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Abstract— We develop an operator theoretic framework for
heterogeneous, discrete-time, nonstationary linear parameter-
varying systems in linear fractional representation. These sys-
tems are interconnected over arbitrary directed graphs and
subjected to a communication latency of one sampling period.
We give results, based on the /2-induced norm performance
measure, for analysis and synthesis of distributed controllers
that have the same structure as the plant. The analysis and
synthesis conditions are convex, but infinite dimensional in gen-
eral. They become finite dimensional in the case of distributed
eventually time-periodic systems over finite graphs.

I. INTRODUCTION

This paper is on the distributed control of heterogeneous
subsystems interconnected over arbitrary directed graphs.
Each subsystem has its own sensing and actuating capabili-
ties, and is modeled as a discrete-time, nonstationary linear
parameter-varying (NSLPV) system [1]-[4], formulated in a
linear fractional transformation (LFT) framework. This class
of systems generalizes stationary linear parameter-varying
(LPV) systems in the sense that the state-space matrix-
valued functions can have an explicit dependence on time, in
addition to the scheduling parameters. Data transfer between
the subsystems is subject to a one-step time-delay. We aim
at constructing a feedback distributed NSLPV controller,
with the same topological structure as the plant, that renders
the closed-loop system asymptotically stable, and further
guarantees some {5-gain performance level, i.e., an upper
bound on the /¢3-induced norm of the closed-loop input-
output map, for all permissible parameter trajectories.

A survey of the literature reveals numerous works on
distributed control. The works of [5]-[8] deal with homo-
geneous, i.e., identical, subsystems, whereas, the works of
[9]-[14] treat heterogeneous subsystems. The classification
can also be based on the complexity of the interconnec-
tion structure. For instance, [6], [10] consider highly struc-
tured networks, whereas, [9], [11] study arbitrary networks.
The aforementioned references assume either linear time-
invariant or linear time-varying models for the subsystems.
Other works [15]-[20] address the problem of distributed
control for stationary LPV interconnected subsystems.

In this work, we focus on subsystems with NSLPV mod-
els. We generalize the operator theoretic description of [14],
along with the analysis results on well-posedness, stability,
and performance. This framework permits the representation
of the distributed system in a way reminiscent of standard
state-space systems, thus allowing an immediate extension
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of standard results such as [21]-[23]. Additionally, this
work generalizes the synthesis results of [1] to the context
of distributed systems. The derived analysis and synthesis
conditions are convex in nature, yet they are, in general,
infinite dimensional. These conditions become finite dimen-
sional in the case of eventually time-periodic subsystems
interconnected over a finite graph, i.e., when the a priori
known time-varying terms in the state-space matrices are
aperiodic for an initial amount of time and then become
periodic afterwards, and the interconnection graph has a
finite number of vertices and edges.

In Section II, we gather the relevant notations. Then, in
Section III, we present the operator based description of the
systems. We dedicate Sections IV and V for the development
of the analysis and the synthesis results, respectively.

II. NOTATIONS

We denote by Ny, N, Z, and R the sets of nonnegative
integers, positive integers, integers, and real numbers, respec-
tively. The notation diag (M;) refers to the block-diagonal
augmentation of the sequence of matrices M;.

G(V, E) denotes a directed graph with set of vertices V'
and set of directed edges F. We restrict our discussion to
directed graphs with a countable number of vertices. We
use the ordered-pair (4,j) to represent an element of E
directed from vertex ¢ € V to vertex j € V. We define
m(k) and p(k) as the indegree and outdegree of vertex
k € V. The vertex degree v(k) = max{m(k),p(k)}. We
assume that v(k) is uniformly bounded and define s (G) =
maxgey {v(k)}. A graph is said to be d-regular if, for each
k € V, m(k)=p(k)=d. An arbitrary directed graph can be
turned into an s (G)-regular graph by the addition, when
necessary, of virtual edges and/or nodes. So, without loss
of generality, we assume that the graph structure under con-
sideration is d-regular. Thus, we can define d permutations,
namely, p1,...,pq, of the set of vertices according to the
interconnections. See [14] for more details. The left diagram
of Fig. 1 shows a directed graph with 4 vertices, 5 edges,
and s(G) = 2. The right diagram shows the same graph
rendered 2-regular after the addition of the needed virtual
edges, along with the permutations p; and ps.

