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Fractional Chern insulators (FCIs) realized in fractional quantum Hall systems subject to a periodic potential
are topological phases of matter for which space group symmetries play an important role. In particular, lattice
dislocations in an FCI can host non-Abelian topological defects, known as genons. Genons can increase the
ground-state degeneracy of the system and are thus potentially useful for topological quantum computing. In
this work, we study FCI edges and how they can be used to detect genons. We find that translation symmetry
can impose a quantized momentum difference between the edge electrons of a partially filled Chern band. We
propose layer-resolved lattice contacts, which utilize this momentum difference to selectively contact a particular
FCI edge electron. The relative current between FCI edge electrons can then be used to detect the presence of
genons in the bulk FCI. Recent experiments have demonstrated graphene is a viable platform to study FCI
physics. We describe how the lattice contacts proposed here could be implemented in graphene subject to an
artificial lattice, thereby outlining a path forward for experimental dectection of non-Abelian topological defects.
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Introduction. Non-Abelian topological physics has excited
intense interest in the condensed-matter community, in part
for its potential application to quantum computing [1,2].
Traditionally, the emphasis has been to discover non-Abelian
topological phases, whose emergent quasiparticles are non-
Abelian anyons. Non-Abelian anyons have an internal de-
generate state space that can encode quantum information,
and satisfy exotic braiding statistics such that their adiabatic
exchange can result in a unitary rotation within the ground-
state subspace. While more than three decades of searching
for non-Abelian anyons has resulted in some progress [3-6],
it has also emphasized the difficulty of conducting such
experiments. An attractive alternative is to engineer extrin-
sic defects with non-Abelian braiding statistics and ground-
state degeneracy. Such topological defects are potentially
more experimentally manageable because their location and
number can be controlled. Majorana zero modes (MZMs)
in topological superconductors [7], defects with Ising anyon
fusion and braiding statistics, have been the focus of these
studies due to their relative experimental accessibility [8—20].
Unfortunately, the braiding statistics of MZMs do not support
universal quantum computation [21], thus most MZM-based
proposals rely on resource-expensive distillation protocols
[22-27]. It therefore remains desirable to engineer alternative,
more computationally powerful topological defects.

One potential alternative is genons—topological defects
whose presence effectively changes the genus of the system
[28-31]. Genons can increase the ground-state degeneracy
of an otherwise Abelian topological phase, enhancing the
computational power of the system. One system predicted
to host genons is fractional Chern insulators (FCIs) [32-37].
An FCI is a topological phase occurring at partial filling of a
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band with nontrivial Chern number C € Z/{0}. The fractional
quantum Hall (FQH) effect is a special case of an FCI, in
which all bands (Landau levels) have C = 1. Applying a
periodic potential (e.g., a lattice) to a QH system can result
in bands with |C| > 1. The ground state of a partially filled
Chern-C band can be mapped to a |C|-layer FQH state in
which different lattice sites are analogous to layers [38—42].
Lattice symmetries are thus interwoven with internal compo-
nent labels of the FCI; translations have a nontrivial action
on layer index which can result in genons localized at lattice
dislocations [40].

Recent experiments have demonstrated that FCIs can be
realized in graphene, where the periodic potential arises from
a moiré pattern formed by interference between the graphene
and dielectric lattices [43]. These experiments indicate that
graphene is a viable platform in which to pursue non-Abelian
physics; however, the moiré potential is not readily applicable
to genons as it is difficult to controllably insert lattice dislo-
cations into the moiré superlattice. Alternatively, the lattice
potential can be engineered, e.g., by patterning holes into a
neighboring metallic gate or dielectric [44-46]. An artificial
lattice is an appealing route toward realizing FCIs hosting
genons because (1) the lattice itself can be used to tune to the
desired phase, and (2) there is no additional cost associated
with patterning dislocations.

