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Abstract— The paper focuses on spatially distributed control
systems where the controller sensing and actuation topology is
inherited from that of the plant. Specifically, the paper considers
distributed systems composed of discrete-time linear parameter-
varying subsystems interconnected over general graph struc-
tures. These distributed systems are subject to a communication
latency of one sampling period, where the information sent
by a subsystem at the current time step is received by the
target subsystem at the next time step. The paper provides
analysis and synthesis conditions for control design in this
setting, employing a parameter-dependent Lyapunov approach
with the `2-induced norm as the performance measure. The
paper also gives a fast and easy-to-implement algorithm for
constructing the controller in real-time.

I. INTRODUCTION

The paper deals with the control of distributed systems
which are composed of interacting subsystems intercon-
nected over general graph structures. Each subsystem has
sensing and actuation capabilities, and the controller topol-
ogy is the same as that of the plant. Specifically, the
distributed systems of interest consist of discrete-time linear
parameter-varying (LPV) subsystems interconnected over
arbitrary directed graphs. The transfer of data among the
subsystems is subject to a communication latency, namely
the data sent by a subsystem at the current time step arrives
to the target subsystem at the next time step.

The synthesis objective is to find a feedback distributed
controller that has the same topological structure as the plant
such that the closed-loop system is asymptotically stable
and the `2-induced norm of the closed-loop input-output
mapping is less than some `2-gain performance level γ for all
permissible parameter trajectories. The approach proposed to
solve this problem involves the use of a parameter-dependent
Lyapunov function. Consequently, the analysis and synthesis
results are given in terms of parameterized linear matrix
inequalities (PLMIs), and hence, relaxation techniques, such
as the sum of squares (SOS) decomposition method [1] and
the multiconvexity technique [2], among others [3]–[5], are
needed to render the analysis and synthesis convex prob-
lems computationally tractable. The parameter-dependent
Lyapunov approach also leads to synthesis solutions that are
dependent on the parameters, which are not known a priori.
Thus, the controller realization has to be constructed online
at each discrete instant, and a fast algorithm based on the
results of [6], [7] is provided for this purpose.
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One of the applications of this work that is of particular
interest pertains to the cooperative control of multi-agent
systems with intermittent communications, where parameters
are used to quantify the viability and importance of connec-
tions by scheduling the penalty weights on the output errors
and the scalings on the measurement noise. For this prob-
lem, the use of a parameter-independent Lyapunov function
is unfavorable because then all scheduled controllers will
be inclined for worst-case-scenario behavior. This behavior
could correspond to a sparse interconnection structure, which
would ultimately dictate the performance of the controller
for all the permissible interconnection structures. Thus, a
parameter-dependent Lyapunov function should be used in
order to optimize the control strategy according to the present
interconnection structure.

The research on distributed control can be categorized
according to the temporal and spatial structures of the
considered distributed systems. As expected, the simpler
the structures are, the more likely these structures can be
exploited to reduce the computational complexity of the
control design problem. Specifically, the subsystems can
be homogeneous (all described by the same model) [8]–
[10] or heterogeneous (different models) [11]–[15]. The
interconnection topology can be of varying complexity, for
instance, highly structured [9], [12] or arbitrary graph [11],
[13], [15]. This work considers heterogeneous subsystems
and extends the results of [16] on linear time-varying (LTV)
subsystems to the LPV setting. Similar work on distributed
LPV systems include [17]–[19]. To the best of the author’s
knowledge, however, this paper is the only work in the
literature that uses parameter-dependent Lyapunov functions
to solve discrete-time distributed LPV control problems.

The outline of the paper is as follows. Section II introduces
the notation and provides a precise formulation of the dis-
tributed control problem in question, along with prior control
results on distributed LTV systems that are directly relevant
to this work. Section III gives analysis and synthesis results
for distributed control of LPV systems, and Section IV
presents an algorithm for online controller construction. A
brief summary in Section V concludes the paper.

