
Compressed Coded Distributed Computing

Songze Li∗, Mohammad Ali Maddah-Ali †, and A. Salman Avestimehr∗

∗ Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
† Nokia Bell Labs, Holmdel, NJ, USA

Abstract—Communication overhead is one of the major perfor-
mance bottlenecks in large-scale distributed computing systems,
especially for machine learning applications. Conventionally,
compression techniques are used to reduce the load of communi-
cation by combining intermediate results of the same computation
task as much as possible. Recently, via the development of
coded distributed computing (CDC), it has been shown that
it is possible to code across intermediate results of different
tasks to further reduce communication. We propose a new
scheme, named compressed coded distributed computing (in short,
compressed CDC), which jointly exploits these two techniques
(i.e., combining intermediate results of the same computation
and coding across intermediate results of different computations)
to significantly reduce the communication load for computations
with linear aggregation of intermediate results in the final stage
that are prevalent in machine learning (e.g., distributed training
where partial gradients are computed distributedly and then
averaged in the final stage). In particular, compressed CDC
first compresses/combines several intermediate results for a single
computation, and then utilizes multiple such combined packets to
create a coded multicast packet that is simultaneously useful for
multiple computations. We characterize the achievable commu-
nication load of compressed CDC and show that it substantially
outperforms both combining methods and CDC scheme.

I. INTRODUCTION

In order to scale up machine learning applications that

process a massive amount of data, various distributed com-

puting frameworks have been developed where data is stored

and processed distributedly on multiple cores or GPUs on a

single machine, or multiple machines in computing clusters

(see, e.g., [1], [2]). When implementing these frameworks,

the communication overhead of shuffling intermediate results

across distributed computing nodes is a major performance

bottleneck. For example, it was observed in [3] that on a

Facebook’s Hadoop cluster, 33% of the job execution time was

spent on data shuffling. This bottleneck is becoming worse

for training deep neural networks with millions of model

parameters (e.g., ResNet-50 [4]) using distributed stochastic

gradient descent, where partial gradients with millions of

entries need to be passed between computing nodes.

Conventionally, compression techniques are used to reduce

the communication load by combining intermediate results of

the same computation task as much as possible. For example,

in the original MapReduce framework [1], when the Reduce

function is commutative and associative, a “combiner func-

tion” is proposed to pre-combine multiple intermediate values

with the same key computed from different Map functions.

Then, instead of sending multiple values to the reducer, the

mapper sends the pre-combined value whose size is the same

as one uncombined value, which significantly reduces the

bandwidth consumption without any performance loss.

Coded distributed computing (CDC) is another approach

that has been recently proposed in [5], [6] to mitigate the

communication bottleneck. Unlike the compression/combining

technique, CDC enables coding opportunities across inter-

mediate results of different computation tasks to reduce the

communication load. In particular, within a MapReduce-type

model, CDC specifies a repetitive pattern of computing Map

functions, creating side information at the computing nodes

that enables coded multicasting during data shuffling across

nodes, where each coded multicast packet is simultaneously

useful for multiple Reduce tasks. For example, if we repeat

each Map task r times across the cluster, then utilizing the

CDC scheme, we can reduce the total amount of bandwidth

consumption by r times. It has been shown that CDC can

provide substantial speedups in practice [7], and several gen-

eralizations of it have been developed in the literature [8]–[11].

We focus on MapReduce-type distributed computing frame-

works and propose a new scheme, named compressed coded

distributed computing (in short, compressed CDC). It jointly

exploits the above compression/combining technique and the

CDC scheme to significantly reduce the communication load

for computation tasks with linear Reduce functions that are

prevalent in data analytics (e.g., distributed gradient descent

where the partial gradients computed at multiple distributed

computing nodes are averaged to reduce to the final gradient).

In particular, the compressed CDC scheme specifies a repeti-

tive storage of the dataset across distributed computing nodes.

Each node, after processing locally stored files, first pre-

combines several intermediate values of a single computation

task needed by another node. Having generated multiple such

pre-combined packets for different tasks, the node further

codes them to generate a coded multicast packet that is si-

multaneously useful for multiple tasks. Therefore, compressed

CDC enjoys both the intra-computation gain from combining,

and the inter-computation gain from coded multicasting.