Let J be a vector space. We say that a linear mapping
P :J — J has an algebraic inverse on J if there exists a
linear mapping P~ : J — J such that PP~1 = P~1P =],
where I denotes the identity map on J. Now, let H, W, and
F' be Hilbert spaces. We denote by (-,-)y and || - || g, the
inner product and the norm associated with H, respectively.
We drop the subscript when the corresponding Hilbert space
is clear from context. The Hilbert space direct sum of H



Fig. 1. Left: Example of a directed graph. Right: Directed graph rendered
regular via the addition of the virtual edges (red, dashed arrows).

and W is written as H ® W. We represent the space of
bounded linear operators mapping H to F by L(H,F), a
notation we simplify to £(H) when F is equal to H. The
space of bounded linear causal operators mapping H to F'
is denoted by L.(H, F'). We define the algebra L£.(H, F') as
the space of linear causal operators mapping H to F' and
equipped with the point-wise topology with respect to the
standard matrix representation. We also write L£.(H) and
L.(H) when H = F. Let X be an element in L(H,F).
The notation || X|| refers to the H to F' induced norm of
X. Operator X* denotes the adjoint of X. A self-adjoint
operator X € L(H) is said to be negative definite if, for all
x € H, there exists a > 0 such that (z, Xx) < —a|z|?*
Given an integer sequence n : (t,k) € ZxV — n(t, k) €
Ny, we define ¢ ({R"(t’k)}), or simply ¢, as the vector space
of mappings w : (t,k) € Z xV — w(t,k) € RUER),
We define the Hilbert space ¢> as the subspace of ¢ that
consists of mappings w having a finite norm |jw|z :=

\/E(t,k) w(t, k)Tw(t, k). We also define {5, as the subset
of ¢ with elements w satisfying >, w(t, k)Tw(t, k) < oo
for each t € Z. We use the notations /¢, {5, {5, irrespective
of the associated integer sequence n(t, k).

III. OPERATOR BASED DESCRIPTION

We represent the interconnection structure of the dis-
tributed system using a directed graph, where each subsystem
G*) corresponds to a vertex k € V and the interconnections
between the subsystems are described by the directed edges
in E. Each subsystem is modeled as a discrete-time NSLPV
system, with state-space equations of the form

w(t+ 1) [A@G(E),t) Bi(o(t),t) By (6(t),1)|[x(t)
z(t) |=|C1(0(t),t) D11 (6(t),t) D12 (6(¢),0)||w(t)|,
y(t) ] [C2(6(1),1) Doy (6(£),1) Doz (6(¢), 8)] |u(t)
for w € /5. The variable ¢ denotes discrete time, and
§(t) = (01(t),...,d,(t)) is a vector of real scalar parameters.
z(t) is the state vector, w(t) and z(t) correspond to the
exogenous disturbances and errors, respectively, and u(t) and
y(t) denote the control inputs and the output measurements.
The state-space matrix-valued functions are known a priori,
and are assumed to be uniformly bounded. To formulate the
model in an LFT framework, we assume that the depen-
dence of these functions on the parameters is rational. This
assumption is not restrictive as it is possible to approximate
an irrational function with a rational one.
The states of the subsystems are called temporal states. We
denote by x(t, k) the temporal state associated with subsys-
tem G, and write its possibly time-varying dimension as

n®(t, k). The interconnections between the subsystems are
also modeled as states, which we refer to as spatial states. We
associate the spatial state x;(t, k) with the interconnection
(p; '(k), k), and denote the corresponding dimension by
nd(t, k). If virtual edges and/or nodes are added to make
the directed graph regular, the corresponding temporal and
spatial states will have zero dimensions, which is a slight
abuse of notation permitted in our framework. Due to com-
munication latency, the data sent by a subsystem at the
current time step reaches the target subsystem at the next
time step. Before giving the state-space equations of the
distributed system, we introduce the following notations:

z4(t k) = [xl (t, k)T 24 (t, k)T]T,

{Jn t,p1(k xq (t, pd(k))T}T.

