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Abstract. Much attention has been focused in recent years on the following

algebraic problem arising from applications: which chemical reaction networks,
when taken with mass-action kinetics, admit multiple positive steady states?

The interest behind this question is in steady states that are stable. As a step

toward this difficult question, here we address the question of multiple non-
degenerate positive steady states. Mathematically, this asks whether certain

families of parametrized, real, sparse polynomial systems ever admit multiple

positive real roots that are simple. Our main results settle this problem for
certain types of small networks, and our techniques may point the way forward

for larger networks.

1. Introduction. This work is motivated by the Nondegeneracy Conjecture from
the study of reaction systems [17]: if a reaction network admits multiple positive
steady states, does it also admit multiple nondegenerate positive steady states?
Equivalently, for certain families of parametrized sparse-polynomial systems, if one
member of the family admits multiple positive roots, does some member admit
multiple multiplicity-one positive roots? In fact, there has been a great deal of work
on characterizing when a network is multistationary (surveyed in [16]), but much
less on nondegenerate multistationarity or the stronger condition of bistability [4].
If the Nondegeneracy Conjecture is true, then the concepts of multistationarity
and nondegenerate multistationarity are essentially equivalent. These questions
are important in applications, because bistable networks are thought to underlie
biochemical switches and other memory-encoding behavior [2].

Our main results verify the Nondegeneracy Conjecture for small networks (The-
orems 3.5 and 3.6). Namely, we replace “multistationary” by “nondegenerately
multistationary” in the case of two species for the following result, which is [17,
Theorems 5.8 and 5.12]:
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Network property Nondegenerately multistationary?

Network with only 1 species (s = 1)
If and only if some subnetwork is

2-alternating (Proposition 1.1) [17]

Network consists of 1 reaction (r = 1)

or 1 reversible-reaction pair
No (Proposition 1.2) [17]

Network consists of 2 reactions (r = 2) See Proposition 1.3 [17]

r + s ≤ 3 No ([17, Corollary 3.8])

s = 2 and 1 irreversible reaction

and 1 reversible-reaction pair
See Theorem 3.5

s = 2 and 2 reversible-reaction pairs See Theorem 3.6

Table 1. Summary of results on nondegenerate multistationarity
for small reactions. Here r denotes the number of reactions and s
the number of species. See Section 2.

Theorem 1.1 (Classification of multistationary networks with one reversible re-
action and one irreversible reaction, or two reversible reactions [17]). Let G be a
network consisting of:

• a reversible-reaction pair y � y′ and an irreversible reaction ỹ → ỹ′ (Case 1),
or

• two reversible-reaction pairs, y � y′ and ỹ � ỹ′ (Case 2).

Then the following statements are equivalent:

(1) G is multistationary.
(2) the reaction vectors are (nontrivial) scalar multiples of each other: y′ − y =

λ(ỹ′ − ỹ) for some 0 6= λ ∈ R, and, for some species i, the embedded network
of G obtained by removing all species except i is:
• in Case 1, a 2-alternating network (“� →” or “← �”), or
• in Case 2, a 3-alternating network (“� �”).

“Embedded” and “alternating” networks are defined later (Definitions 3.2 and 2.6).
As an example, consider the network G = {0 � A + B , 2A + B → 3A + 2B}.

Here two species, A and B, are produced at the same rate (hence, 0→ A+B), and
when they bind to each other, they are transported out of the cell (0 ← A + B)
or, in the case of two units of A and one of B binding, they upregulate their
own production (2A + B → 3A + 2B). Removing B yields the network {0 �
A , 2A → 3A}, which informally has the form “� →”. So, by Theorem 1.1,
network G is multistationary – and our contribution here is to show that G is in
fact nondegenerately multistationary (by Theorem 3.5). Although we can obtain the
same result by analyzing this network by hand, we can now decide nondegenerate
multistationarity quickly for this network and many others.

Indeed, our results add to the list of known results on nondegenerate multista-
tionarity for small networks, summarized in Table 1 (for details, see Section 2).
Additionally, our proofs may point the way toward more results to add to the table,
specifically results that elevate multistationarity to nondegenerate multistationarity.
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The reader may be wondering what we gain in focusing on small networks, rather
than larger networks coming from applications. The reason stems from a number
of recent results on how a given network’s capacity for multistationarity arises from
that of certain smaller networks [1, 15]. Here is one such “lifting” result, stated
informally: if N is a subnetwork of G and both networks have the same number
of conservation laws, then if N is nondegenerately multistationary, then G is too
(see Lemma 2.4). Therefore, we would like a catalogue of small nondegenerately
multistationary networks against which the networks N can be checked. Our work
is therefore a step in this direction, following earlier work [1, 8, 15, 17].

The techniques we harness in this work are largely algebraic. Specifically, we
prove Proposition 2, which concerns the following univariate polynomial:

g(z) = (T − µz)n2 − lzp1(T − µz)n1 +mzp2 ,

where µ > 0 and 1 ≤ p1 < p2 and 0 ≤ n1 < n2. We show that if there exist
parameters (T, l,m) ∈ R3

>0 such that the polynomial admits two or more positive
real roots, then we can perturb the parameters so that the polynomial admits two
or more multiplicity-one roots.

While such a result is straightforward for a univariate polynomial with arbitrary
coefficients, here the coefficients of g(z) depend only on T, l, and m although the
degree of g(z) is arbitrarily high. Thus, the coefficients satisfy relations which might
a priori preclude simple real roots. Indeed, such obstructions and other similar
obstructions occur for sparse polynomials; for instance, trinomials with coprime
exponents admit at most three distinct real roots (see [21, Theorem 4.8 and the
following remark]).

Accordingly, like [6], this work is an invitation to real algebraic geometers. We
hope to convey that the study of reaction systems leads to interesting problems
in real algebraic geometry. Indeed, algebraic techniques, such as elimination of
variables and steady-state parametrizations, have already contributed significantly
to recent progress in the field, e.g., [3, 4, 5, 9, 13, 18, 20].

The outline of our work is as follows. Section 2 provides background on chemical
reaction systems – including a summary of prior results on nondegenerate multista-
tionarity for small networks – and configurations of polynomials. We state our main
results in Section 3 and then prove them in Section 4. In Section 5, we describe
our efforts toward extending our results to more species. Finally, we end with a
Discussion in Section 6.

