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Abstract— This work is on the balanced truncation of dis-
tributed nonstationary linear parameter-varying (NSLPV) sys-
tems. These systems are composed of heterogeneous, discrete-
time, NSLPV subsystems, formulated in a linear fractional
transformation (LFT) framework, interconnected over arbi-
trary directed graphs, and subjected to a communication
latency of one time-step. The proposed method is applied for
the model reduction of strongly stable systems, i.e., stable
systems with structured generalized gramians. The method
guarantees the strong stability of the reduced order system,
provides an upper bound on the error induced by the reduction
process, and allows for the preservation and simplification of
the interconnection and uncertainty structures.

I. INTRODUCTION

This work is on the balanced truncation of heteroge-
neous, discrete-time, nonstationary linear parameter-varying
(NSLPV) subsystems formulated in a linear fractional trans-
formation (LFT) framework. The subsystems are intercon-
nected over arbitrary directed graphs and are subjected to
a communication latency one time-step. NSLPV subsys-
tems [1], [2] are linear parameter-varying (LPV) subsys-
tems where the state-space matrix-valued functions have
an explicit dependence on a priori known time-varying
terms in addition to their dependence on the scheduling
parameters. This class of models includes the classes of
linear time-invariant (LTI), linear time-varying (LTV), and
standard/stationary LPV models. The need for distributed
NSLPV systems arises when the subsystems require NSLPV
models, or when some subsystems require LTV models while
other subsystems require LPV models.

Model reduction is desirable for interconnected systems
since the corresponding models grow in size with the state
dimension of the subsystems as well as the complexity of
the interconnection structure. Balanced truncation (BT) is of
particular interest because it guarantees the stability of the
resulting reduced order system as well as an upper bound
on the norm of the error system, see [3], [4], [5], [6].
When applying model reduction schemes to interconnected
systems, it is usually desirable to preserve the interconnection
structure. Various works, such as [7], [8], [9], [10], [11],
have appeared that treat the problem of structure-preserving
model reduction, focusing primarily on BT and coprime
factors reduction (CFR). These works are based on finding
block-diagonal solutions to linear matrix inequalities (LMIs)
[12]. Most closely related to the current work are the works
of [9], [10], [11], where the interconnections between the
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subsystems are modeled as spatial states, in addition to the
states of the subsystems, which are called the temporal states.
In particular, [9] applies BT to homogeneous subsystems
interconnected over a grid and described by either an LTI
model or a stationary LPV model. The temporal states of all
the subsystems, the forward spatial states, and the backward
spatial states are then reduced in a uniform way, respectively.
[10], [11] treat heterogeneous, LTV subsystems intercon-
nected over arbitrary directed graphs and subjected to a com-
munication latency. The methods therein preserve the inter-
connection structure and further allow for its simplification:
the temporal and spatial states are truncated individually;
and when deemed negligible, whole interconnections are
removed from the interconnection structure. The BT method
of [10] applies to stable systems which possess structured
solutions, called generalized gramians, to the generalized
Lyapunov inequalities. Such systems are called strongly
stable. In [11], CFR extends the range of applicability of
BT to stabilizable and detectable systems which can be
represented using strongly stable coprime factorizations.

The current work is a sequel to [10], with the subsystems
having NSLPV models formulated in an LFT framework
instead of LTV models. In addition to the interconnection
structure, the systems considered here have an uncertainty
structure due to the LFT formulation. Thus, the proposed BT
method needs to preserve/simplify both the interconnection
structure and the uncertainty structure.

The paper is organized as follows. In Section II, we define
the notation to be used throughout the paper. In Section III,
we summarize the framework used to describe distributed
NSLPV systems. In Section IV, we present the BT method.
We conclude the paper with Section V.

II. NOTATIONS

We denote by N0, Z, and R the sets of nonnegative
integers, integers, and real numbers, respectively. We denote
an i × i identity matrix by Ii. diag(Mi) denotes the block-
diagonal augmentation of the elements of the sequence of
operators Mi.