We characterize the achievable communication load of com-

pressed CDC and show that it substantially outperforms both

combining methods and CDC scheme. In particular, compared

with the scheme that only relies on the combining technique,

compressed CDC reduces the communication load by a factor

that is proportional to the storage size of each computing

node, which is significant for the common scenarios where

large-scale machine learning tasks are executed on commodity

servers with relatively small storage size. On the other hand,

compared with the CDC scheme whose communication load

scales linearly with the size of the dataset, compressed CDC

eliminates this dependency by pre-combining intermediate

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 2032

We propose the compressed coded distributed computing

(compressed CDC) scheme, which jointly utilizes the com-

bining and the coded multicasting techniques. We present the

performance of compressed CDC in the following theorem,

and give its general description in the next section

Theorem 1. To execute J computation jobs with linear ag-

gregation of intermediate results, each of which processes

N input files to compute Q output functions, distributedly

over K computing nodes each with a local storage of size µ,

the proposed compressed CDC scheme achieves the following

communication load

Lcompressed CDC = (1−µ)(µK+1)
µK

, (5)

for µK ∈ {1, . . . ,K−1}, and J = γ
(

K
µK+1

)

, for some γ ∈ N.

Remark 1. Compared with the compression scheme whose

communication load is in (3), for large K, the proposed

compressed CDC scheme reduces the communication load by

a factor of µ when 1
K
≤µ < 1

2 , and by a factor of 1−µ when
1
2 ≤ µ < 1. In the scenarios where the cluster consists of

many low-end computing nodes with small storage size (e.g.,

µ = 1
K

), this reduction factor can scale with the network

size. Also, in contrast to the compression scheme, the load

Lcompressed CDC keeps decreasing as storage size µ increases. �

Remark 2. Unlike the communication load in (4) achieved by

the CDC scheme, the load achieved by the compressed CDC

scheme does not grow with the number of input files. This is

accomplished by pre-combining multiple intermediate values

of the same Reduce function. �

Remark 3. The file placement of the compressed CDC scheme

is performed such that all N input files of each particular

computation job are placed exclusively on a unique subset

of µK + 1 nodes, following a repetitive pattern specified by

the CDC scheme. As a result, the compressed CDC scheme

executes a batch of
(

K
µK+1

)

jobs in parallel. In the Shuffle

phase of compressed CDC, each computing node first pre-

combines several intermediate values of a single function

reduced at another node, and then applies bit-wise XOR

operations on multiple such pre-combined packets to generate

a coded multicast packet that is simultaneously useful for

computing µK functions. We note that these µK functions

can be different functions in the same job, as well as different

functions in different jobs. �

IV. DESCRIPTION OF THE COMPRESSED CDC SCHEME

We present the general compressed CDC scheme. In [23],

we also provide a running example to illustrate the scheme.

We consider the storage size µ such that µK ∈
{1, 2, . . . ,K−1}, and take sufficiently many computation jobs

to process in parallel, where the number of jobs J = γ
(

K
µK+1

)

,

for some γ ∈ N. The proposed compressed CDC scheme

operates on a batch of
(

K
µK+1

)

jobs at a time, and repeats

the same operations γ times to process all jobs. Therefore, it

is sufficient to describe the scheme for the case of γ=1.

A. File placement

For each job j, j = 1, 2, . . . ,
(

K
µK+1

)

, all of its input

files w1(j) , w2(j) , . . . , wN(j) are stored exclusively on a unique

subset of µK + 1 nodes, and we denote the set of indices of

these nodes as Kj . Within Kj , each file wn(j) of job j is

repeatedly stored on µK nodes. In particular, we first evenly

partition the files w1(j) , w2(j) , . . . , wN(j) into µK+1 batches,

and label each batch by a unique size-µK subset of Kj ,

denoted by Pj . Then, we store all the files in a batch on each

of the µK nodes whose index is in the corresponding subset

Pj . We denote the set of indices of the files from job j in a

batch labelled by a subset Pj as BPj
. The file placement is

performed such that for each Pj ⊂ Kj with |Pj | = µK, and

each n(j) ∈ BPj
, we have n(j) ∈ Mk, for all k ∈ Pj , where

Mk is the set of indices of all files stored at Node k.

Applying the above file placement, each node in Kj stores

µK × N
µK+1 files. Since each node is in

(

K−1
µK

)

subsets of

{1, 2, . . . ,K} of size µK + 1, it stores overall µKN
µK+1 ×

(

K−1
µK

)

= µJN files, satisfying its local storage constraint.