Then, for all (t, k) € Z x V we have

o (t+1,k)  ag(t+ 1, p(k) T (8, k) 2 (8, k) "y (tyk)T}T:
Ags(t k) Agg(t k) Agp(t k) Bai(t,k) Bsa(t k)
Ags(t7k) Agg(tvk) Agp(tak) Byl(t’k) BQQ(tvk)
APS(tvk) Apg(tvk) APP(tvk) Bpl(tvk) BPQ(t7k)
Cis(t k) Cig(t k) Cip(t,k) Dii(t, k) Dia(t, k)
Cos(t, k) Chg(t,k) Cop(t,k) Day(t,k) Da(t, k)

x |0 ()T 2yt k)T B (1, k)T w (t, k)" u(t,k)T]T, )

B (t, k) = diag (61 (¢, k)1, ..., 6. (t, k))a(t, k)
= A(t,k)a(t,k).

B(t, k) and «(t, k) are the states associated with the param-
eters, and §;(¢, k) are scalar functions, for j = 1,...,r.
B(t, k) and a(t, k) are partitioned into 7 vector-valued chan—
nels, e.g., a(t,k) = [of (t,k) o (t,k) al'(t, k;)]
where «;(t,k) and f;(t,k) share the same dimension
nf(t,k). The identity matrices in A(t, k) have dimensions
g(t k), for j = 1,...,r, respectively. Note that it is per-
m1551ble for n; P(-, k) to be zero for some 7, k. Even if various
subsystems depend on the same parameter, this formulation
assumes an independent evolution of the parameter in each
of the subsystems. We denote by n*(¢, k), n¥(t, k), n*(t, k),
and n"(t, k) the dimensions of z(¢, k), y(t, k), u(t, k), and
w(t, k), respectively. It is convenient to define the following:

At k) As(tk)  Au(t k)
A(t,k): AgS(tvk) Agg(tvk) Agp(tak) ,
APS (t7 k) Apg (t7 k) App(t k)
Ba(t,k) Buw(t k)
B(t,k) = [Bi(t,k) Ba(t,k)] = | Bgi(t,k) Bga(t,k)|,
Boi(t.k) Bo(t. k)
o [CR)] [CLt k) Cuy(tk) Cu(tk)
Ot k) = {C’g(t,k)} = [czs(t, ) Coy(t.k) Colt k)|

k
k
— D11(t, k) Dot k)
D(t, k) = .
(&, k) [Dm(t, k) Dot k)
Fig. 2 shows a distributed system having NSLPV subsystems

formulated in an LFT framework. The figure also gives the
spatial state associated with each interconnection.



Fig. 2. Distributed System consisting of NSLPV subsystems formulated
in an LFT framework, where Sp denotes the one-step delay operator.

At this point, as in [14], we introduce two classes of
operators that will be used in the sequel. An operator ()
is said to be graph-diagonal if (Quv)(¢,k) = Q(¢, k)v(t, k),
for all (t,k) € Z x V. Similarly, an operator W = [W,,]
is said to be partitioned graph-diagonal if each partition
W;; is a graph-diagonal operator. We define the mapping
[WI(t, k) = [Wi;(t, k)], which is a homomorphism from
the space of partitioned graph-diagonal operators to that
of graph-diagonal operators. This mapping is isometric and
preserves products, addition, and ordering. We use the nota-
tions 0 and I for both graph-diagonal and partitioned graph-
diagonal zero and identity operators, respectively, and leave
it to the leader to determine their associated dimensions
from context. The blocks of the state-space matrices, e.g.,
Ass(t, k), define graph-diagonal operators, e.g., Ass. These
can in turn be used to construct partitioned graph-diagonal
operators A, By, Bs, B, Cq, Cs, C, and D, e.g.,

Ass Asg Asp le Bs2
A=Ay Agy Agy|, B=[B1 Bs]=|By Bgl.
Aps Apg App Bpl Bp?

