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Abstract

Low or uneven read depth is a common limitation of genotyping-by-sequencing (GBS)
and restriction site-associated DNA sequencing (RAD-seq), resulting in high missing data rates,
heterozygotes miscalled as homozygotes, and uncertainty of allele copy number in heterozygous
polyploids. Bayesian genotype calling can mitigate these issues, but previously has only been
implemented in software that requires a reference genome or uses priors that may be
inappropriate for the population. Here we present several novel Bayesian algorithms that
estimate genotype posterior probabilities, all of which are implemented in a new R package,
polyRAD. Appropriate priors can be specified for mapping populations, populations in Hardy-
Weinberg equilibrium, or structured populations, and in each case can be informed by genotypes
at linked markers. The polyRAD software imports read depth from several existing pipelines,
and outputs continuous or discrete numerical genotypes suitable for analyses such as genome-

wide association and genomic prediction.
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Introduction

Approximately 70% of vascular plant species are recent polyploids, yet genomic
resources and bioinformatics tools for polyploids typically lag behind those for diploids (Moghe
and Shiu 2014; Renny-Byfield and Wendel 2014; Bourke et al. 2018b). Reduced representation
DNA sequencing methods, such as genotyping-by-sequencing (GBS) and restriction site-
associated DNA sequencing (RAD-seq), have made high-density genotyping considerably more
accessible and affordable (Poland and Rife 2012; Davey ef al. 2013). However, the two most
popular pipelines for processing GBS and RAD-seq data, Stacks (Catchen et al. 2013) and
TASSEL (Glaubitz et al. 2014), do not output polyploid genotypes. Though pipelines for
polyploids are available, each have limitations that prevent their general application. For
example, the UNEAK pipeline is designed for diploidized polyploids only (Lu et al. 2013).
HaploTag is specialized for self-fertilizing polyploids (Tinker ez al. 2016). FreeBayes and
GATK can output polyploid genotypes, but require a reference genome (McKenna et al. 2010;
Garrison and Marth 2012). The software EBG imports read depth from other pipelines to
estimate auto- or allopolyploid genotypes (Blischak ef al. 2018) but requires allele frequency
estimations from the parent species for allopolyploids. The R package updog estimates
polyploid genotypes from read depth, modeling preferential pairing and accounting for multiple
technical issues that can arise with sequencing data, and can output posterior mean genotypes
reflecting genotype uncertainty (Gerard et al. 2018), but requires excessive amounts of
computational time to run. SuperMASSA (Serang et al. 2012) and fitPoly (Voorrips et al. 2011)
were originally designed for calling polyploid genotypes from fluorescence-based SNP assays
and have been adapted for sequencing data, but fail to call genotypes when low read depth

results in high variance of read depth ratios. Thus, important staple crops such as wheat, potato,
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sweet potato, yam, and plantain are underserved by existing genotyping software, limiting our
ability to perform marker-assisted selection, while yield increases from breeding are not keeping

pace with projected food demands (Ray et al. 2013).

We present a new R package, polyRAD, for genotype estimation from read depth in
polyploids and diploids. The software polyRAD is designed on the principle originally proposed
by Li (2011) that it is not necessary to call genotypes with complete certainty in order to make
useful inferences from sequencing data. Initially, SNP discovery is performed by other software
such as TASSEL (Glaubitz et al. 2014) or Stacks (Catchen et al. 2013), with or without a
reference genome, then allelic read depth is imported into polyRAD from those pipelines or the
read counting software TagDigger (Clark and Sacks 2016). In polyRAD, one or several ploidies
can be specified, including any level of auto- and/or allopolyploidy, allowing inheritance modes
to vary across the genome. Genotype probabilities are estimated by polyRAD under a Bayesian
framework, where priors are based on mapping population design, Hardy-Weinberg equilibrium
(HWE), or population structure, with or without linkage disequilibrium (LD) and/or self-
fertilization. Multi-allelic loci (haplotypes) are allowed, and are in fact encouraged because LD
within the span of one RAD tag is not informative for genotype imputation. In addition to
exporting the most probable genotype for each individual and locus, continuous numerical
genotypes can be exported reflecting the relative probabilities of all possible allele copy
numbers, and can then be used for genome-wide association or genomic prediction in software
such as GAPIT (Lipka et al. 2012), FarmCPU (Liu et al. 2016b), TASSEL (Bradbury et al.
2007), or rBLUP (Endelman 2011). Discrete genotypes can also be exported for polymapR
(Bourke ef al. 2018a). polyRAD is the first Bayesian genotype caller to incorporate population

structure and multiple inheritance modes, as well as the first with an option for mapping
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population designs other than F1 and F2. It is available at https://github.com/lvclark/polyRAD

and https://CRAN.R-project.org/package=polyRAD.

