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Abstract— This paper deals with the model reduction of spa-
tially distributed systems. In particular, we treat discrete-time
linear time-varying subsystems interconnected over arbitrary
graph structures and subjected to communication latency, a one
step time delay on the information exchange between the source
and the target subsystems. We propose a generalization of the
balanced truncation scheme, apply it to the model reduction of
distributed systems, and derive a guaranteed upper bound on
the resultant error. This bound reduces to a finite sum in the
case of periodic and time-invariant subsystems.

I. INTRODUCTION

The study of interconnected systems is of interest be-
cause a collective and synchronized behavior of multiple
agents is observed in natural systems as well as engineering
systems [1]. Additionally, many applications of distributed
controllers have emerged in recent years, such as cooperative
control of multi-vehicle systems, multi-point surveillance,
and mobile sensor networks [1]. Moreover, distributed con-
troller approaches are appealing as they boast many advan-
tages over centralized ones: simplicity, flexibility, scalability,
and robustness to name a few [2].

In this paper, we treat heterogenous discrete-time linear
time-varying (LTV) subsystems interconnected over arbitrary
directed graphs, and assume that the data transfer between
subsystems is subjected to a uniform one step time delay.
We formulate our model similarly to the work of [3], [4]. In
[3], an operator theoretic framework is introduced to allow
for a succinct representation of distributed systems and a
facilitated development of the results. Such a framework
is possible because any arbitrary directed graph can be
transformed into a regular one by adding, if necessary,
nonexistent nodes and edges. A directed graph is said to be
regular when the indegree of a vertex is equal to its outdegree
and to the indegrees of all other vertices. In this work,
however, we deal with the actual interconnection structure
of the system, as in [4], and hence, shun the need for the
graph regularity assumption.

After formulating the model, we propose a balanced
truncation scheme to reduce its order. Model reduction is
desirable in the case of interconnected systems because the
order of the global system scales with the number of sub-
systems and the complexity of the interconnection structure,
and thus, can be very large. The use of balanced realizations
for model order reduction was first proposed in [5]. Then,
bounds on the error induced by balanced truncation for linear
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time-invariant (LTI) systems were computed in [6]-[9]. A
survey of the literature reveals that multiple works have since
extended the balanced truncation scheme and its resulting
error bound to more general classes of systems [10]-[17].

As with control design, one can treat interconnected
systems as a single global system when applying balanced
truncation, however, such an approach does not preserve
the structure of the network. The work in [18] proposes a
coprime factors approach for model reduction that preserves
the partitioning of the states. In [19], model reduction is
discussed for interconnected systems where the input to
each subsystem is a combination of the outputs of the other
subsystems and an externally applied input, and the output
of the global system is a weighted average of the outputs of
all subsystems. The proposed algorithm therein unifies and
extends the frequency-weighted and closed-loop balanced
truncations, previously applied to the model reduction of
interconnected systems. However, it fails to guarantee the
stability of the reduced order model and a bound on the error
induced by the reduction process. The work of [20] uses
a linear fractional transformation framework, and suggests
a model reduction method for continuous-time LTI inter-
connected systems based on the block-diagonal solutions of
the Lyapunov inequalities. This method addresses the issues
of its antecedent; however, it suffers from some conser-
vatism because of the structure imposed on the solutions to
the Lyapunov inequalities. In our work, we generalize the
method of [20] to the class of discrete-time LTV subsystems
interconnected over arbitrary graphs.

The paper is organized as follows. In Section II, we
define the notation to be used throughout the paper. We
then summarize, in Section III, the formulation of the model
and the results on well-posedness, stability, and performance
analysis. In Section IV, we present the balanced truncation
method and its resultant error upper bound. We devote a
subsection to the special case of time-periodic systems. The
paper concludes with Section V.

