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Abstract
This work investigates the emergence of oscillations in one of the simplest cellular
signaling networks exhibiting oscillations, namely the dual-site phosphorylation and
dephosphorylation network (futile cycle), in which the mechanism for phosphoryla-
tion is processive, while the one for dephosphorylation is distributive (or vice versa).
The fact that this network yields oscillations was shown recently by Suwanmajo and
Krishnan. Our results, which significantly extend their analyses, are as follows. First,
in the three-dimensional space of total amounts, the border between systems with a
stable versus unstable steady state is a surface defined by the vanishing of a single
Hurwitz determinant. Second, this surface consists generically of simple Hopf bifur-
cations. Next, simulations suggest that when the steady state is unstable, oscillations
are the norm. Finally, the emergence of oscillations via a Hopf bifurcation is enabled
by the catalytic and association constants of the distributive part of the mechanism; if
these rate constants satisfy two inequalities, then the system generically admits a Hopf
bifurcation. Our proofs are enabled by theRouth–Hurwitz criterion, aHopf bifurcation
criterion due to Yang, and a monomial parametrization of steady states.
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1 Introduction

Oscillations have been observed experimentally in signaling networks formed by phos-
phorylation and dephosphorylation (Hilioti et al. 2008; Hu et al. 2013), which suggest
that these networks are involved in timekeeping and synchronization. Indeed, multisite
phosphorylation is the main mechanism for establishing the 24-h period in eukary-
otic circadian clocks (Ode and Ueda 2017; Virshup and Forger 2009). Our motivating
question, therefore, is, How do oscillations arise in phosphorylation networks?

We tackle this question for the network that according to Suwanmajo and Krish-
nan (2015, §3.1) “could be the simplest enzymatic modification scheme that can
intrinsically exhibit oscillation.” This network, in (1), is the mixed-mechanism
(partially processive, partially distributive) dual-site phosphorylation network (or
mixed-mechanism network for short). Examples of networks that include both pro-
cessive and distributive elements include the “processive model” of Aoki et al. (2011,
Table S2) and a model of ERK regulation via enzymes MEK and MKP3 (Rubinstein
et al. 2016, Fig. 2).

In the mixed-mechanism network, Si denotes a substrate with i phosphate groups
attached, and K and P are, respectively, a kinase and a phosphatase enzyme:

S0 + K
k1
�
k2

S0K
k3−→ S1K

k4−→ S2 + K

S2 + P
k5
�
k6

S2P
k7−→ S1 + P

k8
�
k9

S1P
k10−→ S0 + P.

(1)

When the kinase phosphorylates—that is, adds phosphate groups to—a substrate in
the mixed-mechanism network (via the reactions labeled by k1 to k4), the kinase and
substrate do not dissociate before both phosphate groups are added. Accordingly,
the mechanism for phosphorylation is processive. In contrast, when the phosphatase
dephosphorylates—i.e., removes phosphate groups from—a substrate (via reactions
k5 to k10), this mechanism is distributive: the phosphatase and substrate dissociate
each time a phosphate group is removed. Accordingly, network (1) is said to have a
mixed mechanism.1

The dynamical systems arising from the mixed-mechanism network live in a nine-
dimensional space, but, due to three conservation laws, are essentially six-dimensional.
Specifically, the total amounts of kinase, phosphatase, and substrate—denoted by Ktot,
Ptot, and Stot, respectively—are conserved. For each choice of three such total amounts
and each choice of positive rate constants ki , there is a unique positive steady state
(Suwanmajo and Krishnan 2015). One focus of our work is determining when such a
steady state undergoes a Hopf bifurcation leading to oscillations (with any of the ki ’s
or total amounts as bifurcation parameter).

1 Network (1) is symmetric to the mixed-mechanism network in which phosphorylation is distributive
(instead of processive) and dephosphorylation is processive (instead of distributive), so our results apply
equally well to that network (cf. Suwanmajo and Krishnan 2015, networks 21, 22).
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Table 1 Rate constants (left) and total amounts (right), from (Suwanmajo and Krishnan 2015, Supplemen-
tary Information), which lead to oscillations in the mixed-mechanism network (1)

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Ktot Ptot Stot

1 1 1 1 100 1 0.9 3 1 100 17.5 5 40

0 ≈ 13.03 ≈ 29.23
Ktot

steady state is
locally stable

steady state is
unstable

(oscillations)

steady state is
locally stable

Hopf Hopf

Fig. 1 Stability of the unique steady state of the mixed-mechanism network (1) as a function of Ktot , as
analyzed by Suwanmajo and Krishnan (2015, Fig. 4). (The other total amounts, Ptot and Stot , and the
rate constants ki are those in Table 1.) Oscillations were found when Ktot is in the “unstable” interval
(Suwanmajo and Krishnan 2015)

1.1 Summary of Main Results

How do oscillations of the mixed-mechanism network emerge, and how robust are
they? These questions are the motivation for our work. Let us describe Suwanmajo
and Krishnan’s progress in this direction. They first found rate constants ki and total
amounts, displayed in Table 1, that yield oscillations (Suwanmajo and Krishnan 2015,
Supplementary Information).

Next, they examined whether oscillations persist as Ktot varies. What they found,
summarized in Fig. 1, is that oscillations persist when Ktot is in the (approximate)
interval (13.03, 29.23), and oscillations arise as the unique steady state undergoes a
Hopf bifurcation.

Subsequently, Conradi and Shiu (2018) found that when Ptot also is allowed to
vary, oscillations exist for larger values of Ktot (e.g., Ktot = 100). So, how exactly do
oscillations depend on the three total amounts (or, equivalently, the initial conditions)?
Concretely, our goal is to expand Fig. 1 to encompass all possible perturbations to the
initial conditions (i.e., the total amounts):

Question 1.1 Consider the mixed-mechanism network (1), with ki ’s from Table 1.

1. For which values of (Ktot, Ptot, Stot) ∈ R
3
>0 is the unique steady state unstable?

2. Whenever (by perturbing parameters or total amounts) a steady state switches from
being locally stable to unstable, does this always give rise to a Hopf bifurcation?

The direct method for solving Question 1.1(1) is to solve the steady-state equations,
and then apply the six-dimensional Routh–Hurwitz stability criterion. However, this
approach is intractable; the resulting Hurwitz determinants are pages-long.

Accordingly, we take an algebraic shortcut, namely we find a parametrization of
the set of steady states, and then use this for the input to Routh–Hurwitz. The result
is somewhat surprising: each Hurwitz determinant except the last two (which are
positive multiples of each other) is always positive. This yields our answer to Ques-
tion 1.1(1): For every ODE system arising from the mixed-mechanism network (1),
a (two-dimensional) surface in the three-dimensional space of total amounts defines
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the border between steady states that are stable and those that are unstable. (Our
result even applies to many systems for which the ki ’s are not those in Table 1; see
Proposition 4.1.)

We can now translate Question 1.1(2) as follows: does the surface mentioned above
consist of Hopf bifurcations? We prove, using a Hopf bifurcation criterion stated in
terms ofHurwitz determinants, due toYang (2002), that the answer, at least generically,
is “yes”: When the unique steady state of the mixed-mechanism network (1) switches
from being stable to unstable, then, generically, it undergoes a Hopf bifurcation.

