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Abstract. Collective coordinates in a many-particle system are complex
Fourier components of the local particle density n(x) = Z;V=1 §(x —r;), and
often provide useful physical insights. However, given collective coordinates,
it is desirable to infer the particle coordinates via inverse transformations.
In principle, a sufficiently large set of collective coordinates are equivalent
to particle coordinates, but the nonlinear relation between collective and
particle coordinates makes the inversion procedure highly nontrivial. Given a
‘target’ configuration in one-dimensional (1D) Euclidean space, we investigate
the minimal set of its collective coordinates that can be uniquely inverted
into particle coordinates. For this purpose, we treat a finite number M of
the real and/or the imaginary parts of collective coordinates of the target
configuration as constraints, and then reconstruct ‘solution’ configurations
whose collective coordinates satisfy these constraints. Both theoretical and
numerical investigations reveal that the number of numerically distinct
solutions depends sensitively on the chosen collective-coordinate constraints
and target configurations. From detailed analysis, we conclude that collective
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coordinates at the f%-\ smallest wavevectors is the minimal set of constraints for
unique inversion, where || represents the ceiling function. This result provides
useful groundwork to the inverse transform of collective coordinates in higher-
dimensional systems.

Keywords: random/ordered microstructures, structural correlations
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1. Introduction

For N identical point particles at positions of ri,---,7y in a periodic fundamen-

tal cell Q, the particle distribution can be described by the local particle density
n(x) = Zj\le d(x — r;). Equivalently, this function can be represented by the (complex)
Fourier components at wavevectors k’s, associated with the geometry of €2, i.e.

N
k) = 3 ek, ()
j=1

called collective coordinates. These quantities are often found to be a natural way to
describe the distribution of particles, and thereby provide useful insights into many
physical problems, e.g. excited states of liquid helium [1], conduction electrons in met-
als [2], general theory of simple liquids [3], and quantification of density fluctuations
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[4, 5]. Furthermore, using functional Fourier transformation, governing equations of
many-body systems, such as the Fokker-Planck equation, can be expressed in terms of
collective coordinates [6].

It is often desirable to infer the particle coordinates from given collective coordi-
nates via inverse transformations. Importantly, amplitudes of collective coordinates,
or equivalently, the structure factor, S(k), have long been used to probe the particle
distributions, since S(k) can be ascertained from scattering experiments [7]. However,
unless the particle distribution is a perfect crystal, the structure factor alone cannot
uniquely determine the particle distribution because it does not contain phase informa-
tion. To solve this problem in x-ray crystallography, additional information is acquired
from other physical properties, such as the interference pattern with known molecules
(specific site labeling) [8], anomalous dispersion relations [9, 10], or sequential projec-
tions onto constrained hyperplanes [11]. Such inversion tasks are called the phase-
retrieval problems [11-13] because the tasks are essentially equivalent to retrieving
the ‘phase’ information contained in collective coordinates, the complete set of which
are in principle invertible into particle coordinates. Even if the phase information is
incorporated, however, this inversion task is still highly nontrivial, due to the nonlinear
relation between collective and particle coordinates.

Given a target point configuration in 1D Euclidean space R, our primary objective
in this paper is to find the minimal set of its collective coordinates that uniquely deter-
mine particle coordinates aside from exchange of particle indices. This minimal set,
therefore, uniquely determines collective coordinates at other wavevectors. To carry
out this search, we treat the number M of the real and/or the imaginary parts of col-
lective coordinates of a target configuration as constraints, and find all configurations,
called solutions, whose collective coordinates satisfy these constraints. The number of
constraints M is increased one-by-one until we have a unique solution that is, of course,
identical to the target pattern.

Previous studies on this inversion task [5, 14-16] focused on some special types
of constraints on the collective coordinates (defined by equation (1)) for a given set
of wavevectors, such as the stealthy constraints, where (k) = 0, and amplitude-con-
straints for a prescribed radial function f(r), i.e. |7(k)| = f(|k|). This inversion task
is often carried out via the collective-coordinate optimization technique [15-19] that
is designed to find ground-state configurations of the potential associated with those
constraints. Here, it is useful to define a new parameter y = M/(dN) [15, 17] that
represents the relative fraction of the number of constrained collective coordinates M
to the total number of degrees of freedom; see figure 1 for typical arrangements of the
constraints in d = 1,2. These studies analytically or numerically showed that when
the stealthy constraints are imposed for x < 1/2, the associated ground states, called
stealthy disordered hyperuniform systems [5, 15-17], are disordered, highly degenerate,
and statistically isotropic. Importantly, it has been shown that systems derived from
these special disordered point configurations by decorating the points with particles of
certain shapes, are endowed with some novel photonic and transport properties [20-
27]; see also [28] and references therein. Under the stealthy constraints with x > 1/2,
on the other hand, virtually all configurations are crystalline in the first three spatial
dimensions [5, 14, 17]. From the uniqueness of the solution at y = 1/2 in d=1 [14] as
well as the importance of phase information of collective coordinates, one can argue
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that each constrained collective coordinate 7i(k) removes two degrees of freedom in the
accessible configurational space. Thus, it is natural to surmise that the minimum value
of M for the unique inversion would be M = d(N—1).

