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Abstract— This paper is on the coprime factors model reduc-
tion of spatially distributed systems consisting of heterogeneous,
discrete-time, linear time-varying subsystems interconnected
over arbitrary directed graphs. The communication between
the subsystems is subjected to a one-step time-delay. We review
the balanced truncation scheme for this class of systems, and
then generalize the coprime factors model reduction method.

I. INTRODUCTION

In this paper, we treat heterogenous, discrete-time, linear
time-varying (LTV) subsystems interconnected over arbitrary
directed graphs. We assume that the data transfer between the
subsystems is subjected to a one-step time-delay. We use the
model formulation of [1], which is based on [2] and [3].

Model reduction is desirable for spatially distributed sys-
tems. In fact, the dimension of the overall system scales with
the size of the subsystems, the number of subsystems, the
size of spatial states associated with the interconnections,
and the complexity of the interconnection structure.

In [1], the balanced truncation method [4]–[16] is extended
to the class of distributed systems over arbitrary directed
graphs with communication latency. The method allows the
preservation of the interconnection structure [15], [16], and
further allows its simplification [16]. In particular, the order
of the spatial states can be reduced. The method even
allows the removal of a whole interconnection if deemed
insignificant. Furthermore, the method guarantees the sta-
bility of the reduced order system and an upper bound on
the `2-induced norm of the error system resulting from the
reduction process, which generalizes the “twice the sum of
the distinct truncated singular values” bound. However, the
method is based on the existence of block-diagonal solutions,
called generalized gramians, to the generalized Lyapunov
inequalities. It is shown in [17] that the existence of such
gramians is a sufficient, yet non-necessary, condition for
stability of distributed systems. In [1], stable systems with
structured gramians are referred to as strongly stable, and the
balanced truncation scheme proposed therein only applies to
strongly stable systems. See [18] for a group of systems that
are guaranteed to have block-diagonal gramians.

In this work, we generalize the coprime factors reduction
(CFR) method to the class of distributed systems. CFR
provides a partial remedy to the conservatism of balanced
truncation by being applicable to strongly stabilizable and
detectable systems. However, the resulting error bound no
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longer captures the mismatch between the original and
reduced order models. In the journal version of this work,
we show how to interpret the error bound in terms of
robust stability of the closed-loop system. The CFR method
was introduced for linear time-invariant (LTI) systems in
[19]. In [20], [21], the method was extended to systems
described in a linear fractional transformation framework,
e.g., uncertain systems and stationary linear parameter vary-
ing (LPV) systems. The works of [12] and [22] have since
generalized the method to nonstationary LPV and Markovian
jump linear systems, respectively. Additionally, [23] applies
the CFR method for structure-preserving model reduction of
continuous-time LTI systems.

This paper is organized as follows. In Section II, we gather
the relevant notations. We present, in Section III, the model
formulation of [1]. Balanced truncation is briefly summarized
in Section IV. Section V is devoted for the coprime factors
reduction method. The paper concludes with Section VI.

II. PRELIMINARIES

We denote by N0, N, and R the sets of nonnegative
integers, positive integers, and real numbers, respectively.
The set of n × m real matrices is denoted by Rn×m

and that of n × n symmetric matrices by Sn. (vi)i∈S and
(Mi)i∈S are, respectively, the vector and matrix sequences
associated with S, an ordered subset of N. The elements of
sequences (vi)i∈S and (Mi)i∈S follow the same ordering as
the elements of the index set S. The elements of (vi)i∈S
can be vertically concatenated to form the augmented vec-
tor vec(vi)i∈S , whereas, the elements of (Mi)i∈S can be
block-diagonally augmented to form diag(Mi)i∈S . As an
example, let S = {1, 2, 4}. Then, (vi)i∈S = (v1, v2, v4),
(Mi)i∈S = (M1,M2,M4), vec(vi)i∈S = [vT1 , v