Methods

Overview

polyRAD implements Bayesian genotype estimation, similar to that proposed and
implemented by several other groups (Li 2011; Nielsen et al. 2011; Garrison and Marth 2012;
Korneliussen et al. 2014; Maruki and Lynch 2017; Gerard et al. 2018; Blischak et al. 2018). In
all polyRAD pipelines, genotype prior probabilities (P(G;)) represent, for a given allele and
individual, the probability that i is the true allele copy number, before taking allelic read depth
into account. Genotype prior probabilities are specified from population parameters, and

optionally from genotypes at linked markers (see Supplementary Methods).

For a given individual and locus, consider every sequencing read to be a Bernoulli trial,
where the read either matches a given allele (success) or some other allele (failure). The
probability of success is:

Eqn. I: m; = (1 —¢) *£+c*p,

where c is the cross-contamination rate, i is the allele copy number in the genotype, & is the
ploidy, and p is the allele frequency in the population. The ¢ parameter is important for
identifying homozygotes that could otherwise be misidentified as heterozygotes. For GBS and
RAD-seq data, c is estimated by including a negative control in library preparation, i.e. of the set
of ligation reactions with barcoded adapters, one that has no genomic DNA added. The
sequence read depth for this blank barcode is then divided by the mean read depth of non-blank

barcodes in order to estimate ¢. Our model assumes ¢ to be constant across loci, under the
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assumption that most errors are due to contamination during library preparation. In practice we
have found c to typically be 1/1000 (unpublished data), and expect it to be more substantial than
errors arising from the sequencing technology, which will tend to produce haplotypes not found
elsewhere in the data set. Therefore, although it is known that sequencing error can vary from
locus to locus depending on sequence context (Nakamura et al. 2011), polyRAD does not
estimate sequence error on a per-locus basis. Rare loci with very high sequencing error rates

may exhibit underestimated likelihoods of homozygosity.

Gerard et al. (2018) observed overdispersion in the distribution of sequence read depth,
indicating that in reality z; varies from sample to sample. We have observed the same in our
datasets, likely due to factors such as differing contamination rates among samples, restriction
cut site variation, and differences in size selection among libraries. Therefore, following Gerard
et al. (2018), we model allelic read depth as following a beta-binomial distribution rather than a
binomial distribution. For every possible allele copy number at a given locus and individual, the
following equation is used to estimate the likelihood of the observed read depth using the beta-

binomial probability mass function:

Bld*mi+a, d+(1-m;)+b]
Bldsm;, d+(1-mp)]

Eqn. 2: L(a,b|G;) = (*27) «

where a is the number of reads for a given allele at a given locus, b is the number of reads for
other alleles at that locus, G; is the state in which a locus has i copies of a given allele, B is the
beta function, and d is the overdispersion parameter. The parameter d is set to nine by default
given our observations of overdispersion in empirical data, and can be increased to model less
overdispersion and vice versa. The function TestOverdispersion is included in polyRAD to

assist the user in determining the optimal value of d. Although overdispersion is likely to vary



120 from locus to locus, polyRAD uses a single estimate in order to save computational time. The

121 lower d is, the more influence genotype prior probabilities have on genotype estimates.