2. Background. In this section we provide background on chemical reaction sys-
tems (Section 2.1), their steady states (Section 2.2), and polynomials and their
discriminants (Section 2.3).

2.1. Chemical reaction systems. Our introduction to chemical reaction systems
follows closely the notation in [17].

An example of a chemical reaction is A + B → 3A + C, in which one unit of
chemical species A and one of B react to form three units of A and one of C. The
reactant A + B and the product 3A + C are called complexes. A reaction network
consists of finitely many reactions (see Definition 2.1).

Definition 2.1. A reaction network G := (S, C,R) consists of three finite sets:

1. a set of species S := {A1, A2, . . . , As},
2. a set C := {y1, y2, . . . , yp} of complexes (finite nonnegative-integer combina-

tions of the species), and
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3. a set of reactions, which are ordered pairs of complexes, excluding diagonal
pairs: R ⊆ (C × C) \ {(y, y) | y ∈ C}.

A subnetwork of a network G = (S, C,R) is a network G′ := (S ′, C′,R′) with S ′ ⊆ S,
C′ ⊆ C, and R′ ⊆ R.

Throughout this work, s and r denote the numbers of species and reactions,
respectively. A reaction yi → yj is reversible if its reverse reaction yj → yi is also
in R; we denote such a pair by yi 
 yj .

We write the i-th complex as yi1A1 + yi2A2 + · · · + yisAs (where yij ∈ Z≥0 is
the stoichiometric coefficient of Aj , for j = 1, 2, . . . , s), which defines the following
monomial:

xyi := xyi11 xyi22 · · ·xyiss .

For example, the two complexes in the reaction A+B → 3A+C yield the monomials
xAxB and x3AxC , which determine the vectors y1 = (1, 1, 0) and y2 = (3, 0, 1).
These vectors form the rows of a p× s-matrix of nonnegative integers, denoted by
Y := (yij). Next, the unknowns x1, x2, . . . , xs denote the concentrations of the s
species in the network, and we view them as functions xi(t) of time t.

For a reaction yi → yj from the i-th complex to the j-th complex, the reaction
vector yj − yi encodes the net change in each species that results when the reaction
takes place. The stoichiometric matrix Γ is the s× r matrix whose k-th column is
the reaction vector of the k-th reaction, that is, it is the vector yj − yi if k indexes
the reaction yi → yj . We associate to each reaction a rate constant κij , which is a
positive parameter.

The choice of kinetics is represented by a locally Lipschitz function R : Rs≥0 → Rr
that encodes the reaction rates of the r reactions as functions of the s species
concentrations. The reaction kinetics system defined by a reaction network G and
reaction rate function R is given by the following system of ODEs:

dx

dt
= Γ ·R(x) . (2.1)

For mass-action kinetics, the assumption for this work, the coordinates of R are
Rk(x) = κijx

yi , if k indexes the reaction yi → yj . A chemical reaction system refers
to the dynamical system (2.1) arising from a chemical reaction network (S, C,R)
and a choice of rate constants (κ∗ij) ∈ Rr>0 (recall that r is the number of reactions)
where the reaction rate function R is that of mass-action kinetics. Specifically, the
mass-action ODEs are the following ones:

dx

dt
=

∑
yi→yj is in R

κijx
yi(yj − yi) =: fκ(x) . (2.2)

The stoichiometric subspace, denoted by S, is the vector subspace of Rs spanned
by the reaction vectors yj − yi:

S := span ({yj − yi | yi → yj is in R}) .

Note that S = im(Γ), where Γ is the stoichiometric matrix. For the network con-
sisting of the single reaction A + B → 3A + C, we have that y2 − y1 = (2,−1, 1)
spans S.

The vector dx
dt in (2.1) lies in S for all time t. In fact, a trajectory x(t) begin-

ning at a positive vector x(0) = x0 ∈ Rs>0 remains in the following stoichiometric
compatibility class:

P := (x0 + S) ∩ Rs≥0 (2.3)
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for all positive time. That is, P is forward-invariant with respect to the dynam-
ics (2.1).

Example 2.2. Consider again the network from the introduction:{
0
k1
�
k2

A+B 2A+B
k3→ 3A+ 2B

}
.

The mass-action ODEs are:

dxA
dt

=
dxB
dt

= k1 − k2xAxB + k3x
2
AxB ,

and the stoichiometric subspace is S = span{(1, 1)t}. Thus, the stoichiometric
compatibility classes are the rays P = {(a, a + T ) | a ≥ 0, a + T ≥ 0} (for some
T ∈ R) in Figure 1.

0.5 1 1.5 2

0.5

1

1.5

2

xA

xB

Figure 1. Stoichiometric compatibility classes for the network in
Example 2.2.

2.2. Steady states. A steady state of a reaction kinetics system is a nonnegative
concentration vector x∗ ∈ Rs≥0 at which the right-hand side of the ODEs (2.1)

vanish: fκ(x∗) = 0. A steady state x∗ is nondegenerate if Im (dfκ(x∗)|S) = S,
where dfκ(x∗) is the Jacobian matrix of fκ at x∗. We are interested in positive
steady states x∗ ∈ Rs>0.

Definition 2.3.

1. A reaction kinetics system (2.1) is multistationary if there exists a stoichiomet-
ric compatibility class (2.3) with two or more positive steady states. Similarly,
a reaction kinetics system is nondegenerately multistationary if it admits two
or more nondegenerate positive steady states in some stoichiometric compat-
ibility class.

2. A network is multistationary if there exist some choice of positive rate con-
stants κij such that the resulting mass-action kinetics system (2.2) is multi-
stationary. Analogously, a network may be nondegenerately multistationary.

3. A network admits k positive steady states if there exists a choice of positive
rate constants so that the resulting mass-action system has exactly k positive
steady states in some stoichiometric compatibility class. Similarly, a network
may admit k nondegenerate positive steady states.
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We now state the conjecture mentioned in the introduction.

Conjecture 1 (Nondegeneracy Conjecture [17]). Consider a network G that does
not admit infinitely many positive steady states (in any stoichiometric compatibility
class). Then if G admits k positive steady states, then G admits k nondegenerate
positive steady states.

We know only two classes of network for which this conjecture has been proven:
networks with only one species [15, Theorem 3.6], and networks with up to two
reactions (see [15, Theorems 5.1 and 5.2] and their proofs). One goal of the present
work is to resolve the conjecture for 2-species networks comprising one irreversible
reaction and one reversible-reaction pair, or two reversible-reaction pairs.