T
2 , v

T
4 ]T , and

diag(Mi)i∈S = diag(M1,M2,M4).
G(V,E) denotes a directed graph with set of vertices V

and set of directed edges E. We restrict our discussion to
directed graphs with a finite number N of vertices. For
simplicity, we take the vertex set as V = {1, . . . , N}. We
use the ordered pair (i, j) to represent an element of E
directed from vertex i ∈ V to vertex j ∈ V . With each
k ∈ V , we associate the sets E(k)

in := {i ∈ V | (i, k) ∈ E}
and E

(k)
out := {j ∈ V | (k, j) ∈ E}. The elements of

these sets are sorted in an ascending order. We define the
indegree, m(k), and outdegree, p(k), of vertex k ∈ V as
the number of elements in E(k)

in and E(k)
out, respectively. For

example, consider Fig. 1, which shows a directed graph with
5 vertices and 12 directed edges. V = {1, 2, 3, 4, 5} and



Fig. 1. Example of a Directed Graph.

(1, 2), (1, 3), and (1, 5) are some elements in E. Moreover,
E

(1)
in = {2, 3, 4}, m(1) = 3, E(1)

out = {2, 3, 5}, p(1) = 3, etc.
Given an integer sequence n : (t, k) ∈ N0 × V →

n(k)(t) ∈ N0, we define `({Rn(k)(t)}), or shortly `, as
the vector space of mappings w : (t, k) ∈ N0 × V →
w(k)(t) ∈ Rn(k)(t). The Hilbert space `2 is the subspace
of ` consisting of mappings w that have a finite `2-norm
defined as ‖w‖22 :=

∑
(t,k) w

(k)(t)Tw(k)(t). The dimensions
associated with ` and `2 should be clear from context.

III. DISTRIBUTED SYSTEM MODEL

In this section, we present the state-space equations
for heterogeneous, discrete-time, LTV subsystems intercon-
nected over arbitrary directed graphs and subjected to a
communication latency, as well as the relevant analysis
results, as were given in [1] and the references therein.

The interconnection structure of a distributed system is
described using a directed graph, where each subsystem
G(k) corresponds to a vertex k ∈ V and the intercon-
nections are described by the directed edges in E. The
temporal states of subsystem G(k) are denoted by x(k)(t). We
model the interconnections between the subsystems as spatial
states, and denote the states associated with edge (i, j) by
x(ij)(t). Vectors x(k)in (t) = vec(x(ik)(t))

i∈E(k)
in

and x(k)out(t) =

vec(x(kj)(t))
j∈E(k)

out
represent the total information received

and sent by subsystem G(k), respectively. Each subsystem
G(k) has its own inputs u(k)(t) and outputs y(k)(t). For all
(t, k) ∈ N0 × V , the state-space equations are given by[

x(k)(t+ 1)

x
(k)
out(t+ 1)

]
= Ā(k)(t)

[
x(k)(t)

x
(k)
in (t)

]
+ B̄(k)(t)u(k)(t),

y(k)(t) = C̄(k)(t)

[
x(k)(t)

x
(k)
in (t)

]
+ D̄(k)(t)u(k)(t), (1)

with zero initial conditions, i.e., x(k)(0) = 0 and x(k)in (0) =
0. The sequences of the state-space matrices are assumed
to be uniformly bounded. n(k)(t), n(ik)(t), n(kj)(t), n(k)u (t),
and n

(k)
y (t) denote the dimensions of x(k)(t), x(ik)(t),

x(kj)(t), u(k)(t), and y(k)(t), respectively, for (t, k) ∈
N0 × V , i ∈ E

(k)
in , and j ∈ E

(k)
out. The state vectors

[x(k)(t + 1)T , x
(k)
out(t + 1)T ]T and [x(k)(t)T , x

(k)
in (t)T ]T are

partitioned into p(k)+1 and m(k)+1 vector-valued channels,
conformably with which we partition the state-space matri-
ces. For example, the state-space matrices of subsystem G(1)

in Fig. 1 are partitioned as follows:

Ā(1)(t) =


A

(1)
00 (t) A

(1)
02 (t) A

(1)
03 (t) A

(1)
04 (t)

A
(1)
20 (t) A

(1)
22 (t) A

(1)
23 (t) A

(1)
24 (t)

A
(1)
30 (t) A

(1)
32 (t) A

(1)
33 (t) A

(1)
34 (t)

A
(1)
50 (t) A

(1)
52 (t) A

(1)
53 (t) A

(1)
54 (t)

 ,

B̄(1)(t) =


B

(1)
0 (t)

B
(1)
2 (t)

B
(1)
3 (t)

B
(1)
5 (t)

 , C̄(1)(t)=


C

(1)
0 (t)T

C
(1)
2 (t)T

C
(1)
3 (t)T

C
(1)
4 (t)T



T

.