A directed graph is denoted by G(V,E), where the count-
able set V is the set of vertices, and E is the set of
directed edges. An element of E directed from i ∈ V to
j ∈ V is denoted by (i, j). We assume that the graph under
consideration is d-regular, i.e., for each vertex in V , the
numbers of incoming and outgoing edges are equal to the
positive integer d. Note that any arbitrary directed graph
can be turned into a regular one via the addition of the
necessary virtual edges and/or nodes. The graph-regularity
assumption is needed for the development of the operator



theoretic framework of Section III because it allows for the
definition of d permutations, ρ1, . . . , ρd, of the set of vertices
according to the edges. These permutations are chosen such
that if (i, j) ∈ E, then one e ∈ {1, . . . , d} satisfies ρe(i) = j
and ρ−1e (j) = i. See [13] for more details.

Let J1 and J2 be vector spaces, and H and F be Hilbert
spaces. We denote the vector space direct sum of J1 and J2
by J1⊕J2. . The inner product and norm associated with H
are denoted by 〈·, ·〉H and ‖·‖H , respectively. The subscript is
dropped when H is clear from context. We denote the space
of bounded linear operators mapping H to F by L(H,F ),
and the space of bounded linear causal operators mapping
H to F by Lc(H,F ). These notations simplify to L(H) and
Lc(H) when H = F . Let X ∈ L(H,F ). ‖X‖ denotes the H
to F induced norm of X , and X∗ denotes the adjoint of X .
We say that a self-adjoint operator X ∈ L(H) is negative
definite (X ≺ 0) if, for all nonzero x ∈ H , there exists
α > 0 such that 〈x,Xx〉 < −α‖x‖2.

Consider the integer sequence n : (t, k) ∈ Z × V →
n(t, k) ∈ N0. We define `

(
{Rn(t,k)}

)
as the vector space

of mappings w : (t, k) ∈ Z × V → w(t, k) ∈ Rn(t,k). The
Hilbert subspace of `

(
{Rn(t,k)}

)
that consists of mappings

w having a finite norm ‖w‖ :=
√∑

(t,k) w(t, k)∗w(t, k) is

denoted by `2
(
{Rn(t,k)}

)
. We also define `2e

(
{Rn(t,k)}

)
as the subspace of `

(
{Rn(t,k)}

)
consisting of mappings w

that satisfy the inequality
∑
k w(t, k)∗w(t, k) <∞, for each

t ∈ Z. We will frequently use the abbreviated symbols `, `2,
and `2e when the dimensions are clear from context.

We now summarize the needed operator machinery from
[13]. We say that Q is a graph-diagonal operator on `2 if it
satisfies (Qv)(t, k) = Q(t, k)v(t, k), for all (t, k) ∈ Z× V .
An operator W = [Wij ] is said to be partitioned graph-
diagonal if each block Wij is a graph-diagonal operator. The
mapping JW K(t, k) = [Wij(t, k)] is a homomorphism from
the space of partitioned graph-diagonal operators to the space
of graph-diagonal operators. This mapping is isometric and
preserves products, addition, and ordering. We also introduce
the unitary temporal-shift operator S0 : `2 → `2 and the
unitary spatial-shift operators Si : `2 → `2, for i = 1, . . . , d,
as follows:

(S0v)(t, k) = v(t− 1, k), (S∗0v)(t, k) = v(t+ 1, k),

(Siv)(t, k) = v(t, ρ−1i (k)), (S∗i v)(t, k) = v(t, ρi(k)).

The definitions of graph-diagonal operators and of shift
operators naturally extend to ` and `2e.