II. NOTATION

Symbols Ny, Z, and R denote the sets of nonnega-
tive integers, integers, and real numbers, respectively. We
refer to the set of m x m real matrices by R™*™ and
that of n x n symmetric matrices by S™. Given an or-
dered subset S of the set of positive integers, the nota-
tions (v;);es and (M;);cs denote its associated vector and
matrix sequences. The ordering of the elements in these
sequences corresponds to the ordering of the elements in
S. vec(v;)ics denotes the vertical concatenation of the
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elements of (v;);cs, whereas, diag(M;);cs designates the
block-diagonal augmentation of the elements of (M;);cs.
For example, let S = {1,2,4}, then (v;)ies = (v1,v2,v4),
(Mi)iES = (Ml, ]\427 M4) VCC(’UZ)ZES = [Ul ,Ug,v4] and
diag(M,);es = diag(My, My, M),

We refer to a directed graph with set of vertices V' and
set of directed edges F by G(V,E). We only consider
directed graphs with a finite number of vertices, say, N.
We choose the corresponding vertex set as V = {1,..., N},
for simplicity. An element of E directed from vertex i € V'
to vertex j € V is represented by the ordered pair (4,7).
With each k£ in V, we associate the sets E M= {i €
V|(@i,k) € E} and E&) = {5 € VI(hj) € E}. For

out -
convenience, we sort the elements of these sets in ascending
order. We also define m(k) and p(k) as the indegree and
outdegree of a vertex kK € V. As an illustration, consider
Figure 1, which shows a directed graph with 5 vertices

and 12 directed edges. Clearly, V' = {1,2,3,4,5} and

E = {(1,2),(1,3),(1,5),(2,1),(2,3),(2,5), (3,1),(3,2),
(3,4), (4,1), (4,3), (5,4)}. Furthermore, E\" = {2,3,4},
m(1) = 3, BQ) = {2,3,5}, p(1) = 3, B = {1,3},
m(2) =2, E((m)t ={1,3,5}, p(2) = 3, etc.

Given a symmetric matrix X, X < 0 means it is negative
definite. Given an integer sequence n : (t,k) € Nog x V
— n(t,k) € Ny, we define (({R™**)1) as the vector
space of mappings w : (t,k) € No x V. — w(t, k) €
R™(t:K) | Note that since the number of vertices is finite,
then Y, o w(t,k)Tw(t, k) < oo for each t € Ny. The
Hilbert space £ ({R™%*)}) is the subspace of £({R"™*F)})
consisting of mappings w that have a finite /3-norm ||w||3 :=
2otr) Wit k)Tw(t, k). We will adopt the abbreviated nota-
tions ¢ and ¢ when the dimensions are clear from context.

III. DISTRIBUTED SYSTEM MODEL
A. State-Space Representation

In this section, we develop the state-space equations for
discrete-time LTV subsystems interconnected over arbitrary
directed graphs with a communication latency, namely, the
data sent by a subsystem at the current time step reaches
the target subsystem at the next time step. The notation
we use is reminiscent of [4], and hence, the state-space
equations of the distributed system are given in terms of the
original graph setting, unlike in [3], where the graph needs
to be transformed into a regular one through the addition, if
necessary, of virtual interconnections and/or nodes. Yet, our

framework is equivalent to that of [3] because the virtual in-
terconnections correspond to signals of zero dimensions, and
thus, their associated blocks in the state-space matrices are
nonexistent. Therefore, we can adopt the analysis results on
well-posedness, stability, and performance from [3] without
difficulty.

