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Abstract 17 

Low or uneven read depth is a common limitation of genotyping-by-sequencing (GBS) 18 

and restriction site-associated DNA sequencing (RAD-seq), resulting in high missing data rates, 19 

heterozygotes miscalled as homozygotes, and uncertainty of allele copy number in heterozygous 20 

polyploids.  Bayesian genotype calling can mitigate these issues, but previously has only been 21 

implemented in software that requires a reference genome or uses priors that may be 22 

inappropriate for the population.  Here we present several novel Bayesian algorithms that 23 

estimate genotype posterior probabilities, all of which are implemented in a new R package, 24 

polyRAD.  Appropriate priors can be specified for mapping populations, populations in Hardy-25 

Weinberg equilibrium, or structured populations, and in each case can be informed by genotypes 26 

at linked markers.  The polyRAD software imports read depth from several existing pipelines, 27 

and outputs continuous or discrete numerical genotypes suitable for analyses such as genome-28 

wide association and genomic prediction. 29 
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Introduction 30 

Approximately 70% of vascular plant species are recent polyploids, yet genomic 31 

resources and bioinformatics tools for polyploids typically lag behind those for diploids (Moghe 32 

and Shiu 2014; Renny-Byfield and Wendel 2014; Bourke et al. 2018b).  Reduced representation 33 

DNA sequencing methods, such as genotyping-by-sequencing (GBS) and restriction site-34 

associated DNA sequencing (RAD-seq), have made high-density genotyping considerably more 35 

accessible and affordable (Poland and Rife 2012; Davey et al. 2013).  However, the two most 36 

popular pipelines for processing GBS and RAD-seq data, Stacks (Catchen et al. 2013) and 37 

TASSEL (Glaubitz et al. 2014), do not output polyploid genotypes.  Though pipelines for 38 

polyploids are available, each have limitations that prevent their general application. For 39 

example, the UNEAK pipeline is designed for diploidized polyploids only (Lu et al. 2013).  40 

HaploTag is specialized for self-fertilizing polyploids (Tinker et al. 2016).  FreeBayes and 41 

GATK can output polyploid genotypes, but require a reference genome (McKenna et al. 2010; 42 

Garrison and Marth 2012).  The software EBG imports read depth from other pipelines to 43 

estimate auto- or allopolyploid genotypes (Blischak et al. 2018) but requires allele frequency 44 

estimations from the parent species for allopolyploids.  The R package updog estimates 45 

polyploid genotypes from read depth, modeling preferential pairing and accounting for multiple 46 

technical issues that can arise with sequencing data, and can output posterior mean genotypes 47 

reflecting genotype uncertainty (Gerard et al. 2018), but requires excessive amounts of 48 

computational time to run.  SuperMASSA (Serang et al. 2012) and fitPoly (Voorrips et al. 2011) 49 

were originally designed for calling polyploid genotypes from fluorescence-based SNP assays 50 

and have been adapted for sequencing data, but fail to call genotypes when low read depth 51 

results in high variance of read depth ratios. Thus, important staple crops such as wheat, potato, 52 
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sweet potato, yam, and plantain are underserved by existing genotyping software, limiting our 53 

ability to perform marker-assisted selection, while yield increases from breeding are not keeping 54 

pace with projected food demands (Ray et al. 2013). 55 

We present a new R package, polyRAD, for genotype estimation from read depth in 56 

polyploids and diploids.  The software polyRAD is designed on the principle originally proposed 57 

by Li (2011) that it is not necessary to call genotypes with complete certainty in order to make 58 

useful inferences from sequencing data.  Initially, SNP discovery is performed by other software 59 

such as TASSEL (Glaubitz et al. 2014) or Stacks (Catchen et al. 2013), with or without a 60 

reference genome, then allelic read depth is imported into polyRAD from those pipelines or the 61 

read counting software TagDigger (Clark and Sacks 2016).  In polyRAD, one or several ploidies 62 

can be specified, including any level of auto- and/or allopolyploidy, allowing inheritance modes 63 

to vary across the genome.  Genotype probabilities are estimated by polyRAD under a Bayesian 64 

framework, where priors are based on mapping population design, Hardy-Weinberg equilibrium 65 