Consider a graph-diagonal operator X , where X(t, k) is a
diagonal matrix, for all (t, k) ∈ Z× V . We denote by φ(X)
the sum of distinct entries of X , i.e., φ(X) is the sum of
the distinct diagonal entries in diag(X(t, k))(t,k)∈Z×V . For
example, assume that X(t, k) = 0, for all (t, k) ∈ Z×V , ex-
cept for some (t0, k0), (t0, k1), (t1, k2), where X(t0, k0) =
diag(w1, w1, w2, w2), X(t0, k1) = diag(w1, w3, w3, w4),
X(t1, k2) = diag(w3, w3, w4). Then, φ(X) = w1 + w2 +
w3 + w4. Now, let W be a partitioned graph-diagonal op-
erator with a block-diagonal structure, i.e., W = diag(Wi),
where Wi are graph-diagonal operators. Assume that, for all

Fig. 1. Distributed system consisting of NSLPV subsystems formulated in
an LFT framework.

(t, k) ∈ Z×V , JW K(t, k) is a diagonal matrix, i.e., Wi(t, k)
are diagonal matrices for all i. We define Φ(W ) as the sum
of distinct entries of W , i.e., Φ(W ) = φ(JW K).

III. OPERATOR-BASED DESCRIPTION

The discussion and results in this section are a summary
of [14]. The interconnection structure of a distributed system
is given by a directed graph, G(V,E), where each subsystem
G(k) corresponds to a vertex k ∈ V , and the interconnec-
tions between the subsystems are described by the directed
edges. Each subsystem has a discrete-time NSLPV model,
formulated in an LFT framework. We denote the standard
states of subsystem G(k) by xT (t, k), where t is the discrete
time-step, and refer to them as the temporal states. We denote
the possibly time-varying dimension of xT (t, k) by nT (t, k).
We denote the states which are due to the LFT formulation
by β(t, k) and α(t, k), and hereafter refer to them as the
parameter states. The interconnections between the subsys-
tems are also modeled as states denoted by xi(t, k), and of
corresponding dimensions nSi (t, k). We refer to these states
as the spatial states. Namely, the spatial state xi(t, k) is
associated with the interconnection (ρ−1i (k), k), i.e., the edge
incoming to vertex k along permutation ρi. Similarly, the
spatial state xi(t, ρi(k)) denotes the state associated with
the interconnection (k, ρi(k)), i.e., the edge outgoing from
vertex k along permutation ρi. Note that the dimensions of
the spatial states associated with the virtual interconnections
are zeros. Due to the communication latency between the
subsystems, the data sent by a subsystem at the current
time-step reaches the target subsystem at the next time-step.
We denote the control inputs and the output measurements
of subsystem G(k) by u(t, k) and y(t, k), and denote their
corresponding dimensions by nu(t, k) and ny(t, k). Then,
for all (t, k) ∈ Z× V , the state-space equations are

xT (t+ 1, k)
x1 (t+ 1, ρ1(k))

...
xd (t+ 1, ρd(k))

α (t, k)
y (t, k)


=

[
Ā(t, k) B̄(t, k)

C̄(t, k) D̄(t, k)

]


xT (t, k)
x1 (t, k)

...
xd (t, k)
β (t, k)
u (t, k)


,



β (t, k) = diag
(
δ1(t, k)InP

1 (t,k), ..., δr(t, k)InP
r (t,k)

)
α (t, k)

= ∆(t, k) α (t, k) . (1)

The parameter states evolve according to the feedback chan-
nel β(t, k) = ∆(t, k)α(t, k), where, for j = 1, . . . , r, the
parameter values δj(t, k) are scalars which are not known
a priori, but are assumed to be measurable at each time-
step. We partition vectors β(t, k) and α(t, k) into r vector-
valued channels conformably with the blocks of ∆(t, k), e.g.,
α(t, k) = [α∗1(t, k), α∗2(t, k), . . . , α∗r(t, k)]

∗. The partitions
αj(t, k) and βj(t, k) share the dimension nPj (t, k). The
dependence of the subsystems on the parameters is local,
i.e., different subsystems may depend on different parame-
ters, and even if two subsystems are affected by the same
parameters, the evolution of these parameters is assumed to
be independent in each subsystem. Let rk be the number of
parameters affecting subsystem G(k). Then, r = maxk∈V rk.
If G(k0) is affected by a number of parameters rk0 < r, then
we equate the corresponding δj(t, k0) and nPj (t, k0) to 0, for
all time-steps t ∈ Z and indices j = rk0 + 1, . . . , r.