We will use two results of Joshi and Shiu. The first [15, Theorem 3.1] “lifts”
steady states from a subnetwork to a larger network if they share the same stoi-
chiometric subspace:

Lemma 2.4. Let N be a subnetwork of a reaction network G that has the same
stoichiometric subspace as G. If N admits m nondegenerate positive steady states
(in some stoichiometric compatibility class, for some choice of rate constants), then
G admits at least m nondegenerate positive steady states.

To state the second result, we must recall some definitions from [17].

Definition 2.5. Let G be a reaction network that contains only one species A. So,
each reaction of G has the form aA → bA, where a, b ≥ 0 and a 6= b. Let m be
the number of (distinct) reactant complexes, and let a1 < a2 < . . . < am be their
stoichiometric coefficients. The arrow diagram of G, denoted ρ = (ρ1, . . . , ρm), is
the element of {→,←, •←→}m where:

ρi :=

 → if for all reactions aiA→ bA in G, it is the case that b > ai
← if for all reactions aiA→ bA in G, it is the case that b < ai
•←→ otherwise.

Definition 2.6. For positive integers T ≥ 1, a T -alternating network is a 1-species
network with exactly T + 1 reactions and with arrow diagram ρ ∈ {→,←}T+1 such
that ρi =→ if and only if ρi+1 =← for all i ∈ {1, . . . , T}.

Example 2.7. Consider the following network:

G = {0← A→ 2A� 3A} .

Two 1-alternating subnetworks of G have arrow diagram (→,←): {A→ 2A, 2A←
3A} and {2A → 3A, 2A ← 3A}. On the other hand, {0 ← A, A → 2A} is not a
1-alternating subnetwork of G: its arrow diagram is ( •←→). Finally, {0← A, 2A→
3A, 2A← 3A} is a 2-alternating subnetwork of G with arrow diagram (←,→,←).

Next we define reactant polytopes (Newton polytopes) and box diagrams.

Definition 2.8 ([11]). The reactant polytope of a network G is the convex hull of
the reactants of G (in Rs, where s is the number of species), that is, the smallest
convex set containing the set {yi | yi → yj is in R (for some j)}.

Definition 2.9. Let G be a network with exactly two species and two reactions,
y → y′ and ỹ → ỹ′, such that the reactant vectors differ in both coordinates (i.e.,
writing y = (yA, yB) and ỹ = (ỹA, ỹB), then both yA 6= ỹA and yB 6= ỹB). The box
diagram of the network G is the rectangle in R2 such that
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1. the edges are parallel to the axes of R2, and
2. the reactants y and y′ are two opposite corners of the rectangle.

Remark 1. The box diagram is the smallest rectangle containing the reactant
polytope.

We depict a box diagram together with the reaction vectors and the reactant
polytope (which in this case is the diagonal of the box that connects the two re-
actants). For example, consider the network {A → B, 2A + B → 3A}, which is
equivalent to a network considered in [7, §6] and also equivalent to a subnetwork of
a bistable network modeling apoptosis [14]. The box diagram is:

A

B
2A+B

3A

This box diagram has the form of one of the four depicted in Proposition 1, part
(3) below, so we conclude, by inspection, that the network is nondegenerately mul-
tistationary. Indeed, one of our goals is to obtain more easy-to-check criteria for
nondegenerate multistationarity.

The following result is [17, Theorems 3.6 and 5.2] (and summarized in Table 1):

Proposition 1. Let G be a reaction network with exactly r reactions and s species.
Then:

1. If s = 1, then G is nondegenerately multistationary if and only if G has a 2-
alternating subnetwork (i.e., with arrow diagram (→,←,→) or (←,→,←)).

2. If r = 1 or G consists of a reversible-reaction pair, then G is not multista-
tionary.

3. If r = 2, then G is nondegenerately multistationary if and only if for some
choice of species i and j, the projection of the box diagram to the (i, j)-plane
has one of the following “zigzag” forms:

and, if only one such pair (i, j) exists, then the slope of the marked diagonal
is not −1.

Proposition 1 says that the classification of nondegenerately multistationary net-
works is already complete for networks with 1 species or 1 or 2 reactions. Thus, in
this work we tackle the next cases, those of 1 irreversible reaction and 1 reversible-
reaction pair, or 2 reversible-reaction pairs – under the assumption of only 2 species
(Theorems 3.5 and 3.6). These results, prior and new, on nondegenerate multista-
tionarity for small networks are summarized Table 1.

2.3. Discriminants and configuration spaces of polynomials. Let d ∈ N. We
consider the configuration space of univariate polynomials of degree at most d:

Cd[z] :=
{
bdz

d + bd−1z
d−1 + · · ·+ b0 | b0, b1, . . . , bd ∈ C

}
.

Every polynomial f ∈ Cd[z] is uniquely determined by its coefficient vector, so Cd[z]
is isomorphic (as a vector space over C) to Cd+1.

Note that Cd[z] is a metric space induced by the Euclidean norm of the difference
of the corresponding coefficient vectors. We denote this metric by dist(·, ·). For
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every f ∈ Cd[z], we define

V(f) := {v ∈ C | f(v) = 0} .
It is well-known that roots of univariate polynomials f are continuous with re-

spect to the coefficients of f ; see e.g. [19, Theorem 1.3.1, page 10].

Theorem 2.10. The function V : Cd[z] → Symd(C), given by f 7→ V(f), is con-
tinuous.

Following Gelfand, Kapranov, Zelevinsky [10, Chapter 9] we define the subset

∇0 := {f ∈ Cd[z] | there exists v ∈ C \ {0} with f(v) = f ′(v) = 0} ,
and let ∇ denote its Zariski closure. It is well known that ∇ is a hypersurface
defined by a single polynomial [10].

Theorem 2.11. For d ≥ 2 the set ∇ is a hypersurface in Cd[z], and there exists
an irreducible, integral polynomial ∆ ∈ Z[b0, . . . , bd] such that V(∆) = ∇, which is
unique up to sign.

The polynomial ∆ is the discriminant for Cd[z]. The set Cd[z]\∇ is a well-studied
mathematical object with various applications, e.g., for knot theory or Morse func-
tions [22].