II. PRELIMINARIES

A. Notation

We denote the set of non-negative integers by N0, the set
of real n×m matrices by R

n×m, and that of symmetric n×n

matrices by S
n. Given a sequence of column vectors (vi)i∈S ,

where the index set S is a subset of the set of integers, the
notation vec(vi)i∈S denotes a vector composed by stacking



Fig. 1. Distributed system with delays

Fig. 2. Parameter space in (pi, dpi)-plane; the superscript (k) is dropped
for simplicity

the elements of the sequence below each other. For instance,
if S = {1, 3, 5}, the sequence would be (v1, v3, v5), that is,
the order of the elements in the sequence is conformable
with the order of the elements in the index set; also, in
this case, vec(v1, v3, v5) = [vT1 , v

T
3 , v

T
5 ]

T , where vTi stands
for the transpose of vi. Similarly, if (Mi)i∈S is a sequence
of matrices, then diag(Mi)i∈S denotes their block-diagonal
augmentation. We use 0i×j to denote an i × j zero matrix
and Ii×j to denote an i× j matrix with 1’s on the diagonal
and zeros elsewhere. Given a symmetric matrix X , i.e.,
X = XT , we use X ≺ 0 to mean it is negative definite.
The linear space of elements x = (x(0), x(1), x(2), . . .),
with each x(t) ∈ R

n, is denoted by `(Rn). The Hilbert
space `2(R

n) is a subspace of `(Rn) consisting of elements
x ∈ `(Rn) that have a finite `2-norm ‖x‖`2 defined by
‖x‖2`2 =

∑∞
t=0 x(t)

Tx(t) < ∞. The Hilbert space direct
sum `2(R

n1)⊕`2(R
n2)⊕· · ·⊕`2(R

np) consists of elements
(x1, x2, . . . , xp), with each xi ∈ `2(R

ni). In the sequel,
we will use the denotations ` and `2 irrespective of the
spatial structure and dimensions; for instance, we will simply
abbreviate ⊕p

i=1`2(R
ni) by `2 for any integer p ≥ 1 and

dimensions n1, . . . , np.

B. Distributed LPV Plant Model and Controller

The distributed systems of interest consist of interacting
subsystems interconnected over arbitrary graph structures.
Discrete-time LPV models will be used to describe the
dynamics of the generally nonlinear subsystems over some
operating envelopes, and a directed graph will be used to
define the interconnection structure of the distributed system.

The vertices of this graph correspond to the subsystems,
and the directed edges describe the interconnections between
these subsystems. We assume the number of subsystems is
finite, say equal to N , and the interconnection structure is
subject to a communication latency of one sampling period,
that is, the information sent by a subsystem at the current
time step is received by the target subsystem at the next time
step. An example of such a distributed system is shown in
Fig. 1, where S0 denotes the delay operator.

Before giving the state-space equations of the distributed
systems of interest, we make the following definitions. We
denote a digraph with set of vertices V and set of directed
edges E by G(V,E). For simplicity, for a graph with N ver-
tices we define V as V = {1, 2, . . . , N}. We use the ordered-
pair (i, j) to denote the element of E corresponding to an
edge directed from vertex i ∈ V to vertex j ∈ V . For every
k ∈ V , we define the index sets E(k)

in := {i ∈ V | (i, k) ∈ E}

and E
(k)
out := {j ∈ V | (k, j) ∈ E}, where the elements

in these sets are sorted in ascending order. For instance,
for the digraph defining the interconnection structure of the
distributed system G = {G(1), . . . , G(4)} in Fig. 1, V =
{1, 2, 3, 4}, E = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (4, 2)},
E

(1)
in = {}, E(1)

out = {2, 3, 4}, E(4)
in = {1, 3}, etc.