Even after genons have been engineered, there remains a
final hurdle of how to detect their presence, which is the focus
of this work. To understand why this is challenging, consider
the analogy of an FCI in a Chern-2 band to a bilayer QH
system, depicted in Fig. 1. When the FCI ground state satisfies
the microscopic lattice symmetries, sublattices are analogous
to layers. Crucially, under this mapping, unit cell translations
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FIG. 1. Analogy between a bilayer QH system (left) and an FCI
ina C = 2 band (right). Both systems contain a pair of genons (stars)
and a blue and yellow region to selectively contact the two edge
electrons (white and green lines). A genon in the bilayer system
exchanges the layers. Right panel: An FCI (green) with two layer-
resolved lattice contacts (blue and yellow). Each lattice contact gaps
out one of the FCI's edge electrons, rerouting that electron along
the exterior of the contact and allowing for selective voltage-bias
and current measurement. The FCI is in a partially filled C =2
band subject to a square lattice potential, such that it realizes the
two-component (mml) phase. The two components, “layers,” are
localized on the blue and yellow sublattices. The contacts are in a
C =1 band. The unit cell area of the rectangular lattice is half that
of the bulk, and is lattice matched with the bulk along the interface.

and plaquette-centered rotations interchange the two sublat-
tices, therefore lattice dislocations play the same role as layer-
exchange defects in the bilayer system. In the bilayer case,
layer-exchange defects can be detected using the difference
in the edge current of the two layers [47], which in turn can
be measured by separately contacting each layer’s edge. In
the FCI case, the difference in the current associated with the
edge electrons again carries a signature of the genon; however,
we must devise a way to selectively contact edge electrons
residing in the same physical sample.

In this work, we study FCI edges in a partially filled
C > 1 band and propose layer-resolved lattice contacts that
can be used to detect genons. The main idea is depicted in
the left panel of Fig. 1. Essentially, translation symmetry
along the edge constrains the allowed perturbations from
electron tunneling between the FCI (green) and lattice con-
tacts (blue/yellow). By appropriately designing the lattices
in the three regions, the two contact interfaces can gap out
different edge electrons of the FCI, thereby spatially sepa-
rating them and allowing independent measurement of their
electrical properties. The relative current can then be used to
detect genons in the bulk [47], providing a path forward for
experimental detection of non-Abelian topological defects in
graphene.

The remainder of this Rapid Communication is orga-
nized as follows. We briefly review the mapping of an FCI
ground state to a |C|-layer QH state. We next study the FCI
edge physics, elucidating the additional constraints translation
symmetry imposes on electron tunneling across the interface.
We then discuss how the lattice itself can be used as a tuning
parameter to simultaneously realize different phases in the
same sample. Finally, we synthesize the above discussion to
propose layer-resolved lattice contacts and illustrate how these
contacts provide the missing link in experimental dectection
of genons.

Preliminaries. Consider a square lattice with unit cell area
a* and rational flux density ¢ = p/q, with p and ¢ coprime
integers. Chern bands are characterized by topological invari-
ants C and S given by the TKNN Diophantine equation [48]

ne = C¢ + S, 1

where n, is the electron density per unit cell. The single-
particle orbitals of the band can be mapped to a |C|-layer
QH system at flux density ¢ = ¢ + S/C with effective mag-
netic length €z = a//2m¢ [49]. Recall that in the Landau
gauge A = B(—y,0) of a continuum Landau level, single-
particle states are uniquely labeled by their momentum £,.
The key point is that in an appropriate basis, single-particle
orbitals |k, B) of a Chern-C band have a continuum index
l~<x € R analogous to this momentum, and an internal index
B € Z¢ analogous to “layer.” Translations and C, rotations
factor into continuum and internal parts 7; = Tj 71, j=
x,y; Cay = 6‘4,1 ® a1, I = p, s denoting plaquette-centered
and site-centered rotations, respectively (Cy s = T:Cy4 ). The
continuum parts, denoted with a tilde, transform k. just as in
a continuum Landau level at flux density ¢. When S and C
are coprime, the internal parts, denoted with a greek letter, act
nontrivially on the layer index: 7,7, = ¢***/C1,7,. In the limit
that ¢ — 0, the system has a continuum limit and admits a
field-theoretic description. This is the precise sense in which
a Chern-C band is like a |C|-layer QH system, with lattice
symmetries acting as internal symmetries on the layer index
[38—42].