For general one-parameter ODE systems, there are two types of local bifurca-
tions: saddle nodes (which require a zero eigenvalue of the Jacobian matrix) and Hopf
bifurcations (which require a pair of pure imaginary eigenvalues of the Jacobian)
(Guckenheimer and Holmes 2013). We show that a saddle node bifurcation cannot
occur for any parameter values (see the proof of Proposition 4.1). Therefore, only
Hopf bifurcations are possible for the mixed-mechanism system.

A second question we aim to answer is the following:

Question 1.2 Consider the mixed-mechanism network (1). What conditions on the ki ’s
guarantee a Hopf bifurcation for some (positive) values of the total concentrations?

As an answer to Question 1.2, we prove that the catalytic constants (k7 and k10) and
association constants (k5 and k8) of the distributive part of themechanism enable oscil-
lations to emergevia aHopf bifurcation. Specifically, under the simplifying assumption
that all dissociation (backward reaction) constants are equal (k2 = k6 = k9), if the
rate constants satisfy two inequalities—lower bounds on k10 and k5/k8—then the sys-
tem generically admits a Hopf bifurcation (Proposition 4.3 and Theorem 4.5). As a
comparison, for the fully distributive dual-site network described in Sect. 1.2 below,
the catalytic constants alone enable bistability (Conradi and Mincheva 2014). Finally,
we encode the relevant inequalities in a procedure to generate many parameter values
for which we expect oscillations (Procedure 5.1).

1.2 Connection to RelatedWork

Our work joins a growing number of works that harness steady-state parametriza-
tions. Such results include criteria for when such parametrizations exist (Johnston
et al. 2018; Thomson and Gunawardena 2009) and methods for using them to
determine whether a network is multistationary (Johnston 2014; Müller et al. 2016;
Millán and Dickenstein 2018; Millán and Turjanski 2015). Going further, steady-state
parametrizations can also be used to find a witness to multistationarity or even the
precise parameter regions that yield multistationarity (Conradi et al. 2017; Conradi
and Mincheva 2014). In this work, we use a steady-state parametrization in a novel
way: to study oscillations via Hopf bifurcations. (Our approach is similar in spirit to
using Clarke’s convex parameters together with a Hopf bifurcation criterion Domi-
jan and Kirkilionis 2009; Errami et al. 2015; Gatermann et al. 2005; Hadač et al.
2017.)

As mentioned earlier, there has been much interest in the dynamics of phosphoryla-
tion systems (Conradi and Shiu 2018). The mixed-mechanism network (1) fits into the
related literature as follows. Themixed network is a dual-site network situated between
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Table 2 Dual-site phosphorylation networks and their properties: whether they admit oscillations or bista-
bility, and whether all trajectories converge to a unique steady state

Dual-site network Oscillations? Bistability? Global convergence?

Fully processive No No Yes

Mixed-mechanism Yes No No

Fully distributive (Open) Yes No

two extremes: the fully processive dual-site network—in which the phosphorylation
and dephosphorylation mechanisms are both processive—and the fully distributive
dual-site network. One might therefore expect the dynamics of the mixed-mechanism
network to straddle those of the two networks. This is indeed the case. As summa-
rized in Table 2, and reviewed in Conradi and Shiu (2018), fully processive networks
are globally convergent to a unique steady state (Conradi and Shiu 2015; Eithun and
Shiu 2017; Rao 2017), while mixed-mechanism networks admit oscillations but not
bistability (Suwanmajo and Krishnan 2015), and fully distributive networks admit
bistability (Hell and Rendall 2015) and the question of oscillations is open (Conradi
and Shiu 2018).

Finally, we revisit Suwanmajo and Krishnan’s claim mentioned earlier that the
mixed-mechanism network is among the simplest enzymatic mechanisms with oscil-
lations. In support of this claim, Tung proved that the simpler system obtained from
the mixed-mechanism network by taking its (two-dimensional) Michaelis–Menten
approximation is not oscillatory (Tung 2018). Moreover, Rao showed that this approx-
imation is globally convergent to a unique steady state (Rao 2018). The validity of the
Michaelis–Menten approximation for phosphorylation systems has been called into
question (Salazar and Höfer 2009), and what we know about the mixed-mechanism
system concurs: this system is oscillatory, but its Michaelis–Menten approximation is
not.

The outline of our work is as follows. Section 2 provides background on multisite
phosphorylation, steady states, and Hopf bifurcations. Section 3 gives a monomial
parametrization of the steady states of mixed-mechanism network. In Sect. 4, we
prove our main results (described above). We use these results in Sect. 5 to give a
procedure for generating rate constants admitting Hopf bifurcations. In Sect. 6, we
present simulations that suggest that oscillations are the norm in the unstable steady-
state regime. Finally, we end with a Discussion in Sect. 7.

2 Background

In this section,we introduce theODEs arising from themixed-mechanismnetwork and
recall two criteria: the Routh–Hurwitz criterion for steady-state stability and Yang’s
criterion for Hopf bifurcations.
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Table 3 Assignment of variables
to species for the
mixed-mechanism network (1)

x1 x2 x3 x4 x5 x6 x7 x8 x9

S0 K S0K S1K S2 P S2P S1 S1P

2.1 Differential Equations of theMixed-MechanismNetwork

For the mixed-mechanism network (1), we let x1, x2, . . . , x9 denote the species con-
centrations in the order given in Table 3. The dynamical system (arising from mass
action kinetics) defined by themixed-mechanism network (1) is given by the following
ODEs:

ẋ1 = − k1x1x2 + k2x3 + k10x9
ẋ2 = − k1x1x2 + k2x3 + k4x4
ẋ3 = k1x1x2 − (k2 + k3)x3
ẋ4 = k3x3 − k4x4
ẋ5 = k4x4 − k5x5x6 + k6x7
ẋ6 = − k5x5x6 − k8x8x6 + (k6 + k7)x7 + (k9 + k10)x9
ẋ7 = k5x5x6 − (k6 + k7)x7
ẋ8 = k7x7 − k8x6x8 + k9x9
ẋ9 = k8x6x8 − (k9 + k10)x9. (2)

The conservation laws arise from the fact that the total amounts of free and bound
enzyme or substrate remain constant. That is, as the dynamical system (2) progresses,
the following three conservation values, denoted by Ktot, Ptot, Stot ∈ R>0, remain
constant:

Ktot = x2 + x3 + x4,

Ptot = x6 + x7 + x9,

Stot = x1 + x3 + x4 + x5 + x7 + x8 + x9. (3)

Also, a trajectory x(t) beginning in R
9≥0 remains in R

9≥0 for all positive time t , so
it remains in a stoichiometric compatibility class, which we denote as follows:

P = {x ∈ R
9≥0 | the conservation equations (3) hold}. (4)

2.2 Stability of Steady States and the Routh–Hurwitz Criterion

The dynamical system (2) arising from the mixed-mechanism network is an example
of a reaction kinetics system. That is, the system of ODEs takes the following form:

dx

dt
= � · R(x) =: g(x), (5)
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where� and R are as follows. Letting s denote the number of species and r the number
of reactions, � is an s × r matrix whose kth column is the reaction vector of the kth
reaction, i.e., it encodes the net change in each species that results when that reaction
takes place. Also, R : Rs≥0 → R

r≥0 encodes the reaction rates of the r reactions as
functions of the s species concentrations.

A steady state (respectively, positive steady state) of a reaction kinetics system is
a nonnegative concentration vector x∗ ∈ R

s≥0 (respectively, x∗ ∈ R
s
>0) at which the

ODEs (5) vanish: g(x∗) = 0. Letting S := im(�) denote the stoichiometric subspace,
a steady state x∗ is nondegenerate if Im (dg(x∗)|S) = S, where dg(x∗) denotes the
Jacobian matrix of g at x∗.

