clustering accuracy obtained experimentally demonstrates the
potential of memristor-based networks for neuromorphic
applications as well as arithmetic applications that require
high accuracy.
Finally, we note that exact Euclidean distances are not

obtained in our implementation due to the missing U2 term in
the output. If the complete Euclidean distances are needed,21

more changes to the implementations are required. One
possible approach based on the general idea proposed in this
study, which can calculate the (approximate) complete
Euclidean distances is discussed in Figure S8 in the Supporting
Information. By extending the simple dot-product operations
between the input and the weights using bias-like terms as
discussed in this study, more complex and elaborate algorithms
may also be implemented.

Conclusions. In this work, we experimentally demonstrated
memristor-based neural networks for K-means clustering
analysis. A W2 scheme was proposed to allow accurate
calculation of the Euclidean distance, which is an essential
operation in many machine learning algorithms, through direct
vector-matrix multiplication in memristor networks with non-
normalized weights. Without a cost function that provides a
feedback mechanism, the K-means algorithm poses stricter
requirements on compute accuracy and device variability
compared with other neuromorphic computing algorithms.
With an expanded weight matrix, properly designed training
rules, and improved device properties, we show K-means
clustering can be reliably implemented using memristor
networks. The standard IRIS data set was successfully
processed through unsupervised, online learning with high
accuracy (93.3%). With continued device and algorithm
optimizations, the results obtained here can pave the way
toward practical memristor network hardware for more broad
applications beyond neuromorphic systems.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.nano-
lett.8b01526.

Device model, updating rules, training the memristor
array, device fabrication, additional RS characteristics of
the memristor, electrical forming process, array measure-
ments setup using a test board, results of K-means
analysis on 2D data, results of K-means analysis on the
IRIS data set, device linearity data, and possible approach
to obtain the approximate complete Euclidean distance
(PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: wluee@eecs.umich.edu.

ORCID

Wei D. Lu: 0000-0003-4731-1976

Author Contributions
§Y.J.J. and J.L. contributed equally. The manuscript was written
through contributions of all authors. All authors have given
approval to the final version of the manuscript.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4452

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors would like to thank Dr. M. Zidan and F. Cai for
helpful discussions. This work was supported in part by the
National Science Foundation (NSF) through grants ECCS-
1708700 and CCF-1617315.

■ REFERENCES

(1) Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.;
Likharev, K. K.; Strukov, D. B. Nature 2015, 521 (7550), 61−64.
(2) Sheridan, P. M.; Cai, F.; Du, C.; Ma, W.; Zhang, Z.; Lu, W. D.
Nat. Nanotechnol. 2017, 12 (8), 784−789.
(3) Yao, P.; Wu, H.; Gao, B.; Eryilmaz, S. B.; Huang, X.; Zhang, W.;
Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S. P.; Qian, H. Nat. Commun.
2017, 8, 15199.
(4) Choi, S.; Shin, J. H.; Lee, J.; Sheridan, P.; Lu, W. D. Nano Lett.
2017, 17 (5), 3113−3118.
(5) Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S.
Nature 2008, 453 (7191), 80−83.
(6) Waser, R.; Aono, M. Nat. Mater. 2007, 6 (11), 833−840.
(7) Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.;
Lu, W. Nano Lett. 2010, 10 (4), 1297−1301.
(8) Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;
Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.;
Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.;
Hassabis, D. Nature 2016, 529 (7587), 484−489.
(9) Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.;
Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Nakamura,
Y.; Brezzo, B.; Vo, I.; Esser, S. K.; Appuswamy, R.; Taba, B.; Amir, A.;
Flickner, M. D.; Risk, W. P.; Manohar, R.; Modha, D. S. Science 2014,
345 (6197), 668−673.
(10) Indiveri, G.; Liu, S.-C. Proc. IEEE 2015, 103 (8), 1379−1397.
(11) Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang,
J.; Song, W.; Davila, N.; Graves, C. E.; Li, Z.; Strachan, J. P.; Lin, P.;
Wang, Z.; Barnell, M.; Wu, Q.; Williams, R. S.; Yang, J. J.; Xia, Q. Nat.
Electron. 2018, 1 (1), 52−59.
(12) Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao,
M.; Yan, P.; Asapu, S.; Zhuo, Y.; Jiang, H.; Lin, P.; Li, C.; Yoon, J. H.;
Upadhyay, N. K.; Zhang, J.; Hu, M.; Strachan, J. P.; Barnell, M.; Wu,
Q.; Wu, H.; Williams, R. S.; Xia, Q.; Yang, J. J. Nat. Electron. 2018, 1
(2), 137−145.
(13) Hinton, G. E.; Sejnowski, T. J. Unsupervised learning:
Foundations of neural computation.Computers & Mathematics with
Applications; MIT Press: Cambridge, MA, 199938
(14) Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. NIPS'14 Proceedings of
the 27th International Conference on Neural Information Processing
Systems 2014, 3, 2672−2680.
(15) Hinton, G. E.; Osindero, S.; Teh, Y.-W. Neural Comput. 2006,
18 (7), 1527−1554.
(16) Hinton, G. E. Science 2006, 313 (5786), 504−507.
(17) MacQueen, J. Proc. 5th Berkeley Symp. 1967, 1, 281−297.
(18) Kohonen, T. Neurocomputing 1998, 21 (1−3), 1−6.
(19) Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. Pattern
Recogn. 2008, 41 (1), 176−190.
(20) Jiang, Y.; Kang, J.; Wang, X. Sci. Rep. 2017, 7, 45233.
(21) Jain, A. K.; Murty, M. N.; Flynn, P. J. ACM Comput. Surv. 1999,
31 (3), 264−323.
(22) Bache, K.; Lichman, M. UCI Machine Learning Repository;
University of California, Irvine, School of Information and Computer
Sciences, 2013; URL: http://archive.ics.uci.edu/ml.
(23) Bengio, Y. Foundation and Trends in Machine Learning 2009, 2
(1), 1−127.
(24) Lin, D.; Wu, X.Meeting of the Association for Computational
Linguistics, Morristown, NJ, USA, 2009; Vol. 2, p 1030.

(25) Coates, A.; Ng, A. Y. In Neural Networks: Tricks of the Trade;
Springer: Berlin, Heidelberg, 2012; LNCS 7700, pp 561−580.
(26) Yang, J. J.; Strukov, D. B.; Stewart, D. R. Nat. Nanotechnol. 2013,
8 (1), 13−24.
(27) Merced-Grafals, E. J.; Davila, N.; Ge, N.; Williams, R. S.;
Strachan, J. P. Nanotechnology 2016, 27 (36), 365202.
(28) Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.-S. P. Adv.
Mater. 2013, 25 (12), 1774−1779.
(29) Sheridan, P. M.; Du, C.; Lu, W. D. IEEE T. Neur. Net. and Lear
2016, 27 (11), 2327−2336.
(30) Bayat, F. M.; Prezioso, M.; Chakrabarti, B.; Kataeva, I.; Strukov,
D. arXiv preprint arXiv:1712.01253 (2017).
(31) Baek, G. H.; Lee, A. R.; Kim, T. Y.; Im, H. S.; Hong, J. P. Appl.
Phys. Lett. 2016, 109 (14), 143502.
(32) Gao, B.; Chen, B.; Zhang, F.; Liu, L.; Liu, X.; Kang, J.; Yu, H.;
Yu, B. IEEE Trans. Electron Devices 2013, 60 (4), 1379−1383.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b01526
Nano Lett. 2018, 18, 4447−4453

4453