3. Main results. Our main results (Theorems 3.5 and 3.6) strengthen, in the
case of 2 species, the classification of multistationary networks with one reversible-
reaction pair and one irreversible reaction, or two reversible-reaction pairs (Theo-
rem 1.1). Our results state that these multistationary networks are indeed nonde-
generately multistationary, thereby lending support for the Nondegeneracy Conjec-
ture (Conjecture 1).

To state Theorem 3.5, we must introduce “embedded” networks, which generalize
subnetworks. A subnetwork N is obtained from a reaction network G by removing
a subset of reactions (that is, setting some of the reaction rates to 0), while an
embedded network is obtained by removing a subset of reactions and/or species.
For instance, removing the species B from the reaction A+B → A+ C yields the
reaction A→ A+ C.

Definition 3.1. The restriction of a set of reactionsR to a set of species S, denoted
by R|S , is the subset of R remaining after (1) setting to 0 the stoichiometric coeffi-
cients of all species not in S, and then (2) discarding any trivial reactions (reactions
of the form

∑
miAi →

∑
miAi, i.e., when the source complex equals the product)

and keeping only one copy of any duplicate reactions.

Definition 3.2. The embedded network N of a network G := (S, C,R) obtained by
removing a set of reactions {y → y′} ⊆ R and a set of species {Xi} ⊆ S is

N :=
(
S|C|RN

, C|RN
, RN := (R \ {y → y′}) |S\{Xi}

)
,

where C|RN
denotes the set of complexes of the set of reactions RN , and S|C|RN

denotes the set of species in the set of complexes C|RN
.

Example 3.3. Consider the network G = {2B � A + B , 2A + B ← 3A}. Its
1-species embedded networks are {0 � A , 2A← 3A} and {0→ B � 2B}, neither
of which is 2-alternating. Hence, by Theorem 1.1, network G is not multistationary
(and thus not nondegenerately multistationary).
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Example 3.4. Recall the network G = {0 � A + B , 2A + B → 3A + 2B} from
Example 2.2. The 1-species embedded network {0 � A , 2A→ 3A} is 2-alternating
(informally, it has the form “� →”). Also, the reaction vectors are scalar multiples
of each other. So, by Theorem 1.1, network G is multistationary. In fact, we see
next that G is nondegenerately multistationary (Theorem 3.5). No prior work yields
this result (see Table 1).

Theorem 3.5 (Classification of nondegenerately multistationary, 2-species net-
works with one reversible reaction and one irreversible reaction). Let G be a 2-
species network that consists of one reversible-reaction pair y � y′ and one irre-
versible reaction ỹ → ỹ′. Then the following statements are equivalent:

(1) G is nondegenerately multistationary.
(2) the reaction vectors are (nontrivial) scalar multiples of each other: y′ − y =

λ(ỹ′− ỹ) for some 0 6= λ ∈ R, and, for some species i, the embedded network of
G obtained by removing all species except i is a 2-alternating network (“� →”
or “← �”).

Theorem 3.5, which we prove in Section 4, yields the following result:

Theorem 3.6 (Classification of nondegenerately multistationary, 2-species net-
works with two reversible-reaction pairs). Let G be a 2-species network that consists
of two reversible-reaction pairs, y � y′ and ỹ � ỹ′. Then the following statements
are equivalent:

(1) G is nondegenerately multistationary.
(2) the reaction vectors are (nontrivial) scalar multiples of each other: y′ − y =

λ(ỹ′− ỹ) for some 0 6= λ ∈ R, and, for some species i, the embedded network of
G obtained by removing all species except i is a 3-alternating network (“� �”).

Proof. First, (1) ⇒ (2) follows immediately from Theorem 1.1. As for the con-
verse, (2) says that G has a one-dimensional stoichiometric subspace and has a
1-species embedded network that is 3-alternating (“� �”), which therefore has
a 2-alternating subnetwork of the form “� →” (and in fact also has one of the
form “← �”). Thus, by Theorem 3.5, the corresponding subnetwork N of G is
nondegenerately multistationary. So, by Lemma 2.4, G too is nondegenerately mul-
tistationary.

4. Proof of the main result. The main technical piece for proving Theorem 3.5
is the following proposition:

Proposition 2. Fix µ > 0 and integers p1, p2, n1, n2 for which 1 ≤ p1 < p2 and
0 ≤ n1 < n2, and consider the following polynomial:

g(z) := (T − µz)n2 − lzp1(T − µz)n1 +mzp2 . (4.1)

Assume that there exists (T, l,m) ∈ R3
>0 for which g(z) admits two or more distinct

real roots in the interval (0, T/µ). Then there exists (T̃ , l̃, m̃) ∈ R3
>0 yielding a

polynomial g̃ of the form (4.1) that admits two or more (distinct) multiplicity-one

roots in (0, T̃ /µ).

Before proving Proposition 2, we recall why it is nontrivial. Given Theorem 2.11,
the proposition would be trivial if we were instead considering a general polynomial
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in Cd[z] (where d := max{n2, n1 + p1, p2}, as the zero set ∇ of the discrimi-
nant is codimension-one in this space). However, we are considering only a three-
dimensional subset of Rd[z] :=

{
bdz

d + bd−1z
d−1 + · · ·+ b0 | b0, b1, . . . , bd ∈ R

}
, aris-

ing from (4.1), which a priori could be contained in ∇.
As a first step towards a proof of Proposition 2 we show the following lemma.

Lemma 4.1. Let the notation be as in Proposition 2. Assume that b is a root of g
in the interval (0, T/µ). Then for all ε > 0, there exists a polynomial g̃ of the form

(4.1) with parameters (T̃ , l̃, m̃) ∈ R3
>0 such that

• dist(g, g̃) < ε and
• g̃(b) = 0, and b has multiplicity one.

Proof. Let g be as in Proposition 2, with parameters (T,m, l). First, we claim that
we can assume µ = 1. Indeed, if 1 6= µ ∈ R>0, then consider the isomorphism
R→ R, given by z 7→ z/µ, and replace l by l · µp1 and m by m · µp2 . We can carry
out this replacement, because we are only interested in the multiplicity of roots,
and thereby obtain an equivalent µ = 1 version of g.