A nondegenerate steady state is locally asymptotically stable if each of the σ :=
dim(S) nonzero eigenvalues of dg(x∗) have negative real part. Hence, a steady state
is locally stable if and only if the characteristic polynomial of the Jacobian evaluated
at the steady state has σ roots with negative real part (the remaining roots will be 0).

To check whether a polynomial has only roots with negative real parts, we appeal
to the Routh–Hurwitz criterion below (Gantmacher 1959).

Definition 2.1 The i th Hurwitz matrix of a univariate polynomial p(λ) = a0λn +
a1λn−1 + · · · + an is the following i × i matrix:

Hi =

⎛
⎜⎜⎜⎝

a1 a0 0 0 0 · · · 0
a3 a2 a1 a0 0 · · · 0
...

...
...

...
...

...

a2i−1 a2i−2 a2i−3 a2i−4 a2i−5 · · · ai

⎞
⎟⎟⎟⎠ ,

in which the (k, l)th entry is a2k−l as long as 0 ≤ 2k − l ≤ n, and 0 otherwise.

Proposition 2.2 (Routh–Hurwitz criterion) A polynomial p(λ) = a0λn + a1λn−1 +
· · · + an with a0 > 0 has all roots with negative real part if and only if all n of its
Hurwitz matrices have positive determinant (det Hi > 0 for all i = 1, . . . , n).

2.3 Hopf Bifurcations and a Criterion Due to Yang

A simple Hopf bifurcation is a bifurcation in which a single complex conjugate pair
of eigenvalues of the Jacobian matrix crosses the imaginary axis, while all other
eigenvalues remain with negative real parts. Such a bifurcation, if it is supercritical,
generates nearby oscillations or periodic orbits (Liu 1994).

To detect simpleHopf bifurcations,wewill use a criterion ofYang that characterizes
Hopf bifurcations in terms of Hurwitz matrix determinants (Proposition 2.3).
Setup for Yang’s criterion We consider an ODE system parametrized by μ ∈ R:

ẋ = gμ(x),

where x ∈ R
n , and gμ(x) varies smoothly inμ and x . Assume that x0 ∈ R

n is a steady
state of the system defined by μ0, that is, gμ0(x0) = 0. Assume, furthermore, that we
have a smooth curve of steady states:
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μ �→ x(μ) (6)

(that is, gμ (x(μ)) = 0 for all μ) and that x(μ0) = x0. Denote the characteristic
polynomial of the Jacobian matrix of gμ, evaluated at x(μ), as follows:

pμ(λ) := det
(
λI − Jac gμ

) |x=x(μ) = λn + a1(μ)λn−1 + · · · + an(μ),

and, for i = 1, . . . , n, let Hi (μ) denote the i th Hurwitz matrix of pμ(λ).

Proposition 2.3 (Yang’s criterion Yang 2002) Assume the above setup. Then, there is
a simple Hopf bifurcation at x0 with respect to μ if and only if the following hold:

(i) an(μ0) > 0,
(ii) det H1(μ0) > 0, det H2(μ0) > 0, …, det Hn−2(μ0) > 0, and
(iii) det Hn−1(μ0) = 0 and d(det Hn−1(μ))

dμ
|μ=μ0 �= 0.

Remark 2.4 Liu (1994) gave an earlier version of Yang’s Hopf bifurcation criterion
(Proposition 2.3), using a variant of the Hurwitz matrices that differs from ours.

3 Steady States of theMixed-Mechanism Network

In this section, we recall that the mixed-mechanism network admits a unique steady
state in each compatibility class (Proposition 3.1) and prove that the set of steady states
admits amonomial parametrization (Preposition 3.2).We then use this parametrization
to analyze the space of compatibility classes (Proposition 3.6).

3.1 Uniqueness of Steady States

Suwanmajo and Krishnan proved that for every choice of positive rate constants and
positive total amounts, the mixed-mechanism network does not admit multiple posi-
tive steady states (Suwanmajo and Krishnan 2015, §A.2). Additionally, there are no
boundary steady states in any compatibility class P , as in (4), and P is compact.
Hence, via a standard application of the Brouwer fixed-point theorem (e.g., Millán
et al. 2012, Remark 3.9), there is always a unique steady state:

Proposition 3.1 (Uniqueness of steady states) For any choice of positive rate constants
ki and positive total amounts Ktot, Ptot,, and Stot, the dynamical system (2) arising
from the mixed-mechanism network has a unique steady state in P , and it is a positive
steady state.

Proposition 3.1 precludes the existence of multiple positive steady states, and hence,
the existence of a saddle node bifurcation. Thus, a Hopf bifurcation is the only other
one-parameter bifurcation which may occur. Indeed, we will show that a Hopf bifur-
cation exists for some parameter values in Sect. 4.

Also, Proposition 3.1 proves part of a conjecture that we posed (Conradi and Shiu
2015). The other half of the conjecture, however, posited that mixed-mechanism sys-
tems, like fully processive systems (Conradi and Shiu 2015; Eithun and Shiu 2017),
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are globally convergent to the unique steady state. Suwanmajo and Krishnan (2015)
demonstrated that this is false: the system can exhibit oscillatory behavior!

This capacity for oscillations is the focus of this work, and our analysis will harness
a monomial parametrization of the steady states. We turn to this topic now.

3.2 AMonomial Parametrization of the Steady States

The steady states of themixed-mechanism network can be parametrized bymonomials
and thus is said to have “toric steady states” (Millán et al. 2012):

Proposition 3.2 (Parametrization of the steady states) For every choice of rate con-
stants ki > 0, the set of positive steady states of the mixed-mechanism system (2) is
three-dimensional and is the image of the following map χ = χk1,...,k10 :

χ : R3+ → R
9+

(x1, x2, x6) �→ (x1, x2, . . . , x9), (7)

given by

x3 := k1
k2 + k3

x1x2, x4 := k1k3
(k2 + k3)k4

x1x2, x5 := k1k3(k6 + k7)

(k2 + k3)k5k7

x1x2
x6

,

x7 := k1k3
(k2 + k3)k7

x1x2, x8 := k1k3(k9 + k10)

(k2 + k3)k8k10

x1x2
x6

, x9 := k1k3
(k2 + k3)k10

x1x2.

Proof It is straightforward to check that the image of χ is contained in the set of steady
states: after substituting χ(x1, x2, x3), the right-hand side of the mixed-mechanism
network ODEs (2) vanishes. Conversely, let x∗ = (x1, x2, . . . , x9) be a positive steady
state. The right-hand side of the ODEs (2) vanish at x∗, so, in the following order, we
use ẋ3 = 0 to solve for x3 in terms of x1 and x2, use ẋ4 = 0 to solve for x4 via x3
which was already obtained, use ẋ1 = 0 to obtain x9, use ẋ9 = 0 to obtain x8, use
ẋ8 = 0 to obtain x7, and finally use ẋ7 = 0 to obtain x5. This yields precisely the
parametrization (7), so x∗ is in the image of χ . 	

Remark 3.3 The parametrization (7) appeared earlier in Conradi and Shiu (2018).

Remark 3.4 That we could achieve a steady-state parametrizationwas expected, due to
Thomson and Gunawardena’s rational parametrization theorem for multisite systems
(Thomson and Gunawardena 2009).