B. Coded computing

The compressed CDC scheme performs computation and

data shuffling in subsets of µK+1 nodes. Within each subset

Kj , j = 1, 2, . . . ,
(

K
µK+1

)

, that contains the indices of |Kj |=
µK+1 nodes, the scheme proceeds in two stages. In the first

stage, the nodes in Kj process the files they have exclusively

stored, i.e., the files of job j. In the second stage, they handle

the files from other jobs.

1) Stage 1 (coding for a single job): All computing nodes

in Kj only process input files and compute output functions

for job j. For ease of exposition, we drop all the job indices

in the rest of the description of stage 1.

In the Map phase, each node k ∈ K maps all the files of job

j it has stored locally, for all output functions of job j. After

the Map phase, for each subset P of size µK, and k′ ∈ K\P ,

each node in P has computed Q
K

intermediate values, one for

each of the functions assigned to Node k′, from each of the

files in the batch BP . More precisely, these intermediate values

are {vq,n : q ∈ Sk′ , n ∈ BP}.

In the Shuffle phase, for each subset P ⊂ K of size µK,

the nodes in P sum up the above intermediate values, for each

q ∈ Sk′ , obtaining a pre-combined value v̄q,P =
∑

n∈BP
vq,n.

Having computed Q
K

such pre-combined values {v̄q,P : q ∈
Sk′}, the nodes in P concatenate them to generate a packet

VP , and evenly and arbitrarily split it into µK segments. We

label the segments by the elements in P . That is, for P =
{i1, i2, . . . , iµK}, we have VP =(VP,i1 , VP,i2 , . . . , VP,iµK

).

Finally, each node k in K generates a coded packet X
stage 1

k

by computing bit-wise XOR (denoted by ⊕) of the data

segments labelled by k, i.e.,

X
stage 1

k = ⊕
P⊂K:|P|=µK,k∈P

VP,k, (6)

and multicasts Xk to all other nodes in K.

After Node k receives a coded packet X
stage 1

k′ from Node k′,

it cancels all the segments VP,k′s with k ∈ P , and recovers the

intended segment VK\{k},k′ . Repeating this decoding process

for all received coded packets, Node k recovers VK\{k}, and

hence v̄q,K\{k}, for all q ∈ Sk. Using these values, together

with the local Map results, Node k computes the output φq

2018 IEEE International Symposium on Information Theory (ISIT)

2035

for all q ∈ Sk. After the first stage of computation, each node

in Kj completes its computation tasks for job j.

Since each of the coded packets in (6) contains Q
K

× T
µK

bits, the communication load exerted in the Shuffle phase of

the first stage is Lstage 1 =
Q
K

×
(µK+1)T

µK
JQT

=
µK+1
µK
JK

.

2) Stage 2 (coding across jobs): For a node i outside Kj ,

and each k ∈ Kj , we label the job whose input files are

exclusively stored on the nodes in {i} ∪ Kj\{k} as jk. The

nodes in Pjk = Kj\{k} share a batch of N
µK+1 files in BPjk

for job jk. In the Map phase, for each k′ ∈ Pjk , Node k′

computes Q
K

intermediate values, one for each function of job

jk assigned to Node k in S
(jk)
k , from each of the files in

the batch BPjk
. More precisely, these intermediate values are

{vq(jk),n(jk) : q(jk) ∈ S
(jk)
k , n(jk) ∈ BPjk

}.

In the Shuffle phase, for each k∈Kj , the nodes in Pjk sum

up the above Map results, for each q(jk) ∈ S
(jk)
k , obtaining

v̄q(jk),Pjk
=

∑

n(jk)∈BPjk

vq(jk),n(jk) .

Next, as similarly done in the first stage, the nodes in

Pjk first concatenate the above Q
K

pre-combined values

{v̄q(jk),Pjk
: q(jk) ∈ S

(jk)
k } to generate a packet VPjk

, and

then split it into µK segments. We label these segments by

the elements in Pjk , i.e., for Pjk = {i1, i2, . . . , iµK}, we have

VPjk
=(VPjk

,i1 , VPjk
,i2 , . . . , VPjk

,iµK
).