122 From the priors and likelihoods, a posterior probability can then be estimated for each
123 possible allele copy number for each individual and allele using Bayes’ theorem (Shiryaev
124 2011):

L(a, b|Gy)+P(G)
¥k L(a, b|G)p@Gy)°

125  Eqn. 3: P(Gila,b) =
126  where all terms are as previously described.

127 Bayesian genotype estimation allows correction of genotyping errors in diploids and

128  polyploids, i.e. when an individual is truly heterozygous but only one allele was sequenced, or
129  when an individual appears heterozygous due to sequencing error or contamination but is truly
130  homozygous. It also enables estimation of allele dosage in heterozygous polyploid genotypes.
131  Moreover, genotype posterior probabilities are more influenced by priors when read depth is

132 low, and by genotype likelihoods derived from allelic read depth when read depth is high. When
133 read depth is zero for a given individual and locus, genotype posterior probabilities are equal to
134 priors, and thus missing and non-missing data are handled within one coherent paradigm. It is
135  therefore not necessary to impute missing genotypes in a second step if the priors are sufficiently

136  informative.

137 For export to other software, as well as iteration within the polyRAD pipelines, a given
138 allele’s posterior mean genotype (pmg) is a mean of the number of copies of that allele, with the
139  posterior genotype probabilities (Eqn. 3) serving as weights, as in Guan and Stephens (2008).
140  Thus, for an individual and allele, pmg is calculated as:

141  Eqn. 4: pmg = ¥ ,P(G;la, b) i,
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where all terms are as previously described. Additional details and equations for specification of
prior genotype probabilities and estimation of other parameters are provided in Supplementary
Materials. A flow chart of how this Bayesian genotypic estimation is implemented into
polyRAD is displayed in Fig. 1. In brief, for mapping populations, genotype priors are specified
based on parental genotypes and progeny allele frequencies, and all parameters are estimated
once. For diversity panels, genotype priors are adjusted and parameters re-estimated iteratively

until allele frequencies converge. Source code is available at

https://github.com/lvclark/polyRAD, archived at Zenodo (doi: 10.5281/zenodo.1143744).
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Genotype prior

Mapping:
Parental genotypes and
population design

HWE:
Hardy-Weinberg equilibrium
(Eqn. 11) or selfing (Eqn. 12)

Population structure:
Local allele frequencies estimated

with PCA, local genotype
frequencies with Eqn. 11 or 12.

Allele frequencies for
whole population

(Eqn. 6 for
initialization; Eqn. 15

otherwise) TITEES,

For initialization: read depth
matrix divided by total depth at
each sample x locus (Egn. 5)

Probability of sampling
a sequencing read of a
given allele (Eqn. 1)

Contaminationrate

Positions of
lociin genome

Linkages between alleles at
nearby loci (only estimated

once; optional)

Genotype priors
based on linked alleles
(Eqns. 8, 9, 16)

Posterior mean genotypes
(Eqn. 4; Egn. 19 if weighted
across different inheritance

probability

Genotype posterior
probability (Eqn. 10 if
linked alleles are used;
Eqgn. 3 otherwise)

Genotype likelihood
(Eqn. 2)

Read depth matrix,
samples x alleles

Alternative
final output:
most
probable

genotypes

Fig. 1. Overview of polyRAD algorithms for genotype estimation. Genotype posterior probabilities are

estimated iteratively until allele frequencies converge, except in the case of mapping populations, where

allele frequencies are only estimated once. Purple boxes indicate inputs to the pipeline (read depth,

contamination rate, and optionally, genomic positions of loci). Blue boxes indicate estimated parameters

(allele frequencies, genotype likelihoods and prior and posterior probabilities, linkage between alleles,

and probability of sampling each allele). Green boxes indicate alternative methodologies for genotype

prior probability estimation (mapping, HWE, and population structure). Priors for the HWE and population

structure models can be adjusted for self-fertilization according to de Silva et al. (2005). Orange boxes

indicate sample x allele matrices indicating approximate allele copy number. Dashed arrows indicate

steps that happen only once at the beginning or end of the pipeline, whereas solid arrows indicate
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iterative steps. Circular arrows highlight cycles of iteration. Eqns. 1-4 are provided in the main

manuscript, and Eqns. 5-19 are provided in Supplemental Materials.
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Example use