(HWE), or population structure, with or without linkage disequilibrium (LD) and/or self-66 

fertilization.  Multi-allelic loci (haplotypes) are allowed, and are in fact encouraged because LD 67 

within the span of one RAD tag is not informative for genotype imputation.  In addition to 68 

exporting the most probable genotype for each individual and locus, continuous numerical 69 

genotypes can be exported reflecting the relative probabilities of all possible allele copy 70 

numbers, and can then be used for genome-wide association or genomic prediction in software 71 

such as GAPIT (Lipka et al. 2012), FarmCPU (Liu et al. 2016b), TASSEL (Bradbury et al. 72 

2007), or rrBLUP (Endelman 2011).  Discrete genotypes can also be exported for polymapR 73 

(Bourke et al. 2018a).  polyRAD is the first Bayesian genotype caller to incorporate population 74 

structure and multiple inheritance modes, as well as the first with an option for mapping 75 
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population designs other than F1 and F2.  It is available at https://github.com/lvclark/polyRAD 76 

and https://CRAN.R-project.org/package=polyRAD. 77 

Methods 78 

Overview 79 

polyRAD implements Bayesian genotype estimation, similar to that proposed and 80 

implemented by several other groups (Li 2011; Nielsen et al. 2011; Garrison and Marth 2012; 81 

Korneliussen et al. 2014; Maruki and Lynch 2017; Gerard et al. 2018; Blischak et al. 2018).  In 82 

all polyRAD pipelines, genotype prior probabilities (P(Gi)) represent, for a given allele and 83 

individual, the probability that i is the true allele copy number, before taking allelic read depth 84 

into account.  Genotype prior probabilities are specified from population parameters, and 85 

optionally from genotypes at linked markers (see Supplementary Methods).   86 

For a given individual and locus, consider every sequencing read to be a Bernoulli trial, 87 

where the read either matches a given allele (success) or some other allele (failure).  The 88 

probability of success is:  89 

Eqn. 1: 𝜋𝜋𝑖𝑖 = (1 − 𝑐𝑐) ∗ 𝑖𝑖
𝑘𝑘

+ 𝑐𝑐 ∗ 𝑝𝑝, 90 

where c is the cross-contamination rate, i is the allele copy number in the genotype, k is the 91 

ploidy, and p is the allele frequency in the population.  The c parameter is important for 92 

identifying homozygotes that could otherwise be misidentified as heterozygotes.  For GBS and 93 

RAD-seq data, c is estimated by including a negative control in library preparation, i.e. of the set 94 

of ligation reactions with barcoded adapters, one that has no genomic DNA added.  The 95 

sequence read depth for this blank barcode is then divided by the mean read depth of non-blank 96 

barcodes in order to estimate c.  Our model assumes c to be constant across loci, under the 97 

https://github.com/lvclark/polyRAD
https://cran.r-project.org/package=polyRAD
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assumption that most errors are due to contamination during library preparation.  In practice we 98 

have found c to typically be 1/1000 (unpublished data), and expect it to be more substantial than 99 

errors arising from the sequencing technology, which will tend to produce haplotypes not found 100 

elsewhere in the data set.  Therefore, although it is known that sequencing error can vary from 101 

locus to locus depending on sequence context (Nakamura et al. 2011), polyRAD does not 102 

estimate sequence error on a per-locus basis.  Rare loci with very high sequencing error rates 103 

may exhibit underestimated likelihoods of homozygosity. 104 

Gerard et al. (2018) observed overdispersion in the distribution of sequence read depth, 105 

indicating that in reality πi varies from sample to sample.  We have observed the same in our 106 

datasets, likely due to factors such as differing contamination rates among samples, restriction 107 

cut site variation, and differences in size selection among libraries.  Therefore, following Gerard 108 

et al. (2018), we model allelic read depth as following a beta-binomial distribution rather than a 109 

binomial distribution.  For every possible allele copy number at a given locus and individual, the 110 

following equation is used to estimate the likelihood of the observed read depth using the beta-111 