As mentioned before, we assume that each of the sub-
systems can be modeled as a discrete-time LPV system;
specifically, the state-space model of G(k) is given by the
system equations in (1). The variable t ∈ N0 is discrete
time, and δ(k)(t) = (δ

(k)
1 (t), . . . , δ

(k)
rk (t)) is a vector of real

scalar parameters, where rk is the number of scheduling
parameters in the LPV model of G(k) (clearly, different
subsystem models may have different numbers of scheduling
parameters). The signals w(k)(t) and z(k)(t) denote the
exogenous disturbances and errors, respectively, whereas
u(k)(t) denotes the applied control and y(k)(t) the measure-
ments. The matrix-valued functions A(k)(·), B(k)

1 (·), B(k)
2 (·),

etc., are known a priori. We assume that these matrix-valued
functions have continuous dependence on the parameters
δ
(k)
i (t) and are uniformly bounded for all admissible values

of the parameters. The signal x(k)(t) designates the state
vector of the subsystem G(k) in the standard state-space
representation. The vector-valued functions

x
(k)
in (t) = vec

(

x(ik)(t)
)

i∈E
(k)
in

x
(k)
out(t) = vec

(

x(kj)(t)
)

j∈E
(k)
out

denote the data transferred to and from, respectively, the
subsystem G(k) at time t, where x(ij)(t) designates the
information sent from subsystem G(i) to subsystem G(j) at
time t (G(j) will receive this info at time t+1). Notice that
we regard the interconnections between the subsystems as
states when formulating the system equations. For example,
in Fig. 1, x(1)

out(t) = vec(x(12)(t), x(13)(t), x(14)(t)), x(1)
in (t)

is an empty vector, x(4)
in (t)=vec(x(14)(t), x(34)(t)), etc. The

vectors x(k)(t), x(ij)(t), w(k)(t), z(k)(t), u(k)(t), and y(k)(t)

are real and have dimensions denoted by n(k), n(ij), n(k)
w ,

n
(k)
z , n(k)

u , and n
(k)
y , respectively.
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, x(k)(0) = 0 (1)

Fig. 3. Distributed closed-loop system with delays

As in [7], [20], [21], we assume the parameters δ(k)(t) =

(δ
(k)
1 (t), . . . , δ

(k)
rk (t)) and parameter increments dδ(k)(t) =

δ(k)(t+ 1)− δ(k)(t) such that (δ(k)(t), dδ(k)(t)) ∈ Γ(k) for
all t ∈ N0 and k ∈ V , where Γ(k) is a polytope defined as

Γ(k) = {(p, dp) ∈ R
rk × R

rk | f
(k)
i,j (pi, dpi) ≥ 0

for all i = 1, . . . , rk and j = 1, 2, 3}, (2)

with f
(k)
i,1 = (pi − p(k)

i
)(p

(k)
i − pi),

f
(k)
i,2 = (dpi − dp(k)

i
)(dp

(k)

i − dpi),

f
(k)
i,3 = (pi + dpi − p(k)

i
)(p

(k)
i − pi − dpi),

p(k)
i

, p
(k)
i , dp(k)

i
, dp

(k)

i ∈ R, dp(k)
i

≤ 0, dp
(k)

i ≥ 0.

Notice that, for each i = 1, . . . , rk, the set of points
satisfying f

(k)
i,j (pi, dpi) ≥ 0 for j = 1, 2, 3 defines a polygon

which constitutes the projection of polytope Γ(k) on the
(pi, dpi)-plane, as shown in Fig. 2. Thus, the allowable
parameter trajectories δ(k) reside in the set ∆

(k) =

{δ(k) : N0→ R
rk | (δ(k)(t), dδ(k)(t))∈ Γ(k) for all t ∈ N0},

and so trajectories δ = (δ(1), δ(2), . . . , δ(N)) belong to the set

∆ = {δ = (δ(1), . . . , δ(N)) | δ(k) ∈ ∆
(k)}. (3)

The parameters δ(k)(t) and parameter increments dδ(k)(t)
are assumed to be available for measurement at each instant
t. If the parameter trajectories are continuously differentiable
and the sampling time T is sufficiently small, the parameter
increments may be approximated as dδ(k)(t) ≈ T δ̇(k)(t).