Definition 1: The distributed system (1) is well-posed if,
given inputs in `, the state-space equations admit unique
solutions in ` and define a linear causal mapping on `.
Moreover, the system is stable if it is well-posed and if,
given inputs in `2, the state-space equations admit unique
solutions in `2 and define a linear causal mapping on `2.

The equations in (1) are defined for t ∈ N0 with zero initial
conditions. The definition can be extended to t ∈ Z with zero
state-space matrices for t < 0, and the resultant system is
well-posed [17]. Next, we give the stability condition upon
which balanced truncation is based. Distributed systems that
satisfy this condition are called strongly stable.

Lemma 1: A distributed system is strongly stable if there
exist a positive scalar β and uniformly bounded, positive def-
inite matrix-valued functions X(k)(t) ∈ Sn(k)(t), X(ik)(t) ∈
Sn(ik)(t), and X(kj)(t) ∈ Sn(kj)(t), for all (t, k) ∈ N0 × V ,
i ∈ E(k)

in , and j ∈ E(k)
out, such that

Ā(k)(t)T
[
X(k)(t+ 1) 0

0 X
(k)
out(t+ 1)

]
Ā(k)(t)

−
[
X(k)(t) 0

0 X
(k)
in (t)

]
≺ −βI. (2)

The notations X
(k)
in (t) and X

(k)
out(t) are defined as

diag(X(ik)(t))
i∈E(k)

in

and diag(X(kj)(t))
j∈E(k)

out
, respectively.

These definitions are extended to similar notations, e.g.,
Y

(k)
in (t) and Y (k)

out (t). Hereafter, we no longer specify the di-
mensions of X(k)(t), X(ik)(t), X(kj)(t) and similar matrix-
valued functions as they can be determined from context.

IV. BALANCED TRUNCATION MODEL REDUCTION

In this section, we summarize the balanced truncation
method for distributed systems as presented in [1].

Definition 2: A realization of a distributed system is said
to be balanced if there exist a positive scalar β and uniformly
bounded, diagonal, and positive definite matrix-valued func-
tions Σ(k)(t), Σ(ik)(t), and Σ(kj)(t), for all (t, k) ∈ N0×V ,



i ∈ E(k)
in , and j ∈ E(k)

out, such that

Ā(k)(t)diag(Σ(k)(t),Σ
(k)
in (t))Ā(k)(t)T + B̄(k)(t)B̄(k)(t)T

− diag(Σ(k)(t+ 1),Σ
(k)
out(t+ 1)) ≺ −βI, (3)

Ā(k)(t)T diag(Σ(k)(t+ 1),Σ
(k)
out(t+ 1))Ā(k)(t)

− diag(Σ(k)(t),Σ
(k)
in (t)) + C̄(k)(t)T C̄(k)(t) ≺ −βI. (4)

Inequalities (3) and (4) are the generalized Lyapunov in-
equalities [8]. For a strongly stable system, they can be
solved separately, and the resultant solutions, which are not
necessarily diagonal, are the generalized gramians [9]. These
gramians are used to construct a balanced realization as
outlined next. Assume that X(k)(t), X(ik)(t), X(kj)(t) and
Y (k)(t), Y (ik)(t), Y (kj)(t) satisfy (3) and (4), respectively.
We focus on the functions associated with the temporal
states and repeat a similar procedure for the functions
associated with the spatial states. First, we compute the
Cholesky factorizations X(k)(t) = R(k)(t)TR(k)(t) and
Y (k)(t) = H(k)(t)TH(k)(t). Then, performing the singular
value decomposition

H(k)(t)R(k)(t)T = U (k)(t)Σ(k)(t)V (k)(t)T ,

we define the balancing transformation and its inverse as

T (k)(t) = Σ(k)(t)−
1
2U (k)(t)TH(k)(t),

T (k)(t)−1 = R(k)(t)TV (k)(t)Σ(k)(t)−
1
2 ,

respectively. Finally, the balanced realization is defined as

Ā
(k)
bal(t) = T (k)

pre (t+ 1)Ā(k)(t)T
(k)
post(t),

B̄
(k)
bal(t) = T (k)

pre (t+ 1)B̄(k)(t),

C̄
(k)
bal (t) = C̄(k)(t)T

(k)
post(t),

where T
(k)
pre (t) = diag(T (k)(t), T

(k)
out(t)) and T

(k)
post(t) =

diag(T (k)(t)−1, T
(k)
in (t)−1).