Remark 3.5 In the parametrization χ in Preposition 3.2, we divide by x6, so χ is
technically not a monomial map. However, χ can be made monomial: we introduce
y := x1

x6
, so that the parametrization accepts as input (y, x2, x6), and then x1 is replaced

by yx6.

3.3 A Parametrization of the Compatibility Classes

Every compatibility class P of the mixed-mechanism network, by definition (4), is
uniquely determined by a choice of total amounts (Ktot, Ptot, Stot) ∈ R

3
>0. Thus,
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we identify the set of compatibility classes with {(Ktot, Ptot, Stot)} = R
3
>0. We

parametrize this set below (Proposition 3.6).
Let φ : R

9
>0 → R

3
>0 denote the map sending a vector of concentrations to the

corresponding total amounts (Ktot, Ptot, Stot), as in (3):

φ(x) := (x2 + x3 + x4, x6 + x7 + x9, x1 + x3 + x4 + x5 + x7 + x8 + x9). (8)

Each compatibility class P contains a unique positive steady state (Proposition 3.1),
and the positive steady states are parametrized by χ from Preposition 3.2, so the space
of compatibility classes is parametrized as follows:

Proposition 3.6 (Parametrization of the compatibility classes) Identify every com-
patibility class P of the mixed-mechanism network (1), with the corresponding total
amounts (Ktot, Ptot, Stot) ∈ R

3
>0. Then, for every choice of positive rate constants ki ,

the following is a bijection that sends a vector (x1, x2, x6) ∈ R
3
>0 to the compatibility

class in which the unique steady state is χ(x1, x2, x6):

φ ◦ χ : R
3
>0 → R

3
>0 = {(Ktot, Ptot, Stot)},

where φ is as in (8) and χ is the steady-state parametrization (7). The map φ ◦ χ is
given by

(x1, x2, x6) �→
(

x2 + k1
k2 + k3

(
1 + k3

k4

)
x1x2, x6 + k1k3

k2 + k3

(
1

k7
+ 1

k10

)
x1x2,

x1 + k1k3
k2 + k3

[(
1

k3
+ 1

k4
+ 1

k7
+ 1

k10

)

+ 1

x6

(
k6 + k7

k5k7
+ k10 + k9

k10k8

)]
x1x2

)
,

which becomes, when the rate constants are those in Table 1, the following:

(x1, x2, x6) �→
(

x1x2 + x2, x6 + 1009

1800
x1x2, x1 + 2809

1800
x1x2 + 161

900

x1x2
x6

)
.

(9)

Example 3.7 Consider the mixed-mechanism system with rate constants from Table 1.
To compute the unique steady state x∗ in the compatibility class given by
(Ktot, Ptot, Stot) = (17.5, 5, 40), we use Proposition 3.6. Namely, we know that
φ ◦χ(x∗

1 , x∗
2 , x∗

6 ) = (17.5, 5, 40), so we solve (using, e.g., Mathematica 2018) for
the unique positive solution:

(x∗
1 , x∗

2 , x∗
6 ) ≈ (1.0134, 8.6916, 0.0624).
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Fig. 2 Numerical continuation of the unique positive steady state, in (10), when (Ktot, Ptot, Stot) =
(17.5, 5, 40): a for Ptot = 5, 8 and Stot = 40, we observe (supercritical) Hopf bifurcations at Ktot ≈
13.0296, 29.2251 (Ptot = 5) and Ktot ≈ 18.5758 (Ptot = 8). b For Ktot = 5 and Stot = 40, we observe
(supercritical) Hopf bifurcations at Ptot ≈ 4.6310 and Ptot ≈ 7.5479. c For Ktot = 17.5 and Ptot = 5, we
observe (supercritical) Hopf bifurcations at Stot ≈ 21.8213 and Stot ≈ 43.5944. All figures in this work
were made using Matcont (Dhooge et al. 2003) (colour figure online)
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Fig. 3 Slices of the Hopf bifurcation surface H, from Theorem 4.5. Specifically, displayed are the inter-
sections of H with the hyperplanes defined by a Stot = 40, b Ptot = 5, and c Ktot ≈ 13.0296. Each such
curve was obtained numerically, using Matcont (Dhooge et al. 2003), by a two-parameter continuation
of the Hopf bifurcation arising from Ktot ≈ 13.0296, Ptot = 5, and Stot = 40. Each point of the curves in
a–c corresponds to a Hopf bifurcation with respect to either of the two varying total concentrations. Points
“inside”H correspond to unstable steady states and thus the potential for oscillations (colour figure online)

We obtain the remaining coordinates of x∗ using the parametrization χ in (7):

x∗ = χ(x∗
1 , x∗

2 , x∗
6 )

≈ (1.0134, 8.6916, 4.4041, 4.4041, 1.4893, 0.0624, 4.8935, 23.7512, 0.0440).
(10)

3.4 Steady States and Hopf Bifurcations

Our analysis of oscillations in the mixed-mechanism system is based on Hopf bifurca-
tions.Hopf bifurcation diagrams are displayed in Fig. 2,where the total amounts are the
bifurcation parameters (c.f. Fig. 1 which is with respect to Ktot). Figure 2 suggests that
in the three-dimensional space of total amounts, there is a surface of Hopf bifurcations.
Indeed, wewill see in the next section that this is the case (see Theorem 4.5 and Fig. 3).

4 Hopf Bifurcations in theMixed-Mechanism System

We saw in the previous section that the mixed-mechanism network yields a unique
positive steady state in each compatibility class. Now, we show that the compatibility
classes with a stable steady state are separated from those with an unstable steady
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state by a single surface H (Proposition 4.1 and Theorem 4.2), and, under stronger
hypotheses, crossing the surface H generically corresponds to undergoing a Hopf
bifurcation (Theorem 4.5). (Recall that generically means that the exceptional set
has zero measure. So, we will show that the subset of the surface corresponding to
non-Hopf points has dimension at most 1.)

To simplify computations, we assume that dissociation (backward reaction) con-
stants are equal: k2 = k6 = k9. In chemistry, the forward reaction is usually more
thermodynamically favorable than the backward reaction. Therefore, the rate constant
of a forward reaction is much larger than the rate constant of the backward reaction
(Atkins et al. 2018). We choose small values for the dissociation rate constants in
Sect. 5, similar to what was done in Ferrell and Ha (2014).

Proposition 4.1 Consider the dynamical system (2) arising from the mixed-mechanism
network and any positive rate constants for which k2 = k6 = k9. Then:

1. Every compatibility class P contains a unique (positive) steady state x∗.
2. Exactly one of the following holds:

(a) The unique steady state x∗ in each compatibility class P is locally asymptoti-
cally stable.

(b) In the space of total amounts {(Ktot, Ptot, Stot)} = R
3
>0, which we identify with

the space of compatibility classes P , a surface H defines the border between
thoseP whose unique steady state x∗ is locally asymptotically stable and those
P for which x∗ is unstable.

