2018 IEEE International Symposium on Information Theory (ISIT)

Compressed Coded Distributed Computing

Songze Li*, Mohammad Ali Maddah-Ali f and A. Salman Avestimehr*
* Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
T Nokia Bell Labs, Holmdel, NJ, USA

Abstract—Communication overhead is one of the major perfor-
mance bottlenecks in large-scale distributed computing systems,
especially for machine learning applications. Conventionally,
compression techniques are used to reduce the load of communi-
cation by combining intermediate results of the same computation
task as much as possible. Recently, via the development of
coded distributed computing (CDC), it has been shown that
it is possible to code across intermediate results of different
tasks to further reduce communication. We propose a new
scheme, named compressed coded distributed computing (in short,
compressed CDC), which jointly exploits these two techniques
(i.e., combining intermediate results of the same computation
and coding across intermediate results of different computations)
to significantly reduce the communication load for computations
with linear aggregation of intermediate results in the final stage
that are prevalent in machine learning (e.g., distributed training
where partial gradients are computed distributedly and then
averaged in the final stage). In particular, compressed CDC
first compresses/combines several intermediate results for a single
computation, and then utilizes multiple such combined packets to
create a coded multicast packet that is simultaneously useful for
multiple computations. We characterize the achievable commu-
nication load of compressed CDC and show that it substantially
outperforms both combining methods and CDC scheme.

I. INTRODUCTION
In order to scale up machine learning applications that

process a massive amount of data, various distributed com-
puting frameworks have been developed where data is stored
and processed distributedly on multiple cores or GPUs on a
single machine, or multiple machines in computing clusters
(see, e.g., [1], [2]). When implementing these frameworks,
the communication overhead of shuffling intermediate results
across distributed computing nodes is a major performance
bottleneck. For example, it was observed in [3] that on a
Facebook’s Hadoop cluster, 33% of the job execution time was
spent on data shuffling. This bottleneck is becoming worse
for training deep neural networks with millions of model
parameters (e.g., ResNet-50 [4]) using distributed stochastic
gradient descent, where partial gradients with millions of
entries need to be passed between computing nodes.
Conventionally, compression techniques are used to reduce
the communication load by combining intermediate results of
the same computation task as much as possible. For example,
in the original MapReduce framework [1], when the Reduce
function is commutative and associative, a “combiner func-
tion” is proposed to pre-combine multiple intermediate values
with the same key computed from different Map functions.
Then, instead of sending multiple values to the reducer, the
mapper sends the pre-combined value whose size is the same
as one uncombined value, which significantly reduces the
bandwidth consumption without any performance loss.

978-1-5386-4780-6/18/$31.00©2018 |IEEE

Coded distributed computing (CDC) is another approach
that has been recently proposed in [5], [6] to mitigate the
communication bottleneck. Unlike the compression/combining
technique, CDC enables coding opportunities across inter-
mediate results of different computation tasks to reduce the
communication load. In particular, within a MapReduce-type
model, CDC specifies a repetitive pattern of computing Map
functions, creating side information at the computing nodes
that enables coded multicasting during data shuffling across
nodes, where each coded multicast packet is simultaneously
useful for multiple Reduce tasks. For example, if we repeat
each Map task r times across the cluster, then utilizing the
CDC scheme, we can reduce the total amount of bandwidth
consumption by r times. It has been shown that CDC can
provide substantial speedups in practice [7], and several gen-
eralizations of it have been developed in the literature [8]-[11].

We focus on MapReduce-type distributed computing frame-
works and propose a new scheme, named compressed coded
distributed computing (in short, compressed CDC). It jointly
exploits the above compression/combining technique and the
CDC scheme to significantly reduce the communication load
for computation tasks with linear Reduce functions that are
prevalent in data analytics (e.g., distributed gradient descent
where the partial gradients computed at multiple distributed
computing nodes are averaged to reduce to the final gradient).
In particular, the compressed CDC scheme specifies a repeti-
tive storage of the dataset across distributed computing nodes.
Each node, after processing locally stored files, first pre-
combines several intermediate values of a single computation
task needed by another node. Having generated multiple such
pre-combined packets for different tasks, the node further
codes them to generate a coded multicast packet that is si-
multaneously useful for multiple tasks. Therefore, compressed
CDC enjoys both the intra-computation gain from combining,
and the inter-computation gain from coded multicasting.