We rearrange g(z) as follows:

g(z) = (T − z)n1
[
(T − z)n2−n1 − (l + zp2)zp1

]
+ (m+ (T − z)n1zp1)zp2 . (4.2)

Assume that b ∈ (0, T/µ) = (0, T ) is a root of g. It is straightforward to check
from equation (4.2) that there exists a one-dimensional subspace of polynomials of
the form (4.1) with the same root b; namely, these polynomials are defined by the

parameters (T, l̃, m̃), where:

l̃ := l + λbp2 and m̃ := m+ λ(T − b)n1bp1 , (4.3)

for any choice of λ ∈ R.
Fix ε > 0. To complete the proof, it suffices to show that there exists λ > 0 such

that for the polynomial g̃(z) given by the induced parameters (T, l̃, m̃), as in (4.3),
it holds that dist(g, g̃) < ε and b is a root of multiplicity one for g̃. Hence, for the
rest of the proof, we assume (for contradiction) that no such λ exists.

In particular, for λ sufficiently small, b is a multiple root of g in (4.1), where

(T, l̃, m̃) are as in (4.3). Thus, g ∈ ∇ and g(b) = g′(b). We compute, using (4.1):

g′(b) = −n2(T − b)n2−1 −
(
p1lb

p1−1(T − b)n1 − lbp1n1(T − b)n1−1
)

+ p2mb
p2−1

= (T − b)n1−1
[
−n2(T − b)n2−n1 − l

(
p1b

p1−1(T − b)− bp1n1
)]

+ p2mb
p2−1

Hence, g(b) = g′(b) is equivalent to:

(T − b)n1
(
(T − b)n2−n1 − lbp1

)
+mbp2

= (T − b)n1−1
[
−n2(T − b)n2−n1 − l(p1bp1−1(T − b)− bp1n1)

]
+ p2mb

p2−1 .

We rearrange this equation to obtain:

(T − b)
(
(T − b)n2−n1 − lbp1

)
+
mbp2−1(b− p2)

(T − b)n1−1

= −n2(T − b)n2−n1 − l
(
p1b

p1−1(T − b)− bp1n1
)
,

and then arrange so that only terms involving l or m appear on the left-hand side:

lbp1
((p1

b
− 1
)

(T − b)− n1
)

+
mbp2−1(b− p2)

(T − b)n1−1
(4.4)

= (−n2 − (T − b))(T − b)n2−n1 .
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Equation (4.4) holds equally well when l and m are replaced by, respectively, l̃
and m̃ as in (4.3), for sufficiently small λ 6= 0 (because we have assumed that b is a

multiple root of the polynomial (4.1) given by (T, l̃, m̃)). Subtracting equation (4.4)

from the version of equation (4.4) obtained by replacing l and m by, respectively, l̃
and m̃ as in (4.3) — the resulting right-hand side is 0 because the right-hand side
of (4.4) does not depend on l or m — we obtain:

λbp2bp1
((p1

b
− 1
)

(T − b)− n1
)

+
λ(T − b)n1bp1bp2−1(b− p2)

(T − b)n1−1
= 0 .

It is straightforward to simplify this equation (after dividing by λbp1bp2) to obtain:

(p1 − p2)(T − b) = bn1 . (4.5)

We have reached a contradiction: the left-hand side of equation (4.5) is negative
(because p1 < p2 and T −b > 0), while the right-hand side is non-negative (as b > 0
and n1 ≥ 0). This contradiction holds for all choices of λ 6= 0, and so completes the
proof.

Proof of Proposition 2. Consider a polynomial g as given in the proposition. By
assumption, g has at least two positive real roots a1 and a2 in the interval (0, T/µ).
We can assume that at least one root has multiplicity at least two, as otherwise
nothing is left to show. We distinguish several cases.

Case 1. a1 has multiplicity at least two, and a2 has multiplicity one. Define

δ := min

{
a1, a2,

1

2
dist (a1, T/µ) ,

1

2
dist (a2, T/µ) ,

1

2
dist(a1, a2)

}
.

We apply Lemma 4.1 with respect to a1 and a sufficiently small ε > 0. We obtain
a new polynomial g̃ of the form (4.1) such that g̃(a1) = 0 and a1 has multiplicity
one. Roots of polynomials are continuous in their coefficients, by Theorem 2.10, so
we know that every root of g̃ is in a δ-neighborhood of a root of g (by choosing ε
sufficiently small). Since g̃ is real, and non-real roots of real polynomials appear
in complex-conjugate pairs, and a2 is an isolated real root of g, there must exist
an isolated real root ã2 of g̃ in a δ-neighborhood of a2. Finally, we require that
ε < min

{
1
2 dist (a1, T/µ) , 1

2 dist (a2, T/µ)
}

, so that by construction, a1 and ã2 are

distinct multiplicity-one roots of g̃ in the interval (0, T̃ /µ).

Case 2. Both roots a1 and a2 have multiplicity at least two, and one of the
roots, say a1, has even multiplicity. We apply Lemma 4.1 with respect to a1 and a
sufficiently small ε > 0. We obtain a new polynomial g̃ of the form (4.1) such that
g̃(a1) = 0 and a1 has multiplicity one. Since g̃ is a real polynomial and thus its
non-real roots appear in complex-conjugate pairs, g̃ has another positive, real root
a3 in a δ-neighborhood of a1, and a3 has odd multiplicity due to Theorem 2.10. If
a3 has multiplicity one, then we are done. Otherwise, g̃ has a root a3 of multiplicity
at least two and a root a1 of multiplicity one, so we are thus reduced to Case 1.

Case 3. Both roots a1 and a2 have odd multiplicity at least three. We apply
Lemma 4.1 with respect to a1 and a sufficiently small ε > 0. We obtain a new
polynomial g̃ of the form (4.1) such that g̃(a1) = 0 and a1 has multiplicity one.
Since a2 has odd multiplicity and g̃ is real, g̃ has a positive real root ã2 in a δ-
neighborhood of a2. If ã2 has multiplicity one, then we are done. Otherwise, g̃ has
a root ã2 of multiplicity at least two and a root a1 of multiplicity one, so we are
again reduced to Case 1.
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We can now prove Theorem 3.5.