In the present work, we consider more. general type of constraints, in which the real
and/or the imaginary part of each collective coordinate are independently prescribed.
For simplicity, we focus on 1D systems. For such systems, we show that the minimal
set of collective-coordinate constraints consists of collective coordinates at the [ N/2]
smallest wavevectors, i.e. M = 2[N/2] rather than N. This result also implies that for
a collective coordinate at a wavevector k, both its real and imaginary parts must be
specified. We analytically show this result for small systems of N < 3. However, this
result is invalid if the target configurations are the integer lattice because one cannot
determine its center of mass without a collective coordinate at the first Bragg peak.
In our numerical studies for larger systems, we exclude the pathological case (i.e. the
integer lattice), and consider two distinct ensembles of target configurations: perturbed
lattices [29] via uniformly distributed displacements, and Poisson point distribution
configurations. For each of these target configurations, we find solutions numerically
via the collective-coordinate optimization technique. Our numerical results show that
these two types of ensembles occupy qualitatively different energy landscapes: those in
perturbed lattices are relatively simpler than those in Poisson ones.

In section 2, we present basic definitions and background. In section 3, we describe
the numerical method that we employ to find solutions. In section 4, we theoretically
and numerically determine the minimal sets of collective coordinates for small systems.
Larger systems are numerically investigated in section 5. Finally, we provide conclud-
ing remarks in section 6.

2. Basic definitions and background

2.1. General properties of collective coordinates

For a N-particle point configuration within a periodic fundamental cell €2, collective
coordinates (1), which are also known as collective density variables, are complex-valued
quantities that are defined at certain real-valued discrete wavevectors k’s. Here, the
available wavevectors correspond to the reciprocal lattice vectors of the cell (2. For
instance, if 2 is a L; x --- X Ly rectangular box, then k’s can be described as follows:

k= 27r(’£—11, cee 'Z—:) for (my,- -+ ,mq) € Z%. For simplicity, we focus on one-dimensional

systems in the rest of this paper, and thus use the following short-hand notation:
km = 2mm/ L. (2)

At two different wavevectors, the collective coordinates are not always independent.
For instance, the complex conjugate of a collective coordinate by definition is equal to
its parity inversion, i.e. 7*(k) = i{—k). Thus, if we constrain such a pair of collective
coordinates, only one of them is considered independent. For this reason, the relative
fraction x of constrained degrees of freedom is defined as not 2M/(dN), but M/(dN);
see figure 1.

https://doi.org/10.1088/1742-5468/aae84c 4
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Figure 1. Schematics of typical arrangements of collective-coordinate constraints
in Fourier space for a periodic d-dimensional square fundamental cell of side length
L. Here, upper and lower panels represent cases for d =1 and 2, respectively.
Constraints are taken from 7i(k)’s at wavevectors between two concentric circles
centered at the origin: there are 2M wavevectors (black dots) within the blue
circle, except for 2N, + 1 wavevectors inside the red-shaded region. In [5, 14-17],
a spherical region with N, = 0 was considered; see a list of available M values for
two-dimensional cases in table II in [17]. For our present purposes, the number of
constraints is denoted by M = 2M because the real and/or the imaginary parts of
collective coordinates are considered independently.

Only certain sets of complex numbers can be collective coordinates of a ‘realizable’
point configuration. For example, there are some trivial necessary conditions of realiz-
able collective coordinates, such as |n(k)| < N for any wavevector k, and 7(0) = N.
However, it is highly nontrivial to find sufficient and necessary conditions of realizable
collective coordinates. To avoid such realizability problems [30], we take constraints
from the collective coordinates of a target configuration.

The value of a collective coordinate is independent of the choice of particle permu-
tations: when we invert collective coordinates, the resulting particle coordinates also
should be equivalent aside from exchange of particle indices.

2.2. Definitions

In the rest of this work, we clearly distinguish a target and a solution configurations by
using separate notations RY = {R;, Ry,--- , Ry}and vV = {r;,ry,--- ,7n}, respectively.
The corresponding collective coordinates are denoted by 7nir(k) and 7(k), respectively.

In numerical studies, two types of target configurations at unit number density are
considered:

https://doi.org/10.1088/1742-5468 /aae84c 5
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(i) Perturbed lattices [29, 31], generated from the integer lattice by independently
displacing each particle via a uniform distribution in [—4, ], and
(ii) Poisson point distribution configurations.

We note that the perturbed lattices become identical to the Poisson point distribution
configurations if § = N/2 under the periodic boundary condition.