We characterize the achievable communication load of com-
pressed CDC and show that it substantially outperforms both
combining methods and CDC scheme. In particular, compared
with the scheme that only relies on the combining technique,
compressed CDC reduces the communication load by a factor
that is proportional to the storage size of each computing
node, which is significant for the common scenarios where
large-scale machine learning tasks are executed on commodity
servers with relatively small storage size. On the other hand,
compared with the CDC scheme whose communication load
scales linearly with the size of the dataset, compressed CDC
eliminates this dependency by pre-combining intermediate

2032

2018 IEEE International Symposium on Information Theory (ISIT)

values of the same task, allowing the system to scale up to
handle computations on arbitrarily large dataset.

Other related work. Motivated by the fact that training algo-
rithms exhibit tolerance to precision loss of intermediate re-
sults, as opposed to the above lossless compression technique
that guarantees exact computation results, a family of lossy
compression (or quantization) algorithms for distributed learn-
ing systems have been developed to compress the intermediate
results (e.g., gradients) for a smaller bandwidth consumption
(see, e.g., [12], [13]). Apart from compression, various coding
techniques have also been recently utilized in distributed
machine learning algorithms to mitigate the communication
bottleneck and the straggler’s delay (see, e.g. [14]-[22]).

II. MOTIVATING EXAMPLE
In this section, we demonstrate through a motivating exam-
ple, how compression/combining and CDC techniques, applied
alone or jointly, can help to reduce the bandwidth requirement
for distributed computing tasks.

file 1

Map

Map

———>| Map

Fig. 1: A MapReduce framework to compute 3 functions from 6 files
with linear Reduce functions.

As shown in Fig. 1, we consider a MapReduce job
of computing 3 output functions, represented by red/circle,
green/square, and blue/triangle respectively, by processing 6
input files. When mapping a file, we obtain 3 intermediate
values, one for each of the functions, which are represented
by the color/shape of the corresponding functions labelled by
the file index. The Reduce operation of each output function
computes its final result by summing up the intermediate
values of the function from all 6 input files. This computation
job is executed on 3 distributed computing nodes connected
through a multicast network. Each node can store up to 4
files in its local memory. As shown in Fig. 2, we assign the
computation tasks such that Nodes 1, 2, and 3 are respectively
responsible for final reduction of red/circle, green/square, and
blue/triangle functions. For this problem, we are interested
in minimizing the communication load, which is the number
of bits that need to be shuffled between computing nodes to
accomplish the computation tasks, normalized by the size of
a single intermediate value. Next, we describe three coded
computing schemes, and compare their communication loads.

For all of these three schemes, as illustrated in Fig. 2, the
file placement is performed such that Node 1 stores the files
1,2,3,4, Node 2 stores the files 3,4,5,6, and Node 3 stores
the files 5,6, 1, 2.

1) Compression scheme: Since only the sum of the interme-
diate values is needed for final reduction, we can pre-combine
the computed intermediate values of the same function at the

sender node to reduce communication. For example, as shown
in Fig. 2(a), having computed the green squares labelled by 1
and 2 in the Map phase, Node 1 sums them up and sends the
computed sum to Node 2, instead of sending them individually.
Upon receiving this pre-combined packet, Node 2 can directly
use it for the final reduction of the green/square function.
This compression scheme reduces the communication load
by half, compared with the schemes that unicast uncombined
intermediate values, and achieves a communication load of 3.

2) CDC scheme: Utilizing the redundant Map results across
computing nodes, the CDC scheme creates coded multi-
cast packets by combining intermediate values of different
functions that are intended at different nodes. As shown in
Fig. 2(b), since the blue triangle labelled by 3 is computed
at both Nodes 1 and 2, and the green square labelled by 1
is computed at both Nodes 1 and 3, Node 1 can multicast
the bit-wise XOR (denoted by @) of these two intermediate
values to the other two nodes. From this coded packet, both
Nodes 2 and 3 can decode their intended values by cancelling
their locally computed values. Since each of the multicast
packets is simultaneously useful for two nodes, the CDC
scheme cuts the communication load by half from the schemes
that unicast uncoded intermediate values, and also achieves a
communication load of 3. We note that since the CDC scheme
allows to recover each of the intermediate values individually,
it can be utilized on more general computations with arbitrary
Reduce functions to slash the communication load.