The interconnection structure of a distributed system can
be represented using a directed graph, where each subsystem
G®) corresponds to a vertex k € V and the interconnections
between the subsystems correspond to the directed edges. We
denote the states of subsystem G*) by 2(¥)(¢). These states
are referred to as the temporal states. We also define (/) (t)
as the information sent from subsystem G(*) at time ¢ to
subsystem G(7). These states are called spatial states. With
each G(F) | we associate the following vectors:

2 () = vec(2(%) (1))

m

ZEEI(K}1C> ’

zour(t) = vec(@ " (1)) o0

out

Subsystem G(*) has its own inputs u(¥)(¢) and outputs
y*)(t). Then, the state-space equations are, for all (t, k) €
NO x V:

Tl TV =290 [Pl + B0 w0,
W90 =000 [F')] + D910,

. [2®(0) 0
i oo <o)
The matrix-valued sequences A (t), B®)(t), C®)(t), and
D) (t) are known a priori and are assumed to be uniformly
bounded. Signals z(F)(t), x*)(t), z*)(¢), u)(t), and
y*)(t) are real with possibly time-varying dimensions, de-
noted by n(® (£), n( (¢), n*3) (1), nSP( t), and n(k)(t), re-
spectively, for (t,k) € NgxV,i € E® and jeE " Vec-

in ° out*
tors [0 (¢ 4+ 1)T, 203 (¢ 4+ 1)7)7 and [0 (1), ayy) (1))
are naturally partitioned into p(k) 4+ 1 and m(k) + 1 vector-
valued channels, respectively. We partition the state-space
matrices conformably with the partitioning of these two vec-
tors. To illustrate this process, consider a distributed system
represented by the directed graph in Figure 1. The state-space

matrices of subsystem G1) are partitioned as follows:

A1) AR @) AR @) AR @)
1 1 1 1
A — A ®) AR AR @) AL ®)
(t) ) (1) ) OPNE
Asg (1) Azy () Asg(t) Azy (D)
1 1 1 1
A AG @ AR @) AR )]
B(l)(t) _ [B(l) HT (1)( )T Bél)(t)T Bél)(t)T ’

B. Analysis Results

We now give some analysis results from [3], reformulated
for the original graph setting.



Definition 1: A distributed system is well-posed if, given
inputs in ¢, the state equations admit unique solutions in ¢
and further define a linear causal mapping on ¢. Moreover,
the system is stable if it is well-posed and if, given inputs
in /5, the state equations admit unique solutions in /5 and
further define a linear causal mapping on /s.

The equations, as given in (1), are defined for t € Ny with
zero initial conditions. The definition can be alternatively
extended to t € Z with the state-space matrices set equal
to zero for negative times. Using the result [21, Lemma 6]
and a similar argument as in the proof of [21, Lemma 8],
we can show that a distributed system with A®*)(t) = 0 for
t < 0 is well-posed. Thus, the distributed system described
by (1) is well-posed. Next, we give a Lyapunov-based test
for stability. This result constitutes the basis for the balanced
truncation method. However, it is only sufficient in nature,
and hence, introduces conservatism into the approach. We
refer to systems that satisfy this test as strongly stable ones.

Lemma 1: A distributed system is strongly stable if there
exist uniformly bounded, positive definite, matrix-valued
functions X(F)(t) e S"(k( X (¢) e sv"™® and
XED(#) e s for all ( k) € Ngx V, i€ Efr’f),
and j € E™®) " such that

out>
- XE (¢ 41) 0
(k)
(A (t)) [ 0 x®+1)
X®) (1) 0
1o x®)

mn

] AR (1)

(t )}
for some positive scalar 3, where
k . i
X0 (0) = ding (X (1) .
k . ;
X5 (t) = diag (X (1))

Hereafter, we no longer specify the dimensions of X (k)(t),
X @) (t), X(*3)(¢), and any similar matrix-valued function.
Also, the definitions of X*) (t) and X, (k )( t) are extended to

out

similar notations, e.g., Y(II?)( t) and Y(k)( t). The next result

out
gives an upper bound v > 0 on the /3-induced norm of a

strongly stable distributed system.