Executable examples are provided in the vignette and manual distributed with polyRAD.
Here we provide an additional brief example. Box 1 illustrates the use of polyRAD on a
diversity panel of a generic tetraploid species with a reference genome. Tools from the
Bioconductor package VariantAnnotation (Obenchain et al. 2014) are used by the polyRAD
function VCF2RADdata for import of a VCF file to the polyRAD-specific “RADdata” format.
SNP filtering criteria are specified with the min.ind.with.reads and min.ind.with.minor.allele
arguments to indicate the minimum number of individuals that must have more than zero reads
of a locus, and the minimum number of individuals that must have reads of the minor allele,
respectively. The possiblePloidies argument indicates that the inheritance mode could be
allotetraploid (c(2,2)) or autotetraploid (4). Any ploidy may be specified with possiblePloidies,
for example &8 for auto-octoploid, with the only limitation that all subgenomes in an allopolyploid
must have the same ploidy. By default, VCF2RADdata groups SNP alleles into haplotypes that
appear to have come from the same RAD tag, the size of which is specified by fagsize, in
basepairs. Negative controls are indicated with SetBlankTaxa, and the contamination rate is
estimated with EstimateContaminationRate. The function lteratePopStructLD is then used for
genotype estimation, taking both population structure and LD into account. The probabilistic
principal components analysis method from the Bioconductor package pcaMethods (Stacklies et
al. 2007) is used internally by IteratePopStructLD in order to estimate population structure. The
LDdist argument indicates the distance in basepairs within which to search for alleles at other
loci that can help predict copy number of a given allele. Once genotype posterior probabilities
are estimated, other parameters are cleared from memory using the StripDown function.

Continuous numerical genotypes are then formatted for GAPIT (Lipka et al. 2012) using the

11
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ExportGAPIT function. Alternative functions are listed in Table 1. A very similar script could
be used for a species without a reference genome, with IteratePopStruct in place of

IteratePopStructLD, and a different import function for the appropriate non-reference pipeline.

12
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library (polyRAD)

library (VariantAnnotation)

# prepare the VCF file for import

myvcf <- "somegenotypes.vct"

myvcfbg <- bgzip (myvcf)

indexTabix (myvcfbz, format = "vcf")

# import VCF into a RADdata object

myRAD <- VCF2RADdata (myvcfbg,
tagsize = 64,
min.ind.with.reads = 300,
min.ind.with.minor.allele = 15,
possiblePloidies = list(c(2,2), 4))

# estimate contamination rate

myRAD <- SetBlankTaxa (myRAD, c("blankl", "blank2"))

myRAD <- EstimateContaminationRate (myRAD)

# genotype estimation with pop. structure pipeline

myRAD <- IteratePopStructLD(myRAD, LDdist = 5e4)

# free up memory

myRAD <- StripDown (myRAD)

# export for GAPIT

myGM GD <- ExportGAPIT (myRAD)

Box 1. Example R script using polyRAD. Read depth is imported from a VVCF file, genotypes are
estimated using population structure and LD, and continuous numerical genotypes are formatted for

GAPIT.

13



195

196

Table 1. Overview of main polyRAD functions.

Import functions

VCF2RADdata

readTagDigger
readStacks
readTASSELGBSv2

readHMC

Imports any VCF with an allelic read depth (AD) field, such
as those exported by TASSEL-GBSv2 or GATK.

Imports CSV file of read depth output by TagDigger.
Reads catalog and matches files from Stacks.

Reads SAM and TagTaxaDist files from TASSEL-GBSv2.

Reads files output by UNEAK.

Genotype estimation functions

PipelineMapping2Parents

lterateHWE

lterateHWE_LD

lteratePopStruct

lteratePopStructLD

For mapping populations with any number of generations
of backcrossing, intermating, and/or selfing.

For diversity panels without population structure.2

For diversity panels with LD and without population
structure.?

For diversity panels with population structure.2

For diversity panels with population structure and LD.2

Export functions

ExportGAPIT

Export_rrBLUP_Amat
Export_rrBLUP_GWAS

Export. TASSEL_Numeric

Export_polymapR
GetWeightedMeanGenotypes

GetProbableGenotypes

Format genotypes for the GD and GM arguments of GAPIT
or FarmCPU.

Format genotypes for the A.mat function in rrBLUP.
Format genotypes for the GWAS function in rrBLUP.

Write file formatted for TASSEL with continuous numeric
genotypes.

Format genotypes for the polymapR package.

Create a matrix of continuous numeric genotypes.

Create a matrix of discrete genotypes, indicating the most

probable genotype for each individual and allele.

aThe rate of self-fertilization can be specified for self-compatible plant species.