3) Compressed CDC scheme: The above two schemes can
be applied jointly to further reduce the communication load.
Each node, as shown in Fig. 2(c), sums up two pairs of
intermediate values to generate two pre-combined packets,
each of which is needed by another node. Then, for example,
Node 1 first splits each of its pre-combined packets (the unla-
belled green square and the unlabelled blue triangle) into two
segments, and computes the bitwise-XOR, of two segments,
one from each of the pre-combined packets, generating a coded
packet whose size is half of the size of an intermediate value.
Finally, Node 1 multicasts this coded packet to Nodes 2 and
3. Similar operations are performed at Nodes 2 and 3. Next,
each node utilizes its local computation results to decode the
intended pre-combined packet. The compressed CDC scheme
exploits both the compression opportunities within individual
functions, and the multicasting opportunities across different
functions, and achieves a smaller communication load of %

III. PROBLEM FORMULATION AND MAIN RESULTS

We consider a computation job of processing N input files,
for some N €N, to compute () output functions, for some Q) €
N. We denote the input files as wy, ..., wy € For, for some
F €N, and the output functions as ¢1,...,d¢q : (For)N —
For, for some 7'€ N. We focus on the computation jobs with
linear aggregation for which the computation of each output
function can be decomposed as the sum of N intermediate
values computed from the input files, i.e., for g=1,...,Q,

¢q(w17~~'7wN):vq,1 + Vg2 + Vg, N, (D

2033

2018 IEEE International Symposium on Information Theory (ISIT)

©+6 O-E+2
Node 3 y i
P 3289 S
°, N/ A+A
Y N Node 2
’ N fles 34 5 6
fles 1 2 3 4 fles 34 5 6 fles 3456 [Map]
olelol:) IR SERCELY: N Bl Bl g 15485
has {m EEA has {A A A\ " has {AA AA needs [+E
AL AA ®@@®6®® ®@@®6
needs ©+© needs [+E needs [E+E BE-E+E A=A+A D=A+A O=0+®
Node 1 Node 2 Node 2 split lsplil
[\ AN AN a
(a) Compression scheme (b) CDC scheme (c) Compressed CDC scheme
communication load = 3 communication load = 3 communication load = 3/2

Fig. 2: Coded computing schemes for a MapReduce job with linear Reduce functions, which processes 6 files to compute 3 functions, over

3 distributed computing nodes each with a storage size of 4 files.
where vg , = gq(wy) is the intermediate value of ¢, computed
from some intermediate function g, : For — For. So far, we
have introduced one computation job that involves computing
@ functions. Here, we consider the scenario where J such
computation jobs are executed in parallel, for some J € N. We
denote the N input files of job j as w;), ..., W), and the @
output functions job j wants to compute as ¢, - . ., qZ)Q(J-).l
A. Network model

The above described J computation jobs are executed
distributedly on a computer cluster that consists of K dis-
tributed computing nodes, for some K € N. These computing
nodes are denoted as Node 1,..., Node K. Here we assume
K < N, and focus on a symmetric setting for the sake of
load balancing, in which K@, and each node is responsible
for computing % output functions for each job. The K nodes
are connected through an error-free broadcast network. Each
node has a local memory that can store up to uJ N input files,
i.e., p fraction of the entire dataset that contains all input files
from all jobs, for some p satisfying % <p<l

Before the computation starts, each node selects and stores
wJ N input files from the dataset. For each node k, we denote
the set of indices of the files stored locally as My. A valid
file placement has to satisfy 1) |My| < pJN, for all k =
1,2,..., K (local storage constraint), and 2) Ug—1, . g My =
Uj:L”_’J{n(‘j) :n=1,2,...,N} (the entire dataset needs to
be collectively stored across the cluster).
B. Distributed computing model

The computation follows a MapReduce model that consists
of three phases: Map phase, Shuffle phase, and Reduce phase.
Map phase. For each file w,; of job j, nl) €
My, Node k maps it into () intermediate values
V16 0> Vo) jp () s+ + - » VQUi) (), ONE for each of the () func-
tions computed in job j. We assume that all the intermediate
values across the J jobs have the same size of 1" bits, which is
the case when for example, we are training .JJ image classifiers
in parallel using the same deep neural network.
Shuffle phase. For each computation job j, we assign the
tasks of reducing the output functions symmetrically across

For example, we can consider executing J machine learning tasks (e.g.,
image classification) in parallel, each of which has its own dataset, and aims
to obtain its own set of model parameters.