Figure 1 shows a distributed system having NSLPV sub-
systems formulated in an LFT framework. The dashed red
arrows correspond to the virtual interconnections added to
render the graph 2-regular. The permutations ρ1 and ρ2 are
defined as follows: ρ1(1) = 2, ρ1(2) = 3, ρ1(3) = 4,
ρ1(4) = 1, ρ2(1) = 3, ρ2(3) = 1, ρ2(2) = 4, and ρ2(4) = 2.
The spatial states associated with each interconnection are
also specified in the figure. Operator S0 marks the delay on
the information transfer between the subsystems.

The state-space matrices, i.e., Ā(t, k), B̄(t, k), C̄(t, k),
D̄(t, k), are known a priori and are assumed to be uniformly
bounded. They can be conveniently partitioned as follows:

Ā(t, k) =

ATT (t, k) ATS(t, k) ATP (t, k)
AST (t, k) ASS(t, k) ASP (t, k)
APT (t, k) APS(t, k) APP (t, k)

 ,
B̄(t, k) =

[
BT (t, k)∗ BS(t, k)∗ BP (t, k)∗

]∗
,

C̄(t, k) =
[
CT (t, k) CS(t, k) CP (t, k)

]
.

With this partitioning, one can see that the equations in (1)
look similar to the state-space equations for LPV intercon-
nected subsystems. The difference is that in (1), the state-
space matrices are allowed to be dependent on t as opposed
to being constants as in the standard LPV case.

The blocks of the state-space matrices can be further
partitioned conformably with the permutations, ρ1, . . . , ρd,
and the blocks of the feedback channel ∆(t, k), e.g.,

ATS(t, k) =
[
ATS1 (t, k) · · · ATSd (t, k)

]
,

ATP (t, k) =
[
ATP1 (t, k) · · · ATPr (t, k)

]
,

ASS(t, k) =
[
ASSie (t, k)

]
i=1,...,d;e=1,...,d

,

APP (t, k) =
[
APPjf (t, k)

]
j=1,...,r;f=1,...,r

.

These partitions, e.g., ATT (t, k), ATS1 (t, k), define graph-
diagonal operators, e.g., ATT , ATS1 , which in turn, when
augmented in the obvious way, form partitioned graph-
diagonal operators A, B, and C that satisfy JAK(t, k) =

Ā(t, k), JBK(t, k) = B̄(t, k), and JCK(t, k) = C̄(t, k). The
matrices D̄(t, k) define the graph-diagonal operator D such
that D̄(t, k) = D(t, k) = JDK(t, k).

We define graph-diagonal operators ∆j , for j = 1, . . . , r,
such that ∆j(t, k) = δj(t, k)InP

j (t,k). These operators are
augmented to form ∆P = diag (∆1, . . . ,∆r). Note that
J∆P K(t, k) = ∆(t, k). Then, we define the composite-shift
operator S = diag

(
S0, S0S1, . . . , S0Sd, I

(nP
1 ,...,n

P
r )
)

and

the operator ∆ = diag
(
InT , I(n

S
1 ,...,n

S
d ),∆P

)
, where the

graph-diagonal operator Iq satisfies JIqK(t, k) = Iq(t,k), and
I(q1,...,qm) = diag (Iq1 , . . . , Iqm). We assume that ∆ is in
∆ = {∆ : ‖∆‖ ≤ 1}. Then, we rewrite (1) as[

x
β

]
= ∆SA

[
x
β

]
+ ∆SB u, y = C

[
x
β

]
+Du, (2)

where x =
[
x∗T , x

∗
1, . . . , x

∗
d

]∗
. For a fixed ∆ ∈ ∆, and

assuming that the relevant inverse exists, the input-output
map of the system can be written as

Gδ=∆?G=∆?