Proof Item 1 follows from Proposition 3.1.
For item 2, let J denote the Jacobian matrix of the mixed-mechanism system (2),

with equal dissociation constants: k2 = k6 = k9 =: kb, evaluated at the parametrized
steady state χ(x1, x2, x6), from (7). The characteristic polynomial of J is:

p(λ) := det(λI − J ) = λ3(λ6 + b1λ
5 + b2λ

4 + · · · + b6),

where the coefficients bi (displayed below) are rational functions in x1, x2, x6, and the
ki ’s. To streamline reading, we only give the complete numerator of b6 and b1. The full
coefficients can be found in the Mathematica file mixed_coeffs_charpoly
_kb.nb.2

numerator(b6) = k21k23k4(k10 + k7)(k10k5k7 + k5k7kb + k10k8(k7 + kb))x1x22
+ k1k10k3k4k7(k3 + kb)(k10k5k7 + k5k7kb + k10k8(k7 + kb))x2x6

+ k210k4k5k27k8(k3 + kb)
2x26 + k1k210(k3 + k4)k5k27k8(k3 + kb)x1x26

+ k1k10k5k7(k10k4k7 + k3k4k7 + k10k3(k4 + k7))k8(k3 + kb)x2x26

numerator(b5) = k21k23k4(k10 + k7)(k10 + kb)(k7 + kb)x1x22
+ k1k10k3k4k7(k10 + kb)(k3 + kb)(k7 + kb)x2x6 + . . .

numerator(b4) = k1k3k4(k10 + k7)(k10 + kb)(k3 + kb)(k7 + kb)x1x2 + . . .

2 This file and others mentioned below are in the Supporting Information; see “Appendix A”.
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numerator(b3) = . . . + k21k3
(

k210(k7 + kb) + k7kb(k3 + k4 + k7 + kb)

+ k10
(
(k7 + kb)

2 + k3(2k7 + kb) + k4(2k7 + kb)
))

x21 x2 + . . .

numerator(b2) = . . . + k21k3(k7kb + k10(2k7 + kb))x21 x2 + . . .

numerator(b1) = k1k3(k7kb + k10(2k7 + kb))x1x2

+ k10k7(k3 + kb)(k10 + k3 + k4 + k7 + 3kb)x6

+ k1k10k7(k3 + kb)x1x6 + k1k10k7(k3 + kb)x2x6

+ k10k7(k5 + k8)(k3 + kb)x26 (11)

And for the denominators:

denominator(b6) = k10(kb + k3)k7
denominator(bi ) = k10(kb + k3)k7x6, for i = 2, 3, 4, 5.

As x1, x2, x6, and the ki are positive, thus b1, b2, . . . , b6 > 0 (in the aforementioned
Mathematica file, we checked the above numerators are sums of only positive
monomials).

Recall that, due to the three conservation laws (3), the Jacobian matrix has rank 6,
not 9. Accordingly, the relevant Hurwitz matrix, namely, for p(λ)/λ3, is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 1 0 0 0 0
b3 b2 b1 1 0 0
b5 b4 b3 b2 b1 1
0 b6 b5 b4 b3 b2
0 0 0 b6 b5 b4
0 0 0 0 0 b6

⎞
⎟⎟⎟⎟⎟⎟⎠

Consider the Hurwitz determinants. First det H1 = b1 > 0. The next three Hurwitz
determinants are also positive:

numerator(det H2) = k31k23(k7kb + k10(2k7 + kb))
2x31 x22

+ k31k10k3k7(k3 + kb)(k7kb + k10(2k7 + kb))x31 x2x6 + . . .

numerator(det H3) = k51k33(k10k5k7 + k5k7kb + k10k8(k7 + kb))

(k7kb + k10(2k7 + kb))
2x51 x32 x6 + . . .

numerator(det H4) = k71k43(k10k5k7 + k5k7kb + k10k8(k7

+ kb))(k7kb + k10(2k7 + kb))
2

(
k5k7(k3 + k4 + k7)kb + k210k8(k7 + kb) + k10(k3

+ k4 + k7)(k5k7 + k8(k7 + kb))
)

x71 x42 x26 + . . .
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where the denominators, which are positive, are, respectively:

denominator(det H2) = k210k27(kb + k3)2x26
denominator(det H3) = k310k37(kb + k3)3x36
denominator(det H4) = k410k47(kb + k3)4x46

(We display only the leading terms of the polynomials; the complete polynomials
together with an algorithmic verification of positivity are in mixed_Hi.nb.) The
final Hurwitz determinant is det H6 = (b6)(det H5), and we saw that b6 > 0. So, by
the Routh–Hurwitz criterion (Proposition 2.2), the steady state χ(x1, x2, x6) is locally
stable if and only if det H5 > 0.

Hence, the surface H that delineates the boundary between compatibility classes
with stable steady states versus those with unstable steady states is defined by det H5 ◦
(φ ◦ χ)−1 = 0, where φ ◦ χ is the parametrization of compatibility classes from
Proposition 3.6. IfH intersects the positive orthantR3

>0, then case (b) of the proposition
holds. Otherwise, if H ∩ R

3
>0 = ∅, then we claim that we are in case (a). To show

this, we need to verify that det H5(x1, x2, x6) > 0 for some (x1, x2, x6) ∈ R
3
>0. The

denominator of det H5(x1, x2, x6) is strictly positive:

denominator(det H5) = k510k57(k3 + kb)
5x56 .

So, we need only show that the numerator of det H5(x1, x2, x6) is strictly positive for
some (x1, x2, x6) ∈ R

3
>0.

To this end, we view this numerator as a polynomial in x1 (so the coefficients are
rational functions of x2, x6, and the ki ’s):

numerator(det H5) = x91 x42

(
k10k7x6(k3 + kb)

k3(k10(2k7 + kb) + k7kb)
+ x2

)

[
k8x6

(
α01 + α10

k5
k8

)
+ k28x26

(
α02 + α11

k5
k8

+ α20

(
k5
k8

)2
)

+ k38x36

(
α03 + α12

k5
k8

+ α21

(
k5
k8

)2

+ α30

(
k5
k8

)3
)]

+ lower degree terms in x1, (12)

where the coefficients αi j are sums of (many) positive monomials and are given in the
file mixed_analyis_H5N_x1_LT.nb. Therefore (for fixed x2 and x6), when x1
is sufficiently large, the expression (12) is positive, as desired. 	


The proof of Proposition 4.1 focused on the surface H defined by the equation
det H5 ◦ (φ ◦ χ)−1 = 0. This surface sometimes meets the positive orthant R3

>0, and
indeed we show that this is the case when certain relationships hold among the rate
constants.
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Theorem 4.2 Consider the dynamical system (2) arising from the mixed-mechanism
network. Assume the positive rate constants satisfy k2 = k6 = k9 and the following
inequality:

k10k3k4 − (k3 + k4)(k3 + k7)(k4 + k7) > 0. (13)

If k5/k8 is sufficiently large, then there is a compatibility class P whose unique steady
state x∗ is unstable.

Proof Assume that the rate constants satisfy k2 = k6 = k9 =: kb and (13). By the proof
of Proposition 4.1, a steady state χ(x1, x2, x6) of the mixed-mechanism system (2) is
locally stable if and only if det H5(x1, x2, x6) > 0. We also saw in that proof that the
denominator of det H5(x1, x2, x6) is strictly positive for all (x1, x2, x6) ∈ R

3
>0. So, by

Proposition 2.2, it suffices to show that if k5/k8 is sufficiently large, then there exists
(x∗

1 , x∗
2 , x∗

6 ) ∈ R
3
>0 such that the numerator of det H5(x∗

1 , x∗
2 , x∗

6 ) is strictly negative;
this would show that the steady state x∗ := χ(x∗

1 , x∗
2 , x∗

6 ) is unstable.
To this end, view the numerator of det H5 as a polynomial in x2 with coefficients

in x1, x6, and the ki ’s. It is a degree-9 polynomial in x2 of the following form (see the
file mixed_analysis_H5N_x2_LT.nb):

numerator(det H5) = k91

(
α0x36 + α1x26 + α2x6 + α3

)
(

x51 + k10k7(k3 + kb)

k3(k10(2k7 + kb) + k7kb)
x41 x6

)
x92

+ lower degree terms, (14)

where α0, …, α3 are rational functions in kb, k3, k4, k5, k7, k8, k10. These functions
αi are given in mixed_analysis_H5N_x2_LT.nb.