We denote M constraints, used in the inversion task, by F;=0for i =1,2,--- | M.
Starting from the origin in the Fourier space, we skip the first Ny wavenumbers and
constrain the collective coordinates at the next | M/2| wavenumbers:

b {Re [Fir (b om) — #ilkinm)], §=2m —1 (i < M) ;
"7 N [ (k) — k)], i = 2m, (i < M) ©)

where |z | is the floor function, m € N, and Re [z] and Im [z] represent the real and the
imaginary parts of a complex number z, respectively. Thus, if M is an even number,
both the real and the imaginary parts of collective coordinates at M/2 consecutive
wavenumbers are constrained. If M is an odd number, we prescribe the last term Fj,
via two conditions, each of which is concerning either the real or the imaginary parts
of a target collective coordinate as follows:

Re [ﬁT (ka+[]\l/2]) - ﬁ(k"Nk+fM/21)] ’ (4)
Ey =

Im [fig (knystay21) — 7(knerrnesar)] (5)

where [z] is the ceiling function. Table 1 lists some examples of constraints.

3. Numerical method

Given a target configuration RY of N > 3, we take M constraints from its collective
coordinates, and numerically find solutlon configurations 7V via a modified ‘collective-
coordinate optimization technique’ [15-19] that was initially designed to generate dis-
ordered classical point configurations, such as stealthy ground states [5, 15, 32], and
the perfect-glass model [33]. The detailed procedure is described as follows:

(i) Starting from a random initial configuration {7"( )}N , of N particles, numerically
search for an energy-minimizing configuration 7V = {r;}¥, for the following

potential energy,

Z|El RN |

Z:”);\A,”\Ju |7 (k) — (k)| M is even
SN (k) — Ak 2+ | Bar (7Y, RY)|®, M s odd.
(6)

The jth component of its gradient is given by
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Table 1. Examples of constraints F; for corresponding shorthand notations. We
note that when M is an even number, the real condition (4) and the imaginary
condition (5) give the identical collective-coordinate constraints.

E By B3 E,

Zkff and Re [’ﬁj(k)l) — ﬁ(kl)] Im [’ﬁ,T(kl) — ’Fl(kl)] Re [’FLT(kg) — ’fb(kz)] Im [flj(kz) — fb(kz)]
%k_:i. and Re ['ﬁT(kz) — Fl(kz)] Im [ﬁ]‘(lvz) — Fl(kz)] Re [qu(k}s) — 'INL(k;«;)] Im [ﬁT(kS) — ﬁ(l‘u3)]

Nk = 0, Re [’ﬁT(kl) — ’Fl(kl)] Im [’flT(kl) - ’Fl(kll)] Re [ﬁT(kz) - ’fl(kz)]
M=3, and

the real

condition (4)

N.=0, Re [fip(k) — a(k1)] Im [Ap(ky) — 2lk1)] Im [Ar(ke) — A{ks)]
M=3, and

the imaginary
condition (5)

i)
(i = - 22 R
l"f'J'
[ ot [(h(k) — (k) ) Miseven (D
™ 2kl (k) — fig (k) o 73] — 2By %%, M s odd.

where Ej is defined by (3), and for an odd number M, Ej;is defined by one of two
conditions (4) and (5). This configuration is called a ‘solution’ if <I>('rN : RY ) < €g
for a specified small tolerance ¢g.

(ii) Test if this solution =V agrees with the target configuration R" or
other solutions found previously within another small tolerance ex, i.e.

maxf.\;l{minévzlﬂri — R;|}} < ex. If they agree, then r" is deemed to be identical
to one of the previous solutions, and we increase the solution’s count. Otherwise,
we record TV as a new solution.

(iii) Repeat the steps (i)—(ii) for N random initial configurations.

(iv) Repeat the steps (i)—(iii) for Nt different target configurations.

Roughly speaking, the potential (6) represents a ‘deviation’ or numerical error of a
solution configuration from the target configuration in terms of given collective-coordi-
nate constraints. In step (i), we mainly use two different optimization algorithms: the
low-storage BFGS (L-BFGS) algorithm [34, 35] with the MINOP algorithm [15, 36],
and the steepest descent algorithm [37]. We repeat this inversion task for many distinct
initial configurations {r 0 }¥ s and target configurations R"s. Unless stated otherwise,
we use parameters as follows: Ny = 1000, Nt = 1000, and ex = 107°.

https://doi.org/10.1088/1742-5468 /aae84c 7
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Figure 2. Illustrations for solutions of the inversion problem for a single-particle
target configuration. (a) Cases with N;=0 and M = 2. When 7ir(k;) is given as
constraints (left), both its real and imaginary parts are required for a unique
solution; see the cross (x) mark in the right panel. Red and blue lines represent
the real and the imaginary parts of 7i(k;) of a solution, respectively. (b) Cases with
Ny=1 and M =2. When 7ir(k,) is given, we have two solutions.

For all numerically distinct solutions {7} of a target configuration R", the trivial
solution refers to the one that is identical to the target (r" = R™), while nontrivial
solutions refer to the others (r" # RM).

4. Results for N < 3

Here, we theoretically and numerically investigate solutions for small target
configurations.