J€ES

Lemma 2: A distributed system is strongly stable and
satisfies |[u — y|| < =, for some v > 0, if there exist
uniformly bounded, positive definite, matrix-valued functions
X R (¢ ) XOR)(t), and X9 (), for all (t,k) € Ny x V,
ie EM and je E™ such that

in ° out?®
XHE(t+1)

(Fo@) | 0 e o PO
0 0 I

X ®)(¢) 0 0

- 0 Xi(f)(t) 0

0 0 ~2I
for some positive scalar 3, where

AR B®
- [55 520)

< —pI, (3)

IV. BALANCED TRUNCATION MODEL
REDUCTION

A. Balanced Realization

Definition 2: A distributed system is said to be balanced
if there exist uniformly bounded, diagonal, positive definite,
matrix-valued functions (%) (¢), £%)(¢), and X9 (¢), for

all (t,k) eNgxV,ie El(n), and j € E;;, such that
_ »(k )( ) 0 _ T
A (¢ A (¢ —
) { 0 E.(k)(t)} ( ( )>
s®E+1) 0
B®) (1) I, 4
[ 0 ™+ }Jr 0 (B (><*3 @
_ (k) 1
(A(k)(t)) [ (t+1) 0 ]A(k
0 out(t+

T_

N——

_ |:E(ko)(t) E(’g(t):| + (é(k)(t)

mn
for some positive scalar /.

These LMIs are the generalized Lyapunov inequalities [9]
for distributed systems. They can be solved separately, and
the resultant solutions are called the generalized grami-
ans [10]. If existent, the generalized gramians can be used to
construct a balanced realization for the distributed system. A
strongly stable system has generalized gramians and, hence,
a balanced realization, as shown in the next lemma.

Lemma 3: For a strongly stable system, there exist uni-
formly bounded, diagonal, positive definite, matrix-valued
functions X(*)(¢), ) (¢), and $*9)(¢), for all (t,k) €
NoxV,i€ EX and j € E¥), that satisfy (4) and (5), and
hence, the system has a balanced realization.

Proof: A strongly stable system satisfies condi-
tion (2). Then, by scaling and homogeneity, there ex-
ist uniformly bounded, positive definite functions X (k)(t),
XR) (1), X k) (t) and Y ) (¢), Y@R) (1), Y(k9) (1) that sat-
isfy (4) and (5), respectively. We focus on the functions asso-
ciated with the temporal states. First, we perform a singular
value decomposition, (X *)(£))1/2y F)(t)(X*)($))1/2 =
U () (2®) (£))2(U®) ()T, We define the balancing trans-
formations as

T 8) = (S0 (6) AU (1) (X0 (1)

We can thus express X(%)(¢) as 75 (£) X ) (£)(T®) ()T
or as (T (#)=H)TY ) (£)(T*) (t))~'. We repeat the same
procedure for X (%) (¢) (X*7)(2)) and YR (1) (Y *)(¢))
to obtain the balancing transformations T%)(t) (T'(k9)(t)).
Then, the system realization with the followmg state-space
matrices is balanced: A(k)( t) = Tpre A®) () Thost» Bég( t) =
Tyee B (1), and Cbk%( t) = C®) (£) T} ost, Where

Tie = diag (T (t+ 1), T (1 4+ 1))

TPost = diag (T(k) (t)ilv Tl(nk) (t)il) .
|
The previous proof includes a procedure to obtain balanced
gramians and balancing transformations from the solutions
of (4) and (5). An alternative procedure is outlined here. We



focus on the functions associated with the temporal states as
a similar procedure can repeated for the others. Let X () (t)
= (RW@))"R®(t) and YW(t) = (HW(t)"HF) (1)
be the Cholesky factorizations of X(*)(t) and Y (t),
respectively. Performing a singular value decomposition
on H®) (t)(R¥)(t))T, we obtain U (£)2*) ()(V ) (¢)T.
The balancing transformation and its inverse are then
defined as T (t) = (S® ()~ 2(U® (£))TH® (¢) and
(T® ()~ = (R® () TV ®) (£)(=*)(¢))~2. Having found
all the balancing transformations, we define the balanced
realization as before.