14
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Testing

To test the accuracy of polyRAD, we used datasets from three previously studied
populations: 1) RAD-seq data and GoldenGate SNP genotypes from a diversity panel (n = 565)
of the outcrossing, diploidized allotetraploid grass Miscanthus sinensis (Clark et al. 2014), 2)
RAD-seq data and GoldenGate SNP genotypes from a bi-parental F; mapping population (n =
275) of M. sinensis (Liu et al. 2016a), and 3) SNP array genotypes from a biparental F1 mapping
population of autotetraploid potato (n = 238) (da Silva et al. 2017). Allelic read depth at
simulated RAD-seq markers was generated from the GoldenGate or SNP array genotypes, with
overall locus depth drawn from a gamma distribution to resemble depth of actual RAD-seq
markers (shape = 2 and scale = 5). The read depth for an individual genotype was also sampled
from a gamma distribution, with the shape equal to the locus depth divided by 10, and scale = 10.
The read depth for each allele was then sampled from the beta-binomial distribution as described
in Eqn. 2, with d =9 and ¢ = 0.001. The M. sinensis diversity panel included 395 GoldenGate
markers, plus real RAD-seq data for those same individuals across 3290 tag locations within 20
kb of any GoldenGate markers, called with the TASSEL GBS v2 pipeline (Glaubitz et al. 2014)

using the M. sinensis v7.1 reference genome (DOE-JGI, http://phytozome.jgi.doe.gov/).

Additionally, to test the effect of ploidy within the M. sinensis diversity panel, tetraploidy was
simulated by summing GoldenGate genotypes and RAD-seq read depth of each individual with
the individual with the most similar read depth to it out of the ten individuals most closely
related to it. The M. sinensis mapping population included 241 GoldenGate markers genotyped
across 83 individuals, plus 3062 RAD-seq markers called with the UNEAK pipeline (Lu ef al.
2013) across those 83 individuals plus an additional 192 individuals. The potato mapping

population included genotypes at 2538 markers. Additional simulations using data from

15
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diversity panels of soybean (Song et al. 2015), apple (Chagné et al. 2012), and potato (Hamilton
et al. 2011) are presented in Figs. S1-S4. In each population, the simulated and real RAD-seq
data were used for genotype calling with polyRAD, EBG (Blischak et al. 2018), updog (Gerard
et al. 2018), and fitPoly (Voorrips ef al. 2011), and missing genotypes from the EBG output were
imputed with LinkImpute (Money et al. 2015) and/or rrBLUP (Endelman 2011) as appropriate.
To estimate the accuracy of genotype calling and imputation, the root mean squared error
(RMSE) was calculated between numeric genotypes (ranging from zero to the ploidy) at each
simulated RAD-seq marker and at the GoldenGate or SNP array marker from which it was

derived.

Data Availability

Data and scripts for analysis are available at https://doi.org/10.13012/B21DB-

9729830 _V2. Supplementary text, equations, and figures have been deposited at Figshare:

https://doi.org/10.25387/23.7370999 (https://figshare.com/s/f7fe2995eacbfd7¢6066 ).

Results and discussion

Accuracy of polyRAD

In the M. sinensis diversity panel, polyRAD showed improved genotype accuracy over
the HWE, disequilibrium, and GATK methods implemented in EBG, as well as fitPoly,
particularly at low read depths (Figs. 2A and 3A). polyRAD also showed a modest improvement
in accuracy across all read depths as compared to updog (Figs. 2A and 3A) while needing
approximately two orders of magnitude less processing time than updog. Under the HWE model
in polyRAD with discrete genotypes output, errors in genotypes with more than zero reads were

similar to those from the HWE model of EBG in both diploid and tetraploid systems (Figs. 2A

16
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242 and 3A). However, when priors in polyRAD were based on population structure, errors

243 decreased, particularly in tetraploids and at low read depth (Figs. 2A and 3A). In diploids and
244 tetraploids respectively using the polyRAD population structure model with discrete genotypes,
245  error (RMSE) was reduced by 14.6% (SE 1.0%) and 23.5% (SE 0.6%) relative to the GATK
246  model, by 10.5% (SE 0.9%) and 11.8% (SE 0.5%) relative to the EBG HWE model, by 26.0%
247  (SE 1.2%) and 25.6% (SE 0.6%) relative fitPoly, and by 8.0% (SE 1.0%) and 18.0% (SE 0.7%)
248  relative to discrete genotype output by the updog “norm” model. Given the known population
249  structure in M. sinensis (Clark et al. 2014), it is unsurprising that a population structure-aware
250  genotyping method would be more accurate than those based on HWE or otherwise not