41. N=1

For a single-particle configuration, (k) = e ?"1/L is a one-to-one function from

r1 € [0, L) onto the unit circle on the complex plane, i.e. {z € C: |z| = 1}. Thus, it is
straightforward to show that there is a unique solution, given constraints 7ir(k;) that
correspond to the cases of Ny =0 and M = 2. Equivalently, collective coordinates at
larger wavenumbers can be expressed in terms of 7ir(k), i.e. fir(k,,) = fir(k1)™. On the
other hand, cases of Ny=0 and M =1, i.e. a single constraint of either Re [fir(k1)] or
Im [fir(k1)), give two solutions; see figure 2(a). Thus, we need at least two constraints
(M = 2) for the unique inversion of a single-particle configuration.

We note that 7ip(k;) is the minimal set of constraints for single-particle systems.
This is because when m > 1, fig(ky,) is no longer a one-to-one function from r; € [0, L)
onto the unit circle on C, and thus cases with N, = m and M = 2 for m > 1 give m dis-
tinct solutions; see figure 2(b).

42. N=2

Using graphical solutions, one can straightforwardly show a single constraint (N, =0
and M= 1) gives infinitely many solutions; see one of the solid or dashed lines in
figure 3. However, figure 3 also immediately shows that the following equation (N, =0
and M= 2)

ﬁT(kl) — e—i27rr1/L + e—i21r1‘2/L7 (8

https://doi.org/10.1088/1742-5468 /aae84c 8
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yields a unique solution aside from exchange of particle indices, as follows:

e izmm/L n_T(le) 1+i ;2 -1 ©)
| (K1)l
| (k)
e—121r7‘2/L — TLT( 1 1 F iy fr——— — 1 , 10
2 v (k)| o

if Ar(k1) # 0, or equivalently, |R; — Ry| # 0.5L. Otherwise, the periodic image of the
target configuration becomes the integer lattice, and all of translated lattices are solu-
tions of (8), i.e. there are infinitely many solutions, as shown in figure 3(c).

If the target configuration is the integer lattice, in order to obtain a unique solu-
tion, the collective coordinate at the first Bragg peak (i.e. 7ir(k2)) should be addition-
ally specified, which corresponds to the cases with Ny =0 and M = 4. Then, the unique
solution is

. 1 /. - : -
eTizmm/L 3 (’IlT(kl) + \/2”T(k2)2 - ”T(k1)2) ; (11)

. L[ 7 n
o-i2nra/L 5 ("lT(kl) F \/QTLT(k'z)Q _ ‘rLT(k'l)z) ) (12)

This is because the collective coordinate at the first Bragg peak provides the center of
mass of this lattice configuration.

We note that the constraint fr(k;) alone (ie. Ny=1 and M =2) cannot be
uniquely inverted into particle coordinates. It can be straightforwardly shown
that there exist at least four distinct solutions, i.e. (r1,72) =a + (R, R,), where
a/L =(0,0), (0,1/2), (1/2,0), and (1/2,1/2). By the same analysis, one can identify
there are at least m? distinct solutions if only 7ip(27rm/L) is given. Therefore, we can
conclude that for a two-particle configuration that is not the integer lattice, the mini-
mal set of constraints for a unique solution is {7ip(k1)}.

Remarks

(i) For a configuration of particle number N > 1, Fan et al [14] proved that 7(k,,) = 0
for m=1,---, L%J is a sufficient and necessary condition for the configuration
to be the integer lattice or its translations. Thus, if one inverts collective coordi-
nates at the [ N/2] smallest wavenumbers of the integer lattice, its solutions are
inevitably degenerated with a translational degree of freedom; see figure 3(c) for
example.

43. N=3

In the previous sections, we show that there is a unique solution in the inversion pro-
cedure with parameters Ny=0 and M = [N/2], unless the target configuration is a

https://doi.org/10.1088/1742-5468 /aae84c 9
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Figure 3. Graphical solutions of (8) for given respective target configurations.
In each panel, black solid lines and dashed ones represent solutions of the ‘real’
and the ‘imaginary’ parts of (8), respectively. Contour plots depict potential
energy landscape (i.e. loglo(Q(TQ;RZ))) for each target configuration. Solutions
(intersections of solid and dashed lines) are unique and identical to the target
configuration (red dots), unless it is the integer lattice (i.e. |R;y — Ra| = L/2)
as shown in (c). Otherwise, there are infinitely many solutions, and one needs
additional constraint 7¢(k;) for unique solutions.

pathological case (i.e. either the integer lattice or its translations). Otherwise, there
are infinitely many solutions. It implies that there would be a sudden transition in the
number of distinct solutions varying with the type of target configurations. For this
reason and simplicity in analysis, our target configurations are restricted here to per-
turbed lattices that can continuously interpolate between the integer lattice to Poisson
configurations via the displacement parameter §; see section 2.2.