Now, suppose that we are given a distributed system with
a balanced realization and associated diagonal gramians. We
assume that the diagonal entries of the gramians are ordered
in a decreasing fashion. Balanced truncation is based on
removing the states that correspond to the negligible entries.
Given integers r(k)(t), such that 0 ≤ r(k)(t) ≤ n(k)(t),
we partition Σ(k)(t) as Σ(k)(t) = diag(Γ(k)(t),Ω(k)(t)),
where Γ(k)(t) ∈ Sr(k)(t) corresponds to the non-truncated
states and Ω(k)(t) corresponds to the truncated states. A
similar procedure is repeated for the gramians associated
with the spatial states. Then, we partition the state-space
matrices conformably with the partitioning of diag(Σ(k)(t+

1),Σ
(k)
out(t + 1)) and diag(Σ(k)(t),Σ

(k)
in (t)). We revisit sub-

system G(1) in our example. A(1)
00 (t) is partitioned according

to the partitioning of Σ(1)(t+ 1) and Σ(1)(t) as

A
(1)
00 (t) =

 Â(1)
00 (t) A

(1)
0012

(t)

A
(1)
0021

(t) A
(1)
0022

(t)

 ,
where Â(1)

00 (t) is an r(1)(t + 1) × r(1)(t) matrix. Similarly,

B
(1)
0 (t) is partitioned as B(1)

0 (t) =
[
B̂

(1)
0 (t)T B

(1)
02

(t)T
]T

,

where B̂(1)
0 (t) is an r(1)(t+1)×n(1)u (t) matrix, and C(1)

0 (t) is
partitioned as C(1)

0 (t) =
[
Ĉ

(1)
0 (t) C

(1)
02

(t)
]
, where Ĉ(1)

0 (t)

is an n(1)y (t)× r(1)(t) matrix.
After completing the partitioning process, we form the

reduced order model Gr by defining its state-space matrices
A

(k)
r (t), B(k)

r (t), and C(k)
r (t). We only keep the blocks that

correspond to the non-truncated states, i.e., the partitions
marked with a hat, and set D(k)

r (t) = D(k)(t). The obtained
realization for the reduced order system is balanced. The
upper bound on the `2-induced norm of the error system
resulting from the reduction process is given by

‖G−Gr‖ < 2
∑
(t,k)

(∑
j1

w
(k)
j1

(t)+
∑

i∈E(k)
in

∑
j2

w
(ik)
j2

(t)

)
, (5)

where w
(k)
j1

(t) and w
(ik)
j2

(t) denote the distinct diagonal
entries of Ω(k)(t) and Ω(ik)(t), respectively. We do not
consider the entries of Ω(kj)(t) in order to avoid double
counting, as the input to a subsystem is an output of another.

V. COPRIME FACTORS MODEL REDUCTION

We now extend the CFR method to the class of distributed
systems treated in this paper. We start by precisely defining
the notions of strong stabilizability and strong detectability.
Then, we give a Lyapunov-like test to check whether a
system is strongly stabilizable, and further propose a feed-
back control law that renders the closed-loop system strongly
stable. The counterpart of these results pertaining to the class
of uncertain linear systems can be found in [24].

A. Strong Stabilizability and Strong Detectability
Definition 3: A well-posed distributed system is strongly

stabilizable if there exist uniformly bounded, matrix-valued
functions F (k)(t) such that the resulting closed-loop system
is strongly stable, i.e., there exist a positive scalar β and
uniformly bounded, positive definite matrix-valued functions
P (k)(t), P (ik)(t), and P (kj)(t), for all (t, k) ∈ N0 × V ,
i ∈ E(k)

in , and j ∈ E(k)
out, such that(

Ā(k)(t) + B̄(k)(t)F (k)(t)
)[P (k)(t) 0

0 P
(k)
in (t)

](
Ā(k)(t)+

B̄(k)(t)F (k)(t)
)T
−
[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
≺ −βI.