These operators satisfy [A](t,k) = A(t, k), [B](t,k) =
B(t, k), and so on. Also, we define graph-diagonal operators
A;, for j =1,...,7, such that A;(t,k) = d;(t,k)I. These
operators can be block-diagonally augmented to form the
partitioned graph-diagonal operator A = diag (A1, ..., A,).
It will be useful to group the operators associated with the
temporal and spatial states as shown next.

< A A < A -
A=y 4] e [47] du=lan A @
11 |:Ags Agg 12 Agp 21 [ D pg}
Do le > BSQ ~ ~
By= {BQJ,Bz {392}01[015 Cig],Ca=[Cas Cyy].
The temporal shift operator Sy and spatial shift operators 5;,
fori=1,...,d, are defined as

(Sov)(t, k) = v(t — 1,k) and (S;v)(¢t, k) = v(t,pi_l(k;))7
for any v € £. These operators are unitary and satisfy
(Sgv)(t, k) =v(t + 1,k) and (S]v)(t, k) = v(t, pi(k)).

The composite shift operator S and the conformably parti-
tioned operator A can then be defined as

S = diag (SQ, S()Sl, ey SoSd, L«) y A= diag (Id+1,é) s

where I, denotes the block-diagonal augmentation of ¢
graph-diagonal identity operators /. We are only interested
in operators A that satisfy ||A| < 1. We denote the
corresponding set by A. Thus, (1) can be rewritten as

x x w] [z x w
=ASA ASB , =C D , 3
o =asali]sasn i), [l=c[5l+2[2] o
where z = [z, 2%,...,25] . From the previous equations,

and assuming the relevant algebraic inverse exists, the input-
output map of the system can be written as G5 = A*xG, where

A*GA*{ 5614 b;f ]C(IASA)IASB+D, )

for some A € A. Finally, the distributed NSLPV system Gs
is defined as Gs = AxG ={AxG: A € A}

IV. ANALYSIS RESULTS

We now give results on well-posedness, stability, and
performance of the systems under consideration. We develop
the results for the open-loop equations. For simplicity, we
neglect the exogenous inputs w and the exogenous errors z.
Then, (1) can be rewritten as

[0 (¢ 4+ 1,8)"

Aws(t, k) Agg(t, k) Ba(t, k)] [Asp(t, k)
< Aga(t k) Agg(t, k) By(t,k) |+| Agp(t. k) | A(t, k) x
Cu(t,k)  Cy(t.k) D(tE)| | Cplt.k)

(1= At DA D) [Ap(t. 1) Ap) Byt 1] )

X [mo k)" xy(t, k)T ul(t, k)T}T.

One can see that, for the equations to be well-defined, I —
App(t, k)A(t, k) must be invertible for all (¢,k) € Z x V.

Definition 1: A system Gg is well-posed if Gs : u — y €
Le(lae, lo.) forall A € A, i.e., G5 defines a causal mapping
on {4y, for all permissible parameter trajectories.

From (4) and given that L.(¢5.,¢2.) is an algebra, the
well-posedness of G5 is equivalent to the invertibility of I —
ASA in L.(ls.) for all A € A. But, using (2),

—SpS Ay,
I— AAPP 7

I — §0§A11

1-ASA=|" 0

where Sp = diag(Sp,...,S50) (d + 1 times) and S =
diag (I, S1,...,Sq). Then, we can state the following.

Lemma 1: I — ASA is invertible in L. (¢3.) for all A €
A, and hence G is well-posed, if A(t,k) =0 for t < 0 and
I —AA,, is invertible in L. (f2.) for all A € A.

Proof: The proof parallels the ones of [2, Proposition 2]

and [10, Lemma 8]. We omit it for space considerations. W

Definition 2: A system Gy is {y-stable if G5 € L.(f2,2)
for all A € A.

Since L.(¢2,¢3) is an algebra, stability of Gs reduces to
(I — ASA)~! being in L.(f2). Next, we give a sufficient
condition that guarantees this. But first, we define the set



X:{X . X =diag(Xo, XY,..., X9, XP, .. XP)=X",

X - 0,.X7 L (R P) @ (el (R h)o
(@;:1@({]1@”?@”@)}))) ,where X, X¢, X?, for i=1,...,d,
j=1,...,r, are bounded graph-diagonal operators} .

