
Journal of Mathematical Biology
https://doi.org/10.1007/s00285-019-01346-3 Mathematical Biology

Revisiting a synthetic intracellular regulatory network
that exhibits oscillations

Jonathan Tyler1 · Anne Shiu1 · Jay Walton1

Received: 1 August 2018 / Revised: 19 December 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In 2000, Elowitz andLeibler introduced the repressilator—a synthetic gene circuitwith
three genes that cyclically repress transcription of the next gene—as well as a cor-
responding mathematical model. Experimental data and model simulations exhibited
oscillations in the protein concentrations across generations. Müller et al. (J Math Biol
53(6):905–937, 2006) generalized the model to an arbitrary number of genes and ana-
lyzed the resulting dynamics. Their new model arose from five key assumptions, two
of which are restrictive given current biological knowledge. Accordingly, we propose
a new repressilator system that allows for general functions to model transcription,
degradation, and translation. We prove that, with an odd number of genes, the new
model has a unique steady state and the system converges to this steady state or to a
periodic orbit. We also give a necessary and sufficient condition for stability of steady
states when the number of genes is even and conjecture a condition for stability for an
odd number. Finally, we derive a new rate function describing transcription that arises
under more reasonable biological assumptions than the widely used single-step bind-
ing assumption. With this new transcription-rate function, we compare the model’s
amplitude and period with that of a model with the conventional transcription-rate
function. Taken together, our results enhance our understanding of genetic regulation
by repression.
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1 Introduction

The repressilator is an experimental preparation used in synthetic biology to bet-
ter understand genetic regulation by repression. Introduced in 2000 by Elowitz and
Leibler, the repressilator is a feedback loop consisting of three genes that each cycli-
cally represses transcription of the next gene (Fig. 1). The network was synthesized in
E.coli cells and exhibited sustained limit-cycle oscillations in single cells and across
generations (Elowitz and Leibler 2000).

In addition to presenting experimental results, Elowitz and Leibler also introduced
a mathematical model to describe the dynamics of the repressilator. This model was
subsequently generalized by Müller et al. (2006). Specifically, Müller et al. analyzed
two systems of ODEs that describe the dynamics of a repressilator with an arbitrary
number of genes. One system assumed that, in saturated amounts of repressors, tran-
scription occurs at a very low rate. Müller et al. 2006 called this system RepLeaky and
proved results about the number of steady states, the stability of those steady states,
and the limiting dynamics. Here, the RepLeaky system is the starting point for our
generalized repressilator model.

The RepLeaky system of Müller et al. (2006) arose from five key assumptions:

(a) Genes are present in constant amounts.
(b) When a protein binds to a regulatory element of a gene, it either enhances or

inhibits transcription. Also, binding reactions are in equilibrium.
(c) Transcription and translation operate under saturated conditions.
(d) Both mRNAs and free proteins are degraded by first-order reactions.
(e) Transcription, translation, and degradation rates are the same among genes,

mRNAs, and proteins, respectively.

Fig. 1 The repressilator network
with three genes and their
respective products (Elowitz and
Leibler 2000). The m’s denote
mRNA while the P’s denote
proteins. The product of gene 1
represses transcription of gene 2;
the product of gene 2 represses
transcription of gene 3; the
product of gene 3 represses
transcription of gene 1

m1

P1m2

P2

m3 P3
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Two of these assumptions are biologically restrictive, so we generalize the model by
removing them. Consider, for example, the translation process. In eukaryotic cells,
mRNAs must be spliced correctly before they can exit the nucleus and then be trans-
lated (Berget et al. 1977). Similarly, since transcription depends on the uncoiling of
DNAdue to different locations of genes on histones (Kulaeva et al. 2013), transcription
rates should be allowed to vary across genes. Finally, ubiquitization, which facilitates
degradation, also differs extensively among proteins (Cooper 2000). Thus, to be more
faithful to the biology, we remove assumption (e).

Next, we consider assumption (d). Recently, Page and Perez-Carrasco (2018) have
analyzed the repressilator after allowing for differing degradation rates among the
proteins. Here, we argue for a further generalization. In the context of the degradation
pathway of a core clock component of the Neurospora circadian clock, phosphoryla-
tion of the FREQUENCY (FRQ) protein initiates its own degradation. This process
occurs through the ubiquitin-proteasome pathway, which is aMichaelis–Menten path-
way (He and Liu 2005). Modeling the rate of FRQ degradation as proportional to
its concentration is therefore not appropriate. Thus, for our repressilator model, we
remove assumption (d) to allow for more general functions than first-order terms. In
Sect. 2, we give conditions that these new terms must satisfy to reflect the biology
of degradation. We then prove results on how, if at all, these new terms change the
dynamics of the model.

Finally, following the discussion in Kim (2016), we advocate for changing how we
model repression and, in particular, we allow for a wider range of transcription-rate
functions that satisfy a few biological assumptions. The Hill function, which is the
standard transcription-rate function, arises from the following “single-step assump-
tions” (Forger 2017):

1. On the promoter, either no repressor proteins are bound and transcription occurs,
or repressors proteins are bound to all binding sites and no transcription occurs.

2. The repressor protein binds rapidly to the promoter.

It is noted in Forger (2017): “As these assumptions are very restrictive, it is very sur-
prising howoften theHill expression is used.”Accordingly,we introduce the following
alternate set of assumptions, similar to those given in Forger (2017):

1. There are m binding sites on a promoter, and the repressor proteins bind in order
from sites 1 to m.

2. Transcription cannot occur if m repressor proteins are bound to the promoter.
Transcription can occur in all other cases.

3. The repressor protein binds rapidly to the promoter.
4. Repressor proteins bind to the m binding sites at varying rates.

We label these assumptions the successive-binding assumptions and use them to
derive a new transcription-rate function in Sect. 3.

We prove that many of the results of Müller et al. extend to our generalized model
of the repressilator. First, with an odd number of genes, the system has a unique
steady state, called the central steady state, and the system converges to that steady
state or produces limit-cycle oscillations. Next, we prove a necessary and sufficient
condition for stability of any steady state in the case of an even number of genes.
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We also discuss what the condition means biologically. In Sect. 3, we derive a new
transcription-rate function from the successive-binding assumptions and show that it
satisfies natural, biological conditions on models of transcription, presented in Sect. 2.
In Sect. 4, we numerically compare the amplitude and period of repressilator models
constructed with the traditional transcription-rate function versus our newly derived
function. Finally, we end with a discussion in Sect. 5.

2 General repressilator system

In this section, we introduce the new repressilator system and prove results about its
steady states, stability, and asymptotic behavior. First, we recall Müller et al.’s (2006)
RepLeaky model, which arises from a generalization of Fig. 1 to n genes, and is given
by the following system of 2n ODEs where n denotes the number of genes:

ṙi = α f (pi−1) − ri ,

ṗi = βri − β pi ,
(1)

for i = 1, . . . , n. Here, pi denotes the concentration of protein-i , where i is viewed
mod n, and ri denotes the mRNA concentration. The parameter β is the ratio of protein
degradation to mRNA degradation, and the parameter α is the transcription rate. The
function f (x) models the repression of gene-i transcription resulting from repressor
protein-(i − 1) binding to the promoter (see Fig. 1):

f (x) = 1 − δ

1 + xh
+ δ,

where the parameter δ is the ratio of repressed to unrepressed transcription (Müller
et al. 2006). Synthesis of protein-i occurs by translation ofmRNA-i and is proportional
to the mRNA-i concentration. Degradation of each species is modeled by a first-order
term proportional to its own concentration.