the nodes, such that each node computes a disjoint subset of
% functions. We denote the set of the indices of the output
functions assigned to Node £ for job j as Séj),j =1,2,...,J.
In the Shuffle phase, each node k£ produces a message,
denoted by X € Fye,,, as a function of the locally computed
Map results, where ¢; € N denotes the length of the message
in bits, and broadcasts X to all other nodes.
Definition 1 (Communication Load). We define the com-
munication load, denoted by L, as the total number of bits
contained in all broadcast messages, normalized by JQT, i.e.,

L2 7£1+J'('2'#K. ‘ 2
Reduce phase. For each job j and each ¢\/) e S,(CJ) j =
1,2,...,J, Node k computes the output function ¢,¢;) as in

(1), using the locally computed Map results and the received
broadcast messages in the Shuffle phase.
C. Main Results

For the above formulated distributed computing problem,
we first study the effects of applying the compression scheme
and the CDC scheme individually on reducing the commu-
nication load. Then, we present our main result, which is
a communication load achieved by the proposed computing
scheme that jointly utilizes compression and CDC.

Exploiting the compression technique, each sender node
pre-combines all the intermediate values needed at the re-
ceiver node for a particular function, and then sends the pre-
combined value. We demonstrate, in the appendix of the full
version of this paper [23], that the following communication
load can be achieved by solely applying compression.

Lcompression = [%—I -1, % <up<l. 3)
When only applying the CDC scheme without compression,

as shown in [6], we can achieve the communication load

Lepe = 44 @)

The CDC scheme creates coded multicast packets that are
simultaneously useful for 4K nodes. Hence, for fixed storage
size u, the achieved communication load Lcpce decreases in-
versely proportionally with the network size (K'). On the other
hand, since the CDC scheme was designed to handle general
Reduce functions that require each of the N intermediate
values separately as the inputs, Lcpc also scales linearly with
the number of input files (V).

2034

2018 IEEE International Symposium on Information Theory (ISIT)

We propose the compressed coded distributed computing
(compressed CDC) scheme, which jointly utilizes the com-
bining and the coded multicasting techniques. We present the
performance of compressed CDC in the following theorem,
and give its general description in the next section

Theorem 1. To execute J computation jobs with linear ag-
gregation of intermediate results, each of which processes
N input files to compute @) output functions, distributedly
over K computing nodes each with a local storage of size u,
the proposed compressed CDC scheme achieves the following
communication load

Lcompressed CDC — (17%7?(1(”7 4)

foruK € {1,....K—1}, and J = ’y(uif_ﬂ),for some v € N.
Remark 1. Compared with the compression scheme whose
communication load is in (3), for large K, the proposed
compressed CDC scheme reduces the communication load by
a factor of ;1 when 7 <y < 3, and by a factor of 1—x when
% < p < 1. In the scenarios where the cluster consists of
many low-end computing nodes with small storage size (e.g.,
w o= %), this reduction factor can scale with the network
size. Also, in contrast to the compression scheme, the load
Lcompressed cpc keeps decreasing as storage size j increases. [

Remark 2. Unlike the communication load in (4) achieved by
the CDC scheme, the load achieved by the compressed CDC
scheme does not grow with the number of input files. This is
accomplished by pre-combining multiple intermediate values
of the same Reduce function. O

Remark 3. The file placement of the compressed CDC scheme
is performed such that all N input files of each particular
computation job are placed exclusively on a unique subset
of K + 1 nodes, following a repetitive pattern specified by
the CDC scheme. As a result, the compressed CDC scheme
executes a batch of (Mfﬂ) jobs in parallel. In the Shuffle
phase of compressed CDC, each computing node first pre-
combines several intermediate values of a single function
reduced at another node, and then applies bit-wise XOR
operations on multiple such pre-combined packets to generate
a coded multicast packet that is simultaneously useful for
computing pK functions. We note that these p/ functions
can be different functions in the same job, as well as different
functions in different jobs. U

IV. DESCRIPTION OF THE COMPRESSED CDC SCHEME

We present the general compressed CDC scheme. In [23],
we also provide a running example to illustrate the scheme.

We consider the storage size p such that pK €
{1,2,..., K—1}, and take sufficiently many computation jobs
to process in parallel, where the number of jobs J = 'y(ﬂ 5 1)
for some v € N. The proposed compressed CDC scheme
operates on a batch of (u I§+1) jobs at a time, and repeats
the same operations y times to process all jobs. Therefore, it
is sufficient to describe the scheme for the case of y=1.