Notice that X is a commutant of A. Throughout the paper,
we overload the notation A" to denote any similarly defined
set even if the corresponding dimensions are different.
Lemma 2: A system Gs is {o-stable if there exists X € X
such that
A*S*XSA-X <0. (5)
Proof: The proof is based on [24]. From (5), one
can see that || X2SAX 2| < 1. But, X2 € X, and so,
it commutes with every A € A. By the submultiplicative
property, | XzASAX 2| < 1, i.e., ASA has a spectral
radius less than 1. Thus, (I — ASA)™! =32 (ASA)" is
a well-defined quantity in £(¢2). This quantity is is a sum
of products of causal terms, and so, is causal. |
Hereafter, we refer to systems that satisfy this condition as
strongly stable. The next result guarantees the strong stability
of Gs and further gives an upper bound on the ¢s-induced
norm of G for all A € A.
Lemma 3: A system Gs is strongly stable, and satisfies
|Gs]| <~ for all A € A, if there exists X € X such that
SA SB]'[X 0][SA SB] [X 0
[C D} {0 I] [C D} - {o 721] <0 ©
Proof: The proof is based on [10]. From the (1, 1) term
of (6), we get A*S*XSA—X <0, i.e., the system is strongly
stable. To prove the second part, we pre- and post-multiply
(6) by [B*S*A*(I — A*S*A*)~' I] and its adjoint, re-
spectively. After some mathematical manipulations, we get
that G}Gs — 7?1 < 0, i.e., ||Gs|| < for all A € A. ]
In the previous lemmas, we required the solutions to (5)
and (6) to be in X. In fact, the solutions just need to be
positive definite and in the commutant of A. But, the added
structure does not introduce conservatism, as shown in the
next lemma, which is a generalization of [23, Theorem 11].
Lemma 4: A positive definite solution X, belonging to
the commutant of A, exists to (6) if and only if a solution
X € X exists.
The proof of this lemma is involved and will be given in the
journal version of this work.

V. SYNTHESIS RESULTS

In this section, we develop a controller that guarantees
a certain performance level for the closed-loop system. We
assume that the plant Gy is well-posed. We also assume that
all the state-space matrices are zeros for ¢ < 0, and that
Dys(t, k) = 0 for all (t,k) € Z x V. The controller s,
as in Fig. 3, is a distributed NSLPV system that inherits the
network structure of the plant. The parameters that affect the
controller are the same ones that affect the plant. Thus, the
controller state-space equations are in the form of (1) with

Fig. 3.

Controller inheriting the network structure of the plant.

the additional superscript /. The controller has zero state-
space matrices for ¢ < 0. The dimensions of the controller
are not known at this point, but will be specified later.

Using definitions as in (2), we write the controller equa-
tions as

$K S’()S’Aﬁ SoSA{(Q §0§BK .IK

of\=| A akTBE R
u oK Cr DX y

) =lo sr]in] =owlia o

where AKX € AK = {AK : ||AK| < 1}. Writing the plant
equations as in (7), and combining them with (7) yields

xr X

% | 154 $BJ]| o 8
’ Ca Dal| ox |” lex] = 8x)
aK cl cl BK K K
z w

where A, B, C., and D, are appropriately defined
operators, A, = diag(A, AK), and

S = diag(S, S) = diag (SOS I, 85, IT) :

If we define 7 = [z* B* (2%)* (B%)*]", and A =
diag(A, AX) = diag (Id+1,é, IdH,éK), then

Lel = AS’A’[lclxcl + AS'Bclw; Rel = Cclxcl + Dayw. (8)

Equations (8) describe the dynamics of the closed-loop
system, but are not in the form of (3). As a rem-
edy, we define the partitioned graph-diagonal operator
A" = diag (A},... AL), where each Al satisfies
A% (t, k) = 6;(t, k)I with the identity matrix having dimen-
sion nf(t, k) + nf (1, k). We then define the permutation
operator P such that P*AP = AL = diag (Id+1,éL), and
operators AL, BL, CF, and D” according to

SAF=p*SA,P, SB*=P*SB,, C*=C,P, D*=D,,.