Proof of Theorem 3.5. In light of Proposition 1, what we must prove is that for
any 2-species network G consisting of one reversible-reaction pair y � y′ and one
irreversible reaction ỹ → ỹ′, if G is multistationary, then it is in fact nondegenerately
multistationary. Accordingly, let G be such a network, and denote its species by A
and B. We know by Proposition 1 that y′ − y = λ(ỹ′ − ỹ) for some 0 6= λ ∈ R,
and also that the embedded network of G obtained by removing one of the species,
which without loss of generality we assume is species B, is a 2-alternating network
(“� →” or “← �”). Thus, after switching y and y′ if necessary (so that yA < y′A),
we have that either

yA < y′A < ỹA or ỹA < yA < y′A , (4.6)

for, respectively, the “� →” case or the “← �” case.
Each of these 2 cases breaks further into 6 subcases, based on:

1. whether the slope of the reaction vectors is positive (that is, yB < y′B) or
negative (yB > y′B), and

2. whether y′B < ỹB , or y′B = ỹB , or y′B > ỹB ; these three subcases correspond
to when the boxes in the box diagrams look, respectively, as follows:

y′
ỹ

y′ ỹ
y′

ỹ

(Regarding item (1) above, if yB = y′B , then db
dt = 0, so this reduces to a 1-species

network, and this case is done by Proposition 1, part (1).)
We group the above possibilities as follows:

Case 1. (a) yB > y′B < ỹB or (b) yB < y′B > ỹB . Visually, case (a) looks like one
of the following, depending on which of the inequalities in (4.6) holds:

Similarly, case (b) looks like one of the following diagrams:

Thus, for such a network G, some subnetwork N has the shape given in Propo-
sition 1, and thus N is nondegenerately multistationary – unless the slope of the
marked diagonal is −1. So, when the slope of the marked diagonal is not −1, then
by Lemma 2.4, the original network G also is nondegenerately multistationary.

Finally, we consider the subcase (of case (b)) in which the slope of the marked
diagonal is −1, i.e., y′A + y′B = ỹA + ỹB . Thus, the second and third summand in
the right-hand side of (4.7) below have the same total degree, and this degree is
higher than that of the first summand. The differential equations are:

da

dt
= κ1(y′A − yA)ayAbyB − κ2(y′A − yA)ay

′
Aby

′
B + κ3(ỹ′A − ỹA)aỹAbỹB (4.7)

db

dt
= µ

da

dt
,

where µ := (y′B − yB)/(y′A − yA) > 0. Hence, we are interested in counting the
number of positive multiplicity-one roots of the right-hand side of (4.7), when the
substitution b := µa + T is made, and we are free to choose any real value for T
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and any positive values for the κi’s. After performing the following operations to
the right-hand side of (4.7):

1. Substitute b := µa+ T , and
2. Divide by ayA (which is fine because we are interested in positive roots).

we obtain:

g(a) := κ1(y′A − yA)(µa+ T )yB − κ2(y′A − yA)ay
′
A−yA(µa+ T )y

′
B (4.8)

+ κ3(ỹ′A − ỹA)aỹA−yA(µa+ T )ỹB .

We can choose κ2 and κ3 so that the leading coefficient of g is positive (by ensuring

that the inequality κ2(y′A−yA)µy
′
B < κ3(ỹ′A− ỹA)µỹB holds), so lima→∞ g(a) =∞.

Also, notice that g(0) > 0 as long as T > 0. So, by the intermediate value theorem,
it suffices to show that g(1) < 0 when T and κ1 are chosen appropriately. To see
this, observe:

g(1) = κ1(y′A − yA)(µ+ T )yB − κ2(y′A − yA)(µ+ T )y
′
B + κ3(ỹ′A − ỹA)(µ+ T )ỹB ,

and recall that yB < y′B > ỹB , so for T sufficiently large, g(1) < 0.

Case 2. yB < y′B ≤ ỹB . There are, from (4.6), two subcases. We consider first the
subcase of yA < y′A < ỹA (“� →”), depicted here:

(yA, yB)

(y′A, y
′
B)

(ỹA, ỹB)

(ỹ′A, ỹ
′
B)

κ1

κ2

κ3

Hence,

da

dt
= κ1(y′A − yA)ayAbyB − κ2(y′A − yA)ay

′
Aby

′
B + κ3(ỹ′A − ỹA)aỹAbỹB (4.9)

db

dt
= µ

da

dt
,

where µ := (y′B − yB)/(y′A − yA) > 0. Hence, we are interested in counting the
number of positive multiplicity-one roots of the right-hand side of (4.9), when the
substitution b := T + µa is made, and we are free to choose any real value for T
and any positive values for the κi’s. Let p1 := y′A − yA and p2 := ỹA − yA (so, the
pi’s are integers satisfying 1 ≤ p1 ≤ p2), and let n1 := y′B − yB and n2 := ỹB − yB
(so the ni’s are integers with 0 ≤ n1 < n2). After performing the following three
operations on the right-hand side of (4.9):

1. Divide by ayAbyB (which is fine because we are interested in positive roots),
2. Substitute b := µa (that is, we pick T = 0), and
3. Divide by the positive term κ1(y′A − yA),

we obtain:

g(a) := 1− κ2
κ1
ap1(µa)n1 +

κ3(ỹ′A − ỹA)

κ1(y′A − yA)
ap2(µa)n2

= 1− lap1+n1 +map2+n2 , (4.10)
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where l := κ2/κ1µ
n1 and m := κ3(ỹ′A − ỹA)/(κ1(y′A − yA))µn2 . Note that p1+n1 <

p2 + n2. Also, we can choose any positive values for l and m by choosing the (pos-
itive) κi’s appropriately. Thus, our question is whether there exist positive values
of m and l for which the univariate polynomial g(a), in (4.10), admits two more
positive multiplicity-one roots. Indeed, this follows from the converse of Descartes’
rule of signs [12, Theorem 1], restated in [17, Lemma 3.16].

Finally, the remaining subcase, when ỹA < yA < y′A (the “←�” case), is similar.
Specifically, after performing the steps analogous to those for the prior subcase, we
obtain a polynomial whose negative has the form equal to the expression in (4.10).
So, again, we can use the converse of Descartes’ rule of signs to complete this
subcase.