As mentioned in the introduction, our aim is to generalize the repressilator by
allowing for general degradation-rate, transcription-rate, and translation-rate functions
as well as differing rate constants. Our generalized n-gene repressilator system,
which generalizes (1), is given by the following system of ODEs:

ṙ1 = a1(pn) − dr1(r1),

...

ṙn = an(pn−1) − drn (rn),

ṗ1 = k1(r1) − dp1(p1),

...

ṗn = kn(rn) − dpn (pn).

(2)
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Here, for the i-th gene, ri is the concentrationofmRNA-i , and pi is the concentration
of the protein. Each equation in the system has a synthesis term and a degradation term.
One synthesis term is the function ai (pi−1), called the transcription-rate function of
gene-i in terms of protein-(i−1). The degradation term formRNA-i is thedegradation-
rate function dri (ri ), which is a function of its own concentration. The function ki (ri ) is
the translation-rate function describing the synthesis of protein-i in terms ofmRNA-i .
Finally, the degradation-rate function dpi (pi ) models the degradation of protein-i as
a function of its own concentration.

The 3-gene version of system (2) reflects Fig. 1. The m1 node describes mRNA-1
which translates, according to the function k1(r1), to protein-1, P1. This protein then
represses the synthesis of the second mRNA, which is described by the transcription-
rate function a2(p1).

Next,we give conditions on the transcription-rate, degradation-rate, and translation-
rate functions that we will assume for the results below. These assumptions are rooted
in the biology of the specific process they model. For the transcription-rate functions,
we begin with the biological assumptions.

(B1) Transcription rates vary smoothly in the amount of repressor present.
(B2) Transcription rates are always nonnegative.
(B3) Transcription rates decrease with increased repressor present.
(B4) Transcription rates are positive when no repressor is present.

These biological assumptions translate into the following mathematical assumptions
on the transcription-rate function ai (x):

(A1) ai (x) ∈ C1[R≥0].
(A2) ai (R≥0) ⊂ R≥0.
(A3) ai (x) is strictly decreasing on R≥0.
(A4) ai (0) > 0.

The canonical transcription-rate function is ai (p) = kSi
1+ph

for some Hill coefficient
h (Müller et al. 2006). This function is derived from the single-step binding assump-
tions listed in Sect. 1, and it is easily seen that this function satisfies (A1)–(A4). In
Sect. 3, we derive another transcription-rate function using the successive-binding
assumptions listed in Sect. 1 and show that this function also satisfies assumptions
(A1)–(A4).

Next, we provide biological assumptions for degradation-rate and translation-rate
functions.

(B1) Degradation and translation rates vary smoothly in the protein or mRNA con-
centration.

(B2) Degradation and translation rates occur only when the protein or mRNA is
present.

(B3) Degradation and translation rates increase as protein or mRNA concentrations
increase.

These assumptions give rise to the following mathematical assumptions on the
degradation-rate and translation-rate functions dpi (x), dri (x), and ki (x).

(D1) d(x), k(x) ∈ C1[R≥0].
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(D2) d(0) = k(0) = 0.
(D3) d(x), k(x) are strictly increasing on R>0.

Notice immediately that degradation-rate and translation-rate functions satisfying
(D1)–(D3) are invertible on their ranges. This will be important in the following
section.

For the remainder of the paper, when considering our repressilator system (2),
we assume that the functions ai (pi−1) satisfy (A1)–(A4), and the functions dpi (pi ),
dri (ri ), and ki (ri ) satisfy (D1)–(D3).

2.1 Steady states

For system (1), Müller et al. (2006) proved the existence of a unique steady state,
labeled EC for central steady state, in the odd-n case and also showed that EC exists
in the even-n case. When we allow general transcription-rate and degradation-rate
functions in system (2), however, we are not always guaranteed a steady state. Consider
the following example.

Example 1 Consider the following 2-gene version of the repressilator system (2):

ṙ1 = 2π − arctan(p2) − r1
ṙ2 = 2π − arctan(p1) − r2
ṗ1 = r1 − arctan(p1)

ṗ2 = r2 − arctan(p2).

(3)

It is straightforward to check that the assumptions (A1)–(A4) and (D1)–(D3)
hold for the corresponding functions ai = 2π − arctan(pi−1), dri = ri , and
dpi = arctan(pi ). We set the equations in (3) to zero to solve for the steady states,
giving

2π − arctan(p2) = arctan(p1) (4)

2π − arctan(p1) = arctan(p2). (5)

However, Eqs. (4) and (5) have no positive, real solution. Therefore, system (3) has
no steady state. The same is true if we augment system (1) to three genes using the
same functions for the mRNA and protein, respectively.

What went wrong in this example? The degradation-rate function dpi and the
transcription-rate function ai each had a horizontal asymptote that prevented intersec-
tion of their respective graphs inR2+. This lack of intersection precluded the existence
of a steady state. So, to prove when steady states exist, we must introduce more
assumptions.

Notice that assumptions (A2) and (A3) imply:

αi := lim
x→∞ ai (x) < ∞ and lim

x→∞ a′
i (x) = 0.
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This parameter αi corresponds to the leakiness of the promoter of gene-i (Müller
et al. 2006). If αi > 0, then even in saturated amounts of repressor, gene-i will still
be transcribed at a positive rate, whereas αi = 0 implies that in saturated amounts
of repressor, gene-i will not be transcribed. We introduce a new assumption on the
transcription-rate function ai (p).

(A5) αi = 0 for all i = 1, . . . , n.

Even if the leakiness αi is nonzero, we can avoid the problem highlighted in Exam-
ple 1 by introducing an assumption on the relationship among the transcription-rate
and degradation-rate functions. Let us define

δRi := lim
x→∞ dri (x) and δPi := lim

x→∞ dpi (x).

We allow for δRi and δPi to be infinite. The δPi ’s and δRi ’s correspond to the maximum
possible degradation rate for protein-i andmRNA-i , respectively. To avoid the problem
in Example 1, we introduce the following relationship among δRi , δ

P
i , and ai :

(A6) δPi > ki (d−1
ri (ai (0))) and δRi > ai (0), for all i = 1, . . . , n.

Below, by using combinations of the above assumptions and others, we prove
conditions under which EC exists, first with an odd number of genes, and then with
an even number.

2.1.1 Odd-n case

For system (1), Müller et al. (2006) showed that the system has a unique steady state.
We prove that this property extends to system (2).

Proposition 1 For n odd, if system (2) satisfies (A6), then system (2) has a unique
steady state in R

2n+ .

Proof First, we set the equations in system (2) to zero:

0 = ṙi = ai (pi−1) − dri (ri ) �⇒ dri (ri ) = ai (pi−1) (6)

0 = ṗi = ki (ri ) − dpi (pi ) �⇒ dpi (pi ) = ki (ri ). (7)

FromEqs. (6) and (7), it is easy to check that finding steady states reduces to finding
solutions to the system

pi = d−1
pi ◦ ki ◦ d−1

ri ◦ ai (pi−1) for i = 1, . . . , n.

Write fi = d−1
pi ◦ ki ◦ d−1

ri ◦ ai , which, if assumption (A6) holds, is well defined.
We compose the fi ’s to obtain a fixed-point problem:

pi = fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1(pi ), for i = 1, . . . , n. (8)

Since the fi ’s aremonotonically decreasing by (A3) and (D3) andwe are composing
an odd number of functions, the composition in (8) is monotonically decreasing. It is
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also positive at 0 by (A3), (A4), (D2), and (D3). Therefore, for i = 1, . . . , n, there
is exactly one solution to Eq. (8) in R

+, so system (2) has a unique steady state
in R2n+ . ��

We follow the notation in Müller et al. (2006) and label this unique steady state as
follows:

Definition 1 The central steady state, EC , is the concentration vector

(
d−1
r1 ◦ a1(p

∗
n), d

−1
r2 ◦ a2(p

∗
1), . . . , d

−1
rn ◦ an(p

∗
n−1), p

∗
1, . . . , p

∗
n

)
, (9)

where, (for i = 1, . . . , n), p∗
i solves Eq. (8).