B. Balanced Truncation

Having proved the existence of a balanced realization for
a strongly stable distributed system, we now proceed onto
the formulation of the balanced truncation problem. Let G
be a balanced distributed system. By Definition 2, there exist
diagonal generalized gramians that simultaneously satisfy (4)
and (5). We can assume, without loss of generality, that the
diagonal entries of the generalized gramians are ordered in a
decreasing fashion. We partition the diagonal gramians into
two blocks: one associated with the truncated states and the
other with the nontruncated ones. We illustrate the process
for the gramians associated with the temporal states, i.e.,
»®)(t) for all (t,k) € Ny x V. Given integers r(*)(¢) such
that 0 < r(*)(t) < nF)(t), we partition X(*)(¢) as follows:

(k)
E(k)(t) = |:F O(t) Q(Ig(t):| )

where T® (1) € §"™® and QW () e sn™ OV @),
Q) (t) corresponds to the truncated states. Then, we par-
tition the blocks of the state-space matrices in accordance
with the partitioning of diag(X®) (¢ + 1), Z(()Ifl)t(t +1)) and
diag(E(k)(t),Ei(f)(t)). We revisit subsystem G in our
example. A(%) () is partitioned conformably with ©(V) (¢t +1)
and E(l)(t), ie.,

A (1)

AR (t) =
" Ao, (8 AGGL(

~
~—

where /Al(()%))( t) is an rM(t + 1) x r((¢) matrix. Similarly,

%12)( ) is partitioned according to (V) (¢ 4 1) and X(?V)(¢),
Asy (t) according to 72( 2(t + 1) and XM(t), etc. The
blocks of BM(t) and CM(¢) are partitioned likewise. For in-
stance, Bél) (t) and 02(1 (t) are partitioned conformably with
202 (¢ + 1) and RV (1), respectively. Namely, B (t) =

~ T A~
[Bél)(t)T Béi)(t)T where B (¢) is an 1 (¢ + 1) x
n)(t) matrix, whereas, C3§"(t) e ) Céi)(t)}
where C$V(¢) is an n{" (t) x ) (t) matrix.

After completing the partitioning process, we form the
reduced order model GG, by defining its state-space matrices
A (t),Bﬁk)(t),C,Ek) (t), and fo“)(t), To do this, we keep
the blocks that correspond to the nontruncated states, i.e., the
partitions marked by a hat. For example, the reduced order

state-space matrices of subsystem G(!) become:

AR A e AR AR @)

AD(H) = 4%3@) 4%@) A%,;(t) 4%@) |
Az (t) Asy () Asg(t) Asf (1)

AQw AG® AR Afw)

) T r

DM () = DD (t).
It is useful at this point to permute the original state-space
matrices and the balanced gramians to group the reduced
states together as follows:

AP @y AV BM (¢
c-[58 ) eo-[51)
. T*) (¢ 0 Cﬁk) T
Iy (t) = |: 0( ) F(k) (t):| ) lgk) (t) = Oék)ggT]

Qin(t), Tout(¢), QQu(t) are defined similarly to I'i"(¢).
Lemma 4: The reduced order system G,, as defined
above, is strongly stable and balanced.
Proof: Since system G is balanced, there exist diagonal
gramians X(%) (¢), %) (¢), and 27 (¢) that satisfy (4) and
(5). By applying appropriate permutations, we obtain:

AP |50 gt (40@)" -

out T
[Fk oY e +1)}+B£’”<t> (B ) <1,

(6)
(Az(;k).(t))T [FzUt(é+1) QOUt((Z 1)} Aék)(t)
_ [F}?(t) - } (e ) V< —BI. )

From (6), we infer that
e 0 T
(k) (k) _
o |75 | (a410)
I (t41) 0 *) N
[ . F(E’E{(t+1)]+BT ) (BP®) < -BI.

By a similar inference from (7), we conclude that G, is
balanced and, hence, strongly stable. |
C. Error Bound

In this part, we seek to find an upper bound on the /-
induced norm of the error system G — G,.