The distributed system, as formulated in the preceding, is
well-posed, that is, for each δ ∈ ∆, given inputs w(k) and
u(k) in `, the state-space equations (1) admit unique solutions
of the state variables for all k ∈ V , and further define a
causal linear mapping on `. The distributed system is said to
be stable if it is well-posed and, for each δ ∈ ∆, the state-
space equations (1) admit unique solutions in `2 given inputs

in `2 for all k ∈ V , that is, the system equations define a
linear causal mapping on `2. In this paper, we consider a
controller synthesis problem, where the controller has the
same structure as the plant, as illustrated in Fig. 3. Each
subcontroller K(k) is defined by the state-space equations in
(4), where x

(k)
K (0) = 0, δ(k)in (t) = (δ(i)(t))

i∈E
(k)
in

, and the

dimensions of the vectors x
(k)
K (t) and x

(ij)
K (t) are m(k) and

m(ij), respectively. The state-space matrix-valued functions
of the subcontrollers will be constructed from the solutions
of the synthesis conditions, as discussed in Section IV, and
will be uniformly bounded with continuous dependence on
the parameters and parameter increments by construction.
It is not surprising that the parameters δ(k)(t) (and their
increments dδ(k)(t)) that affect the subsystem G(k) also
affect the associated subcontroller K(k). What is distinct to
this controller formulation, though, is that the scheduling pa-
rameters of the subsystems that send data to G(k) also appear
in the state-space equations of the subcontroller K(k). With
this said, this configuration is still easily implementable.
For instance, focusing on some i ∈ E

(k)
in , the subsystem

G(i) has access to the values of the parameters δ(i) and
their increments dδ(i) at time t and, hence, the value of
δ(i)(t + 1) = δ(i)(t) + dδ(i)(t), which can be sent at time
t, along with the data x(ik)(t + 1), to the subsystem G(k).
Factoring in the delay operation, the subsystem G(k) and,
ultimately, its subcontroller will then have access to the value
of δ(i) at each time t.

The feedback interconnection of G = {G(1), . . . , G(N)}
and K = {K(1), . . . ,K(N)} results in the closed-loop
system L = {L(1), . . . , L(N)}, where the realization for
each L(k) can be written as in (5). The vectors x

(k)
L (t) =

vec(x(k)(t), x
(k)
K (t)), x(k)

L,str(t) = vec(x
(k)
str (t), x

(k)
K,str(t)), for

str = in, out, and the closed-loop state-space matrices
are defined in the obvious way. The closed-loop system
can be viewed as a map from the exogenous disturbances
w = (w(1), . . . , w(N)) to the exogenous errors to be con-
trolled z = (z(1), . . . , z(N)). Clearly, as z represents the
errors caused by the disturbances, we would like to design
a stabilizing controller that would minimize the effect of
the disturbances w on z. In other words, we would like
a controller that would make the map w 7→ z “small”
according to some measure for all δ ∈ ∆. We use herein the
popular `2 induced norm performance measure, specifically:

sup
δ∈∆

‖G‖`2→`2 = sup
δ∈∆

‖w 7→ z‖`2→`2 = sup
δ∈∆

sup
w 6=0

‖z‖`2
‖w‖`2

.