Remark 1 A solution to Eq. (8) gives a steady state as in (9) regardless of whether n is
even or odd because it solves a fixed-point problem derived from setting the equations
of system (2) to zero.

2.1.2 Even-n case

Below, we give various conditions under which the fixed-point problem in Eq. (8) has
a solution and consequently, guarantees when EC is a steady state. First, however, we
must introduce another assumption on the degradation-rate functions.

(D4) (dpi )
′(0) �= 0 and (dri )

′(0) �= 0 for all i = 1, . . . , n.

Remark 2 Assumption (D4) is biologically reasonable as many commonly used
degradation-rate functions satisfy (D4), e.g., linear degradation andMichaelis–Menten
kinetics. However, there exist degradation processes that do not satisfy (D4). For exam-
ple, consider a protein that is selected for degradation by dimerization with itself. If
we model this scenario with a quadratic degradation term, then it will not satisfy
assumption (D4).

With assumption (D4), we can now prove various conditions under which system
(2) admits a steady state.

Proposition 2 For system (2) with n even, if assumptions (A5), (A6), and (D4) hold,
then EC exists and is a steady state.

Proof We follow the notation used in Proposition 1 and show that there exists a solution
to the fixed-point problem from (8):

pi = fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1(pi ). (10)

Note that all fi ’s in Eq. (10) are well defined by assumption (A6).
In Eq. (10), we are composing an even number of strictly decreasing functions, so

the composition is strictly increasing. We also know that the composition is positive
at zero by (A2), (A3), (D2), and (D3). We will show that

lim
x→∞( fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)

′(x) = 0.
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This, along with the composition being positive at zero, will imply that EC exists.
We compute:

( fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)
′

= ( f ′
i ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)( f

′
i−1 ◦ fi−2 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)

( f ′
i−2 ◦ fi−3 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1) · · · f ′

i+1.

First, we show that limx→∞ f ′
i+1(x) = 0. The following calculations are straight-

forward and follow from (A5), (D2), and (D4):

f ′
i+1(x) = ((d−1

pi+1
)′ ◦ ki+1 ◦ d−1

ri+1
◦ ai+1(x))

· (k′
i+1 ◦ d−1

ri+1
◦ ai+1(x))

· ((d−1
ri+1

)′ ◦ ai+1(x)) · a′
i+1(x), (11)

lim
x→∞(d−1

ri+1
)′ ◦ ai+1(x) = lim

x→0
(d−1

ri+1
)′(x)

= 1

(dri+1)
′(0)

< ∞, (12)

lim
x→∞(k′

i+1 ◦ d−1
ri+1

◦ ai+1(x)) = k′
i+1(0) < ∞, (13)

lim
x→∞(d−1

pi+1
)′ ◦ ki+1 ◦ d−1

ri+1
◦ ai+1(x) = lim

x→0
(d−1

pi+1
)′(x)

= 1

(dpi+1)
′(0)

< ∞. (14)

It is easy to check that Eqs. (11)–(14) imply:

lim
x→∞ f ′

i+1(x) = 0.

Now we show that for k = i, . . . , 1, n, . . . , i + 2:

lim
x→∞( f ′

k ◦ fk−1 ◦ · · · ◦ fi+1)(x) < ∞.

Recall that fi = d−1
pi ◦ ki ◦ d−1

ri ◦ ai . Then, by (A5),

lim
x→∞( f ′

k ◦ fk−1 · · · ◦ fi+1)(x) = ( f ′
k ◦ fk−1 · · · ◦ d−1

pi+1
◦ ki+1 ◦ d−1

ri+1
)(0) < ∞.

Therefore,

lim
x→∞( fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)

′(x)

= lim
x→∞( f ′

i ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)·
lim
x→∞( f ′

i−1 ◦ fi−2 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1) · · · lim
x→∞ f ′

i+1(x) = 0.
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Since i was arbitrary, each pi has a solution, and EC exists and by Remark 1 is a
steady state. ��
Proposition 3 Consider system (2) with n even. If αi > 0 for all i = 1, . . . , n and
(A6) holds, then EC exists and is a steady state.

Proof The proof is similar to the proof of Proposition 2. Assumption (A6) implies
that the inverses of dri (ri ) and dpi (pi ) exist at ai (0) for all i . Also, by assuming that
αi > 0, both

lim
x→∞(d−1

ri )′ ◦ ai (x) and lim
x→∞(d−1

pi )′ ◦ ki ◦ d−1
ri ◦ ai (x)

are finite because d ′
pi (αi ), d ′

ri (αi ) > 0 by assumption (D3). ��
We present a final sufficient condition for when EC is a steady state in the even-n

case. The condition is motivated by the following example.

Example 2 Consider the following generalized 2-gene repressilator model:

ṙ1 = 1

1 + p22
− r21

ṙ2 = 1

1 + p21
− r22

ṗ1 = r1 − p21

ṗ2 = r2 − p22 .

Thismodel fails the assumptions of Proposition 2, namely (D4), because the deriva-
tives of the degradation-rate functions dpi = p2i at zero are zero, and it fails those of
Proposition 3 because α1 = α2 = 0. Nevertheless, EC exists and is a steady state,
because EC is the solution to the following system:

p41 = 1

1 + p22

p42 = 1

1 + p21
.

Finding the fixed point is equivalent to solving:

p4 = 1

1 + p2
. (15)

The left-hand side of Eq. (15) is zero at zero and increases to∞while the right-hand
side is greater than zero at zero and decreasing, so EC exists. This phenomenon leads
to our final result about EC in the even-n case.
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Proposition 4 Consider system (2)with n evenor odd.Assume that all the degradation-
rate functions dri are equal (= dr ), all the degradation-rate functions dpi are equal (=
dp), all the transcription-rate functions ai are equal (= a), and all the translational-
rate functions ki are equal (= k). If limx→∞ k(x) > δP , where δP := limx→∞ dp(x),
then EC exists and is a steady state.

Proof Under the assumptions of the proposition, it is easy to check that computing
EC reduces to solving

a(p) = dr ◦ k−1 ◦ dp(p) (16)

for p ∈ R
+. The composition dr ◦ k−1 ◦ dp(p) is well defined for all p > 0 by the

assumption that limx→∞ k(x) > δP . Also, the function a(p) is decreasing, while the
composition dr ◦ k−1 ◦ dp(p) is increasing. Finally, a(0) > dr ◦ k−1 ◦ dp(0) = 0 by
assumptions (A4) and (D2). Therefore, there is a solution p ∈ R

+ to Eq. (16), so EC

exists. ��
Remark 3 The combinations of assumptions in Propositions 1–4 used to prove exis-
tence of EC provide insight into possible repressilator design circuits. For example,
a design circuit with a low-copy plasmid and proteins that are signaled for degrada-
tion through dimerization with itself could be problematic because the system may
not have a steady state. Likewise, assumption (A6)—used in the proofs of Proposi-
tions 1-3—requires that themaximalmRNAdegradation rate “overcome” themaximal
transcription rate. We revisit the theme of comparing degradation rates and synthesis
rates when we address the stability of steady states in the next section.