Theorem 1: If Q) (t), QUF) (), and Q7 (t) are equal to

I, forall (t,k) eNgxV,i¢€ El(n), and j € E((m)t, then
IG =Gyl <2 ®)

Proof: G and G, are both strongly stable, and so is
1(G — G,). Applying the Schur complement formula twice
to (6) and invoking (7), we show that the following holds:

(KM (6)T (RS (t+ 1)) K® (1) — R (1) < —B1,



where gk) () 0 0 0 0

o @Pept o o o0
RO =| 0 0 Lwy 00

0 0 o T™@) o

0 0 0o 0 o
with I, T ), () equal to I o o @),

QR (1) for s = 1, and T, TS (1), Qg';{( t) for s = 2,

respectively, and

0 0 0 AP AP
000 Ay A
EOm=1 0o 0o o e P
AP @y A%@ B o 0
AR AG® BP@w o o0
We define permutation matrices P and L, respectively, as
I T0 0 0 -I 0 0 10
L0001 o 1 fI 0 0 I0
— 10 00 V2 0|,—=|0 I 0 01
V21170 0 of Y2]o 0 varoo
0 01 0 -I 0 —-I 0 01

Pre- and post- multiplying the previous inequality by P? and
P, respectively, and inserting LT L = I as needed, we get
PT(K®)TLTL(RY (t + 1)) 'LTLK® (t)P

~PTRM(#HP < —BI. (9)

The matrices PR ()P and L(RY”(t))"'LT have the
same structure, namely %diag(BL B2), with blocks B1 and
B2 given below:

Bl '(réz)(t)) +r<’“ ' (ré’:(t))—l—ré’;)(t)
()t -1y P @)+ ()
(@ (1) +Q£k><t> 0 (@M t-0w

B2 = 0 21 0
(P @) -0 o @)+ @)

where I‘gk)( t), Q(k)( t) refer to F( )( t), Q(r]f) (t) in the blocks
of PTRP®P, and T 1), 0% (1) in the blocks of

out

L(Rék) (t))LLT, respectively. Additionally,

LE® ()P = M((:))() ZY%(;%)“) where
Noy'(8)  Asy (t)
AP (1) 0 0 LBM@)
M| O f}i’j@) {ﬁ?(t) #jﬁ’;’)(ty
0 Qe A w LB
~Lc ) Lo L) o

From (9), and using the fact that Q) (¢), QUF) (), and
Q(k3)(t) are equal to I, we obtain

(M® ()T [Vz(k) ((; +1) ﬂ M®) (1) {Vf]:))(t) ﬂ < -8,

b

where, for the same references of s € {1,2},

(T @)+ ) ( -

TP @)= @) P @)+ @) ol
0 0 21

VR ()=

1\3\»—\

Note that Vl(k) (t) and Vg(k) (t) are positive definite. Then,
performing some permutations to the previous inequality, and
invoking Lemma 2 with v = 1, we conclude that

11/2)(G = G| < 1. m

Theorem 2: Given a balanced distributed system G and
its balanced truncation G,., then

IG-Grl <2} (Zug. H+> 0 > w® ) ) (10)
Ji

s (k)
(t,k) ieE;, J2

where wj(-f)( ) and wj(m)( ) are the distinct diagonal entries
of Q) (t) and QUF)(t), respectively.

Proof: The proof follows from scaling and repeated
applications of Theorem 1. Lemma 4 ensures that the in-
termediate realizations are strongly stable and balanced. We
do not account for the distinct diagonal entries of Q(*7)(t)
to avoid double counting, as the interconnection input to a
subsystem is an output of another. [ ]

D. Periodic Subsystems

While (10) gives an upper bound on the error induced
by balanced truncation, this bound might not always be
convergent. The result is more useful when the subsystems
are periodic because the existence of solutions to Lemma 1
(and hence the Lyapunov inequalities) is equivalent to the
existence of periodic solutions. We will prove this equiv-
alency for Lemma 2, which is a more general result than
Lemma 1 and, hence, encompasses it. The existence of
periodic solutions simplifies the error bound by restricting
the sum to the first period of the system only.