We nowanalyzeα0, which has the following form (seemixed_analysis_H5N_
x2_LT.nb):

α0 = k38

(
β0

(
k5
k8

)3

+ β1

(
k5
k8

)2

+ β2

(
k5
k8

)
+ β3

)
, (15)

where each coefficient βi is a rational function in kb, k3, k4, k7, k10 (and hence does
not depend on k1, k5, or k8). In particular, β0 is the following polynomial:

β0 = − k91k53k37 (k10k3k4 − (k3 + k4)(k3 + k7)(k4 + k7))(k10 + kb)
3 (k7kb + k10(2k7 + kb))

2.

It follows that β0 < 0, when inequality (13) holds.
Thus, when (13) holds, then, by Eq. (15), the inequality α0 < 0 holds for k5/k8

sufficiently large. In this case, the cubic polynomial in x6 appearing in (14), and hence
also the coefficient of x92 in the numerator of det H5, will be negative for x6 sufficiently
large. Hence, if we choose x1 := 1 (or any positive value) and x6 and x2 sufficiently
large, then the numerator of det H5 will be negative. 	
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In the remainder of this section, we focus on the question of whether the surface
H consists of (at least generically) Hopf bifurcations. If so, this would imply that
whenever a steady state of the mixed-mechanism network switches from stable to
unstable, we expect it to undergo a Hopf bifurcation leading to oscillations. We begin
our analyses of Hopf bifurcations by giving a criterion for such bifurcations.

Proposition 4.3 Consider the dynamical system (2) arising from the mixed-mechanism
network and any positive rate constants with k2 = k6 = k9 and k10k3k4 − (k3 +
k4)(k3 + k7)(k4 + k7) > 0. Then, there exists (x∗

1 , x∗
2 , x∗

6 ) ∈ R
3
>0 such that

det H5(x∗
1 , x∗

2 , x∗
6 ) = 0 (in other words, φ ◦ χ(x∗

1 , x∗
2 , x∗

6 ) is on H). Moreover, for
such a vector (x∗

1 , x∗
2 , x∗

6 ), the system undergoes a Hopf bifurcation with respect to x2
at the steady state χ(x∗

1 , x∗
2 , x∗

6 ) if and only if the following inequality holds:

d(numerator(det H5)|x1=x∗
1 , x6=x∗

6
)

dx2
|x2=x∗

2
�= 0. (16)

Proof Fix positive rate constants for which k2 = k6 = k9 and k10k3k4 − (k3 +
k4)(k3 + k7)(k4 + k7) > 0. By the proofs of Proposition 4.1 and Theorem 4.2, the
function det H5 : R3

>0 → R takes both positive and negative values. So, as det H5 is
continuous, det H5(x∗

1 , x∗
2 , x∗

6 ) = 0 for some (x∗
1 , x∗

2 , x∗
6 ) ∈ R

3
>0 (by the intermediate

value theorem).
Assume det H5(x∗

1 , x∗
2 , x∗

6 ) = 0. To see whether the steady state χ(x∗
1 , x∗

2 , x∗
6 ) is

a Hopf bifurcation with respect to the parameter μ = x2, where the curve of steady
states is x(μ) = χ(x∗

1 , μ, x∗
6 ) andμ0 = x∗

2 , we use Proposition 2.3 (Yang’s criterion).
Parts (i) and (ii) of that criterion hold for any steady state χ(x∗

1 , x∗
2 , x∗

6 ), because
b6 = b6(x∗

1 , x∗
2 , x∗

6 ) > 0, by (11), and also det Hi = det Hi (x∗
1 , x∗

2 , x∗
6 ) > 0 for i =

1, 2, 3, 4 (from the proof of Proposition 4.1). Recall from the proof of Proposition 4.1
that the denominator of det H5 is strictly positive and does not depend on x2; thus,
we can focus on the numerator of H5. So, by Proposition 2.3, χ(x∗

1 , x∗
2 , x∗

6 ) is a Hopf
bifurcation with respect to x2 if and only if (16) holds. 	

Remark 4.4 Given rate constants ki as in Proposition 4.3 for which there is a Hopf
bifurcation, we can perturb slightly the rate constants involved in (13) (while main-
taining the equality k2 = k6 = k9) and preserve the existence of a Hopf bifurcation.
Indeed, this assertion follows from Proposition 4.3 (inequality (16) is maintained
under small perturbations of the xi ’s), the fact that simple roots of a polynomial
depend continuously—in fact, infinitely differentiably—on the coefficients (Lozada-
Cruz 2012), and the fact that the inequality (13) defines a (relatively) open set in the
parameter space of the ki ’s.

Under the hypotheses of Proposition 4.3, we expect that inequality (16) holds
generically on H. We will confirm this when the rate constants are those in Table 1
(Theorem 4.5).

The proof of Theorem 4.5 makes use of discriminants, which we now review.
Consider a degree-n, univariate polynomial f = cn xn + cn−1xn−1 + · · · + c0 with
coefficients ci ∈ C. Amultiple root of f is some x∗ ∈ C for which (x −x∗)2 divides f
or equivalently f (x∗) = f ′(x∗) = 0. It is well known that f has a multiple root in C
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if and only if a certain multivariate polynomial in the ci ’s, the discriminant, vanishes
(Gelfand et al. 1994). For instance, the discriminant of the quadratic polynomial ax2+
bx + c is the familiar expression b2 − 4ac.

Theorem 4.5 (Hopf bifurcations of the mixed-mechanism network) Consider the
dynamical system (2) arising from the mixed-mechanism network and rate constants
in Table 1. Let H denote the surface, from Proposition 4.1, that defines the border
between those P whose unique steady state x∗ is locally stable and those P for which
x∗ is unstable. Then, H consists generically of compatibility classes P whose unique
steady state x∗ undergoes a simple Hopf bifurcation (with x2 as bifurcation parameter).

Proof It is straightforward to check that the rate constants in Table 1 satisfy the inequal-
ity (13). Therefore, the surface H as in Proposition 4.1.2(b) exists and is defined by
det H5 = 0, where H5 is the Hurwitz matrix (specialized to the rate constants in
Table 1) as in the proof of Proposition 4.1.

To prove thatH consists generically of Hopf bifurcations, we use Proposition 4.3.
That result states that χ(x∗

1 , x∗
2 , x∗

6 ) is a Hopf bifurcation with respect to x2 if and only
if (x∗

1 , x∗
2 , x∗

6 ) ∈ H′\S, where

H′ := V>0(det H5) :=
{
(x1, x2, x6) ∈ R

3
>0 | det H5(x1, x2, x6) = 0

}
, and

S :=
{
(x∗

1 , x∗
2 , x∗

6 ) ∈ H′
∣∣∣∣
d(det H5|x1=x∗

1 ,x6=x∗
6
)

dx2
|x2=x∗

2
= 0

}
⊆ H′.