2.2 Stability analysis

For their model, Müller et al. proved general results about the stability of the central
steady state by harnessing the fact that the matrix J − λI , where J is the Jacobian
of system (2) at EC , is a circulant matrix. This matrix representation allowed the
eigenvalues to be represented in terms of roots of unity, which in turn allowed for
identifying general inequalities in the parameters that characterize stability. For our
generalized repressilator model, however, the matrix J − λI does not reduce to a
circulant matrix. Thus, we use different methods to characterize stability.

We begin with a few definitions.

Definition 2 Consider the generalized repressilator system (2). Let x∗ ∈ R
2n+ .

1. The i-th mRNA degradation rate at x∗ is

∂ R
i = ddri (ri )

dri

∣∣∣
x∗ .

2. The i-th protein degradation rate at x∗ is

∂ P
i = ddpi (pi )

dpi

∣∣∣
x∗ .
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3. The i-th degradation product at x∗ is

Di := ∂ R
i ∂ P

i .

4. The total degradation product at x∗ is

D :=
n∏

i=1

Di ,

where Di is the i-th degradation product at x∗.
5. The i-th synthesis product at x∗ is

Ki :=
(
dki (ri )

dri

∣∣∣
x∗

) (
dai (pi−1)

dpi−1

∣∣∣
x∗

)
.

6. The total synthesis product at x∗ is

K :=
n∏

i=1

Ki ,

where Ki is the i-th synthesis product at x∗.

When n is even, the total synthesis product is positive, because the even number of
repression elements in the cycle results in what Mallet-Paret and Smith (1990) call
a positive feedback system. In the odd-n case, the total synthesis product is negative,
because the system is a negative feedback system. These differences play an important
role in determining the stability of EC .

Throughout the section, we will refer to the Routh–Hurwitz criterion, so we review
it briefly. Consider a univariate polynomial:

p(x) = an + an−1x + an−2x
2 + · · · + a0x

n . (17)

Definition 3 For k = 1, . . . n, the kthHurwitzmatrix of p as in (17) is the k×kmatrix
Hk = [hi j ]ki, j=1, defined by hi j = a2i− j , where a2i− j is defined as 0 if 2i − j < 0 or
2i − j > n.

For example, the fourth Hurwitz matrix of p(x) = a4 + a3x + a2x2 + a1x3 + a0x4

is:

H4 =

⎡
⎢⎢⎣
a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

⎤
⎥⎥⎦ .

Following the notation in Yang (2002), we write Di = det(Hi ).
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Theorem 1 [Routh–Hurwitz Criterion (Allen 2006)] Consider a polynomial p as in
(17). Every root of p has negative real part if and only if the determinants of all
Hurwitz matrices (Definition 3) are positive, i.e.,

Di > 0, i = 1, 2, . . . , n.

Recall that the stability of a steady state is characterized by negative real parts of
the roots of the characteristic polynomial of the Jacobian. Thus, we apply Theorem 1
to this characteristic polynomial to obtain a necessary and sufficient condition for the
stability of a steady state (see Theorems 2 and 3).

2.2.1 Even-n case

For system (1) with n even, Müller et al. found a condition on the derivative of the
transcription-rate function that characterizes when the central steady state is stable.
Here, we generalize that criterion to system (2) using D and K.

Theorem 2 Consider system (2)with n even. A steady state x∗ is locally asymptotically
stable if and only if

D > K, (18)

where D and K are evaluated at x∗.

Proof It is easily checked that the characteristic polynomial of the Jacobian matrix of
system (2) at x∗ is

p(λ) =
n∏
j=1

(λ + ∂ R
j )(λ + ∂ P

j ) − K.

It follows that the constant term of p is D − K.
( �⇒ )We use the Routh–Hurwitz criterion. Assume that system (2) is stable at x∗.

Then det(Hn−1) > 0 and det(Hn) > 0. However, det(Hn) = det(Hn−1) · (D − K)

implying that D − K > 0, i.e., D > K.
(⇐�)Weuse Rouché’s Theorem (Ullrich 2008).Write p1(z) = ∏n

j=1(z+∂ R
j )(z+

∂ P
j ) and p2(z) = K. We will show that the number of zeros of p(λ) in the right-hand

half plane is equal to the number of zeros of p1 in the right-hand half plane. Since all
∂ j ’s are positive by assumption (D3), there are no zeros of p1(z) in the right-hand half
plane, so there are no zeros of p(λ).

Consider the contour described by the semicircle of radius R in the right-hand half
plane along with the line segment connecting −Ri and Ri on the imaginary axis. Call
the contour Γ (Fig. 2). We separate Γ into the semicircle, γ1, and the line, γ2. This is
a closed contour in the complex plane. First, we show that |p1(z)| > |p2(z)| on γ1.
We write z = Reiθ on γ1. Then

|p1(z)| = |p1(Reiθ )| =
n∏
j=1

|Reiθ + ∂ R
j ||Reiθ + ∂ P

j | ≥
n∏
j=1

|R − ∂ R
j ||R − ∂ P

j |,
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Fig. 2 Contour Γ in proof of
Theorem 2
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by the reverse triangle inequality. Call d the maximum of the degradation constants.
Then

n∏
j=1

|R − ∂ R
j ||R − ∂ P

j | ≥
2n∏
j=1

|R − d|.

Let R′ = 2d + 1. Then for all R ≥ R′,

2n∏
j=1

|R − d| > d2n ≥ D.

Therefore, for contours Γ with a sufficiently large radius, by assumption (18), the
following inequalities hold on γ1:

|p1(z)| > D > |K| = |p2(z)|.

Now all that is left to show is that |p1(z)| > |p2(z)| on γ2. On γ2, we write z = iy for
−R < y < R. Then

|p1(z)| =
n∏
j=1

|iy + ∂ R
j ||iy + ∂ P

j | ≥
n∏
j=1

|Re(iy + ∂ R
j )||Re(iy + ∂ P

j )| = D.

Therefore, again by assumption (18), the following holds on γ2:

|p1(z)| > D > K = |p2(z)|.

The number of zeros of p1(z) + p2(z) in Γ is the same as the number of zeros of
p1(z) in Γ for all R ≥ R′. Since ∂ R

i , ∂ P
i > 0 for all i , we know that there are no zeros

of p(λ) inside Γ for all R ≥ R′. Therefore, there are no eigenvalues of the Jacobian
with positive or zero real part, so the system is stable. ��
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Theorem 2 has the following biological interpretation. Inequality (18) says that, in
the long term, degradation is a more powerful process than synthesis. Thus, system (2)
converges locally if and only if degradation is stronger than the combined synthesis
of mRNA and protein.

2.2.2 Odd-n case

Recall that, in Proposition 1, we proved EC always exists and is unique when n is
odd. Below, we prove results towards finding a necessary and sufficient condition for
stability of EC in the odd-n case like we have in the even case from Theorem 2. Our
proofs use Hurwitz matrices because the inherent structure of the system when n is
odd allows us to simplify the Routh–Hurwitz criterion. Towards the end of the section,
we conjecture a necessary and sufficient condition for stability of EC and then give
evidence for it.

First, we discuss why the proof of Theorem 2 does not generalize to the odd-n case.
Recall that, in this case, system (2) is a negative feedback loop and K < 0, while in
the even case, K > 0. Thus, in the odd case, D > K always holds, not only when the
system is stable. Also, even though D > 0 > K, we are not guaranteed that

D > |K|, (19)

which is what we used in the proof of Theorem2. If inequality (19) does hold, however,
we conclude that the system is stable at EC .