Remaining case: yB > y′B ≥ ỹB . There are, from (4.6), two subcases. We
consider first the subcase of yA < y′A < ỹA (“� →”), depicted here:

(yA, yB)

(y′A, y
′
B)

(ỹA, ỹB)

(ỹ′A, ỹ
′
B)

κ1
κ2

κ3

Hence,

da

dt
= κ1(y′A − yA)ayAbyB − κ2(y′A − yA)ay

′
Aby

′
B + κ3(ỹ′A − ỹA)aỹAbỹB (4.11)

db

dt
= −µda

dt
,

where µ := (yB − y′B)/(y′A − yA) > 0. Hence, we are interested in counting the
number of positive multiplicity-one roots of the right-hand side of (4.11), when the
substitution b := T − µa is made, and we are free to choose any positive values of
T and the κi’s. Let p1 := y′A − yA and p2 := ỹA − yA (so, the pi’s are integers
satisfying 1 ≤ p1 ≤ p2), and let n1 := y′B − ỹB and n2 := yB − ỹB (so the ni’s are
integers with 0 ≤ n1 < n2). After performing the following three operations to the
right-hand side of (4.11):

1. Divide by ayAbỹB (which is fine because we are interested in positive roots),
2. Substitute b := T − µa, and
3. Divide by the positive term κ1(y′A − yA),

we obtain:

g(a) := (T − µa)n2 − κ2(y′A − yA)

κ1(y′A − yA)
ap1(T − µa)n1 +

κ3(ỹ′A − ỹA)

κ1(y′A − yA)
ap2

= (T − µa)n2 − lap1(T − µa)n1 +map2 , (4.12)

where l := κ2/κ1 and m := κ3(ỹ′A − ỹA)/(κ1(y′A − yA)). Note that we can choose
any positive values for l and m by choosing the (positive) κi’s appropriately.

Thus, our question is whether there exist positive values of T,m, l for which the
univariate polynomial g(a), in (4.12), admits two more positive multiplicity-one
roots in the interval (0, T/µ). We already know, because G is multistationary, that
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g admits two or more distinct positive roots in such an interval (for some choice of
positive T,m, l). Thus, by Proposition 2, we get the desired conclusion.

Finally, the remaining subcase, when ỹA < yA < y′A (the “←�” case), is similar.
Specifically, after performing the steps analogous to those for the prior subcase, we
obtain a polynomial whose negative has the form equal to the expression in (4.12).
So, again, we can use Proposition 2 to complete the proof.

5. Toward results for three or more species. In this section, we describe efforts
toward extending Theorem 3.5 to allow for more than two species. Specifically, our
future goal is to prove the following conjecture:

Conjecture 2. A network G that consists of one reversible-reaction pair y � y′

and one irreversible reaction ỹ → ỹ′ is nondegenerately multistationary if and only if
the reaction vectors are (nontrivial) scalar multiples of each other: y′−y = λ(ỹ′− ỹ)
for some 0 6= λ ∈ R, and, for some species i, the embedded network of G obtained
by removing all species except i is a 2-alternating network (“� →” or “← �”).

We unfortunately cannot prove Conjecture 2, but in some cases (see Example 5.1)
but not all (Example 5.2) we can reduce networks with 3 or more species to the
case of 2 species.

Example 5.1. Consider the following 4-species network:

2C + 2D
k1
�
k2

A+B + C +D 2A+ 2B + C +D
k3→ 3A+ 3B . (5.1)

The conservation-law equations are

b = a+ T1 c = T2 − a d = T3 − a , (5.2)

for some T1 ∈ R and T2, T3 > 0. After substituting the equations (5.2) into the
steady-state equation, we obtain:

0 = k1(T2 − a)2(T3 − a)2 − k2a(a+ T1)(T2 − a)(T3 − a)

+ k3a
2(a+ T1)2(T2 − a)(T3 − a) . (5.3)

If we choose T1 = 0 and T2 = T3 =: T , equation (5.3) reduces to:

0 = k1(T − a)4 − k2a2(T − a)2 + k3a
4(T − a)2 , (5.4)

which in turn has the general form of the steady-state equation (after conservation-
law substitution) for the following network:

4E
k1
�
k2

2A+ 2E 4A+ 2E
k3→ 6A . (5.5)

Network (5.5) is known from Theorem 3.5 to be nondegenerately multistationary,
so there exists T > 0 such that equation (5.4) has multiple nondegenerate roots.
Therefore, the original network (5.1) is also nondegenerately multistationary.

In Example 5.1, we showed that the 4-species network (5.1) is nondegenerately
multistationary by reducing to the 2-species case. Let us summarize this approach,
which applies to certain networks (with 3 or more species) in which every species
i = 2, 3, . . . , s satisfies dxi

dt = ±dx1

dt (here, without loss of generality, the species
having the form “� →” or “← �” is species 1). For every species i = 2, ..., s for
which dxi

dt = dx1

dt , we set Ti = 0, and then we set all remaining Ti’s equal to each
other. If the resulting steady-state equation has the form arising from a (2-species)
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network that is known to be nondegenerately multistationary, then we are done:
the original network also is.

This technique, however, does not always work, as the following example shows.

Example 5.2. Consider the following 4-species network:

2C + 2D
k1
�
k2

A+B + C +D 2A+ C +D
k3→ 3A+B . (5.6)

The conservation-law equations are given in (5.2), the same as those for Example 5.1.
After substituting the equations (5.2) into the steady-state equation, we obtain:

0 = k1(T2 − a)2(T3 − a)2 − k2a(a+ T1)(T2 − a)(T3 − a) + k3a
2(T2 − a)(T3 − a) .

(5.7)

This time, however, when we choose T1 = 0 and T2 = T3 =: T , equation (5.7)
becomes:

0 = k1(T − a)4 − k2a2(T − a)2 + k3a
2(T − a)2

= k1(T − a)4 + (−k2 + k3)a2(T − a)2 ,

which does not arise from the steady-state equation of a 2-species network that is
known to be nondegenerate. Hence, if we want to show that network (5.6) is nonde-
generately multistationary, we will need another approach. (For such an approach,
see Remark 2.)

Remark 2. An ad-hoc method for proving that network (5.6) is nondegenerately
multistationary is as follows. First, rearrange (5.7) as follows:

0 = (T2 − a)(T3 − a) ·
[
(k1 + k3 − k2)a2 − (k1(T2 + T3) + k2T1)a+ k1T2T3

]
.

(5.8)

Now choose (k1, k2, k3) := (2/9, 1, 16/9) and (T1, T2, T3) := (8/3, 3, 3) so that (5.8)
becomes:

0 = (T2 − a)(T3 − a)
[
a2 − 3a+ 2

]
= (3− a)(3− a)(a− 2)(a− 1) .

This equation has two simple roots, a∗ = 1 and a∗ = 2, in the interval (0,min
(T2, T3)) = (0, 3). These roots correspond to nondegenerate steady states, so net-
work (5.6) is nondegenerately multistationary.