For concreteness, we consider a partially filled C = 2,
S odd band whose ground state realizes an Abelian, Cy-
symmetric (mml) state. At the topological level the system
is described by the Lagrangian

1
L= yo / dx{Kjjar . d,a; 6" + 24A,9,a;,"),  (2)
T

where Kj; is a 2 x 2 universal matrix describing the phase,
t=(1,1) is the charge vector, a; are the Chern-Simons
gauge fields, and A is the external electromagnetic vector
potential. The topological field theory must then be supple-
mented with the symmetry action. The electron current in
layer I is j¥', = 5-0,a; ,£""*, while the electron operator v, ;
generates a corresponding flux in a;. We demand that the v, ;
transform under the lattice symmetries just like the single-
particle orbitals of a C = 2 band; specifically they transform
under translations as 7; = o; where o,,, are Pauli matrices,
and under rotations as y4 , = (1, + 1,)/ V2. This implicitly
defines the action of the symmetry on the Chern-Simons
fields, as detailed below. Note that by a change of basis in the
layer space B, we could have instead chosen (say) t, = o;;
this corresponds to a distinct implementation of the symmetry
(the “topological nematic” state of Ref. [28]). Our choice is
C, symmetric. When |m —[| > 2, interchanging the layers
permutes the anyons, and consequently [50] such twist defects
are genons with quantum dimension d = /|m — [| [28,40].
For 7; = o}, a lattice dislocation with a Burger’s vector along
either x or y permutes the layers, so will carry this degeneracy.

FCI edge states. The interplay of translation symmetry and
the component labels of the many-body state has interesting
implications for FCI edge states. The Lagrangian associated
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FIG. 2. Edge states for the Hofstadter model near ¢ = 1/2 on
the infinite cylinder. The two halves of the cylinder differ by filling a
band with C = 2, § = —1, with left and right movers corresponding
to opposite edges. The edge state momentum difference at ¢ =0
is Z(1 + 1/q) for flux density p/q. As p/q — 1/2, the edge state
momentum difference approaches quantization, corresponding to the
limit that the system admits a field theory description [49].

with the edge of the system is [51]

1
Acedge = H / dx{K;;0,¢;0:¢; — V10101, 3)

where the matrix Kj; is that of the bulk theory, while the
edge potential V;; is nonuniversal. An edge along the (i, v)
direction has translation symmetry T(, ,) = T(u,v) ® T(uv)- The
“internal” part of the translation acts on electron operators
Ver ~ expliKis¢s} as T(,v) (Y1, Ye2)” . For instance, in the
(mml) phase an x edge [(u,v) = (1,0)] interchanges the
bosonic modes: Tx@12 = ¢21.

Translation symmetry imposes additional constraints on
the allowed perturbations to Eq. (3). Consider a translationally
invariant interface between two phases described by K%/,
When these phases are not related by anyon condensation,
only perturbations arising from electron tunneling across the
interface are allowed. These perturbations take the form

— KR %), )

where g; and /; are integer vectors satisfying > ", g/ = >, Iy
from charge conservation. For QH systems, Eq. (4) can gap
out the edge modes ¢'/Kii% | ¢"Kij9] when the left and right
scaling dimensions are equal and the total scaling dimension is
less than two. For the FCI interface, Eq. (4) must additionally
be invariant under the component translation symmetries of
the left/right phases, r(Lu/

This additional constraint implies that the interplay of
translation symmetry and layer index introduces an edge
electron momentum difference that is not present for the
analogous FQH state. Consider the (mml) state with 7/, =
ox/y- The (1,1) edge has 7(; 1) = 0;. When V}; is a symmetric
matrix, layer-exchange symmetry implies that the two edge
electrons for a bilayer FQH state have the same momenta;
this implies that for an FCI, both edge electrons v, 1/, have
the same k(; ;). However, the internal part of the translation

introduces a quantized momentum difference of 7/ (W2a):