(6)

Similarly, we say that a well-posed distributed system is
strongly detectable if there exist uniformly bounded, matrix-
valued functions K(k)(t) such that the resulting closed-loop
system is strongly stable, i.e., there exist a positive scalar
β and uniformly bounded, positive definite matrix-valued
functions Q(k)(t), Q(ik)(t), and Q(kj)(t), for all (t, k) ∈
N0 × V , i ∈ E(k)

in , and j ∈ E(k)
out, such that(

Ā(k)(t) +K(k)(t)C̄(k)(t)
)T[Q(k)(t+ 1) 0

0 Q
(k)
out(t+ 1)

]
×
(
Ā(k)(t) +K(k)(t)C̄(k)(t)

)
−
[
Q(k)(t) 0

0 Q
(k)
in (t)

]
≺ −βI.



Theorem 1: A distributed system is strongly stabilizable
by uniformly bounded, matrix-valued functions F (k)(t) if
and only if there exist a positive scalar β and uniformly
bounded, positive definite matrix-valued functions P (k)(t),
P (ik)(t), and P (kj)(t), for all (t, k) ∈ N0 × V , i ∈ E

(k)
in ,

and j ∈ E(k)
out, such that

Ā(k)(t)

[
P (k)(t) 0

0 P
(k)
in (t)

]
Ā(k)(t)T

−
[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
−B̄(k)(t)B̄(k)(t)T≺−βI. (7)

Furthermore, F (k)(t) can be chosen as the following quan-
tity, if well-defined:

−
(
B̄(k)(t)T

[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]−1
B̄(k)(t)

)−1
× B̄(k)(t)T

[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]−1
Ā(k)(t).

Proof: We assume that rank B̄(k)(t) = n
(k)
u (t) <(

n(k)(t) +
∑

j∈E(k)
out
n(kj)(t)

)
without loss of generality.

This is because if rank of B̄(k)(t) is strictly less than n(k)u (t),
then there exist redudant controls which we can easily re-
move. As for the case where B̄(k)(t) is square and nonsingu-
lar, the proof follows immediately. Then, we can always find
uniformly bounded, matrix-valued functions B̄

(k)
⊥ (t) such

that B̄(k)
⊥ (t)T B̄

(k)
⊥ (t) = I , B̄(k)(t)T B̄

(k)
⊥ (t) = 0, and the

inverses of the matrix-valued functions
[
B̄(k)(t) B̄

(k)
⊥ (t)

]
exist and are uniformly bounded. Applying the Schur com-
plement formula to (6), we obtain

Ψ︷ ︸︸ ︷
−
[
P (k)(t) 0

0 P
(k)
in (t)

]−1
Ā(k)(t)T

Ā(k)(t) −
[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
+βI


+

[
0

B̄(k)(t)

]
F (k)(t)︸ ︷︷ ︸

Θ

[
I 0
]︸ ︷︷ ︸

M

+

[
I
0

]
F (k)(t)T

[
0 B̄(k)(t)T

]︸ ︷︷ ︸
N

≺ 0.

As shown in [25], the previous inequality has a solution
Θ if and only if WT

MΨWM ≺ 0 and WT
NΨWN ≺ 0 for

any matrices WM and WN whose columns form bases for
the null spaces of M and N , respectively. We choose WM

and WN , respectively, as
[
0 I

]T
and diag(I, B̄

(k)
⊥ (t)). The

condition WT
MΨWM ≺ 0 is trivially satisfied. So, we focus

on WT
NΨWN ≺ 0. By applying the Schur complement

formula, we get the inequality

B̄
(k)
⊥ (t)T

(
−
[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
+ βI

+Ā(k)(t)