For a perturbed lattice, its particle coordinates are described as r, = (i — 1) + N
for 4=1,---,N. Assuming weak perturbations (i.e. |§| < 1) for N=3, collective-
coordinate constraints can be approximated up to the second order of displacements;

3 — 2(mm)? (8,7 + 6,% + 857), m =31
Re [ﬁ(km)] ~ \/§m7r(52 - 53) + (m7r)2(—2512 + 622 + (532), m=31+1
—V/3mm(8y — 83) + (mm)2 (=261 + 8% + 832), m = 3i +2

(13)
2mm (61 + b2 + 83) , m =31
Im [72(ky)] &  mm (26, — 62 — &3) + V3(mm)? (8,° — 85%), m=3i+1,
m (28 — 8y — 83) — /3(mm)? (522 — (532) ., m=231+2 (14)

https://doi.org/10.1088/1742-5468 /aae84c 10
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where 7 represents non-negative integers.

For parameters Ny= 0 and M = 3 with the real condition (4) (or the imaginary one
(5)), the quadratic approximations (13) and (14) yield at most two distinct solutions
(A.1): the trivial solution (r® = R®), and a nontrivial one (r® # R®). This prediction is
consistently observed in numerical results; see figure 4(a). Thus, the set of numerically
distinct solutions abruptly changes from an uncountably many set into a finite one, as
6 becomes nonzero. Figure 4(a) also shows that if § increases, while the maximal num-
ber of numerically distinct solutions remains two, its occurrence decreases regardless of
constraint conditions (4) and (5).

In numerical studies, it is important to know how results depend on the optimization
algorithms and values of parameters, such as eg and ¢x. For this purpose, we investigate
the energy distributions of numerical solutions obtained in the parameters of Ny =0 and
M = 3, and various conditions, as shown in figure 5. From figures 5(a) and (b), we see that
given a target configuration, both trivial and nontrivial solutions have qualitatively simi-
lar energy profiles, regardless of the real (4) and the imaginary (5) conditions. Figure 5(c)
demonstrates that the energy profiles of numerical solutions vary with optimization algo-
rithms, but for a given algorithm both trivial and nontrivial solutions still have qualita-
tively similar energy profiles. Thus, a nontrivial solution cannot be eliminated by lowering
the energy tolerance e when N= M =3. In the rest of this paper, we mainly use the
BFGS and MINOP algorithms because the solutions obtained via these algorithms tend
to have lower numerical errors than those via the steepest descent method.

For parameters N, =0 and M = 4, a unique solution can be obtained. This also can
be deduced from the observation in the cases with Ny =0 and M = 3 that given a target
configuration, nontrivial solutions, respectively obtained by the real (4) and the imagi-
nary (5) conditions, are numerically distinct; see figure 4(b). Thus, the common solution
from two conditions (4) and (5) should be identical to the target. The unique solution
also can be obtained from the quadratic approximations (13) and (14) as follows:

o= 1;7r _61;?[£12:;((1i1))—_ nnTT((k’ZZ))]] + I (47 (k1) + ﬁT(kz)]] (15)
1 [6Im[277 (ki) — Ag(ks)] Re[dp(ky) — fip(ks)]

%= 107 | Re[nrlk) —air(ky)] V3 } (16)
1 [6Im[27g(k1) — fir(ke)]  Re[dfr(ki) — fig(ks)]

d3 127 | Re[4 (k1) — fir(ks)) /3 } ; a7

and thus the minimal set for three-particle systems is (both real and imaginary parts
of) collective coordinates at the two smallest wavenumbers.

Remarks

(i) For parameters Ny =0, M = 3, and the real condition (4), the quadratic approx-
imations (13) and (14) give two exact solutions (A.1). While one of the solutions
is the same as the target configuration up to some numerical errors, another solu-
tion cannot precisely predict the nontrivial solution partly because the nontrivial
one is not a perturbed lattice with small displacements.

(ii) For parameters Ny =1 and M = 4, a unique solution is obtained; see (A.3)—(A.5).

https://doi.org/10.1088/1742-5468/aae84c
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Figure 4. Numerical results of the inversion procedure for three-particle perturbed
lattices in cases with Ny =0 and M =3. (a) The average number of distinct
solutions per a target configuration. Two different optimization algorithms
(BFGS + MINOP and the steepest descent) and two constraint conditions (the real
(4) and the imaginary (5) ones) are used for comparison with the energy tolerance

g = 1072, For any target configuration, the number of distinct solutions is at
most two, but the average can vary with the target configurations. (b) Examples of
nontrivial solutions for a given target perturbed lattice with various displacements
8. Nontrivial solutions by the real (4) or the imaginary (5) conditions, respectively,
are different from each other, and are not translations of the target.
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Figure 5. Log-log plots of histograms for energy distributions of numerically
distinct solutions {r3} of a three-particle target configuration R® for parameters
Ny=0, M=3, and ¢z = 1072°. Given a target configuration, there are at most
two distinct solutions; a trivial solution and a nontrivial one. (a) and (b) Results
from two constraint types (i.e. the real condition (4) and the imaginary condition
(5)) are compared for two different types of target configurations: (a) perturbed
lattices with 4 = 0.1 and (b) Poisson configurations. Here, BFGS+MINOP (B.M.)
algorithms are used. (c¢) For Poissonian target configurations, we compare results
from two different optimization algorithms: B.M., and steepest descent (S.D.).
Here, the real condition (4) is considered.