A. File placement
For each job j, j = 1,2,...,(
files wy), Wau), - -

#I?Jrl)’ all of its input

., Wy are stored exclusively on a unique

subset of uK + 1 nodes, and we denote the set of indices of
these nodes as /C;. Within KC;, each file w,,;) of job j is
repeatedly stored on pK nodes. In particular, we first evenly
partition the files wy), Wa0), - - ., Wy into pk + 1 batches,
and label each batch by a unique size-pK subset of K,
denoted by P;. Then, we store all the files in a batch on each
of the uK nodes whose index is in the corresponding subset
P;. We denote the set of indices of the files from job j in a
batch labelled by a subset P; as Bp,. The file placement is
performed such that for each P; C K; with |P;| = K, and
each n\) ¢ Bp,, we have nl) e My, for all k € P;, where
M|, is the set of indices of all files stored at Node k.
Applying the above file placement, each node in K; stores

K % ﬁ files. Since each node is in (IZ;) subsets of
i i KN

{1,2,...,K} of size uK + 1, it stores overall :K+1

(I;;(l) = puJ N files, satisfying its local storage constraint.

B. Coded computing

The compressed CDC scheme performs computation and
data shuffling in subsets of /K +1 nodes. Within each subset
Kivj=12..., (“Iﬁl), that contains the indices of |K;|=
wK 41 nodes, the scheme proceeds in two stages. In the first
stage, the nodes in /C; process the files they have exclusively
stored, i.e., the files of job j. In the second stage, they handle
the files from other jobs.

1) Stage 1 (coding for a single job): All computing nodes
in KC; only process input files and compute output functions
for job j. For ease of exposition, we drop all the job indices
in the rest of the description of stage 1.

In the Map phase, each node k € K maps all the files of job
j it has stored locally, for all output functions of job j. After
the Map phase, for each subset P of size uK, and k' € IC\P,
each node in P has computed % intermediate values, one for
each of the functions assigned to Node &', from each of the
files in the batch Bp. More precisely, these intermediate values
are {vg, : ¢ € Spr,n € Bp}.

In the Shuffle phase, for each subset P C K of size ukK,
the nodes in P sum up the above intermediate values, for each
q € Sy, obtaining a pre-combined value 0y p =3, 5 Vg n-

Having computed % such pre-combined values {v,p : ¢ €
Sk}, the nodes in P concatenate them to generate a packet
Vp, and evenly and arbitrarily split it into /K segments. We
label the segments by the elements in P. That is, for P =
{il, ig, cee ,i#K}, we have Vp = (VP7i1v VP,i27 ey VP,@K)'

Finally, each node k in K generates a coded packet X} '
by computing bit-wise XOR (denoted by @) of the data

segments labelled by £, i.e.,

Xt = Vp.i, ()

s

S7]
PCK:|Pl=pK, keP
and multicasts X, to all other nodes in K.

After Node k receives a coded packet X3¢ ' from Node &/,
it cancels all the segments Vp /s with k € P, and recovers the
intended segment Vic\ (x},4- Repeating this decoding process
for all received coded packets, Node k recovers V,C\{k}, and
hence vy i\ (x}> for all ¢ € Si. Using these values, together
with the local Map results, Node k computes the output ¢,

2035

2018 IEEE International Symposium on Information Theory (ISIT)

for all ¢ € Si. After the first stage of computation, each node
in KC; completes its computation tasks for job j.

Since each of the coded packets in (6) contains % X lK
bits, the communication load exerted in the Shuffle phase of

Q. (WE+)T pE41
the first stage is Lyage 1 = ~— Q‘%K = &K

2) Stage 2 (coding across jobs): For a node 7 outside KC;,
and each & € K;, we label the job whose input files are
exclusively stored on the nodes in {i} U K;\{k} as ji. The
nodes in P;, = K;\{k} share a batch of ﬁ files in Bp,
for job ji. In the Map phase, for each k' € P;,, Node k£’
computes % intermediate values, one for each function of job
ji assigned to Node k in S,E,J’“), from each of the files in
the batch B'pjk. More precisely, these intermediate values are
{v 60 im0 1 ¢ € SUM) nlin) e Bp,, }.