binomial probability mass function:   112 

Eqn. 2:  𝐿𝐿(𝑎𝑎, 𝑏𝑏|𝐺𝐺𝑖𝑖) = �𝑎𝑎+𝑏𝑏𝑎𝑎 � ∗ 𝐵𝐵[𝑑𝑑∗𝜋𝜋𝑖𝑖+𝑎𝑎,   𝑑𝑑∗(1−𝜋𝜋𝑖𝑖)+𝑏𝑏]
𝐵𝐵[𝑑𝑑∗𝜋𝜋𝑖𝑖,   𝑑𝑑∗(1−𝜋𝜋𝑖𝑖)] , 113 

where a is the number of reads for a given allele at a given locus, b is the number of reads for 114 

other alleles at that locus, Gi is the state in which a locus has i copies of a given allele, B is the 115 

beta function, and d is the overdispersion parameter.  The parameter d is set to nine by default 116 

given our observations of overdispersion in empirical data, and can be increased to model less 117 

overdispersion and vice versa.  The function TestOverdispersion is included in polyRAD to 118 

assist the user in determining the optimal value of d.  Although overdispersion is likely to vary 119 
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from locus to locus, polyRAD uses a single estimate in order to save computational time.  The 120 

lower d is, the more influence genotype prior probabilities have on genotype estimates. 121 

From the priors and likelihoods, a posterior probability can then be estimated for each 122 

possible allele copy number for each individual and allele using Bayes’ theorem (Shiryaev 123 

2011): 124 

Eqn. 3:  𝑃𝑃(𝐺𝐺𝑖𝑖|𝑎𝑎, 𝑏𝑏) = 𝐿𝐿�𝑎𝑎, 𝑏𝑏�𝐺𝐺𝑖𝑖�∗𝑃𝑃(𝐺𝐺𝑖𝑖)
∑ 𝐿𝐿�𝑎𝑎, 𝑏𝑏�𝐺𝐺𝑖𝑖�∗𝑃𝑃(𝐺𝐺𝑖𝑖)𝑘𝑘
𝑖𝑖=0

 , 125 

where all terms are as previously described.   126 

Bayesian genotype estimation allows correction of genotyping errors in diploids and 127 

polyploids, i.e. when an individual is truly heterozygous but only one allele was sequenced, or 128 

when an individual appears heterozygous due to sequencing error or contamination but is truly 129 

homozygous.  It also enables estimation of allele dosage in heterozygous polyploid genotypes.  130 

Moreover, genotype posterior probabilities are more influenced by priors when read depth is 131 

low, and by genotype likelihoods derived from allelic read depth when read depth is high.  When 132 

read depth is zero for a given individual and locus, genotype posterior probabilities are equal to 133 

priors, and thus missing and non-missing data are handled within one coherent paradigm. It is 134 

therefore not necessary to impute missing genotypes in a second step if the priors are sufficiently 135 

informative. 136 

For export to other software, as well as iteration within the polyRAD pipelines, a given 137 

allele’s posterior mean genotype (pmg) is a mean of the number of copies of that allele, with the 138 

posterior genotype probabilities (Eqn. 3) serving as weights, as in Guan and Stephens (2008).  139 

Thus, for an individual and allele, pmg is calculated as: 140 

Eqn. 4:  𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑃𝑃(𝐺𝐺𝑖𝑖|𝑎𝑎, 𝑏𝑏) ∗ 𝑖𝑖𝑘𝑘
𝑖𝑖=0 , 141 
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where all terms are as previously described.  Additional details and equations for specification of 142 

prior genotype probabilities and estimation of other parameters are provided in Supplementary 143 

Materials.  A flow chart of how this Bayesian genotypic estimation is implemented into 144 

polyRAD is displayed in Fig. 1.  In brief, for mapping populations, genotype priors are specified 145 

based on parental genotypes and progeny allele frequencies, and all parameters are estimated 146 

once.  For diversity panels, genotype priors are adjusted and parameters re-estimated iteratively 147 

until allele frequencies converge.  Source code is available at 148 

https://github.com/lvclark/polyRAD, archived at Zenodo (doi: 10.5281/zenodo.1143744).  149 

https://github.com/lvclark/polyRAD
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 150 