5. Results for N > 3

Here, we numerically investigate the properties of the inversion procedure from collec-
tive coordinates, such as proper values of the tolerances ¢z and ex. For this purpose, we
obtain distributions of energy @(TN ‘RN ) for numerically distinct solutions, as we did
in figure 5. Our results, shown in figures 6 and 7, demonstrate that the energy distribu-
tions sensitively depend on the number of skipped collective-coordinate constralnts Ny
as well as target configurations and the particle number N.
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Figure 6. Log—log plots of histograms for energy distribution of numerically
distinct solutions {r"¥} for odd-number system sizes: N=9 (a) and (d), 19 (b) and
(e), and 29 ((¢) and (f)). Using the real condition (4) condition and parameters
Ni.=0 and ¢z = 1072, two types of target configurations are considered: ((a)—(c))
perturbed lattices with 6 = 0.1 and (d)—(f) Poisson configurations. When M = N,
while a target perturbed lattice has a single nontrivial solution (r" # RY), whose
occurrence rate is similar to that of trivial ones, a Poissonian target mainly has
the trivial solution but occasionally can have multiple nontrivial solutions. When
M=N-+1 is an even number, while there is a unique solution for perturbed
lattices, there can be more than one solution for a Poisson target configuration in
relatively lower occurrence rates. Even in the latter case, however, the nontrivial
solutions can be eliminated by lowering the tolerance ¢z around 10~%.

At first, we consider the cases with Ny = 0 (figure 6). When there are even-number
N of particles, M > N constraints can give unique solutions for both types of target
configurations: perturbed lattices and Poisson point distribution configurations. If N is
an odd number, however, M = N constraints no longer ensure unique solutions. When
perturbed lattices are the target configurations (figures 6(a)—(c)) and M = N constraints
are considered, the energy <I>(7°N ‘RN ) always has two global minima, which correspond
to the trivial solution (r"¥ = R") and a nontrivial one (r"V # RY), respectively. On the
other hand, the energy ®(r"; R") of a Poissonian target configuration (figures 6(d)—(f)
mostly has a single minimum that is identical to the target (r" = R") but occasionally
has more than two nontrivial solutions. Given parameters Ny =0 and M = N+ 1, while
when the target is a perturbed lattice the inversion procedure gives a unique solution,
when the target is a Poisson configuration this procedure may give multiple solutions.
However, since the nontrivial solutions in the latter case have qualitatively different
energy profiles from the trivial solution (see figures 6(d)—(f)), the nontrivial solutions
can be eliminated by lowering the tolerance €g to a proper level. Thus, when N is an
odd number, M = N + 1 constraints are required for the unique determination.
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Figure 7. Log-log plots of histograms for energy distribution of numerically
distinct solutions {r"V} for N; > 0 and odd-number system sizes: N =9 (a) and (d),
19 (b) and (e), and 29 (c) and (f). Considering perturbed lattices with = 0.1 as the
target configurations, we search solution configurations under the real condition
(4) and the tolerance ¢ = 1072, and via the BFGS + MINOP algorithms. We
note that there is no nontrivial solution with ®(r™; R") < 107 if N;> 0 and
M=N+1.

When first few collective coordinates are skipped (N, > 0), there is no advantage of
even-number particles, i.e. one cannot determine unique solutions with M = N succes-
sive collective-coordinate constraints when N is an even number. Figure 7 shows the
histograms for energies of numerical solutions obtained in the inversion procedure with
an odd-number particles and N > 0. In figure 7, we note that for M = N constraints
there can be more than one nontrivial solutions whose energy profiles are similar to
that of the trivial solutions. However, M = N + 1 constraints allow us to find the trivial
solutions without any nontrivial one.

In general, as the system size N increases, both trivial and nontrivial solutions tend
to have higher energies, i.e. larger numerical errors. Moreover, for parameters N, =0
and M = N, although for smaller systems the distribution of trivial and nontrivial solu-
tions have tails in the low-energy regime (figures 6(a) and (d)), for larger systems the
tails are shifted to the high-energy regime (figures 6(c) and (f)); see also figure 7 for
cases with N> 0. This observation implies that it becomes less probable to obtain
numerical solutions, whether they are trivial or not, as the particle number N increases,
or the energy tolerance eg is lowered.

The average number of numerically distinct solutions, obtained in the inversion
procedure, is shown in figure 8. This figure clearly demonstrates that for Poissonian
targets (figures 8(d)—(f)) the two curves (M = N and N + 1) collapse into a single line as
N increases, and thus min M — N as N increases. On the other hand, these two curves
are clearly separated for perturbed lattices (figures 8(a)—(c)), and thus min M is deter-
mined by the cases where perturbed lattices are the target configurations. Figure 9