[
P (k)(t) 0

0 P
(k)
in (t)

]
Ā(k)(t)T

)
B̄

(k)
⊥ (t) ≺ 0,

which is equivalent by Finsler’s Lemma to (7). We still
need to show that the given choice of F (k)(t) renders the
closed-loop system strongly stable. First, note that, for each
k ∈ V , F (k)(t) is well-defined if B̄(k)(t)T B̄(k)(t) is a
uniformly invertible function. This is ensured by removing
all redundant controls and properly perturbing the sequence
B̄(k)(t), if necessary, to ensure that the product has a uniform
full rank. We apply the Schur complement formula twice to
(7). For simplicity, we take β = 0, but stress that the ensuing
sequence of negative definite matrices is uniformly bounded.
We get the inequality

Ā(k)(t)T
([
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
+B̄(k)(t)B̄(k)(t)T

)−1
× Ā(k)(t)−

[
P (k)(t) 0

0 P
(k)
in (t)

]−1
≺0.

Using the matrix inversion lemma, we can verify that

−
[
P (k)(t) 0

0 P
(k)
in (t)

]−1
+
(
Ā(k)(t) + B̄(k)(t)F (k)(t)

)T
×[

P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]−1(
Ā(k)(t)+B̄(k)(t)F (k)(t)

)
≺0.

By applying the Schur complement formula twice to the
previous inequality, we retrieve (6), which concludes the
proof of the theorem.

A similar result exists for strong detectability. Next, we
extend the notion of a right coprime factorization (RCF) to
the class of distributed systems considered in this paper.
We then show that a strongly stabilizable and strongly
detectable distributed system is guaranteed to have an RCF.
We omit similar definitions and results for the left coprime
factoriozation (LCF) of the system due to space restrictions.

B. Coprime Factorizations

Definition 4: Two linear causal mappings on `2, M and
N , are right coprime if there exist two linear causal mappings
on `2, X and Y , such that YM +XN = I , where I is the
identity map on `2.

Definition 5: We say that a strongly stable pair (N,M) is
an RCF for a distributed system G if M has a causal inverse
on `, M and N are right coprime, and G = NM−1.

Lemma 2: Every strongly stabilizable and strongly de-
tectable distributed system G has an RCF.

Proof: Consider the distributed system G, defined in
(1), with its state-space realization denoted for simplicity by
the quadruple (Ā(k)(t), B̄(k)(t), C̄(k)(t), D̄(k)(t)). Suppose
that the matrix-valued functions F (k)(t) are strongly stabiliz-
ing. Define distributed systems M and N with state-space re-
alizations (Ā(k)(t)+B̄(k)(t)F (k)(t), B̄(k)(t), F (k)(t), I) and
(Ā(k)(t)+B̄(k)(t)F (k)(t), B̄(k)(t), C̄(k)(t)+D̄(k)(t)F (k)(t),
D̄(k)(t)), respectively. Since the feedback gains are strongly
stabilizing, then M and N are linear causal mappings
on `2. To show that M has a causal inverse on `, con-
sider the distributed system R with state-space realization



(Ā(k)(t), B̄(k)(t),−F (k)(t), I). Clearly, R defines a linear
causal mapping on ` because we assume zero state-space
matrices for negative times. So, we just need to prove that
MR = RM = I . We focus on MR = I; the proof of
RM = I follows similarly. Noting that u(k)M (t) = y

(k)
R (t),

we write the state-space equations for systems M and R,
for all (t, k) ∈ N0 × V :

y
(k)
M (t) = F (k)(t)

([
x
(k)
M (t)

x
(k)
inM

(t)

]
−

[
x
(k)
R (t)

x
(k)
inR

(t)

])
+ u

(k)
R (t),

[
x
(k)
M (t+ 1)

x
(k)
outM (t+ 1)

]
−

[
x
(k)
R (t+ 1)

x
(k)
outR(t+ 1)

]
=

(
Ā(k)(t) + B̄(k)(t)F (k)(t)

)([ x(k)M (t)

x
(k)
inM

(t)

]
−

[
x
(k)
R (t)

x
(k)
inR

(t)

])
.