Fig. 1.  Overview of polyRAD algorithms for genotype estimation.  Genotype posterior probabilities are 151 

estimated iteratively until allele frequencies converge, except in the case of mapping populations, where 152 

allele frequencies are only estimated once. Purple boxes indicate inputs to the pipeline (read depth, 153 

contamination rate, and optionally, genomic positions of loci).  Blue boxes indicate estimated parameters 154 

(allele frequencies, genotype likelihoods and prior and posterior probabilities, linkage between alleles, 155 

and probability of sampling each allele).  Green boxes indicate alternative methodologies for genotype 156 

prior probability estimation (mapping, HWE, and population structure).  Priors for the HWE and population 157 

structure models can be adjusted for self-fertilization according to de Silva et al. (2005).  Orange boxes 158 

indicate sample × allele matrices indicating approximate allele copy number.  Dashed arrows indicate 159 

steps that happen only once at the beginning or end of the pipeline, whereas solid arrows indicate 160 
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iterative steps.  Circular arrows highlight cycles of iteration.  Eqns. 1-4 are provided in the main 161 

manuscript, and Eqns. 5-19 are provided in Supplemental Materials. 162 

  163 
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Example use 164 

Executable examples are provided in the vignette and manual distributed with polyRAD.  165 

Here we provide an additional brief example.  Box 1 illustrates the use of polyRAD on a 166 

diversity panel of a generic tetraploid species with a reference genome.  Tools from the 167 

Bioconductor package VariantAnnotation (Obenchain et al. 2014) are used by the polyRAD 168 

function VCF2RADdata for import of a VCF file to the polyRAD-specific “RADdata” format.  169 

SNP filtering criteria are specified with the min.ind.with.reads and min.ind.with.minor.allele 170 

arguments to indicate the minimum number of individuals that must have more than zero reads 171 

of a locus, and the minimum number of individuals that must have reads of the minor allele, 172 

respectively.  The possiblePloidies argument indicates that the inheritance mode could be 173 

allotetraploid (c(2,2)) or autotetraploid (4).  Any ploidy may be specified with possiblePloidies, 174 

for example 8 for auto-octoploid, with the only limitation that all subgenomes in an allopolyploid 175 

must have the same ploidy.  By default, VCF2RADdata groups SNP alleles into haplotypes that 176 

appear to have come from the same RAD tag, the size of which is specified by tagsize, in 177 

basepairs.  Negative controls are indicated with SetBlankTaxa, and the contamination rate is 178 

estimated with EstimateContaminationRate.  The function IteratePopStructLD is then used for 179 

genotype estimation, taking both population structure and LD into account.  The probabilistic 180 

principal components analysis method from the Bioconductor package pcaMethods (Stacklies et 181 

al. 2007) is used internally by IteratePopStructLD in order to estimate population structure.  The 182 

LDdist argument indicates the distance in basepairs within which to search for alleles at other 183 

loci that can help predict copy number of a given allele.  Once genotype posterior probabilities 184 

are estimated, other parameters are cleared from memory using the StripDown function.  185 

Continuous numerical genotypes are then formatted for GAPIT (Lipka et al. 2012) using the 186 
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ExportGAPIT function.  Alternative functions are listed in Table 1.  A very similar script could 187 

be used for a species without a reference genome, with IteratePopStruct in place of 188 

IteratePopStructLD, and a different import function for the appropriate non-reference pipeline.  189 
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 190 

Box 1.  Example R script using polyRAD.  Read depth is imported from a VCF file, genotypes are 191 

estimated using population structure and LD, and continuous numerical genotypes are formatted for 192 

GAPIT. 193 

  194 

library(polyRAD) 

library(VariantAnnotation) 

# prepare the VCF file for import 

myvcf <- "somegenotypes.vcf" 

myvcfbg <- bgzip(myvcf) 

indexTabix(myvcfbz, format = "vcf") 