In the Shuffle phase, for each k€ C;, the n0d¢s in Pj, sum
up the above Map results, for each ¢U) € S]ij k), obtaining
V6w p;, = Znuk)eg% Vqlik) i) -

Next, as similarly done in the first stage, the nodes in

Pj, first concatenate the above % pre-combined values

{@q“k%?’jk :qUr) ¢ S,(CJ")} to generate a packet Vp].k, and
then split it into pu/K segments. We label these segments by
the elements in P;,, i.e., for Pj, = {i1,42,...,4,x}, Wwe have
Ve, = (Ve i VB, ins - -+ VP, i)-

Finally, each node &’ in C; generates a coded packet X, 2
by bit-wise XORing the data segments labelled by %', i.e.,

Xyt = @ Vp, o,)
tek\{k'} 7"
and multicasts X} * to all other nodes in K;.

We note that since the job index j; (whose input files are
exclusively stored on nodes in {i} U K;\{t}) is different
for different ¢, the above coded packet is generated using
intermediate values from different jobs.

Having received a coded packet th/ageZ from Node &,
Node k cancels all the segments ij“k/s with &k € P;,,
and recovers the intended segment Vp, /. Repeating this
decoding process for all received coded packets, Node k
recovers Vp, , and hence Tg60,p,, - for all ¢Ux) € S,EJ’“).

We repeat the above operations for all i€ {1,2,..., K}\K,.
By the end of the second stage, each node in K; recovers
partial sums to compute functions from K — K —1 jobs.

The communication load incurred in the Shuffle phase, for
Q , nE+1

a particular i, is ?]%é”‘, and the total communication load
pK+1
(Kfp,Kfl)iﬂK

of the second stage is Lage 2 = —

Having performed this two-stage operation on all subsets KC;
of pK+1 nodes, j =1,2,..., (Mﬁl)’ each node k finishes
computing its assigned functions from (I/i ;(1) jobs. For each
of the remaining (,u?ﬂ) - (I;;(l) jobs, say job j’, and each

k" € K/, Node k receives a partial sum of ﬁ intermediate

values for each of the functions in S,ij) in the subset {k} U
K \{k’}. Summing up these pK + 1 partial sums, Node k
finishes computing each of its assigned functions from job ;.

The overall communication load of compressed CDC is
_(K _ (11— K+1
Lcompressed CDC— (MK+1) X(Lstage 1+leage 2) - M)ﬂ(?() .

V. ACKNOWLEDGEMENT

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HROO01117C0053. The views, opinions, and/or findings
expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. This work
is also in part supported by ONR award N000141612189 and
NSF Grants CCF-1703575 and NeTS-1419632.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth USENIX OSDI, Dec. 2004.

[2] B.Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” NIPS, pp. 693-701, 2011.

[3] M. Chowdhury, M. Zaharia, J. Ma, M. L. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, Aug. 2011.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” IEEE CVPR, pp. 770-778, 2016.

[5] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
53rd Allerton Conference, Sept. 2015.

[6] S.Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, Jan. 2018.

[7]1 S.Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr,
“Coded terasort,” IPDPS ParLearning Workshop, May 2017.

[81 S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2643-2654, Oct. 2017.

[9] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” 54th Allerton
Conference, Sept. 2016.

[10] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication
vs distributed computation: an alternative trade-off curve,” e-print
arXiv:1705.08966, 20117.

[11] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded
distributed computing,” IEEE GLOBECOM, Dec. 2017.

[12] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” Interspeech, 2014.

[13] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
NIPS, pp. 1707-1718, 2017.

[14] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” IEEE Trans.

Inf. Theory, vol. 64, no. 3, pp. 1514-1529, 2018.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large

linear transforms distributedly using coded short dot products,” NIPS,

pp. 2100-2108, 2016.

[16] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient

coding,” NIPS Machine Learning Systems Workshop, 2016.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding

framework for distributed computing with straggling servers,” IEEE

NetCod, Dec. 2016.

, “Coding for distributed fog computing,” IEEE Commun. Mag.,
vol. 55, no. 4, Apr. 2017.

[19] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,”
NIPS, pp. 44064416, 2017.

, “Straggler mitigation in distributed matrix multiplication: Funda-
mental limits and optimal coding,” e-print arXiv:1801.07487, 2018.

[21] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” IEEE ISIT, pp. 2558-2562, 2017.

[22] M. A. Attia and R. Tandon, “Information theoretic limits of data

shuffling for distributed learning,” IEEE GLOBECOM, Dec. 2016.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded

distributed computing,” e-print arXiv:1805.01993, 2018.

[15]

[17]

(18]

[20]

(23]

2036