[
SA SB
C D

]
=C(I−∆SA)−1∆SB+D.

The distributed NSLPV system Gδ is then defined as Gδ =
∆ ? G = {∆ ? G : ∆ ∈∆}.

System Gδ is said to be well-posed if Gδ defines a linear
causal mapping on `2e, for all ∆ ∈∆. From [14], we know
that the well-posedness of Gδ is ensured if Ā(t, k) = 0,
for t < 0, and if I − ∆P Ã

PP has a causal inverse on
⊕rj=1̀ 2

(
Rn

P
j (t,k)

)
, for all ∆ ∈ ∆, where ÃPP =

[
APPjf

]
.

We assume hereafter that all the state-space matrices are
zeros for t < 0.

Definition 1: System Gδ is said to be stable if Gδ ∈
Lc
(
`2
(
Rnu(t,k)

)
, `2
(
Rny(t,k)

))
, for all ∆ ∈∆.

Before we give a sufficient condition for stability, we need
to define the following sets:

T =
{
X : X = diag

(
XT ,X

S
1 ,...,X

S
d ,X

P
1 ,...,X

P
r

)
, X−1 ∈

L(`2(RnT (t,k))⊕(⊕di=1`2(Rn
S
i (t,k)))⊕(⊕rj=1`2(Rn

P
j (t,k))))

}
X = {X : X = X∗ ∈ T , X � 0} ,

where XT , XS
i , XP

j , for i = 1, . . . , d and j = 1, . . . , r,
are bounded graph-diagonal operators. Note that T and X
are commutants of ∆. The symbols ∆ and X are used
irrespectively of their associated dimensions.

Lemma 1: System Gδ is stable if there exists X ∈ X , or
equivalently X � 0 in the commutant of ∆, such that

A∗S∗XSA−X ≺ 0. (3)

Assume X ∈ X . Due to the block-diagonal structure
of X , S∗XS is also a partitioned graph-diagonal operator
with a block-diagonal structure. The blocks of S∗XS satisfy
(S∗0XTS0)(t, k) = XT (t + 1, k), (S∗i S

∗
0X

S
i S0Si)(t, k) =

XS
i (t+ 1, ρi(k)), and (XP

j )(t, k) = XP
j (t, k). Note that the

sequences of LMIs equivalent to (3) are trivial for t < 0 since
the state-space matrices are assumed to be zeros for negative
time-steps. In the sequel, we write t ∈ Z to allow for the



operator theoretic framework, but we are only interested in
t ∈ N0. Since (3) is only a sufficient condition for stability,
we refer to systems that satisfy it as strongly stable. In
other words, a strongly stable system Gδ is a stable system
which has a solution X ∈ X to (3). As will become
apparent shortly, BT is only applicable to strongly stable
systems, and so, suffers from the conservatism due to the
imposed structure on X . It is, however, this structure that
allows for the preservation and even the simplification of
the interconnection and the uncertainty structures. The next
result will be of use in the proof of Theorem 1.

Lemma 2: System Gδ is strongly stable and satisfies
‖Gδ‖ < γ, for all ∆ ∈ ∆, if there exists X ∈ X , or
equivalently, X � 0 in the commutant of ∆, such that−

[
X 0
0 γ2I

] [
SA SB
C D

]∗
[
SA SB
C D

]
−
[
X−1 0

0 I

]
 ≺ 0. (4)

IV. BALANCED TRUNCATION

Definition 2: A realization of system Gδ , which we denote
by (A,B,C,D,∆), is said to be balanced if there exists an
operator Σ = X = Y ∈ X that satisfies

AXA∗ − S∗XS +BB∗ ≺ 0, (5)
A∗S∗Y SA− Y + C∗C ≺ 0, (6)

where JΣK(t, k) is a diagonal matrix, for all (t, k) ∈ Z× V .
Σ is called the balanced generalized gramian.