# import VCF into a RADdata object 

myRAD <- VCF2RADdata(myvcfbg, 

                     tagsize = 64, 

                     min.ind.with.reads = 300, 

                     min.ind.with.minor.allele = 15, 

                     possiblePloidies = list(c(2,2), 4)) 

# estimate contamination rate 

myRAD <- SetBlankTaxa(myRAD, c("blank1", "blank2")) 

myRAD <- EstimateContaminationRate(myRAD) 

# genotype estimation with pop. structure pipeline 

myRAD <- IteratePopStructLD(myRAD, LDdist = 5e4) 

# free up memory 

myRAD <- StripDown(myRAD) 

# export for GAPIT 

myGM_GD <- ExportGAPIT(myRAD) 



14 
 

Table 1.  Overview of main polyRAD functions. 195 

Import functions  

VCF2RADdata Imports any VCF with an allelic read depth (AD) field, such 

as those exported by TASSEL-GBSv2 or GATK. 

readTagDigger Imports CSV file of read depth output by TagDigger. 

readStacks Reads catalog and matches files from Stacks. 

readTASSELGBSv2 Reads SAM and TagTaxaDist files from TASSEL-GBSv2. 

readHMC Reads files output by UNEAK. 

Genotype estimation functions  

PipelineMapping2Parents For mapping populations with any number of generations 

of backcrossing, intermating, and/or selfing. 

IterateHWE For diversity panels without population structure.a 

IterateHWE_LD For diversity panels with LD and without population 

structure.a 

IteratePopStruct For diversity panels with population structure.a 

IteratePopStructLD For diversity panels with population structure and LD.a 

Export functions  

ExportGAPIT Format genotypes for the GD and GM arguments of GAPIT 

or FarmCPU. 

Export_rrBLUP_Amat Format genotypes for the A.mat function in rrBLUP. 

Export_rrBLUP_GWAS Format genotypes for the GWAS function in rrBLUP. 

Export_TASSEL_Numeric Write file formatted for TASSEL with continuous numeric 

genotypes. 

Export_polymapR Format genotypes for the polymapR package. 

GetWeightedMeanGenotypes Create a matrix of continuous numeric genotypes. 

GetProbableGenotypes Create a matrix of discrete genotypes, indicating the most 

probable genotype for each individual and allele. 

aThe rate of self-fertilization can be specified for self-compatible plant species.  196 
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Testing 197 

To test the accuracy of polyRAD, we used datasets from three previously studied 198 

populations: 1) RAD-seq data and GoldenGate SNP genotypes from a diversity panel (n = 565) 199 

of the outcrossing, diploidized allotetraploid grass Miscanthus sinensis (Clark et al. 2014), 2) 200 

RAD-seq data and GoldenGate SNP genotypes from a bi-parental F1 mapping population (n = 201 

275) of M. sinensis (Liu et al. 2016a), and 3) SNP array genotypes from a biparental F1 mapping 202 

population of autotetraploid potato (n = 238) (da Silva et al. 2017).  Allelic read depth at 203 

simulated RAD-seq markers was generated from the GoldenGate or SNP array genotypes, with 204 

overall locus depth drawn from a gamma distribution to resemble depth of actual RAD-seq 205 

markers (shape = 2 and scale = 5).  The read depth for an individual genotype was also sampled 206 

from a gamma distribution, with the shape equal to the locus depth divided by 10, and scale = 10.  207 

The read depth for each allele was then sampled from the beta-binomial distribution as described 208 

in Eqn. 2, with d = 9 and c = 0.001.  The M. sinensis diversity panel included 395 GoldenGate 209 

markers, plus real RAD-seq data for those same individuals across 3290 tag locations within 20 210 

kb of any GoldenGate markers, called with the TASSEL GBS v2 pipeline (Glaubitz et al. 2014) 211 

using the M. sinensis v7.1 reference genome (DOE-JGI, http://phytozome.jgi.doe.gov/).  212 

Additionally, to test the effect of ploidy within the M. sinensis diversity panel, tetraploidy was 213 

simulated by summing GoldenGate genotypes and RAD-seq read depth of each individual with 214 

the individual with the most similar read depth to it out of the ten individuals most closely 215 

related to it.  The M. sinensis mapping population included 241 GoldenGate markers genotyped 216 

across 83 individuals, plus 3062 RAD-seq markers called with the UNEAK pipeline (Lu et al. 217 