Thus, the closed-loop equations can be expressed as

L L L
[x }:ALSAL [”“’ ]+ALSBLw, 2=CL {‘T

BL ﬁL 6L:| +DLU)



We are interested in operators Al that satisfy ||AL| < 1
and denote the corresponding set by AL,

Definition 3: A controller s is an admissible synthesis
for a plant Gs if the closed-loop system is strongly stable
and, for all AL € A’ the input-output map satisfies

Jw— z|| = |CH(I — APSAM)T'ALSBE 4+ DF|| < 1.
We now proceed onto designing an admissible synthesis

for a given plant G5. We consider the following closed-loop
system parametrization [1], [21], [23]:

Aa=A+BJC, By =B+ BJD,,,
Ccl = é +Q12JQ7 Dcl = Dll +Q12J2217
where
14:111 A 0 0 By [Ci1”
= A1 A, 00 = | Bip =~ Ci"p
A= 0 0 0 0|’ B= 0|’ C= 0|’
0 0 0 0 0 i 0 ]
J=|AX AKX BEK| B= P2l D= 0 |,
P 0 I O 12
0 0 I O [0 ]
C=10 0 0 I|, Dy=]0
Cy Cyp 0 0 _Dgl_

This parametrization allows us to develop an affine condition
in J to check for the admissibility of a given controller.
Theorem 1: The controller /Cs, parameterized by operator
J, is an admissible synthesis for plant G if there exists X© €
X such that
H+Q"J'R+R"JQ <0, 9

where X5 = PXLP~, Rz[ﬁ* 0 0 Q’fz],
Q=1[0 C Dy 0], and

~S(XE)T'S A B0

A* -Xk o ¢

H = . P
B 0 -1 Dj
0 C Dy I

Proof: From Lemma 3, the closed-loop system is
strongly stable and satisfies ||w — z|| < 1 for all AL € AL
if there exists an operator X* € X such that (6) holds.
We pre- and post-multiply (6) by diag (P, I) and its adjoint,
respectively, to get

|:Acl Bclil* |:5'*X1%5’ 0:| |:Acl Bcl:| _ l:Xﬁ O:l <0
Cu Dy 0 I| |Cy Dy 0o I ’
Applying the Schur complement formula and some permu-
tations, one retrieves (9). |
We now look closely at X5 = PXEP*, where Xt =
diag(Xo, X7,..., X7, X7,..., XP) € X. Consider operator
Xo. For all (t,k) € Z x V, we partition X(t, k) as

X, 11(t, k) X 12(t7k)
Xotth) = [ ) b

where Xo,, (t,k) € S" (0 and X, (t,k) € §" @),
These partitions define graph-diagonal operators, which we

denote by Xo,,, Xo,,, and Xo,,. We repeat the partition-
ing process for X7 and X7. Then, we construct Xi; =

dAiag(Xgll,Xfu, o Xg XY, XE ) € XX and
X9 are constructed similarly. Then, X 1% = PXLP* and its
inverse (X5)~1 = P(X%)~1P* have the same structure:
L | X1 X -l (Y Yo
X {Xikz X2j - (XF) [Yl*Q Y22] - 10
The following lemma follows immediately from the result
[22, Lemma 6.2], and so, its proof is omitted.
Lemma 5: Suppose XH and Yn S XA . Then, there exists

XL = 0 satisfying (10) if and only if {X}l YI } > 0, and
11
rank { Olll(t’ k) Yo(It k): < nf(t, k) +n*"(t, k),
rank [X’%ll(t’ k) Yii?l(j;’ k) < nf(t, k) +nd (¢, k),
rank [Xﬂpul(t’k) Yﬁl(ik)_ <nP(t, k) +n?" (¢, k),

forall (t,k)eZxV,i=1,...,d,and j=1,...,r.

The next result makes use of Theorem 1, and gives a
means to check for the existence of an admissible synthesis.
The proof is similar to that of a counterpart result in [23],
and is hence omitted for brevity.

Lemma 6: There exists a partitioned graph-diagonal oper-
ator J that satisfies (9) if and only if

WEHWR <0 WéHWQ <0,

where Wr and Wpg are any partitioned graph-diagonal
operators that satisfy the following properties:

ImWgk = ker R, WiWg =1,
ImWg = ker Q, WeWeo = 1.