Proposition 5 Consider system (2) with n odd. If inequality (19) holds, then EC is
locally asymptotically stable.

Proof The proof is the same as in the backwards direction of Theorem 2. ��
We continue to solve the question of stability at EC by using the structure of

the system to reduce the number of Hurwitz matrices needed in the Routh–Hurwitz
criterion. The idea is that the characteristic polynomial of the system is close to a
polynomial that is known to have all negative real roots and so we will need to check
fewer Hurwitz determinants.

Theorem 3 Consider system (2) with n odd, and let Di denote the determinant of the
i-th Hurwitz matrix of the Jacobian at EC . Then EC is locally stable if and only if
Di > 0 for all i = n + 2, . . . , 2n − 1.

Proof Wefirst show that,when n is odd, the first n+1Hurwitzmatrices calculated from
the characteristic polynomial of the Jacobian at EC always have positive determinant.

Recall from the proof of Theorem 2 that the characteristic polynomial of the Jaco-
bian matrix at EC is p(λ) = ∏n

i=1(λ + ∂ R
i )(λ + ∂ P

i ) − K, where K is the total
synthesis product from Definition 2. Since n is odd and so K < 0, we rewrite
this as p(λ) = ∏n

i=1(λ + ∂ R
i )(λ + ∂ P

i ) + |K|. We introduce a new polynomial
q(λ) = ∏n

i=1(λ + ∂ R
i )(λ + ∂ P

i ).
In what follows, any quantity with a superscript p is constructed using p(λ), and

similarly for q(λ). Notice that p(λ) and q(λ) both have degree 2n, so there are 2n
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Hurwitz matrices H p
i for p(λ) and Hq

i for q(λ). Also, all coefficients of p(λ) and
q(λ)match except for the constant term. Therefore, every Hurwitz matrix constructed
using only coefficients of p(λ) that are not the constant term is equivalent to the
corresponding Hurwitz matrix of q(λ). We will use this fact below.

We now split the proof into two cases.

1. Case 1 i = 1, . . . , n.

FromDefinition 3, the coefficients of the polynomial that appear in Hi are indexed
by 1, . . . , 2i − 1. Therefore, H p

i = Hq
i for i = 1, . . . , n, so Dp

i > 0 for i =
1, . . . , n because all roots of q(λ) have negative real part.

2. Case 2 i = n + 1.

For this case, we examine the effect of the constant term of p on the determinant
of H p

n+1. Recall that a
p
2n = aq2n + |K| where a p

2n and a
q
2n are the constant terms of

p and q, respectively.

Below, we use A[a,b] to denote the matrix A without row-a and column-b. The
(n + 1)st Hurwitz matrix of p is the following (n + 1) × (n + 1) matrix:

H p
n+1 =

⎡
⎢⎢⎢⎢⎢⎣

a1 a0 0 0 . . . 0
a3 a2 a1 a0 . . . 0
a5 a4 a3 a2 a1 a0
...

...
...

...
...

...

0 a p
2n a2n−1 . . . an+2 an+1

⎤
⎥⎥⎥⎥⎥⎦

,

and Hq
n+1 matches H p

n+1 at all entries except for entry (n + 1, 2), where it is the
constant term aq2n rather than that of p. We compute Dp

n+1 = det(H p
n+1) and

Dq
n+1 = det(Hq

n+1) by expanding along the last row:

Dp
n+1 = a p

2n det(H
p,[n+1,2]
n+1 ) − a2n−1 det(H

p,[n+1,3]
n+1 ) + . . .

+ an+1 det(H
p,[n+1,n+1]
n+1 ), (20)

and

Dq
n+1 = aq2n det(H

q,[n+1,2]
n+1 ) − a2n−1 det(H

q,[n+1,3]
n+1 ) + . . .

+ an+1 det(H
q,[n+1,n+1]
n+1 ). (21)

As the constant term is present only in the last row of Hn+1, the submatrices of
H p
n+1 and Hq

n+1 that exclude that row are equal. Combining this fact with Eqs. (20)
and (21) gives

Dp
n+1 − Dq

n+1 = a p
2n det(H

p,[n+1,2]
n+1 ) − aq2n det(H

q,[n+1,2]
n+1 )

= (a p
2n − aq2n) det(H

p,[n+1,2]
n+1 ) = |K| det(H p,[n+1,2]

n+1 ).
(22)
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To compute the determinant of the following matrix:

H p,[n+1,2]
n+1 =

⎡
⎢⎢⎢⎢⎢⎣

a1 0 0 . . . 0
a3 a1 a0 . . . 0
a5 a3 a2 a1 a0
...

...
...

...
...

a2n−1 a2n−3 a2n−4 . . . an−1

⎤
⎥⎥⎥⎥⎥⎦

we expand about the first row, so det(H p,[n+1,2]
n+1 ) = a1 det(A), where

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 a0 0 0 0 0 . . . 0
a3 a2 a1 a0 0 0 . . . 0
a5 a4 a3 a2 a1 a0 . . . 0
...

...
...

...
. . .

...
. . .

...

a2n−3 a2n−4 a2n−5 a2n−6 . . . an+1 an an−1

⎤
⎥⎥⎥⎥⎥⎦

.

Notice that A = H p
n−1 = Hq

n−1, which has positive determinant by Case 1.

Therefore, because a1 > 0, det(H p,[n+1,2]
n+1 ) = a1det(A) > 0. Since all roots of

q(λ) have negative real part, Dq
n+1 > 0 by Theorem 1, so Eq. (22) gives

Dp
n+1 − Dq

n+1 = |K| det(H p,[n+1,2]
n+1 ) > 0 �⇒ Dp

n+1 > Dq
n+1 > 0.

Therefore, Dp
n+1 > 0 and so the first n + 1 determinants of the Hurwitz matrices

constructed from p(λ) are positive.
Since D2n = (D − K)D2n−1 and D − K > 0 (as explained above Proposition 5),

we conclude from Theorem 1 that EC is locally stable if and only if Di > 0 for all
i = n + 2, . . . , 2n − 1. ��
Corollary 1 For n = 3, system (2) is stable at EC if and only if D5 > 0.

Proof Follows immediately from Theorem 3. ��
Next, we recall the stability condition for EC due to Müller et al. and compare it to

the one in Theorem 3. Müller et al. 2006 criterion is:

β

(1 + β)2
<

1 − Sc cos(π/n)

S2c sin
2(π/n)

, (23)

where
Sc = −α f ′(EC ). (24)

In system (2), it is easy to see that Sc equals−Ki at EC . Therefore, we rewrite Eq. (23)
as:

β

(1 + β)2
<

1 + Ki cos(π/n)

K2
i sin

2(π/n)
. (25)
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For n = 3, it is straightforward to check that inequality (25) is equivalent to:

(4 + 2Ki )(1 + β)2 − 3βK2
i > 0. (26)

For system (1) with n = 3, by Corollary 1, the condition D5 > 0 characterizes the
same stability region in parameter space as inequality (26). This is surprising because
D5 under system (1) and n = 3 is a more complicated expression than the left-hand
side in (26):

D5 = β2(8β10K3
i + 64β10 + 144β9K3

i + 576β9 + 792β8K3
i + 2304β8 − 27β7K6

i

+ 2184β7K3
i + 5376β7 − 81β6K6

i + 3528β6K3
i + 8064β6 − 81β5K6

i

+ 3528β5K3
i + 8064β5 − 27β4K6

i + 2184β4K3
i + 5376β4 + 792β3K3

i

+ 2304β3 + 144β2K3
i + 576β2 + 8βK3

i + 64β). (27)

Next, we prove directly that these two inequalities define the same stability region
when β ∈ R>0 and Ki ∈ R. Note that, by definition, Ki is always negative, but we
show that even for Ki ∈ R the two inequalities are equivalent.