2013) across those 83 individuals plus an additional 192 individuals.  The potato mapping 218 

population included genotypes at 2538 markers.  Additional simulations using data from 219 

http://phytozome.jgi.doe.gov/
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diversity panels of soybean (Song et al. 2015), apple (Chagné et al. 2012), and potato (Hamilton 220 

et al. 2011) are presented in Figs. S1-S4.  In each population, the simulated and real RAD-seq 221 

data were used for genotype calling with polyRAD, EBG (Blischak et al. 2018), updog (Gerard 222 

et al. 2018), and fitPoly (Voorrips et al. 2011), and missing genotypes from the EBG output were 223 

imputed with LinkImpute (Money et al. 2015) and/or rrBLUP (Endelman 2011) as appropriate.  224 

To estimate the accuracy of genotype calling and imputation, the root mean squared error 225 

(RMSE) was calculated between numeric genotypes (ranging from zero to the ploidy) at each 226 

simulated RAD-seq marker and at the GoldenGate or SNP array marker from which it was 227 

derived.   228 

Data Availability 229 

Data and scripts for analysis are available at https://doi.org/10.13012/B2IDB-230 

9729830_V2.  Supplementary text, equations, and figures have been deposited at Figshare: 231 

https://doi.org/10.25387/g3.7370999 (https://figshare.com/s/f7fe2995eacbfd7e6066 ). 232 

Results and discussion 233 

Accuracy of polyRAD 234 

In the M. sinensis diversity panel, polyRAD showed improved genotype accuracy over 235 

the HWE, disequilibrium, and GATK methods implemented in EBG, as well as fitPoly, 236 

particularly at low read depths (Figs. 2A and 3A).  polyRAD also showed a modest improvement 237 

in accuracy across all read depths as compared to updog (Figs. 2A and 3A) while needing 238 

approximately two orders of magnitude less processing time than updog.  Under the HWE model 239 

in polyRAD with discrete genotypes output, errors in genotypes with more than zero reads were 240 

similar to those from the HWE model of EBG in both diploid and tetraploid systems (Figs. 2A 241 

https://doi.org/10.13012/B2IDB-9729830_V2
https://doi.org/10.13012/B2IDB-9729830_V2
https://doi.org/10.25387/g3.7370999
https://figshare.com/s/f7fe2995eacbfd7e6066
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and 3A).  However, when priors in polyRAD were based on population structure, errors 242 

decreased, particularly in tetraploids and at low read depth (Figs. 2A and 3A).  In diploids and 243 

tetraploids respectively using the polyRAD population structure model with discrete genotypes, 244 

error (RMSE) was reduced by 14.6% (SE 1.0%) and 23.5% (SE 0.6%) relative to the GATK 245 

model, by 10.5% (SE 0.9%) and 11.8% (SE 0.5%) relative to the EBG HWE model, by 26.0% 246 

(SE 1.2%) and 25.6% (SE 0.6%) relative fitPoly, and by 8.0% (SE 1.0%) and 18.0% (SE 0.7%) 247 

relative to discrete genotype output by the updog “norm” model.  Given the known population 248 

structure in M. sinensis (Clark et al. 2014), it is unsurprising that a population structure-aware 249 

genotyping method would be more accurate than those based on HWE or otherwise not 250 

accounting for population structure.  For genotypes with zero reads, imputation was most 251 

accurate when it accounted for population structure, using either polyRAD or rrBLUP (Fig. 2B 252 

and 3B).  Although modeling LD did not improve accuracy in M. sinensis (Figs. 2 and 3), likely 253 

due to low LD as a result of outcrossing (Slavov et al. 2014), modeling LD did improve accuracy 254 

in wild soybean, apple, and a simulated inbreeding allohexaploid (Figs. S1, S2, and S3, and 255 

Supporting Results).  In a diversity panel of tetraploid potato, accuracy was improved by 256 

modeling population structure but not LD (Fig. S4 and Supporting Results). 257 

  258 
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 259 

Fig. 2.  Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in a diversity panel of 260 