We say a controller K, as described before, is a γ-admissible
synthesis for plant G if it leads to a stable closed-loop system
L that satisfies the inequality sup

δ∈∆‖w 7→ z‖`2→`2 < γ.
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(

F̄
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)T





X(k)(t+ 1) 0 0

0 X
(k)
out(t+ 1) 0

0 0 1
γ2 I



 F̄
(k)
L (t)−





X(k)(t) 0 0

0 X
(k)
in (t) 0

0 0 I



 ≺ −βI (6)

F1(R,R+) =

[

NR 0
0 I

]T




ARAT −R+ ARCT
1 B1

C1RAT −γI + C1RCT
1 D11
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
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R I

I S
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Remark 1: The state-space matrix-valued functions of
subsystem G(k) may have explicit dependence on δ

(k)
in (t),

in addition to δ(k)(t), if required. The results of this paper
will still apply in this case as long as the same controller
formulation as the one given in (4) is used.

C. Prior Results

Our recent results on distributed control in [16] deal
with LTV subsystems interconnected over arbitrary graph
structures. These results are relevant to this paper since
the LPV subsystems become simply LTV models when
the parameter trajectories are known a priori and, hence, a
distributed LPV system reduces to a distributed LTV one for
each δ ∈ ∆. In [16], it is argued that any digraph can be
transformed into a regular digraph by adding, if necessary,
non-existent, or “virtual,” edges and nodes to the graph. Such
a transformation is required strictly as a conceptual tool to
ensure a succinct representation of the distributed system
and ultimately facilitate the development of the theory. Thus,
while the analysis and synthesis results in [16] are developed
for regular digraphs, these results can be easily reformulated
for the original graph, which we will do in this subsection.

Suppose that the parameter trajectory δ ∈ ∆ is known a
priori, and, hence, the state-space matrix-valued functions in
the system equations of the plant G and controller K, for
example, A(k)(δ(k)(t)) and A

(k)
K (δ(k)(t), dδ(k)(t), δ

(k)
in (t)),

can be expressed as functions of time, namely, Ā(k)(t) and
Ā

(k)
K (t), respectively. Similar notations will be used for the

rest of the state-space functions. We will also denote the
resulting distributed LTV plant by Ḡ, its distributed LTV
controller by K̄, and the closed-loop system by L̄. The
following theorems are reformulations of results from [16].

Theorem 1: Closed-loop distributed LTV system L̄ is sta-
ble and ‖w 7→ z‖`2→`2 < γ, for some scalar γ, if there exist

uniformly bounded, positive definite matrix-valued func-
tions X(k)(t) ∈ S

n(k)+m(k)

, X(ik)(t) ∈ S
n(ik)+m(ik)

, and
X(kj)(t) ∈ S

n(kj)+m(kj)

, for all k ∈ V , i ∈ E
(k)
in , j ∈ E

(k)
out,

and t ∈ N0, such that inequality (6) holds for some positive
scalar β, where X

(k)
in (t) = diag(X(ik)(t))

i∈E
(k)
in

, X(k)
out(t) =

diag(X(kj)(t))
j∈E

(k)
out

, and F̄
(k)
L (t) =

[

Ā
(k)
L (t) B̄

(k)
L (t)

C̄
(k)
L (t) D̄

(k)
L (t)

]

.

Before stating the next reformulated synthesis result from
[16], we make the definitions in (7), where Im NR =
Ker [BT

2 , D
T
12], N

T
RNR = I , Im NS = Ker [C2, D21], and

NT
S NS = I , with ImP and KerP denoting the image and

kernel of a linear map P , respectively. These functions will
be used to present the synthesis conditions concisely. In
the sequel, we write F̄

(k)
1 (R,R+, t) to imply that the state-

space matrices in the expression defining F1 are of the form
Ā(k)(t), B̄(k)

1 (t), B̄(k)
2 (t), etc., as opposed to A, B1, B2, etc.