Theorem 4 (Equivalence of the n = 3 stability conditions) For n = 3 of system (1),
inequality (26) holds for β ∈ R>0 and Ki ∈ R if and only if D5 > 0, where D5 is the
determinant of the Hurwitz matrix H5 of the characteristic polynomial of the Jacobian
matrix of (1) evaluated at EC .

Proof Let f (β,Ki ) = (4 + 2Ki )(1 + β)2 − 3βK2
i denote the polynomial on the

left-hand side of (26). We rename D5, as in (27), the polynomial g(β,Ki ). We must
show that f (β,Ki ) and g(β,Ki ) are the same sign for all β ∈ R>0 and Ki ∈ R<0.

It is straightforward to check, e.g. usingMaple, that g(β,Ki ) = f (β,Ki )h(β,Ki ),
where

h(β,Ki ) = 9K4
i β

8 + 6K3
i β

9 + 4K2
i β

10 + 27K4
i β

7 + 30K3
i β

8 + 40K2
i β

9

− 8Kiβ
10 + 27K4

i β
6 + 60K3

i β
7 + 144K2

i β
8 − 56Kiβ

9 + 16β10

+ 9K4
i β

5 + 60K3
i β

6 + 260K2
i β

7 − 168Kiβ
8 + 112β9 + 30K3

i β
5

+ 260K2
i β

6 − 280Kiβ
7 + 336β8 + 6K3

i β
4 + 144K2

i β
5 − 280Kiβ

6

+ 560β7 + 40K2
i β

4 − 168Kiβ
4 + 560β6 + 4K2

i β
3 − 56Kiβ

4 + 336β5

− 8Kiβ
3 + 112β4 + 16β3.

Because g = f h, any root of f is also a root of g. We will use this fact below.
Fix β̃ > 0. Let gβ̃ (Ki ) := g(β̃,Ki ) and fβ̃ (Ki ) := f (β̃,Ki ). We rewrite gβ̃ :

gβ̃ (Ki ) = K6
i (−81β̃6 − 81β̃5 − 27β̃4) + K3

i (8β̃
10 + 144β̃9

+ 792β̃8 + 2184β̃7 + 3528β̃6 + 3528β̃5 + 2184β̃4

+ 792β̃3 + 144β̃2 + 8β̃) + C, (28)

123



Revisiting a synthetic intracellular regulatory network…

where C is the sum of all the pure β terms in (27). It is easy to check that C > 0
when β̃ > 0. Thus, we see from (28) that the polynomial gβ̃ has one sign change.
Therefore, by Descartes’ rule of signs, gβ̃ has at most one positive real root and at
most one negative real root.

From (26), fβ̃ (Ki ) is a quadratic polynomial inKi that is downward facing and has

a positive y-intercept namely, (4(1 + β̃)2). Therefore, fβ̃ has exactly two real roots,
and thus, gβ̃ has exactly two real roots as well because g = f h and, as noted above,
gβ̃ has at most two real roots.

We label these two real roots r1 and r2 with r1 < r2. Since gβ̃ has even degree in
Ki with a negative leading coefficient and a positive y-intercept, we know that gβ̃ > 0
if and only if Ki is in the interval (r1, r2). It is straightforward to check that fβ̃ (Ki )

also is positive if and only if Ki is in the interval (r1, r2). Therefore, fβ̃ > 0 if and

only if gβ̃ > 0. Our choice of β̃ > 0 was arbitrary. Therefore, the two inequalities
D5 > 0 and (25) are equivalent. ��

Corollary 1 and the fact that Müller et al.’s criterion for system (1) is given by a
single inequality lead us to conjecture that, when n is odd, stability of EC depends
only on the penultimate Hurwitz determinant.

Conjecture 1 For n odd, system (2) is stable at EC if and only if D2n−1 > 0.

Evidence for Conjecture 1 can be seen in the possible types of bifurcations of
EC in the odd case. We reorder the species as r1, p1, r2, p2, . . . to see that system
(2) is a monotone system—a system that satisfies ẋi = f (xi , xi−1) for all i . Mallet-
Paret and Smith (1990), showed that all omega-limit sets of monotone systems can
be embedded inR2. Therefore, the possible bifurcations are stationary bifurcations or
simple Hopf bifurcations. However, there cannot be stationary bifurcations because
zero is never a root of the characteristic polynomial. Therefore, all bifurcations are
simpleHopf bifurcations. Furthermore, fromYang (2002), at simpleHopf bifurcations,
the following conditions hold: D1, …, D2n−2 > 0, and D2n−1 = D2n = 0. This
reasoning is not sufficient to prove the conjecture, however, because there could be a
point in parameter space where EC is unstable but nevertheless D2n−1 > 0.

Finally, we prove a result about the global dynamics of system (2), which is similar
to Theorem 2 in Müller et al. (2006), by using the result on monotone systems given
in Mallet-Paret and Smith (1990).

Theorem 5 For n odd, system (2) has the following properties: (i) Every orbit con-
verges to EC or to a periodic orbit. (ii) If EC is unstable, then there exists a
periodic-orbit attractor.

Proof It is straightforward to check that the proof is the same as that of Theorem 2
in Müller et al. (2006), which uses (Mallet-Paret and Smith 1990). We note that we
can rule out the third option of the Main Theorem in Mallet-Paret and Smith (1990)
because EC is unique, so there are no heteroclinic or homoclinic orbits. ��

Theorem 5 is significant biologically because it shows the species concentrations
of the repressilator constructed with an odd number of genes will either stabilize to
the steady state value or to a limit-cycle.
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3 Transcription-rate function from successive-binding

Müller et al. (2006) used a function arising from the single-step binding assumption,
discussed above in Sect. 1, to model the binding of a gene product repressor to the
next gene’s promoter. Here, we derive a new function to model binding of the gene
product and promoter based on the successive-binding reaction mechanism, and then
use it to define a new transcription-rate function.

First, we recall, from Müller et al. (2006), the function that models the amount of
binding as a function of the gene product and the promoter, c(m)

i , and the resulting
transcription-rate function, ai :

c(m)
i = ḡ

pmi−1

K + pmi−1
and ai = ḡ

[
(1 − δ)

(
1 − s

( pi−1

K

))
+ δ

]
, (29)

where ḡ is the total gene concentration; δ is the ratio of repressed to unrepressed
transcription; K is a dissociation constant; and

s(x) = xh

1 + xh
, (30)

where the Hill coefficient, h > 0. One advantage to using the transcription-rate func-
tion (30) from the single-step binding assumption is that it generalizes naturally with
any positive, real Hill coefficient.

3.1 Successive-binding function

Next, we recall the assumptions for successive-binding introduced in Sect. 1.

1. There are m binding sites on a promoter, and the repressor proteins bind in order
from sites 1 to m.

2. Transcription cannot occur if m repressor proteins are bound to the promoter.
Transcription can occur in all other cases.

3. The repressor protein binds rapidly to the promoter.
4. Repressor proteins bind to the m binding sites at varying rates.

These assumptions are adapted from Forger (2017, Chapter 2) where Forger presents
three models of repression. The model we are interested in is his Model “a”: A Model
for Transcription Regulation with Independent Binding Sites.

Here, we present the reaction mechanism and follow the notation in Müller et al.
(2006). LetGi be gene-i ; and Pi−1 the repressor produced by the preceding gene. We
write the gene-repressor complex as C(m)

i . The successive-binding reaction mecha-
nism is
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Gi + Pi−1 � C(1)
i

C(1)
i + Pi−1 � C(2)

i

...