565 diploid Miscanthus sinensis.  The benefits of incorporating population structure into the genotyping 261 

model and using continuous rather than discrete genotypes are illustrated.  Genotypes were coded on a 262 
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scale of 0 to 2.  Root mean squared error (RMSE) was calculated between actual genotypes and 263 

genotypes ascertained from simulated RAD-seq reads at 395 SNP markers (lower RMSE = higher 264 

accuracy). Each point represents one SNP. Median read depth is indicated by color, including genotypes 265 

with zero reads. The RMSE for continuous genotypes output by the polyRAD PopStruct LD method is 266 

shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is 267 

shown on the y-axis.  The dashed line indicates the ordinary least-squares regression with slope and 268 

intercept estimates, with standard errors.  The “norm” model was used with updog.  (A) RMSE calculated 269 

using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero 270 

reads, by genotyping or imputation method and genotype type.  271 
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Fig. 3.  Genotyping error of EBG, fitPoly, updog, polyRAD, and rrBLUP in a simulated tetraploid diversity 273 

panel derived from genotypes of 565 diploid Miscanthus sinensis.  The benefits of incorporating 274 

population structure into the genotyping model and using continuous rather than discrete genotypes are 275 

illustrated.  Genotypes were coded on a scale of 0 to 4.  Root mean squared error (RMSE) was 276 

calculated between actual genotypes and genotypes ascertained from simulated RAD-seq reads at 395 277 

SNP markers (lower RMSE = higher accuracy). Each point represents one SNP. Median read depth is 278 

indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes output by 279 

the polyRAD PopStruct LD method is shown on the x-axis, and the RMSE of other methods and types of 280 

genotypes (continuous or discrete) is shown on the y-axis. The dashed line indicates the ordinary least-281 

squares regression with slope and intercept estimates, with standard errors.  The “norm” model was used 282 

with updog. (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE calculated 283 

using only genotypes with zero reads, by genotyping or imputation method and genotype type.  284 

LinkImpute was not included given that it works for diploids only. 285 

  286 
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In diploid M. sinensis and tetraploid potato F1 mapping populations, polyRAD 287 

outperformed the GATK method, fitPoly, and updog, particularly when linked markers were 288 

used for informing the priors in polyRAD (Figs. 4A and 5A).  In diploids and tetraploids 289 

respectively using genotypes with non-zero read depth, error (RMSE) using the polyRAD 290 

linkage model with discrete genotypes was reduced by 31.6% (SE 2.2%) and 48.0% (SE 0.4%) 291 

with respect to the GATK model, and 1.5% (SE 3.1%) and 17.1% (SE 0.6%) with respect to the 292 

updog “f1” model with discrete genotypes.  For diploids, error was reduced by 39.8% (SE 2.5%) 293 

using polyRAD with respect to fitPoly, while for tetraploids fitPoly failed for all markers.  For 294 

imputation, polyRAD using the linkage model performed similarly to LinkImpute and rrBLUP 295 

(Figs. 4B and 5B).  Although only F1 populations are presented here, many other population 296 

types are supported in polyRAD. 297 

  298 
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Fig. 4.  Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in an F1 mapping 300 

population of 83 diploid Miscanthus sinensis.  The benefits of incorporating linkage into the genotyping 301 

model and using continuous rather than discrete genotypes are illustrated.  Genotypes were coded on a 302 

scale of 0 to 2.  Root mean squared error (RMSE) was calculated between actual genotypes and 303 

genotypes ascertained from simulated RAD-seq reads at 241 SNP markers (lower RMSE = higher 304 

accuracy). Each point represents one SNP. Median read depth is indicated by color, including genotypes 305 

with zero reads. The RMSE for continuous genotypes output by the polyRAD PopStruct LD method is 306 

shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is 307 

shown on the y-axis. The dashed line indicates the ordinary least-squares regression with slope and 308 

intercept estimates, with standard errors.  The “f1” model was used with updog.  (A) RMSE calculated 309 

using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero 310 

reads, by genotyping or imputation method and genotype type.  311 
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Fig. 5.  Genotyping error of EBG, updog, polyRAD, and rrBLUP in an F1 mapping population of tetraploid 313 

potato with 238 progeny.  The benefits of incorporating linkage into the genotyping model and using 314 

continuous rather than discrete genotypes are illustrated.  Genotypes were coded on a scale of 0 to 4.  315 