251  accounting for population structure. For genotypes with zero reads, imputation was most

252 accurate when it accounted for population structure, using either polyRAD or rrBLUP (Fig. 2B
253  and 3B). Although modeling LD did not improve accuracy in M. sinensis (Figs. 2 and 3), likely
254  due to low LD as a result of outcrossing (Slavov et al. 2014), modeling LD did improve accuracy
255  in wild soybean, apple, and a simulated inbreeding allohexaploid (Figs. S1, S2, and S3, and

256  Supporting Results). In a diversity panel of tetraploid potato, accuracy was improved by

257  modeling population structure but not LD (Fig. S4 and Supporting Results).

258
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Fig. 2. Genotyping error of EBG, fitPoly, updog, polyRAD, Linklmpute, and rrBLUP in a diversity panel of

565 diploid Miscanthus sinensis. The benefits of incorporating population structure into the genotyping

model and using continuous rather than discrete genotypes are illustrated. Genotypes were coded on a
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scale of 0 to 2. Root mean squared error (RMSE) was calculated between actual genotypes and
genotypes ascertained from simulated RAD-seq reads at 395 SNP markers (lower RMSE = higher
accuracy). Each point represents one SNP. Median read depth is indicated by color, including genotypes
with zero reads. The RMSE for continuous genotypes output by the polyRAD PopStruct LD method is
shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is
shown on the y-axis. The dashed line indicates the ordinary least-squares regression with slope and
intercept estimates, with standard errors. The “norm” model was used with updog. (A) RMSE calculated
using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero

reads, by genotyping or imputation method and genotype type.
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Fig. 3. Genotyping error of EBG, fitPoly, updog, polyRAD, and rrBLUP in a simulated tetraploid diversity
panel derived from genotypes of 565 diploid Miscanthus sinensis. The benefits of incorporating
population structure into the genotyping model and using continuous rather than discrete genotypes are
illustrated. Genotypes were coded on a scale of 0 to 4. Root mean squared error (RMSE) was
calculated between actual genotypes and genotypes ascertained from simulated RAD-seq reads at 395
SNP markers (lower RMSE = higher accuracy). Each point represents one SNP. Median read depth is
indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes output by
the polyRAD PopStruct LD method is shown on the x-axis, and the RMSE of other methods and types of
genotypes (continuous or discrete) is shown on the y-axis. The dashed line indicates the ordinary least-
squares regression with slope and intercept estimates, with standard errors. The “norm” model was used
with updog. (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE calculated
using only genotypes with zero reads, by genotyping or imputation method and genotype type.

LinkImpute was not included given that it works for diploids only.
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In diploid M. sinensis and tetraploid potato F1 mapping populations, polyRAD
outperformed the GATK method, fitPoly, and updog, particularly when linked markers were
used for informing the priors in polyRAD (Figs. 4A and 5A). In diploids and tetraploids
respectively using genotypes with non-zero read depth, error (RMSE) using the polyRAD
linkage model with discrete genotypes was reduced by 31.6% (SE 2.2%) and 48.0% (SE 0.4%)
with respect to the GATK model, and 1.5% (SE 3.1%) and 17.1% (SE 0.6%) with respect to the
updog “f1” model with discrete genotypes. For diploids, error was reduced by 39.8% (SE 2.5%)
using polyRAD with respect to fitPoly, while for tetraploids fitPoly failed for all markers. For
imputation, polyRAD using the linkage model performed similarly to LinkImpute and rrBLUP
(Figs. 4B and 5B). Although only F1 populations are presented here, many other population