6. Discussion. Our work was motivated by the Nondegeneracy Conjecture: Is a
network multistationary if and only if it is nondegenerately multistationary? At first,
one might think this is easily so; we would expect to be able to perturb parameters
to make a degenerate steady state become nondegenerate. Indeed, we succeed in
doing precisely this for small networks (Theorems 3.5 and 3.6). Nevertheless, such
arguments are subtle. The perturbations must be done carefully, as we saw in the
proof of Lemma 4.1.

Looking forward, we expect that the algebraic techniques we used here will help
us classify more (perhaps all) one-dimensional reaction systems (recall Conjecture 2
and see also [17, Question 6.1]). Indeed, to resolve such problems, we will need tools
for analyzing families of univariate polynomials.

Finally, as mentioned earlier, our true interest in applications goes beyond mul-
tistationarity – to multistability. We do not yet have a complete classification of
one-dimensional multistable networks, not even among networks consisting of (a)
2 irreversible reactions, (b) 1 irreversible and 1 reversible-reaction pair, or (c) 2
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reversible-reaction pairs ([17, Question 6.2]). What our work contributes here are
corresponding results at the level of multistationarity – which then point the way
forward for achieving multistability.
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[11] M. Gopalkrishnan, E. Miller and A. Shiu, A geometric approach to the global attractor

conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758–797.

[12] D. J. Grabiner, Descartes’ rule of signs: Another construction, Amer. Math. Monthly, 106
(1999), 854–856.

[13] E. Gross, H. A. Harrington, Z. Rosen and B. Sturmfels, Algebraic systems biology: A case

study for the Wnt pathway, Bull. Math. Biol., 78 (2016), 21–51.
[14] K. L. Ho and H. A. Harrington, Bistability in apoptosis by receptor clustering, PLoS Comput.

Biol., 6 (2010), e1000956, 9pp.

[15] B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math.
Chem., 51 (2013), 153–178.

[16] B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multi-

stationary, Math. Model. Nat. Phenom., 10 (2015), 47–67.
[17] B. Joshi and A. Shiu, Which small reaction networks are multistationary?, SIAM J. Appl.

Dyn. Syst., 16 (2017), 802–833.
[18] M. P. Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl.

Dyn. Syst., 17 (2018), 1650–1682.
[19] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, vol. 26 of London Math-

ematical Society Monographs. New Series, The Clarendon Press, Oxford University Press,
Oxford, 2002.

[20] M. A. Sweeney, Conditions for solvability in chemical reaction networks at quasi-steady-state,
Preprint, arXiv:1712.05533.

[21] T. Theobald and T. de Wolff, Norms of roots of trinomials, Math. Ann., 366 (2016), 219–247.

http://www.ams.org/mathscinet-getitem?mr=MR3784124&return=pdf
http://dx.doi.org/10.1137/16M1103506
http://dx.doi.org/10.1137/16M1103506
http://dx.doi.org/10.1006/jtbi.2000.1068
http://dx.doi.org/10.1371/journal.pcbi.1005751
http://dx.doi.org/10.1371/journal.pcbi.1005751
http://dx.doi.org/10.1016/j.bpj.2017.11.3787
http://dx.doi.org/10.1016/j.bpj.2017.11.3787
http://dx.doi.org/10.1039/C5IB00009B
http://dx.doi.org/10.1039/C5IB00009B
http://www.ams.org/mathscinet-getitem?mr=MR3457596&return=pdf
http://dx.doi.org/10.1090/conm/656/13076
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://www.ams.org/mathscinet-getitem?mr=MR3506509&return=pdf
http://dx.doi.org/10.1016/j.amc.2016.04.030
http://dx.doi.org/10.1016/j.amc.2016.04.030
http://www.ams.org/mathscinet-getitem?mr=MR1882230&return=pdf
http://dx.doi.org/10.1006/jsco.2001.0512
http://dx.doi.org/10.1006/jsco.2001.0512
http://www.ams.org/mathscinet-getitem?mr=MR1264417&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://www.ams.org/mathscinet-getitem?mr=MR3199409&return=pdf
http://dx.doi.org/10.1137/130928170
http://dx.doi.org/10.1137/130928170
http://www.ams.org/mathscinet-getitem?mr=MR1732666&return=pdf
http://dx.doi.org/10.1080/00029890.1999.12005131
http://www.ams.org/mathscinet-getitem?mr=MR3452313&return=pdf
http://dx.doi.org/10.1007/s11538-015-0125-1
http://dx.doi.org/10.1007/s11538-015-0125-1
http://www.ams.org/mathscinet-getitem?mr=MR2740172&return=pdf
http://dx.doi.org/10.1371/journal.pcbi.1000956
http://www.ams.org/mathscinet-getitem?mr=MR3009908&return=pdf
http://dx.doi.org/10.1007/s10910-012-0072-0
http://www.ams.org/mathscinet-getitem?mr=MR3395742&return=pdf
http://dx.doi.org/10.1051/mmnp/201510504
http://dx.doi.org/10.1051/mmnp/201510504
http://www.ams.org/mathscinet-getitem?mr=MR3633777&return=pdf
http://dx.doi.org/10.1137/16M1069705
http://www.ams.org/mathscinet-getitem?mr=MR3811780&return=pdf
http://dx.doi.org/10.1137/17M1113722
http://www.ams.org/mathscinet-getitem?mr=MR1954841&return=pdf
http://arxiv.org/pdf/1712.05533
http://www.ams.org/mathscinet-getitem?mr=MR3552238&return=pdf
http://dx.doi.org/10.1007/s00208-015-1323-8


18 ANNE SHIU AND TIMO DE WOLFF

[22] V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applica-
tions, vol. 98 of Translations of Mathematical Monographs, American Mathematical Society,

Providence, RI, 1992, Translated from the Russian by B. Goldfarb.

Received January 2018; revised May 2018.

E-mail address: annejls@math.tamu.edu

E-mail address: dewolff@math.tu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=MR1168473&return=pdf
mailto:annejls@math.tamu.edu
mailto:dewolff@math.tu-berlin.de

	1. Introduction
	2. Background
	2.1. Chemical reaction systems
	2.2. Steady states
	2.3. Discriminants and configuration spaces of polynomials

	3. Main results
	4. Proof of the main result
	5. Toward results for three or more species
	6. Discussion
	Acknowledgments
	REFERENCES