(5) and (6) are called the generalized Lyapunov inequali-
ties. These inequalities can be solved separately for the gen-
eralized controllability and observability gramians, X ∈ X
and Y ∈ X , respectively. Note that JXK(t, k) and JY K(t, k)
need not be diagonal matrices.

Lemma 3: A strongly stable system Gδ admits a balanced
realization.

Proof: For a strongly stable system, there exists a
solution P ∈ X to (3). By scalability and homogeneity
of (3), there exist solutions X and Y ∈ X to (5) and
(6), respectively. These generalized gramians can be used
to construct a balanced realization for system Gδ as follows.
First, we perform the Cholesky factorizations X = R∗R and
Y = H∗H . Then, we perform the singular value decomposi-
tion HR∗ = UΣV ∗, where U and V are in T , and Σ is the
balanced generalized gramian. Then, we define the balancing
transformation T = Σ−1/2U∗H ∈ T and its inverse
T−1 = R∗V Σ−1/2 ∈ T . Thus, the balanced generalized
gramian can be expressed as Σ = TXT ∗ = (T ∗)−1Y T−1.
Moreover, ((S∗TS)AT−1, (S∗TS)B,CT−1, D,∆) can be
easily verified to be a balanced realization of Gδ . Note that
because of the structure imposed on T and X , the previous
computations are performed block-wise, e.g.,

XT=(RT )∗RT , YT=(HT )∗HT , HT (RT )∗=UTΣT (VT )∗.

The obtained balanced generalized gramian and balanced
realization of system Gδ depend on the gramians X and Y
used in the balancing procedure. To obtain useful results for
BT, we usually seek gramians with minimum traces.

Now, consider a strongly stable system Gδ with a bal-
anced realization (A,B,C,D,∆) and a balanced general-
ized gramian Σ = diag

(
ΣT ,Σ

S
1 , ...,Σ

S
d ,Σ

P
1 , ...,Σ

P
r

)
. We

want to apply BT to this system to reduce its order. To do
so, we look at the entries of Σ. Based on the relative order
of these entries, the upper bound on the `2-induced norm of
the system given in Lemma 2, and the upper bound on the
error induced by BT given in Theorem 2, we decide which
entries are negligible, and thus, decide which state variables
can be truncated without heavily altering the behavior of the
system. Since Σ has a block-diagonal structure, the reduction
process is applied individually to each of its blocks, i.e.,
ΣT , ΣSi , ΣPj , and their corresponding temporal, spatial, and
parameter state variables.

Let us focus on ΣT . For each (t, k) ∈ Z× V , ΣT (t, k) is
an nT (t, k)×nT (t, k) positive definite, diagonal matrix. We
assume without loss of generality that the entries of ΣT (t, k)
are ordered in a decreasing fashion with the largest entry as
the (1, 1)-term. Suppose we want to reduce the dimensions
of the temporal states from nT (t, k) to mT (t, k), where 0 ≤
mT (t, k) ≤ nT (t, k). We start by partitioning ΣT (t, k) into
two blocks ΓT (t, k) and ΩT (t, k), with dimensions mT (t, k)
and nT (t, k)−mT (t, k), respectively, such that ΣT (t, k) =
diag (ΓT (t, k),ΩT (t, k)). Note that if either mT (t0, k0) or
nT (t0, k0) − mT (t0, k0) is zero for some (t0, k0), then,
correspondingly, either ΓT (t0, k0) or ΩT (t0, k0) is a matrix
of zero dimensions, i.e., nonexistent. ΓT (t, k) and ΩT (t, k)
define graph-diagonal operators ΓT and ΩT , respectively. We
repeat the partitioning procedure for ΣSi and ΣPj , for all
i = 1, . . . , d and j = 1, . . . , r, and augment the resulting
graph-diagonal operators as in

Γ = diag
(
ΓT ,Γ

S
1 , . . . ,Γ

S
d ,Γ

P
1 , . . . ,Γ

P
r

)
∈ X ,

Ω = diag
(
ΩT ,Ω

S
1 , . . . ,Ω

S
d ,Ω

P
1 , . . . ,Ω

P
r

)
∈ X .