Theorem 2: There exists a γ-admissible synthesis K̄ to
distributed LTV plant Ḡ for some scalar γ if there exist uni-
formly bounded matrix-valued functions R(k)(t), S(k)(t) ∈

S
n(k)

, R(ik)(t), S(ik)(t) ∈ S
n(ik)

, and R(kj)(t), S(kj)(t) ∈

S
n(kj)

, for all k ∈ V , i ∈ E
(k)
in , j ∈ E

(k)
out, t ∈ N0, such that

F̄
(k)
1 (diag(R(k)(t), R

(k)
in (t)), ...

diag(R(k)(t+ 1), R
(k)
out(t+ 1)), t) ≺ −βI

F̄
(k)
2 (diag(S(k)(t), S

(k)
in (t)), ...

diag(S(k)(t+ 1), S
(k)
out(t+ 1)), t) ≺ −βI

F3(R
(k)(t), S(k)(t))� 0, F3(R

(k)
in (t), S

(k)
in (t))� 0,

(8)

for some positive scalar β, where F̄
(k)
1 , F̄

(k)
2 , and F3

are as defined in (7), Q
(k)
in (t) = diag(Q(ik)(t))

i∈E
(k)
in

and

Q
(k)
out(t) = diag(Q(kj)(t))

j∈E
(k)
out

, for Q = R,S.
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0 X
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(k)
in ) 0

0 0 I



≺−βI (9)

III. ANALYSIS AND SYNTHESIS RESULTS

We now state the following analysis and synthesis results.

Theorem 3: Closed-loop system L, defined in (5), is stable
and ‖w 7→ z‖`2→`2 < γ for all δ ∈ ∆, as defined in (3),
if there exist uniformly bounded, positive definite matrix-
valued functions X(k)(p(k)) ∈ S

n(k)+m(k)

, X(ik)(p(i)) ∈

S
n(ik)+m(ik)

, and X(kj)(p(k)) ∈ S
n(kj)+m(kj)

, continuous in
p(k) and p(i), for all k ∈ V , i ∈ E

(k)
in , and j ∈ E

(k)
out, such that

inequality (9) holds for all (p(k), dp(k)) ∈ Γ(k), as defined in
(2), p(i)v ∈ [p(i)

v
, p

(i)
v ], i ∈ E

(k)
in , v = 1, 2, . . . , ri, and some

positive scalar β, where p
(k)
in = (p(i))

i∈E
(k)
in

,

X
(k)
in (p

(k)
in ) = diag(X(ik)(p(i)))

i∈E
(k)
in

,

X
(k)
out(p

(k) + dp(k)) = diag(X(kj)(p(k) + dp(k)))
j∈E

(k)
out

,

F
(k)
L =

[

A
(k)
L B

(k)
L

C
(k)
L D

(k)
L

]

.

Proof: Given any trajectory δ ∈ ∆, the distributed
LPV system L reduces to the distributed LTV system L̄, as
discussed in Subsection II-C. Suppose inequality (9) holds
for all (p(k), dp(k)) ∈ Γ(k) and p

(i)
v ∈ [p(i)

v
, p

(i)
v ], where

i ∈ E
(k)
in and v = 1, 2, . . . , ri. Then, given δ ∈ ∆, by

replacing p with δ(t) in (9), the resulting inequality would
still be valid for all t ∈ N0; this immediately follows from
the definition of ∆, which ensures that (δ(k)(t), dδ(k)(t)) ∈
Γ(k) and δ

(i)
v (t) ∈ [p(i)

v
, p

(i)
v ] for all t ∈ N0. Then, as

δ(k)(t + 1) = δ(k)(t) + dδ(k)(t), we obtain that the matrix-
valued functions X(k)(δ(k)(t)) � 0, X

(k)
in (δ

(k)
in (t)) � 0,

and X
(k)
out(δ

(k)(t)) � 0, bounded above and below, satisfy
condition (6) for the distributed LTV system L̄, which, by
Theorem 1, implies that L̄ is stable and ‖L̄‖`2→`2 < γ.