71(1,1) ® T(lvl)(zji) — eifc(l,l;«/ia <_¢I;el2>‘ (5)

This momentum difference will no longer be quantized in
the presence of nonsymmetric perturbations to V;,. Figure 2
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FIG. 3. Left panel: The FCI can be engineered in graphene
subject to an artificial lattice, e.g., by patterning holes in a neigh-
boring dielectric or metal gate [49]. Right panel: Flux density versus
electron density phase space. The dot-dashed blue line corresponds
to the FQH phase v = 1/3. The dashed green line corresponds to an
FCI at quarter filling of a C = 2, S = —1 band (shaded region). The
pair of points depict that for the different lattices shown in Fig. 1,
the green and blue/yellow regions can be tuned to distinct phases for
the same global backgate voltage and magnetic field.

shows this momentum difference approaches quantization in
the limit ¢ — —S/C for the Hofstadter model [52,53].

When the system satisfies plaquette-centered Cy
symmetry, the (1, —1) edge has component translation
T(1.-1) = y4f11r(1,1)y4_p = —0;, and the momenta of the
edge electrons are swapped compared to Eq. (5) (assuming
12(1,1) =/~€(1,i1))- For the (331) state, there is an MZM at
the corner, which interchanges the two layers of the FCI
[49]. Due to the presence of gapless edge modes, these
corner MZMs are not exponentially localized the way that
topological defects in the gapped bulk are.

Lattice as a tuning parameter. We now focus on the partic-
ular realization of an FCI in graphene subject to an artificial
lattice, depicted in Fig. 3. Insulating phases correspond to
lines in the flux density ¢ versus electron density n, plane
[43]. The phase of the system can be tuned by (1) applying a
voltage to the sample to vary n,, (2) applying a perpendicular
magnetic field to vary ¢, and (3) changing the unit cell area of
the lattice to change (n,, ¢) simultaneously. The third option
provides a convenient way of realizing distinct phases within
the same sample by defining the artificial lattice differently
in separate spatial regions. We consider edges defined by the
artificial lattice, as the physical graphene edge is too dirty.

Consider the right panel of Fig. 1: the unit cell area in
the green region is twice as large as the unit cell area in
the blue/yellow regions. Therefore, for the same magnetic
field and backgate voltage, 2(n., ¢)pyy = (1., ). When these
points lie on lines characterizing distinct phases, the green
and blue/yellow regions are in different phases. Figure 3
shows an example. The dashed green line corresponds to
an FCI at quarter filling of a C =2, § = —1 band (shaded
region). A possible ground state of this phase is the Abelian
(331) state, which hosts genons at lattice dislocations. The
dot-dashed blue line corresponds to the FQH phase v = 1/3.
When the green region is tuned to the point (3/10, 9/10), the
blue/yellow regions are at (3/20, 9/20). Generally, for large
¢ FCI phases have larger energy gaps than competing FQH
phases [43], therefore for these parameter values we would
expect the bulk and lattice contacts to be in an FCI and FQH
phase, respectively.

Layer-resolved lattice contacts. We now propose the layer-
resolved lattice contacts shown in Fig. 1. We assume the bulk
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(green) is in the plaquette-centered Cs-symmetric ground state
of the (331) phase so that the layer basis corresponds to the
blue and yellow sublattices (see insets). The two contacts
(blue/yellow) are in the v = 1/3 phase. Possible parameter
values for the bulk and contacts are given by the green and
blue dots, respectively, in Fig. 3. Furthermore, we assume that
the FCI-contact interface is sufficiently long that translation
symmetry is preserved, and located in the middle of the edge
so that corner physics may be neglected.