C(m−1)
i + Pi−1 � C(m)

i . (31)

Assumption 1 presumes that the promoter has m binding sites and that repressors
bind in order from site 1 to m, so the mechanism has m possible gene-repressor
complexes C(1)

i , . . . ,C(m)
i . We will derive the binding function c(m)

i that models the
amount of binding as a function of the total gene concentration and concentration of
the repressor present. We proceed with this derivation below.

Assumption 3 allows us to use the quasi steady state assumption on the concen-
trations of the gene-repressor complexes to derive the binding function. The binding
function for C(1)

i is

c(1)
i = gi pi−1

K1
, (32)

where K1 is a dissociation constant. Here, dissociation constants for each gene are
distinct because ofAssumption4.Weuse the function (32) towrite the binding function
for C(2)

i :

c(2)
i = pi−1c

(1)
i

K2
= gi p2i−1

K1K2
,

where K2 is another dissociation constant. We continue this process to get a general
formula for the binding function of the j-th complex:

c( j)
i = gi p

j
i−1

K1K2 · · · K j
, (33)

where K1, . . . , K j are all dissociation constants.
Conservation of mass for genes is given by

ḡ = gi + c(1)
i + c(2)

i + · · · + c(m)
i . (34)

This conservation equation differs from the conservation equation arising from
single-step binding. Under single-step binding, the genes are either free or consumed
in the final gene-repressor complex, leading to the conservation equation:

ḡ = gi + c(m)
i .

Wedesire a binding function that depends only on the protein product concentration
and the total gene concentration. To obtain such a function, we must first solve for
c(m)
i in terms of pi−1 using Eqs. (33) and (34).
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c(m)
i = (ḡ − c(1)

i − · · · − c(m−1)
i − c(m)

i )pmi−1

K1K2 · · · Km

�⇒ c(m)
i = ḡ pmi−1

K1K2 · · · Km
− c(m)

i pi
K1

− · · · − c(m)
i pm−1

i−1

K1K2 · · · Km−1
− c(m) pmi−1

K1K2 · · · Km

�⇒ c(m)

(
1 + pi−1

K1
+ p2i−1

K1K2
+ · · · + pmi−1

K1K2 · · · Km

)
= ḡ pmi−1

K1K2 · · · Km

�⇒ c(m)

(
K1K2 · · · Km + K2 · · · Km pi−1 + · · · + Km−1 p

m−1
i−1 + pmi−1

K1K2 · · · Km

)

= ḡ pmi−1

K1K2 · · · Km

�⇒ c(m) = ḡ pmi−1∑m
j=0

((∏
l> j Kl

)
p j
i−1

) .

Similarly, we obtain c( j)
i

c( j)
i =

(∏
�> j K�

)
ḡ p j

i−1
∑m

j=0

((∏m
�> j K�

)
p j
i−1

) . (35)

We simplify notation by letting Bi (pi−1) = ∑m
j=0((

∏
�> j K�)p

j
i−1) and A( j)

i (pi−1)

= (
∏m

�> j K�)p
j
i−1, so that:

Bi (pi−1) =
m∏
j=1

K j +
m∑
j=1

A( j)
i (pi−1). (36)

Therefore, we rewrite Eq. (35), the successive-binding function, as

c( j)
i = ḡ A( j)

i (pi−1)

Bi (pi−1)
for j = 1, . . . ,m. (37)

3.2 Transcription-rate function obtained from successive-binding function

We assume as in Müller et al. (2006) that the transcription rate ai depends linearly on
the free gene concentration gi given by the two cases

gi = ḡ �⇒ ai = ḡ, (38)

and
gi = 0 �⇒ ai = δḡ. (39)
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Here, following (Müller et al. 2006), δ denotes the ratio of repressed to unrepressed
transcription. Case (38) assumes that, if the gene is free of any repressors, then tran-
scriptional activity will occur proportional to the total gene concentration. Case (39)
assumes that, if m repressors are bound to the gene, then transcriptional activity will
occur proportional to the constant δ.

From cases (38) and (39), the transcription-rate ai is given by

ai = (1 − δ)gi + δḡ.

We use Eqs. (34) and (37) to rewrite ai :

ai = ḡ

[
(1 − δ)

(
1 − A(1)

i (pi−1) + A(2)
i (pi−1) + · · · + A(m)

i (pi−1)

Bi (pi−1)

)
+ δ

]
. (40)

Using Eq. (36), we rewrite Eq. (40) as

ai = ḡ

[
(1 − δ)

∏m
j=1 K j

Bi (pi−1)
+ δ

]
.

To simplify notation, let us write

Si (pi−1) :=
∏m

j=1 K j

Bi (pi−1)
. (41)

Then, from Eqs. (40) and (41), the derived transcription-rate function is:

ai = ḡ[(1 − δ)Si (pi−1) + δ]. (42)

It is straightforward to check that Eq. (42) satisfies assumptions (A1)–(A4), and hence
is a valid transcription-rate function.

Proposition 6 The transcription-rate function arising from the successive-binding
mechanism, given by Eq. (42), satisfies assumptions (A1)–(A4).

Propositions 1 and 6 immediately yield the following corollary.

Corollary 2 Consider system (2) with n odd and transcription-rate functions ai (pi−1)

Eq. (42), that is, arising from the successive-binding mechanism. Then the central
steady state EC exists and is the unique, positive steady state.

Remark 4 Forger (2017), simplifies Eq. (41) by assuming that the dissociation con-
stant, K j , is the same across each reaction in the successive-binding mechanism (31).
Hence, his version of Eq. (41) is:

S(pi−1) = Km

(K + pi−1)m
.
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4 Comparison of models arising fromHill functions versus
successive-binding transcription-rate functions

Below, we numerically compare a model using the traditional single-step binding
assumption for transcription and another model constructed using the successive-
binding assumption. Specifically, we show that the amplitudes and periods of the
oscillations can differ widely (see Figs. 3, 4).

The first model is the following three-gene repressilator system:

ṙ1 = k1
1 + ph3

− r1, ṗ1 = 4r1 − 3p1 (SS)

ṙ2 = k2
1 + ph1

− r2, ṗ2 = r2 − 2p2

ṙ3 = k3
1 + ph2

− r3, ṗ3 = 4r3 − 4p3.

Model (SS) (for single-step) is constructed using the single-step binding assumption
for each transcription-rate function, and the Hill coefficients, h, are assumed to be
equal.

In comparison, the second model considered is:

ṙ1 = k1
(1 + p3)h

− r1, ṗ1 = 4r1 − 3p1 (SB)

ṙ2 = k2
(1 + p1)h

− r2, ṗ2 = r2 − 2p2

ṙ3 = k3
(1 + p2)h

− r3, ṗ3 = 4r3 − 4p3.

Model (SB) (for successive-binding) is constructed using the successive-binding
assumption for each transcription-rate function [Eq. (42)], and, like model (SS), the
Hill coefficients, h, are assumed to be equal. Note from systems (SS) and (SB) that
the two models are equivalent in the degradation and translation components.

4.1 Amplitude

Here, we compare the amplitudes of models (SS) and (SB). For the first numerical
comparison, we vary the Hill coefficient, h, from 1 to 10 while keeping all other
parameters fixed. For both models (SS) and (SB), we numerically solve the system
until it reaches a steady state or a limit cycle. Then,we compute the amplitude of protein
1 by evaluating the difference of the maximum and minimum protein 1 concentration.
Figure 3a shows the amplitudes of the first protein concentration with respect to the
Hill coefficient (sampled at every one-tenth value—1, 1.1, 1.2, etc.) for models (SS)
(blue) and (SB) (red). All computations were performed in MATLAB (2017).