It will be convenient to define the following functions:

G1(R,R+, σ)=





ARAT −R+ ARCT
1 B1

C1RAT −γI + C1RCT
1 D11

BT
1 DT

11 −γI





− σ
[

BT
2 DT

12 0
]T [

BT
2 DT

12 0
]

, (10)

G2(S, S
+, σ)=





ATS+A− S ATS+B1 CT
1

BT
1 S

+A −γI +BT
1 S

+B1 DT
11

C1 D11 −γI





− σ
[

C2 D21 0
]T [

C2 D21 0
]

. (11)

These definitions are similar to those in (7), and are made to
simplify the presentation of the synthesis conditions. In ad-
dition, as discussed before, we write G

(k)
1 (R,R+, σ, p(k)) to

imply that the state-space matrices in the expression defining
G1 are of the form A(k)(p(k)), B(k)

1 (p(k)), B(k)
2 (p(k)), etc.,

as opposed to simply A, B1, B2, etc.

Theorem 4: Given plant G defined in (1) with δ ∈ ∆,
suppose that the matrices [B

(k)
2 (δ(k)(t))T , D

(k)
12 (δ(k)(t))T ]

and [C
(k)
2 (δ(k)(t)), D

(k)
21 (δ(k)(t))] have full-row rank uni-

formly for all k ∈ V , t ∈ N0, and δ(k) ∈ ∆
(k).

Then there exists a γ-admissible distributed LPV syn-
thesis K to G for some scalar γ if there exist uni-
formly bounded, positive definite matrix-valued functions
R(k)(p(k)), S(k)(p(k)) ∈ S

n(k)

, R(ik)(p(i)), S(ik)(p(i)) ∈

S
n(ik)

, and R(kj)(p(k)), S(kj)(p(k)) ∈ S
n(kj)

, continuous in
p(k) and p(i), for all k ∈ V , i ∈ E

(k)
in , j ∈ E

(k)
out, such that

G
(k)
1 (diag(R(k)(p(k)), R

(k)
in (p

(k)
in )), ...

diag(R(k)(p(k)+dp(k)), R
(k)
out(p

(k)+dp(k))), σ, p(k))≺−βI

G
(k)
2 (diag(S(k)(p(k)), S

(k)
in (p

(k)
in )), ...

diag(S(k)(p(k)+dp(k)), S
(k)
out(p

(k)+dp(k))), σ, p(k))≺−βI

F3(R
(k)(p(k)), S(k)(p(k))) � 0,

F3(R
(k)
in (p

(k)
in ), S

(k)
in (p

(k)
in )) � 0, (12)

for all (p(k), dp(k)) ∈ Γ(k), p(i)v ∈ [p(i)
v
, p

(i)
v ], i ∈ E

(k)
in , v =

1, 2, . . . , ri, and some positive scalar β, where G
(k)
1 , G

(k)
2 ,

and F3 are as defined in (10), (11), and (7), respectively,
p
(k)
in = (p(i))

i∈E
(k)
in

, and, for Q = R,S,

Q
(k)
in (p

(k)
in ) = diag(Q(ik)(p(i)))

i∈E
(k)
in

, (13)

Q
(k)
out(p

(k) + dp(k)) = diag(Q(kj)(p(k) + dp(k)))
j∈E

(k)
out

.

Proof: As in the proof of Theorem 3, for each δ ∈
∆, distributed LPV system G reduces to a distributed LTV
system. Then, invoking Theorem 2 along with applications of
Finsler’s lemma and a similar argument to that in the proof
of [2, Theorem 5.2(iii)] complete the proof.

The synthesis conditions (12) are infinitely constrained and
given in terms of PLMIs. We will assume that the state-space
matrix-valued functions and synthesis solutions have polyno-
mial dependence on the parameters. With that said, there are
several relaxation techniques available in the literature that
may render such infinite dimensional PLMI problems com-
putationally tractable, such as the multiconvexity relaxation
technique [2] and the SOS decomposition method [1]. The
reader is referred to [3], [4] for some useful surveys and the
papers [21], [22] for examples on how to apply the SOS and
multiconvexity methods to solve stationary and nonstationary
LPV problems. The latest features of YALMIP [5], [23] are
also useful for solving PLMIs. The computational complexity
will be dependent on the specific relaxation technique used
and how conservative this relaxation is. From our experience,
the multiconvexity technique seems to be quite effective
when it comes to solving relatively large PLMI problems.