The white/green lines indicate the edge electrons v, 1/,
associated with the FCI layer index. These electrons are
eigenstates of the translation operators 7{; +1, and thus have
well-defined momenta. The Cs symmetry guarantees the
momentum of v, 1, along the yellow contact interface is
equal to the momentum of ¥,/ along the blue contact
interface. If the energy gaps of the (331) and v = 1/3 phases
are compatible (i.e., the contact’s edge electron has the same
momentum as either v, 1, for an appropriate value of the
electrochemical potential), then ¥, ; and v, can be gapped
out along opposite contacts. Reference [49] describes a tuning
procedure for checking that the contact’s edge electron has
the necessary momentum. We do not show the edge electron
associated with the filled C = —1 band (solid black line in
Fig. 3); generically this edge electron’s momentum will be
different than that of the ¥, 1> and does not change under Cy
rotation, thus it can be safely ignored. Effectively, gapping
out an FCI's edge electron along the contact’s interface
reroutes that edge electron along the exterior of the contact,
spatially separating the FCI’s two edge electrons. A current
measurement or voltage applied to the outer edge of the lattice
contact will only affect one of the FCI’s edge electrons, hence
the name layer-resolved lattice contacts.

Given the ability to separately contact the two FCI edge
electrons, we can use their relative current to detect genons
localized at lattice dislocations in the bulk. Figure 4 gener-
alizes an experimental proposal in Ref. [47] for a bilayer QH
system with layer exchange defects. Let I; > denote the current
associated with ¥, 1,2. The relative current [, =1y — I, is
inverted across a genon. The layer-resolved lattice contacts
allow separate control of the voltage and measurement of the
current for the two edge electrons, thereby allowing readout of
their relative conductance, dI,/dV,. The relative conductance
peaks for small edge-genon separation; therefore by compar-
ing multiple samples that vary this separation distance, we
can obtain spatial resolution of the relative conductance and
detect the genon. The quantum point contact interferometer
of Ref. [47] can be similarly generalized to the FCI context.

There are many other choices for the FCI and lattice
contact phases; the two phases can be realized simultaneously
for constant magnetic field and backgate voltage provided
the line connecting (n., ¢); and (n,, ¢)yy intersects the ori-
gin. In Ref. [49], we propose an alternate realization of the
experiment in Fig. 4 for an FCI-contact interface along the
(1,0) direction. Finally, while we focused here on a Cy4-

FIG. 4. Detecting genons using FCI edges. The two edge elec-
trons (white/green lines) are interchanged at a genon (star), resulting
in a signature in the differential conductance dI./dV, [47]. When all
contacts are held to the same chemical potential, electrodes 1 and 3
selectively couple to one of the FCI's edge electrons, while 2 and 4
couple to the other. By measuring the voltage drop between 1 and
3, as well as 2 and 4, we can determine the relative current /.. The
differential conductance dI./dV, can then be determined by varying
the voltage applied to any of the four electrodes.

symmetric FCI, the proposal could be generalized to other
lattices.

Summary and outlook. In this work, we proposed layer-
resolved lattice contacts for FCI edges. The lattice contacts
utilize the interplay of translation symmetry with internal
component labels of the FCI state to selectively couple to
one of the FCI's edge electrons. Lattice contacts facilitate
genon detection in the bulk by measuring the differential
conductance associated with the relative current between the
edge electrons, which in our proposal becomes a standard
four-terminal conductance measurement. The experimental
proposal in this Rapid Communication could be realized using
graphene subject to an artificial lattice.

For the (331) phase, the genons are MZMs; more ex-
otic topological defects are possible for (mml) phases with
[m—1| > 2 [28]. Open questions include determining the
energy gaps, ground states, and symmetries, of fractionally
filled Chern bands. Additionally, the role of disorder, and
whether it causes FCI edge modes to equilibrate, could affect
our proposal. More broadly, FCIs realized with an artificial
lattice provide a playground for studying interfaces of differ-
ent topological phases, including the transfer and sharing of
information across the interface.
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