The second equation tells us that the difference between
state vectors of systems R and M evolves independently
of the applied input, and since it is zero at time t = 0, then
it remains zero at all time steps. Then, y(k)M (t) = u

(k)
R (t),

i.e., MR = I . We now show that G = NM−1 = NR.
Specifically, we write the equations for N and R, with
uN = yR and uR = uG. Following a similar argument as
before, we show that yG = yN . The final step is to prove
that N and M are right coprime. To this end, we define Y as
a distributed system with state-space realization (Ā(k)(t) +
K(k)(t)C̄(k)(t), B̄(k)(t)+K(k)(t)D̄(k)(t),−F (k)(t), I), and
X as a distributed system with state-space realization
(Ā(k)(t) + K(k)(t)C̄(k)(t),K(k)(t), F (k)(t), 0). Since G is
strongly detectable, then K(k)(t) can be chosen so that X
and Y define bounded linear causal mappings. To prove that
YM + XN = I , we write the state-space equations of
YM : u→ y1 and XN : u→ y2, then we define y = y1+y2
and show that y = u. The equations are

y
(k)
1 (t)=−F (k)(t)

[
x
(k)
Y (t)

x
(k)
inY

(t)

]
+F (k)(t)

 x(k)M (t)

x
(k)
inM

(t)

+u(k)(t),

y
(k)
2 (t)= F (k)(t)

[
x
(k)
X (t)

x
(k)
inX

(t)

]
,

y(k)(t) = F (k)(t)

([
x
(k)
M (t)

x
(k)
inM

(t)

]
−

[
x
(k)
Y (t)

x
(k)
inY

(t)

]
+

[
x
(k)
X (t)

x
(k)
inX

(t)

])
+ u(k)(t).

By an argument similar to the one above, we can see that
x
(k)
M (t) = x

(k)
N (t) and x

(k)
inM

(t) = x
(k)
inN

(t) for all (t, k) ∈
N0 × V . Thus,[

x
(k)
M (t+ 1)

x
(k)
outM (t+ 1)

]
−

[
x
(k)
Y (t+ 1)

x
(k)
outY (t+ 1)

]
+

[
x
(k)
X (t+ 1)

x
(k)
outX (t+ 1)

]
=

(
Ā(k)(t)+K(k)(t)C̄(k)(t)

)([x(k)M (t)

x
(k)
inM

(t)

]
−

[
x
(k)
Y (t)

x
(k)
inY

(t)

]
+

[
x
(k)
X (t)

x
(k)
inX

(t)

])
.

Then, the quantity in parentheses remains equal to zero for
all times, which implies that y = u and concludes the proof.

C. Coprime Factors Model Reduction Algorithm

Given a strongly stabilizable and strongly detectable dis-
tributed system G with RCF (N,M), we define the strongly

stable system H =

[
N
M

]
. Hr =

[
Nr

Mr

]
is the reduced order

model of H obtained from balanced truncation. We use the
factorization (Nr,Mr) to define the reduced order model
Gr = NrM

−1
r which approximates G. Gr is always well-

posed since we are assuming zero state-space matrices for
negative times and a communication latency between the
subsystems. Also, Nr and Mr are bounded linear causal
mappings because Hr is strongly stable. We use the upper
bound on ‖H −Hr‖ as a guideline for the reduction process.
However, unlike balanced truncation, this measure is no
longer related to ‖G−Gr‖.

We now detail the steps of the previous outline. First, we
solve for uniformly bounded, positive definite matrix-valued
functions P (k)(t), P (ik)(t), and P (kj)(t), for all (t, k) ∈
N0 × V , i ∈ E(k)

in , and j ∈ E(k)
out, that satisfy

Ā(k)(t)

[
P (k)(t) 0

0 P
(k)
in (t)

]
Ā(k)(t)T

−
[
P (k)(t+ 1) 0

0 P
(k)
out(t+ 1)

]
− B̄(k)(t)B̄(k)(t)T ≺ 0,

while ensuring the uniform boundedness of the left-hand
side. Then, we define the strongly stabilizing feedback gains
F (k)(t) according to Theorem 1. Removing all control redun-
dancies, and slightly perturbing the product B̄(k)(t)T B̄(k)(t)
when needed to ensure uniform invertibility, guarantee that
F (k)(t) are well-defined functions. We then construct system
H such that

Ā
(k)
H (t)=Ā(k)(t) + B̄(k)(t)F (k)(t), B̄

(k)
H (t)=B̄(k)(t),

C̄
(k)
H (t)=

[
C̄(k)(t)+D̄(k)(t)F (k)(t)

F (k)(t)

]
, D̄

(k)
H (t)=

[
D̄(k)(t)
I

]
.