Definition 3: A subsystem G*) is said to be ¢ time-
periodic if A®)(t 4 q) = A®)(t), B®(t + q) = B¥(¢),
CH®(t +q) = CH)(t), and D) (t + q) = DF)(¢), for all
t € Ny. A distributed system G is said to be ¢ time-periodic
if all its subsystems are ¢ time-periodic.

Theorem 3: Suppose G is a strongly stable, g time-
periodic distributed system. Then, there exist g time-periodic,
uniformly bounded, positive definite, matrix-valued functions

X @®), x50 ), and XD (#), for all (t,k) € Nog x V,
1€ Em), and j € Eéut, that satisfy
T xEt+1) 0 o]
(F®) 0 xW L@+1) o FO)
0 0 I
X () 0 0
- 0 xW ) o0 |=<-51L
0 0 V2T

for some positive scalar 5.



Proof: Since G is strongly stable, then there exist
solutions to (3) for some ~ > 0. From these, we construct
the required g time-periodic solutions. We resort to averaging
techniques similar to the ones used in [22] and [23]. Since
the distributed system is ¢ time-periodic, then F'¥) (t+2¢) =
F®)(t) for any z € Ny. We fix ¢ in Ny, choose an integer
A > 1, and evaluate (3) at (¢ + zq, k) for z=0,..., A — 1.
Averaging the resulting inequalities, we get

vt +1) 0 0
(F® )" 0 YW (¢+1) o FO()
0 0 I
vy o 0
- 0o v8m o |=-8L
0 0 A2

where Y;k) (t) =% Z;\;é X®)(t 4 2q). Similar definitions
apply to Y/\(ik)(t) and Y/\(kj )(t). Since the solutions to (3) are
uniformly bounded, so are Y)Ek) (1), Y/\(ik)(t), and Y/\(kj)(t).
Then, there exist weakly convergent subsequences ka)(t),
Y1), and Y,\*(t) with limits L*)(¢), LOW(t), and
L) (t), respectively. We refer the reader to [24] for further
details on convergence in weak topology. By construction,
the limits are positive definite. We need to show that they
are ¢ time-periodic. We complete the proof for L()(t)
(the others follow similarly): L) (t + ¢q) — LW (t) =
limy, oo 3o 32050 (XE(E+ (2 + 1)g) = X Pt + 2q)) =
limy, o0 3 (X®) (t42.0)— X ¥ (1)) = 0. We set Xl (t) =
LW (1), X538 (£)= L) (t), and X362 (£) = L*I)(¢),

Corollary 1: Given a q time-periodic, balanced distributed
system (G and its balanced truncation G, then

q—1 ‘
6-Gl <23 Y (Sul+Y Sulo),
k

t=0 N j ieB™ J2

where w](f) (t) and wgk)(t) are the distinct diagonal entries
of Q) (t) and Q) (t), respectively.

The previous result further simplifies when dealing with
LTI subsystems (¢ = 1). In such cases, all the state-space
functions become time-independent, e.g., fl(k)(t) = A, for
all (t,k) € Ng x V. Also, due to time-invariance, we drop
the time parameter ¢ from the gramians and only sum over
the vertex indices k£ € V' when computing the upper bound
on the error.

V. CONCLUSION

Model reduction is desirable for distributed systems as
a smaller scale model facilitates both system analysis and
control synthesis problems. Balanced truncation is general-
ized and applied to the model reduction of linear systems
interconnected over arbitrary graphs and subjected to a
communication latency. The proposed scheme comes with an
a priori known error bound, and preserves the interconnection
structure between subsystems. However, it is not universally
applicable because it is based on a sufficient, but not neces-
sary, convex Lyapunov-type condition for stability.
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