IV. CONTROLLER CONSTRUCTION

The controller is constructed online from the solutions,
R(k)(p(k)), R

(k)
in (p

(k)
in ), R

(k)
out(p

(k)), S(k)(p(k)), S
(k)
in (p

(k)
in ),



and S
(k)
out(p

(k)), of the synthesis conditions (12). In this
section, we briefly present a fast algorithm for constructing
the controller realization online at each discrete instant t.
The algorithm is a generalized version of the ones given
in [6], [7]. A detailed derivation of the algorithm will be
provided in the journal version of this paper. For simplicity,
in the following we will mostly suppress the dependence
of the state-space matrix-valued functions of all systems on
the parameters and their increments and further omit the
superscript (k). We will also use the notations in (13) for
any given matrix-valued function Q, and further introduce
the following notations:

Q̃+ = diag(Q(k)(p(k) + dp(k)), Q
(k)
out(p

(k) + dp(k))),

Q̃ = diag(Q(k)(p(k)), Q
(k)
in (p

(k)
in )).

Using some relaxation technique, we solve for polynomial
functions D(k)

K (p(k), dp(k), p
(k)
in ), K(k)

C (p(k), dp(k), p
(k)
in ), and

K
(k)
B (p(k), dp(k), p

(k)
in ) satisfying the PLMIs

[

−R̃ LT
R

LR Ω

]

≺ 0 and

[

−S̃+ LT
S

LS Ω

]

≺ 0, where

Ω =









−R̃+ 0 A B

0 −γI C DL

AT CT −S̃ 0

BT DT
L 0 −γI









,

A = A+B2DKC2,

B = B1 +B2DKD21,

C = C1 +D12DKC2,

LR =









AR̃+B2KC

C1R̃+D12KC

−I

0









, and LS =









−I

0

AT S̃+ + CT
2 KB

BT
1 S̃

+ +DT
21KB









.

Then, the online computation of the controller realization at
time t can be summarized as follows:

1. Compute and evaluate the following factorizations at
(δ(k)(t), dδ(k)(t), δ

(k)
in (t)): M̃W̃T = I − R̃S̃ and

M̃+(W̃+)T = I−R̃+S̃+. For instance, choose W̃ = I

and M̃ = I − R̃S̃ (and similarly for W̃+ and M̃+);
this choice of M̃ is invertible provided that the last
two conditions in (12) hold with strict inequality.

2. Evaluate DK , KC , KB at (δ(k)(t), dδ(k)(t), δ
(k)
in (t)).

Then, we have

CK =
(

KC −DKC2R̃
)(

M̃T
)−1

,

BK =
(

W̃+
)−1 (

KT
B − S̃+B2DK

)

,

AK =
(

W̃+
)−1 (

LT
SΩ

−1LR − S̃+AR̃

−S̃+B2CKM̃T − W̃+BKC2R̃
)(

M̃T
)−1

.

V. CONCLUSIONS

The paper focuses on the control of distributed LPV
systems. The distributed plant model in question consists of
discrete-time LPV subsystems interconnected over a directed
graph, where the interconnection structure is subject to a
communication delay of one sampling period. The synthesis
objective is to design a controller that has the same topologi-
cal structure as the plant, which ensures closed-loop stability

and a performance criterion given in terms of the `2-induced
norm performance measure. The paper provides a solution to
this control problem using a parameter-dependent Lyapunov
approach, with the analysis and synthesis conditions given
in terms of PLMIs. The paper also gives a fast and easy-to-
implement algorithm for constructing the controller online.
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