Finally, each node k′ in Kj generates a coded packet X
stage 2

k′

by bit-wise XORing the data segments labelled by k′, i.e.,

X
stage 2

k′ = ⊕
t∈Kj\{k′}

VPjt
,k′ , (7)

and multicasts X
stage 2

k′ to all other nodes in Kj .

We note that since the job index jt (whose input files are

exclusively stored on nodes in {i} ∪ Kj\{t}) is different

for different t, the above coded packet is generated using

intermediate values from different jobs.

Having received a coded packet X
stage 2

k′ from Node k′,

Node k cancels all the segments VPjt
,k′s with k ∈ Pjt ,

and recovers the intended segment VPjk
,k′ . Repeating this

decoding process for all received coded packets, Node k

recovers VPjk
, and hence v̄q(jk),Pjk

, for all q(jk) ∈ S
(jk)
k .

We repeat the above operations for all i∈{1, 2, . . . ,K}\Kj .

By the end of the second stage, each node in Kj recovers

partial sums to compute functions from K−µK−1 jobs.

The communication load incurred in the Shuffle phase, for

a particular i, is
Q
K

×µK+1
µK

JQ
, and the total communication load

of the second stage is Lstage 2 =
(K−µK−1)

µK+1
µK

JK
.

Having performed this two-stage operation on all subsets Kj

of µK+1 nodes, j = 1, 2, . . . ,
(

K
µK+1

)

, each node k finishes

computing its assigned functions from
(

K−1
µK

)

jobs. For each

of the remaining
(

K
µK+1

)

−
(

K−1
µK

)

jobs, say job j′, and each

k′ ∈ Kj′ , Node k receives a partial sum of N
µK+1 intermediate

values for each of the functions in S
(j′)
k , in the subset {k} ∪

Kj′\{k
′}. Summing up these µK + 1 partial sums, Node k

finishes computing each of its assigned functions from job j′.

The overall communication load of compressed CDC is

Lcompressed CDC=
(

K

µK+1

)

×(Lstage 1+Lstage 2)=
(1−µ)(µK+1)

µK
.

V. ACKNOWLEDGEMENT

This material is based upon work supported by Defense

Advanced Research Projects Agency (DARPA) under Contract

No. HR001117C0053. The views, opinions, and/or findings

expressed are those of the author(s) and should not be in-

terpreted as representing the official views or policies of the

Department of Defense or the U.S. Government. This work

is also in part supported by ONR award N000141612189 and

NSF Grants CCF-1703575 and NeTS-1419632.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth USENIX OSDI, Dec. 2004.

[2] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” NIPS, pp. 693–701, 2011.

[3] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM

Computer Communication Review, vol. 41, no. 4, Aug. 2011.
[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” IEEE CVPR, pp. 770–778, 2016.
[5] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”

53rd Allerton Conference, Sept. 2015.
[6] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, Jan. 2018.

[7] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr,
“Coded terasort,” IPDPS ParLearning Workshop, May 2017.

[8] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2643–2654, Oct. 2017.

[9] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” 54th Allerton

Conference, Sept. 2016.
[10] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication

vs distributed computation: an alternative trade-off curve,” e-print

arXiv:1705.08966, 2017.
[11] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded

distributed computing,” IEEE GLOBECOM, Dec. 2017.
[12] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient

descent and its application to data-parallel distributed training of speech
dnns,” Interspeech, 2014.

[13] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
NIPS, pp. 1707–1718, 2017.

[14] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.

Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[15] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large

linear transforms distributedly using coded short dot products,” NIPS,
pp. 2100–2108, 2016.

[16] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient
coding,” NIPS Machine Learning Systems Workshop, 2016.

[17] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” IEEE

NetCod, Dec. 2016.
[18] ——, “Coding for distributed fog computing,” IEEE Commun. Mag.,

vol. 55, no. 4, Apr. 2017.
[19] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:

an optimal design for high-dimensional coded matrix multiplication,”
NIPS, pp. 4406–4416, 2017.

[20] ——, “Straggler mitigation in distributed matrix multiplication: Funda-
mental limits and optimal coding,” e-print arXiv:1801.07487, 2018.

[21] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” IEEE ISIT, pp. 2558–2562, 2017.

[22] M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” IEEE GLOBECOM, Dec. 2016.

[23] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” e-print arXiv:1805.01993, 2018.

2018 IEEE International Symposium on Information Theory (ISIT)

2036