We have thatH = φ ◦ χ(H′), and that the following subset ofH consists of compati-
bility classes whose unique steady state undergoes a simple Hopf bifurcation with x2
as bifurcation parameter: φ◦χ(H′\S). So, it suffices to show that dim(S) < dim(H′).
Note that dim(H′) ≥ 2, so we will show that dim(S) ≤ 1.

To this end, note that if (x∗
1 , x∗

2 , x∗
6 ) ∈ S, then x∗

2 is a multiple root of the univariate
polynomial numerator(det H5)|x1=x∗

1 , x6=x∗
6
(this also uses the fact the denominator

of det H5, which is 188956800000000000000x56 , does not depend on x2). Thus, any
(x∗

1 , x∗
2 , x∗

6 ) ∈ S satisfies D(x∗
1 , x∗

6 ) = 0, where D is the discriminant of det H5 and
H5 is viewed as a univariate polynomial in the variable x2. So, we have the map:

S → {(x1, x6) ∈ R
2 | D(x1, x6) = 0} =: D

(x1, x2, x6) �→ (x1, x6).

The preimage of any point of this map has size at most 4 (because
numerator(det H5)|x1=x∗

1 , x6=x∗
6
has degree 9, so it has at most four multiple roots).

Thus, to achieve our desired inequality (namely, dim(S) ≤ 1), we need only
prove the following claim: dim(D) ≤ 1 or, equivalently, the bivariate polyno-
mial D is not the zero polynomial. It suffices to show that D(1, 1) is nonzero,
which in turn would follow if we can show that the univariate, degree-9 polynomial
numerator(det H5)|x1=x∗

1 , x6=x∗
6

= H5(1, x2, 1) does not have a multiple root over C.
Indeed, using Mathematica, we see that the numerator of det H5(1, x2, 1) has nine
(distinct) complex roots:
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− 131.425, − 102.999, − 78.022, − 66.423, − 39.194,

− 3.946 ± 0.734i, − 3.677, 268.606.

Thus, D is a nonzero polynomial, and this completes the proof. 	

In Fig. 3, we show some slices of the Hopf bifurcation surface H (where the rate

constants are from Table 1). Accordingly, this figure extends the one-dimensional
Fig. 1.

The bifurcations analyzed in Proposition 4.3 and Theorem 4.5 are with respect to
the bifurcation parameter x2, the steady-state value of the kinase K . It is natural to ask
whether we also obtain a bifurcation with respect to a more biologically meaningful
parameter, such as a rate constant or a total amount. We now explain how to perform
such an analysis.

To use a total amount (here, we use Ptot) as a bifurcation parameter (perturbing this
parameter corresponds to perturbing the compatibility class), consider the following
maps:

{(Ktot, Ptot, Stot)} = R
3
>0

φ◦χ←− R
3
>0

h5:=det H5−→ R>0

Recall that (φ ◦ χ) : R3
>0 → R

3
>0 is a bijection. Let g := h5 ◦ (φ ◦ χ)−1 : R3

>0 → R.
Also, let p := (φ ◦ χ)2 = x6 + 1009

1800 x1x2 denote the second coordinate function of
φ ◦ χ from (9) (here, we assume the rate constants from Table 1). We are interested
in checking whether ∂g

∂ Ptot
is (generically) nonzero whenever g = 0. Accordingly, we

use the chain rule:

∂g

∂ Ptot
= 1

∂ p/∂x1

∂h5

∂x1
+ 1

∂ p/∂x2

∂h5

∂x2
+ 1

∂ p/∂x6

∂h5

∂x6

= 1800

1009x2

∂h5

∂x1
+ 1800

1009x1

∂h5

∂x2
+ ∂h5

∂x6
. (17)

For specific values of x1, x2, x6, it is straightforward to check whether the sum (17)
is nonzero. More generally, we expect this sum to be generically nonzero; that is, we
expect that the surfaceH consists generically of Hopf bifurcations with respect to the
total amount Ptot.

5 Generating Rate Constants Admitting Oscillations

The proof of Theorem 4.2 yields a recipe for generating rate constants for the mixed-
mechanism network at which we expect oscillations arising from a Hopf bifurcation.
Specifically, we choose rate constants ki for which the equalities k2 = k6 = k9 hold,
the inequality (13) holds, and α0 < 0 [as in (15)], and then pick x2 and x6 large enough
so that det H5 is negative but close to 0. We summarize these choices in the following
procedure.

Procedure 5.1 (Generating rate constants likely to admit oscillations)
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Input: The following functions3:

(i) α0 as in (15),
(ii) the numerator of det H5,
(iii) q := α0x36 + α1x26 + α2x6 + α3 as in (14), and
(iv) φ ◦ χ given in Proposition 3.6.

Output: Rate constants and total amounts for which det H5 is negative and close to
0.
Steps:

1. Choose positive values for kb := k2 = k6 = k9, x1, k1, k3, k4, k7, and k8.
2. Choose a positive value for k10 for which k10 >

(k3+k4)(k3+k7)(k4+k7)
k3k4

.

3. Choose the remaining rate constant k5 such that α0 < 0.
4. Choose x6 so that q < 0.
5. Choose x2 so that the numerator of det H5 is negative but close to 0.
6. Return the ki ’s and (Ktot, Ptot, Stot) := φ◦χ(x1, x2, x6), where φ◦χ is evaluated

at the ki ’s (and x1, x2, x6) chosen in the previous steps.

Remark 5.2 Using the output of Procedure 5.1, one can attempt to exhibit and analyze
oscillations or Hopf bifurcations using software, e.g., Matcont (Dhooge et al. 2003).
See Fig. 4.

Example 5.3 We follow Procedure 5.1 as follows (to verify our computations see the
file mixed_generate_rc.nb):

Step 1 We pick kb = 0.143738, k1 = 0.575284, k3 = 3.89096, k4 = 5.05386,
k7 = 9.25029, k8 = 0.621813, and x1 = 5.82148.

Step 2 The inequality for this step evaluates to k10 > 85.5048, so we choose k10 = 90.

Step 3 Evaluating α0 at the chosen ki ’s, we obtain the following inequality:

−8.896 × 1017k35 + 1.49735 × 1020k25 + 4.79701 × 1020k5 + 2.42695 × 1020 < 0,

which we find, using Mathematica, is feasible for k5 > 171.471. So, we pick
k5 = 172.

Step 4 By evaluating q at the values chosen above, we obtain the following inequality:

−1.41683×1022x36 − 3.5508×1025x26 − 1.80374×1025x6 + 2.15078×1024<0.

This inequality holds when x6 > 0.0996797, so we choose x6 = 0.1.

Step 5 By evaluating the numerator of det H5, we obtain the following inequality:

− 5.42893 × 1025x92−4.20944 × 1029x82 − 5.05393 × 1031x72 − 6.67609×1032x62

+ 4.66164×1033x52 + 3.97617 × 1034x42 + 1.01289 × 1035x32 + 1.19894 × 1035x22

+ 6.7831 × 1034x2+1.4718 × 1034 < 0.

3 The functions are provided as a text file in the Supporting Information. See “Appendix A”.
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Fig. 4 Numerical continuation of the steady state (18), when total amounts are as in (19): aA (supercritical)
Hopf bifurcations are at Ktot ≈ 24.0623 and 107.5635. b (Supercritical) Hopf bifurcations are at Ptot ≈
4.1022 and Ptot ≈ 2.3275. Matcont reported a branch point, the leftmost red circle, at Ptot ≈ −8.5427×
10−13, i.e., for Ptot ≈ 0 and thus outside the domain of interest. c A (supercritical) Hopf bifurcation is at
Stot ≈ 288.4384 (Color figure online)

This inequality is feasible, as computed in Mathematica, for x2 > 9.0382; we pick
x2 = 10.