types are supported in polyRAD.
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Fig. 4. Genotyping error of EBG, fitPoly, updog, polyRAD, Linklmpute, and rrBLUP in an F1 mapping
population of 83 diploid Miscanthus sinensis. The benefits of incorporating linkage into the genotyping
model and using continuous rather than discrete genotypes are illustrated. Genotypes were coded on a
scale of 0 to 2. Root mean squared error (RMSE) was calculated between actual genotypes and
genotypes ascertained from simulated RAD-seq reads at 241 SNP markers (lower RMSE = higher
accuracy). Each point represents one SNP. Median read depth is indicated by color, including genotypes
with zero reads. The RMSE for continuous genotypes output by the polyRAD PopStruct LD method is
shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is
shown on the y-axis. The dashed line indicates the ordinary least-squares regression with slope and
intercept estimates, with standard errors. The “f1” model was used with updog. (A) RMSE calculated
using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero

reads, by genotyping or imputation method and genotype type.
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Fig. 5. Genotyping error of EBG, updog, polyRAD, and rrBLUP in an F1 mapping population of tetraploid
potato with 238 progeny. The benefits of incorporating linkage into the genotyping model and using
continuous rather than discrete genotypes are illustrated. Genotypes were coded on a scale of 0 to 4.
Root mean squared error (RMSE) was calculated between actual genotypes and genotypes ascertained
from simulated RAD-seq reads at 2538 SNP markers (lower RMSE = higher accuracy). Each point
represents one SNP. Median read depth is indicated by color, including genotypes with zero reads. The
RMSE for continuous genotypes output by the polyRAD mapping method with linkage is shown on the x-
axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is shown on the y-
axis. The dashed line indicates the ordinary least-squares regression with slope and intercept estimates,
with standard errors. The “f1” model was used with updog. fitPoly results are omitted since it failed for all
markers, and Linklmpute was not run since Linklmpute is for diploids only. (A) RMSE calculated using
only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero reads, by

genotyping or imputation method and genotype type.
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Genotyping error was also reduced 10-15% in most cases by exporting genotypes as
continuous numerical variables (posterior mean genotypes), rather than discrete values (Figs. 2-
5). For example, in a diploid, a true heterozygote (numeric value of 1) with reads only for the
reference allele might erroneously be called as zero (homozygous for the reference allele) if only
the most probable genotype is exported. However, the genotype could be called 0.4 if
continuous genotypes are allowed, indicating that there is a 60% chance of it being a
homozygote and 40% chance of it being a heterozygote, and thereby reducing the error from 1.0
to 0.6. Similarly in polyploids, continuous numerical genotypes can correct for errors in allele

copy number estimation of heterozygotes.

Downstream applications and implications for sequencing strategies

The genotyping methods implemented in polyRAD will have the most benefit for marker
analysis where 1) the accuracy of individual genotypes is important, and 2) genotypes can be
treated as continuous rather than discrete variables. The use of continuous versus discrete
genotypes has been demonstrated to increase power for genome-wide association studies
(GWAS) (Grandke et al. 2016) and genomic prediction (Oliveira et al. 2018) in polyploids.
More generally, we anticipate that analyses that seek to quantify marker-trait associations in a
population of individuals, including GWAS, quantitative trait locus mapping, and genomic
prediction methods involving variable selection, will especially benefit from polyRAD. By
reducing genotyping error, polyRAD will increase the power of these methods to detect true
associations. Analyses that will benefit less from polyRAD genotyping are those where an
average is taken across many genotypes in order to estimate a statistic, such as allele frequencies
in a population or overall relatedness of individuals (including kinship-based methods of

genomic prediction), because genotyping errors generally are not biased towards one allele or the
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other and tend to balance out over many individuals and loci (Buerkle and Gompert 2013; Dodds

et al. 2015).

The advantages of polyRAD for accurate genotyping at low sequence read depth alter the
economics of sequence-based genotyping, enabling researchers to purchase fewer sequencing
lanes, multiplex more samples per lane, and/or retain more markers during filtering. In
particular, for protocols using restriction enzymes where read depth varies considerably from
locus to locus depending on fragment size (Beissinger ef al. 2013; Davey et al. 2013; Andrews et
al. 2016), there are diminishing returns on increasing the per-sample read depth, because some
loci receive far more reads than are needed for accurate genotyping while other loci remain poor
quality. Using population structure and linkage between loci, polyRAD uses information from
high-depth markers to improve genotyping accuracy of low-depth markers, helping to maximize
the useful information that is obtained from sequencing data. This advance is expected to

improve breeding efficiency and economics.
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