lhittps://doi.org/10.1088/1742-5468 /aae84c 14
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Figure 8. Numerical results for the average number of numerically distinct solutions
per a target configuration of particle number N with various values of Nj. Using
the real condition (4) and BFGS + MINOP algorithms, we consider two types
of target configurations: (a)—(c) perturbed lattices with d = 0.1 and the tolerance
eg = 1072, and (d)—(f) Poisson configurations with ¢z = 1072°. When N;, = 0, both
types of target configurations require M = N constraints for an even-number N,
and M= N+ 1 is the minimal for an odd-number N: the minimal number of M is
2[N/2]. If Ny > 0, for both types of target configurations, the minimal number of
constraints becomes M= N+ 1.
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Figure 9. The minimal number of successive collective-coordinate constraints
min M as a function of particle number N for various Ny.
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Figure 10. Schematics of some possible ways to select collective-coordinate
constraints in the two-dimensional Fourier space. Collective coordinates are
specified at wavevectors inside (a) an annular region of outer radius K and inner
radius Kp (see figure 1), (b) a rectangular region of width K, and height K, and (c)
n mutually non-parallel strips whose lengths are Ki, i = 1,--- ,n. We note that the
red-shaded region is excluded.
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summarizes the results from analytic investigation into small systems (section 4) and
numerical studies on larger systems (section 5). One can uniquely determine particle
coordinates from collective coordinates at the [%1 smallest wavenumbers, i.e. param-
eters of Ny=0 and M = 2[%1, by properly selecting eg. On the other hand, if Ny > 0,
one requires M = N + 1 successive collective-coordinate constraints to uniquely deter-
mine particle coordinates. Therefore, when both cases are considered, the minimal
set of collective-coordinate constraints are collective coordinates at the [%] smallest
wavenumbers.

6. Conclusions and discussions

In this work, we have investigated the minimal set of collective-coordinate constraints
as a function of the particle number N to uniquely determine the progenitor particle
coordinates in one dimension. We also considered how the minimal collective-coordi-
nate constraints depend on constraint types (the real (4) and imaginary (5) conditions)
and types of target configurations, i.e. perturbed lattices and Poisson point distribution
configurations. As shown in figure 9, the minimal set of constraints are collective .coor-
dinates at the [%] smallest wavenumbers: it corresponds to the parameters of Ny=0
and M = 2[N/2]. In other words, the removed number of degrees of freedom in the
solution space will vary with each collective-coordinate constraint, and the real and the
imaginary parts of a collective coordinate are not completely independent.

For this result to accommodate the pathological case, i.e. the integer lattice, one
needs to regard all of its translations to be equivalent. As we noted in section 4.2, this
is because translations of the integer lattice cannot be distinguished in terms of fir(k,,)
for m=1,-.-,[N/2], since their collective coordinates are identically zero, except at
the Bragg peaks, i.e. k = 27,47, ---. An additional constraint fip(ky) = nr(27) at the
first Bragg peak is necessary to remove the translational degree of freedom. However,
we note that non-Bravais lattices are not pathological cases because their lattice con-
stants are larger than one, and thus their first Bragg peaks should appear within the
range of |k| < 7.

It is useful to compare this conclusion with the result of Fan et al [14]. These
authors proved that for a one-dimensional system one needs its collective coordinates
at the L%J smallest wavenumbers as well as the center of mass in order to determine
all of its collective coordinates; see appendix B for the detailed summary. In the same
context, our investigation shows that if the center of mass is unknown, one needs collec-

tive coordinates at the [%] smallest wavenumbers. Moreover, when there are an even-
number of particles, the knowledge of the center of mass does not reduce the necessary
information.

While the present work focused on 1D systems for simplicity, it is useful to discuss
implications of our results for the inversion problem in higher-dimensional systems.
Unlike 1D systems, higher-dimensional systems allow many different ways to select col-
lective-coordinate constraints; see figure 10. Consider here the case (c) where selected
wavevectors form n nonparallel strips orienting toward the origin. Based on our present
results, if the sth strip has a slope s; = n;/m;, where n; and m; are integers and coprime,
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and includes the smallest [ N/2] wavevectors, then one can uniquely determine values of
the coordinates on a line, i.e. m;z; + nyy; for j = 1,--- |, N. Thus, by using two perpend-
icular strips that include a total of 2[N/2] collective-coordinate constraints, one can
‘separately’ determine the z and y coordinates of particle positions. In order to deter-
mine the pairing between the z and y coordinates, one needs collective-coordinate con-
straints along additional strips in the Fourier space, as shown in figure 10(c). Therefore,
in this scheme at least 3[/N/2] collective-coordinate constraints are required.

It is interesting to compare collective coordinates with Fourier components in the
discrete Fourier transform (DFT). While a Fourier component X} in the DFT is a linear
function of a complex sequence {z,}¥=!, a collective coordinate 7(ky) is a nonlinear
function of particle coordinates {R;}}_,. In both cases, wavenumbers are restricted to
be equally spaced due to the periodic boundary conditions in direct spaces. On the
contrary, the direct spaces are different in the two cases in that while the direct spaces
in the DFT are digitized into N pixels, those in collective coordinates are continuous.
If one discretizes the space of a point configuration with A pixels of width Aw, the
configuration can be described by a real-valued sequence {z,}, where z, represents the
number of particles in the nth pixel. Then, this conversion can be straightforwardly
written as follows:

Particle

coordinates: (RN, CR {2 3N c Nu {0}

Collective i) = 20, exp(~hn) X = S5ty exp [ (jA)]
coordinates:

Thus, the mth collective coordinate 7(k,,) of a point configuration corresponds to
the mth Fourier component X, of its digitized version. From this relationship, one
can surmise that the inverse DFT with the first A//2 collective coordinates will give a
discretized point configuration with a position precision Az. In other words, one needs
around 107 Fourier components to achieve Az ~ (O(1077), which is a typical error in
our solution configurations.