Thirdly, we apply balanced truncation on H . We find uni-
formly bounded, positive definite X(k)(t), X(ik)(t), X(kj)(t)
and Y (k)(t), Y (ik)(t), Y (kj)(t) that satisfy

Ā
(k)
H (t)T diag(Y (k)(t+ 1), Y

(k)
out (t+ 1))Ā

(k)
H (t)

− diag(Y (k)(t), Y
(k)
in (t)) + C̄

(k)
H (t)T C̄

(k)
H (t) ≺ 0,

Ā
(k)
H (t)diag(X(k)(t), X

(k)
in (t))Ā

(k)
H (t)T

− diag(X(k)(t+ 1), X
(k)
out(t+ 1)) + B̄

(k)
H (t)B̄

(k)
H (t)T ≺ 0.

We usually seek the solutions with minimum trace. Then, we
obtain the balanced realization and balanced gramians as in
Section IV. Based on the diagonal entries of the gramians, we
choose which temporal and spatial states to reduce/truncate,
and we compute the resultant error bound. We denote the
state-space matrices of the resulting reduced order model



Hr by (Ā
(k)
Hr

(t), B̄
(k)
Hr

(t), C̄
(k)
Hr

(t), D̄
(k)
Hr

(t)). Then, the state-
space matrices (Ā

(k)
r (t), B̄

(k)
r (t), C̄

(k)
r (t), D̄

(k)
r (t)) of Gr are

defined according to

Ā
(k)
Hr

(t) = Ā(k)
r (t) + B̄(k)

r (t)F (k)
r (t), B̄

(k)
Hr

(t) = B̄(k)
r (t),

C̄
(k)
Hr

(t)=

[
C̄

(k)
r (t) + D̄

(k)
r (t)F

(k)
r (t)

F
(k)
r (t)

]
, D̄

(k)
Hr

(t)=

[
D̄

(k)
r (t)
I

]
.

Note that F (k)
r (t) strongly stabilizes Gr.

Remark 1: A distributed system G is said to be (h, q)-
eventually time-periodic (ETP), for some h ∈ N0 and q ∈ N,
if the state-space matrices are aperiodic for an initial time
h, and then become time-periodic with period q, i.e., for all
t, z ∈ N0 and k ∈ V , Ā(k)(t+h+zq) = Ā(k)(t+h), and so
on. ETP systems include as special cases time-periodic, time-
invariant, and finite horizon systems. In the case of an (h, q)-
ETP system, there exist solutions to (2) (respectively, (3), (4),
and (7)) if and only if there exist (h, q)-ETP solutions [1],
[26]–[29]. Hence, F (k)(t) can be taken as (h, q)-ETP. As a
result, the state-space matrices of H , Hr, and Gr become
(h, q)-ETP, and the bound on ‖H −Hr‖ obtained from (5)
reduces to a finite sum. Namely,

2
∑
k

h+q−1∑
t=0

(∑
j1

w
(k)
j1

(t) +
∑

i∈E(k)
in

∑
j2

w
(ik)
j2

(t)

)
.

VI. CONCLUSION

Model reduction is desirable for distributed systems. Bal-
anced truncation is a systematic procedure that preserves
the interconnection structure and even allows its simplifi-
cation, i.e., the order reduction of spatial states and possibly
the removal of whole interconnections. Balanced truncation
comes with an upper bound on the norm of the error system.
However, it only applies to strongly stable systems. CFR
provides a partial solution to this limitation by applying to
strongly stabilizable and strongly detectable systems. CFR
retains some advantages of balanced truncation such as
structure preservation and simplification. However, unlike
balanced truncation which guarantees strong stability, CFR
only guarantees the strong stabilizability and detectability of
the reduced order system. Nevertheless, strongly stabilizing
feedback gains are readily available from the method. The
error bound associated with CFR has interpretations in terms
of closed-loop robust stability.
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