We now construct the needed Wx and Wg. Let U; and
V1 be partitioned graph-diagonal operators such that

and

Uy =[U5 (U7) Uy (UP) w1,
i=[w ) e (v o)t e vyl
where Up(t,k) € R™WERXT Ut k) € R7 (k) x?

UP(t, k) € R" (t*)%? The dimensions of the partitions of
V) are defined similarly. Also, let Uy and V, be graph-
diagonal operators such that Uy(t,k) € R™" (F)x7 and
Va(t, k) € R™ (:#)x7 These operators must also satisfy

Im [Ul] =ker [Co Danl, UjU+U3U; =1,
Us

Im [Vl} =ker [By D], VVi+VVa=1.

Va
Then, we can take Wx and Wy, respectively, as

Vi|0 0|0 01|l 0]0

0]0 0|0 00 IO

| 01 0|0 _{Ui|0 0]0
We=1 o 1o0 r{o|" "e=| o]0 0o
0|10 0|1 Uy |0 0]0

Vo0 00 0|0 O0]|I




The horizontal and vertical lines are just added to help in
the computation of WiyHWp and W5HW,. Expanding
WrHWR < 0 and W5HW¢q < 0, and then applying the
Schur complement formula to each, we get, respectively,

(Vi A+ V3 C)Y1 (A + CFVa) — Vi S*Y115T

+(V1*Bl + V;Dll)(val + DT1V2) — ‘/2*‘/2 <0, (1D
(UTA* + UQ*BT)S*XHS(AUl + BlUQ) - UlelUl

+(U7 CY + U3 D11)(C1Uy + D11 Us) — U3Uz < 0. (12)

The following theorem combines Lemma 5, (11) and (12).

Theorem 2: There exists an admissible synthesis s for
plant Gy if there exist X717, Y11 € X such that

([A Bi][vu O[A Bi]" [s*YiS 0
wllen mllo i o [0 e

(TA B [* XS 0[A Bi] [Xi O
NX([CH D11]{ 0 IHCl Dlj {0 1 A0

[Xll 1 } =0,
I Y]~
where Ny and Nx satisfy InNy = ker [By D],

N;NY = I, ImNX = ker [CQ Dgl] y N;(NX =1.

The controller dimensions are set as follows:
n*¥(t, k) = rank (Xo,, (t, k) — Yo,, (, k),
nf’K(t, k) = rank (Xi’;1 (t, k) — Yfl (t, k)) ,
n? " (¢, k) = rank (X? (t, k) — Y7 (t,k)).

After finding the solutions to (13) and determining the
controller dimensions, we use Lemma 5 to construct an
operator X}é that satisfies (10). Then, we solve (9) for
the controller realization J. All the previous computations
are convex, but infinite dimensional in general. However,
when the subsystems are eventually time-periodic and the
interconnection graph is finite, all the computations become
finite dimensional. We briefly discuss this topic next.

We say that a system Gs with zero state-space matrices
for ¢ < 0 is (h,q)-eventually time-periodic (ETP), for
some h € Ny and g € N, if the state-space matrices
of GG are aperiodic for an initial amount of time h, and
then become time-periodic with period ¢ afterwards, e.g.,
At + h + 2q,k) = A(t + h,k), for all t,z € Ny and
k € V. This class of systems G includes finite horizon,
time-invariant, and time-periodic systems.

Lemma 7: For an (h,q)-ETP system Gs, there exist so-
lutions X11 and 3711 € X to (13) if and only if there exist
(N, q)-ETP solutions, Xlleper and )Afneper, for some N > h.

The proof makes use of averaging techniques and convexity
properties of LMIs, similar to the ones used in [3] and [23].

(13)

From Lemma 7, we conclude that for an (h,q)-ETP
distributed NSLPV system Gs, there exists an admissible
synthesis if and only if there exists an (N, ¢)-ETP admissible
synthesis /Cs. If, in addition, the interconnection graph is
finite, i.e., the graph has a finite number of vertices and
edges, then the computations involved in finding the desired
synthesis become finite dimensional.
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