In the present work, we focused on the search for the minimal set of constraints,
rather than computational costs. Our inversion procedure is intuitive and provides
easy-to-estimate numerical errors in solutions (i.e. energy @(TN RN )), but this compu-
tational method is inefficient for large systems. For instance, as system size N increases,
the computation cost grows at least in the order of N?. Furthermore, since this method
tends to have larger numerical errors in solution configurations as N increases (see
figures 6 and 7), it becomes more likely to fail to find any solution with a given value of
the energy tolerance eg. The failure rate becomes especially much higher when a target
is more complicated. Therefore, for future studies, it would be important to develop
more efficient computational procedures to invert collective coordinates into particle
coordinates.
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Appendix A. Approximate solutions of equations (13) and (14)

For parameters Ny =0 and M = 3, and the real condition (4), from (13) and (14), one
can find two solutions as follows:

(—18Im [fur (k)] £ D)

o1 m(Re [4 np(k) — np(k2)]) (Re [Afip(ky) — p(ks)] — 12)
b S _Re [4 'flT(kl) - ’FlT(k‘z)] 4 6 (llll[ﬁ.j'“'])] _5 >
2 12\/} Re [4 fip(ky ) — iip(ka)] — 6 2 !
- Reldip(k) — np(hy)) G Im [Ar(k)] >
% & 1:\/;r T Rl R (k) — i (B2)] — 6 ( 2 )
where the discriminant D is written as A1
D= —W (Re [47ir (k) — iz (ko)) — 6) | (Re [47ir (k) — fir(ka)] — 6)” — 36)

(A.2)

x (Re [47ir(k) — Air(ks)] > — 36Re (27 (k1) + fir(k2)]) + 3888Im [fir (k1)) 2} v

Here, a trivial solution is obtained from (A.1) when a minus sign is taken in §,. Otherwise,
(A.1) become a nontrivial solution.
For parameters N; =1 and M =4, (13) and (14) give a single solution:

_ 6 Im [ (ks)] 9 1 . 2 . 2
0y = 5 + T or + \/§7r51 + an Re nT(kZ) + 9 fir(ks) 3 (A.3)
0 Im g (k)] 1 . 2_ 2
83 = __2_ + T \/771'() + 4\/57[- Re nT(lvz) + 5 nT(ks) - § ) (A.4)
where 0, is determined by the following cubic equation:
Tm [7i(k: 1 2 11
6° — wél Tom7 (Re [nT(k2) + 57 (As)} - —) 0
Lt (i (k)] (Re [ (Re) + 2 for(Rs) | — 2 ) — 3Im [ (k2)] | = 0
o |Im (e (ks e |nrik2) + 5 nriks 3 minp{kz)l| =Y
(A.5)

which has a single real root for realizable and nonzero collective-coordinate constraints.

Appendix B. The uniqueness of solutions for the inversion problem

Using the generating function argument [14], one can prove that there is the unique
configuration to satisfy N prescribed collective coordinates. Let us define a generating
function as

=
N
Il
[~]s
putl
eyl
3
N\./
_3

(B.1)

m=1

which is well-defined for |z| < 1 because [fi(ky,)| is bounded. Using the definition (1) and
power series expansion of the log function [In(1 — z) = >~ 7, 2™/n for |z] < 1],
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o] N . o7 N o (ze_i”f)" N .
f(z)zz Ze_‘mf %:ZZ——H :Z—ln(l—ze_wi)
n=1 \j=1 j=1 n=1 j=1
N .
=—In H(l —ze )|, (B.2)
j=1

Since the term inside square brackets of logarithm is a polynomial of order N, exp [ f(z)]
also should be a polynomial of order N.

H(1 — 267} = exp(— f(z)) = Py exp(— f(2)) = Py exp(—Py f(2))
=Pyexp|—>_ k) m ) | (B.3)

m
=1

where Py represents a projection to a degree N polynomial of 2.
By substituting (B.3) into (B.2) and doing further analysis, Fan et al [14] derived
the following identity:

. N/2) ey
w) ik M) -
. m 2" =—1In PL%J exp| — Z (mm)zm _wZNP—L%J exp Zl - ™ )
- m=1 m=

(B.4)
where w = exp (—i27r >N $n>, and |z]is the floor function of z. Since (k) = i{—km)",

if collective coordinates at the || smallest wavenumbers and the center of mass are
known, in principle one can determine collective coordinates at other wavenumbers. In
other words, there is a unique point configuration that satisfy these conditions.
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