Step 6 We have determined the following rate constants:

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

0.575284 0.143738 3.89096 5.05386 172 0.143738 9.25029 0.621813 0.143738 90

We obtain the following steady state, using (7):

(x1, x2, . . . , x9) = χ(x1, x2, x6)

= (5.82148, 10, 8.30052, 6.39056, 1.90691, 0.1,

3.49146, 520.229, 0.358855). (18)

Using this steady state, we obtain the total amounts, using (8):

(Ktot, Ptot, Stot) = φ(x1, x2, . . . , x9) = (24.6911, 3.95031, 546.499). (19)

The resulting bifurcation analysis is shown in Fig. 4.

6 Dynamics: Simulations and Conjectures

Are oscillations the norm when the mixed-mechanism system has an unstable steady
state? We conjecture that this is the case.

Conjecture 6.1 Consider the mixed-mechanism network, and any choice of rate con-
stants and total amounts. If the unique steady state in P is unstable, then P contains
a stable periodic orbit.

Some simulations are shown in Fig. 5. In (A) and (B) of that figure, we see solutions
converging to a period orbit; this system arises from total amounts similar to those
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Fig. 5 Numerical verification of oscillations in the mixed-mechanism system with rate constants as in
Table 1. For a, b, we used (Ktot, Ptot, Stot) = (14, 5, 40) and initial values as in (10). Here, the solution
converges to a periodic orbit. For c, we used (Ptot, Stot) = (8, 40) and three values for Ktot (namely, 100,
1000, and 10,000), and again initial values as in (10), except that x5 = 1.1. Again the solutions seem to
converge to a periodic orbit, and moreover this periodic orbit appears not to depend on the value of Ktot .
See Conjecture 6.2 (colour figure online)

that Suwanmajo and Krishnan found to support oscillations. In contrast, in Fig. 5(C),
we see oscillations, when (Ptot, Stot) = (8, 40), for three large values for Ktot: 100,
1000, and 10,000. Oscillations persist across these values, which yields a much larger
range for Ktot than Suwanmajo and Krishnan’s results would suggest.

Moreover, the value of Ktot appears not to affect the resulting periodic orbit (when
projected to x5, the concentration of the doubly phosphorylated substrate S2). Could
this be a biological designmechanism for robust timekeeping (for instance, in circadian
clocks)? Mathematically, we conjecture that oscillations indeed persist for arbitrarily
large Ktot; and, that the periodic orbit in x5 indeed does not depend on Ktot.

Conjecture 6.2

1. Consider the mixed-mechanism network with rate constants as in Table 1. Then,
there exist values of Ptot and Stot such that for Ktot arbitrarily large, the unique
steady state in P is unstable.

2. For such values of Ptot and Stot and for sufficiently large Ktot, the compatibility
class P contains a periodic orbit such that this orbit in x5 (the concentration of
S2) does not depend on the value of Ktot.

One way to tackle Conjecture 6.2 is to analyze the robustness of the period and the
amplitude with respect to Ktot using the theory developed in Bure and Rozenvasser
(1974), Ingalls (2004) and Ingalls et al. (2017).

Finally, we consider the dynamics in compatibility classes that contain a locally
stable steady state. Our simulations suggest that such a steady state is in fact globally
stable. Accordingly, we pose the question, Consider the mixed-mechanism network,
and any choice of rate constants and total amounts. If the unique steady state x∗ in
P is locally stable, does it always follow that x∗ is globally stable? In the Michaelis–
Menten limit, this is true (Rao 2018).

7 Discussion

We return to the question, How do oscillations emerge in phosphorylation networks?
Concretely, we would like (1) easy-to-check criteria for exactly which phosphoryla-
tion networks admit oscillations or Hopf bifurcations, and (2) for those networks that

123



C. Conradi et al.

admit oscillations, a better understanding of the “geography of parameter space,” that
is, a characterization of which rate constants and initial conditions yield oscillations.
Both of these problems are still unresolved, and the second problem in particular is
very difficult.

Nevertheless, here we made progress on characterizing some of the geography of
parameter space for themixed-mechanismphosphorylation network. Indeed,we found
that a single surface defines the boundary between stable and unstable steady states,
and this surface consists generically of Hopf bifurcations. Hence, when a steady state
switches from stable to unstable, then we expect it to undergo a Hopf bifurcation lead-
ing to oscillations. Additionally, we gave a procedure for generating many parameter
values leading to oscillations.

We now discuss the significance of our work. At a glance, it might seem that
our results are specific to network (1) and rate constants related to those in Table 1.
However, the approach is general: for other rate constants (e.g., estimated from data)
or other networks (e.g., a version of the ERK network from Rubinstein et al. (2016)
also has oscillations and a unique steady state), one could apply the same techniques.
Therefore, the potential impact is broad.

Going forward, we hope that the novel techniques we used—specifically, using
a steady-state parametrization together with a Hopf bifurcation criterion—will con-
tribute to solving other problems. For instance, we expect that such tools could help
solve an important open problem in this area (Conradi and Shiu 2018), namely the
question of whether oscillations or Hopf bifurcations arise from the fully distributive
phosphorylation network.

Acknowledgements ASwas partially supported by the NSF (DMS-1312473/1513364 and DMS-1752672)
and the Simons Foundation (#521874). AS thanks Jonathan Tyler for helpful discussions. CC was partially
supported by the Deutsche Forschungsgemeinschaft DFG (DFG-284057449).

A Files in the Supporting Information

The following files can be found as supplementary material:
Text files:

• mixed_H5N_kb.txt …contains H5N, the numerator of det H5 under the
assumption k2 = k6 = k9 = kb

• mixed_W.txt …contains a matrix W that defines (3)
• mixed_xt.txt …contains xt, the parameterization (7)
• mixed_Jx.txt …contains Jx, the Jacobian evaluated at the parameterization
(7)

Mathematica Notebooks:

• mixed_analysis_H5N_x1_LT.nb:
Functionality: This file can be used to obtain numerator(det H5) as in (12), in
particular to examine the coefficients α01, α10, …
Input: the file mixed_H5N_kb.txt
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• mixed_analysis_H5N_x2_LT.nb:
Functionality: This file can be used to obtain numerator(det H5) as in (14), in
particular to examine the coefficients α0, …, α3 and β0, …, β3.
Input: the file mixed_H5N_kb.txt

• mixed_coeffs_charpoly.nb:
Functionality: This file can be used to obtain the characteristic polynomial of the
Jacobian of the system (2). It contains the Mathematica commands to establish
bi > 0.
Input: the file mixed_Jx.txt

• mixed_Hi.nb:
Functionality: This file can be used to obtain the determinants of theHurwitzmatri-
ces H2,…, H5. It contains theMathematica commands to establish det Hi > 0,
for i = 2, 3, 4 and that det H5 is of mixed sign.
Input: the file mixed_Jx.txt

• mixed_generate_rc.nb:
Functionality: This file contains a realization of Procedure 5.1.
Input: the files mixed_H5N_kb.txt, mixed_W.txt, mixed_xt.txt,
mixed_Jx.txt.
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