Root mean squared error (RMSE) was calculated between actual genotypes and genotypes ascertained 316 

from simulated RAD-seq reads at 2538 SNP markers (lower RMSE = higher accuracy). Each point 317 

represents one SNP. Median read depth is indicated by color, including genotypes with zero reads. The 318 

RMSE for continuous genotypes output by the polyRAD mapping method with linkage is shown on the x-319 

axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is shown on the y-320 

axis. The dashed line indicates the ordinary least-squares regression with slope and intercept estimates, 321 

with standard errors.  The “f1” model was used with updog.  fitPoly results are omitted since it failed for all 322 

markers, and LinkImpute was not run since LinkImpute is for diploids only.  (A) RMSE calculated using 323 

only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero reads, by 324 

genotyping or imputation method and genotype type. 325 

  326 
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Genotyping error was also reduced 10-15% in most cases by exporting genotypes as 327 

continuous numerical variables (posterior mean genotypes), rather than discrete values (Figs. 2-328 

5).  For example, in a diploid, a true heterozygote (numeric value of 1) with reads only for the 329 

reference allele might erroneously be called as zero (homozygous for the reference allele) if only 330 

the most probable genotype is exported.  However, the genotype could be called 0.4 if 331 

continuous genotypes are allowed, indicating that there is a 60% chance of it being a 332 

homozygote and 40% chance of it being a heterozygote, and thereby reducing the error from 1.0 333 

to 0.6.  Similarly in polyploids, continuous numerical genotypes can correct for errors in allele 334 

copy number estimation of heterozygotes. 335 

Downstream applications and implications for sequencing strategies 336 

The genotyping methods implemented in polyRAD will have the most benefit for marker 337 

analysis where 1) the accuracy of individual genotypes is important, and 2) genotypes can be 338 

treated as continuous rather than discrete variables. The use of continuous versus discrete 339 

genotypes has been demonstrated to increase power for genome-wide association studies 340 

(GWAS) (Grandke et al. 2016) and genomic prediction (Oliveira et al. 2018) in polyploids.  341 

More generally, we anticipate that analyses that seek to quantify marker-trait associations in a 342 

population of individuals, including GWAS, quantitative trait locus mapping, and genomic 343 

prediction methods involving variable selection, will especially benefit from polyRAD.  By 344 

reducing genotyping error, polyRAD will increase the power of these methods to detect true 345 

associations.  Analyses that will benefit less from polyRAD genotyping are those where an 346 

average is taken across many genotypes in order to estimate a statistic, such as allele frequencies 347 

in a population or overall relatedness of individuals (including kinship-based methods of 348 

genomic prediction), because genotyping errors generally are not biased towards one allele or the 349 
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other and tend to balance out over many individuals and loci (Buerkle and Gompert 2013; Dodds 350 

et al. 2015). 351 

The advantages of polyRAD for accurate genotyping at low sequence read depth alter the 352 

economics of sequence-based genotyping, enabling researchers to purchase fewer sequencing 353 

lanes, multiplex more samples per lane, and/or retain more markers during filtering.  In 354 

particular, for protocols using restriction enzymes where read depth varies considerably from 355 

locus to locus depending on fragment size (Beissinger et al. 2013; Davey et al. 2013; Andrews et 356 

al. 2016), there are diminishing returns on increasing the per-sample read depth, because some 357 

loci receive far more reads than are needed for accurate genotyping while other loci remain poor 358 

quality.  Using population structure and linkage between loci, polyRAD uses information from 359 

high-depth markers to improve genotyping accuracy of low-depth markers, helping to maximize 360 

the useful information that is obtained from sequencing data.  This advance is expected to 361 

improve breeding efficiency and economics. 362 
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