As shown in Fig. 3a, the amplitude ofmodel (SS) increases to an order ofmagnitude
larger than the amplitude of model (SB). Also, the Hopf bifurcation of model (SS)
with respect to the Hill coefficient occurs when h ≈ 2 whereas the Hopf bifurcation
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Fig. 3 a Amplitudes of the concentration of protein 1 for models (SS) (blue curve) and (SB) (red curve)
with respect to the Hill coefficient. We fixed the transcription rates as follows: k1 = 10, k2 = 7, k3 = 9.
b Amplitudes of the concentration of protein 1 for models (SS) (blue) and (SB) (red) with respect to the
transcription rate. The initial conditions for both a and b were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1,
and p3 = 6 (color figure online)

of model (SB) happens when h ≈ 3. Thus, numerical evidence suggests that the
traditional transcription-rate function allows for oscillations to occur at smaller Hill
coefficients than for our newly derived transcription-rate function. Thismeans, in terms
of the biology, that under the single-step binding assumption, oscillations can occur
when there are fewer repressors binding to the gene promoter. However, incorporating
intermediate steps into the repressor-promoter interactions (like in the successive-
binding assumption) leads to more repressors required to produce oscillations.

Next, we conducted a numerical comparison that fixed all parameters (h = 3) while
letting the transcription rates, k1, k2, and k3, vary. In order to plot the amplitudes, we
assume that k1 = k2 = k3 = k and let k vary from 1 to 10. Again, we sample
k at every one-tenth interval and numerically solve both models to convergence to
the steady state or the limit cycle. We then compute the amplitudes as in the first
comparison. Figure 3b shows the amplitudes of the first protein concentration with
respect to the transcription rate for both models.

Similar to the first comparison, model (SS) amplitudes are significantly different
from those of model (SB), and in fact, they reach an order of magnitude difference
(Fig. 3b). Moreover, the Hopf bifurcation of model (SS) occurs when k ≈ 2 while the
Hopf bifurcation of model (SB) happens when k ≈ 4 (Fig. 3b).

These and other numerical simulations support the claim that the amplitude of a
model constructed using the successive-binding assumption will be smaller than the
amplitude of a model constructed using the single-step binding assumption, all other
components being equal. As amplitudes are an important quantity of oscillations of a
system, care should therefore be takenwhen considering appropriatemodels of genetic
repression and transcription or when fitting models to actual repressilator data.

4.2 Period

Similar to the amplitude, the two transcription-rate functions yield dramatic differences
in periods. To compare, we compute the periods of models (SS) and (SB), again using
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Fig. 4 a Period of the concentration of protein 1 for models (SS) (blue) and (SB) (red) with respect to the
Hill coefficient. Similar to the amplitude comparison in Fig. 3a, the parameters k1, k2, and k3 were set to
10, 7, and 9, respectively. b Period of the concentration of protein 1 for models (SS) (blue) and (SB) (red)
with respect to the transcription rate. The Hill coefficient, h, was fixed at 4 for the simulations. The initial
conditions for both a and b were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1, and p3 = 6 (color figure
online)

MATLAB (2017). First, we fix all parameters except the Hill coefficient, h. Again,
we let h vary from 1 to 10 and sample h at every one-tenth value. We numerically
solve the systems to either the steady state or the limit cycle. To compute the period,
we perform an event location procedure. The procedure first finds a time point when
p1 = p and dp1

dt |p1=p > 0, where p is a concentration known to be in the limit cycle.

Then, the algorithm finds the next time point in which p1 = p and dp1
dt |p1=p > 0 and

saves this time point. The period is then taken to be the difference between the two
time points.

Figure 4a shows the periods of the two models with respect to the Hill coefficient.
Again, we see that the Hopf bifurcation of model (SS) (h ≈ 2, Fig. 4a) happens earlier
than that of model (SB) (h ≈ 3, Fig. 4a). Interestingly, however, the period of model
(SB) increases more rapidly with respect to h and eventually surpasses the period of
model (SS) (h ≈ 4.75, Fig. 4a).

Next, we fix the Hill coefficient, h = 4, and let the transcription rates vary. Again,
we set k1 = k2 = k3 = k and vary k from 1 to 10. Figure 4b shows, for both models,
the periods of the first protein concentration with respect to the transcription rate. The
Hopf bifurcation for model (SS) (k ≈ 2, Fig. 4b) occurs significantly earlier than
that of model (SB) (k ≈ 4.2, Fig. 4b). However, for transcription rates after the Hopf
bifurcation ofmodel (SB), the periods do not differ notably, suggesting that the periods
of the two models is more sensitive to the Hill coefficient.

5 Discussion

This work advances the theoretical study of cyclic gene repression by generalizing the
current repressilator models. First, we permit more transcription-rate functions than
the traditional single-step binding function.We require only that these functions satisfy
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a few properties that agree with current biological knowledge. We also broaden the
possible degradation terms beyond first-order degradation. Again, we require only that
these functions satisfy certain biological assumptions. Finally, we assume first-order
translation rates but allow them to vary among mRNAs.

Our new system retains many advantageous qualitative properties of the previous
repressilator after these generalizations. We proved, for instance, that the system with
an odd number of genes has a unique steady state, called the central steady state. We
also showed that the system with an odd number of genes converges to the central
steady state or to a periodic orbit. We worked towards a necessary and sufficient
condition for when the central steady state is stable and offered a related conjecture.

For the even case,we characterizedwhen the central steady state exists.We also give
a biological criterion forwhen a steady state is stable.However, at the level of generality
we propose, we cannot prove the same results as Müller et al. regarding the possible
number of steady states. For specific choices of degradation-rate and transcription-
rate functions, one can, however, analyze the limiting dynamics of system (2) with
n even by using the Poincaré–Bendixson Theorem for monotone systems given in
Mallet-Paret and Smith (1990).

Next, we derived new transcription-rate functions from the successive binding
assumption. Recall that the successive-binding function was derived from biologi-
cal assumptions that are more reasonable than those of the commonly used single-step
binding assumption. In Sect. 4,we showed that allowing formore general functions can
lead to significant changes in dynamics. For example, numerical simulations showed
that amplitudes and periods of a model constructed with the old transcription-rate
function and one with our new function differed significantly. Numerical simulations
revealed that the period was most sensitive to the Hill coefficient.

Going forward, we aim to determine how well the generalizations presented in
this work generate more accurate representations of the repressilator. Specifically, we
aim to build off the work of Lillacci and Khammash (2010) to compare parameter
estimates of previous repressilator models with our generalized model. The recovered
parameters will shed light on certain biological information. For example, the Hill
coefficients in the transcription-rate functions correspond to the number of binding
sites on a promoter region. Next, these fits can shed light on the effectiveness of various
transcription-rate and degradation-rate functions. Finally, we plan to apply the model
selection approach from Lillacci and Khammash (2010) to select among hypothesized
repressilator models given actual repressilator data.

In summary, we now better understand stability and limiting dynamics of the
repressilator system for a wide range of biologically relevant degradation-rate and
transcription-rate functions. We hope that our results will encourage theoretical and
experimental biologists to broaden the possible degradation-rate and transcription-
rate functions used to model the repressilator and other gene regulatory networks.
Finally, we expect that allowing general functions for these terms will generate more
accurate and predictive models of not only the repressilator but genetic repression in
general.
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