Γ is associated with the non-truncated blocks of Σ, and Ω is
associated with the truncated blocks of Σ. We now partition
the blocks of the states-space matrices into non-truncated and
truncated portions conformably with the partitioning of the
blocks of Σ. The non-truncated portions are marked with a
hat. For instance,

ATS(t,k)=

[[
ÂTS1 (t,k) ATS1,12(t,k)

ATS1,21(t,k) ATS1,22(t,k)

]
...

[
ÂTSd (t,k) ATSd,12(t,k)

ATSd,21(t,k) ATSd,22(t,k)

]]

ATP(t,k)=

[[
ÂTP1 (t,k) ATP1,12(t,k)

ATP1,21(t,k) ATP1,22(t,k)

]
...

[
ÂTPr (t,k) ATPr,12(t,k)

ATPr,21(t,k) ATPr,22(t,k)

]]

ASS(t,k)=

[ ÂSSie (t, k) ASSie,12(t, k)

ASSie,21(t, k) ASSie,22(t, k)

]
i=1,...,d;e=1,...,d

APP(t,k)=

[ ÂPPjf (t, k) APPjf,12(t, k)

APPjf,21(t, k) APPjf,22(t, k)

]
j=1,...,r;f=1,...,r



where ÂTSi (t, k) is an mT (t + 1, k) × mS
i (t, k) matrix,

ÂTPj (t, k) is an mT (t+ 1, k)×mP
j (t, k) matrix, ÂSSie (t, k)

is an mS
i (t+ 1, ρi(k))×mS

e (t, k) matrix, and ÂPPjf (t, k) is
an mP

j (t, k)×mP
f (t, k) matrix.

Notice that the partitioning of the state-space matrices
into non-truncated and truncated portions is performed at
the level of the most elemental blocks. For instance, we do
not partition Ā(t, k) nor ATS(t, k), but rather, we partition
ATSi (t, k) into a non-truncated block ÂTSi (t, k) and three
truncated blocks ATSi,12(t, k), ATSi,21(t, k), and ATSi,22(t, k).
Thus, the proposed procedure allows for the preservation of
the interconnection and uncertainty structures of the system.
The non-truncated blocks, e.g., ÂTT (t, k), ÂTSi (t, k), define
graph-diagonal operators, e.g., ÂTT , ÂTSi , which when aug-
mented in the obvious way, define the operators Ared, Bred,
and Cred. Dred is set equal to D. We also define

∆red = diag
(
ImT , I(m

S
1 ,...,m

S
d ), ∆̂P

)
∈∆,

where ∆̂P = diag
(
∆̂1, . . . , ∆̂r

)
, and ∆̂j are graph-

diagonal operators that satisfy ∆̂j(t, k) = δj(t, k)ImP
j (t,k),

for j = 1, . . . , r. Notice that the same parameter values
δj(t, k) affect both ∆j(t, k) and ∆̂j(t, k). Thus, the re-
alization of the reduced order system Gred,δ is given by
(Ared, Bred, Cred, Dred,∆). For a fixed ∆red ∈ ∆, the
input-output map of Gred,δ is given by

Gred,δ = Cred(I −∆redSAred)−1∆redSBred +Dred.

We do not distinguish between the shift operators for `2
(resp. `, `2e) with various associated dimensions. The inter-
connection structure of Gred,δ is the same as the interconnec-
tion structure of Gδ , with the spatial states having smaller or
equal dimensions. Moreover, the subsystems in Gred,δ have
NSLPV models formulated in an LFT framework, where the
feedback operator ∆red has the same structure as ∆ with the
feedback channels having smaller or equal dimensions.

The method permits the removal of a whole interconnec-
tion if all its associated entries in Σ are deemed negligible.
For example, if mS

i0
(t, k0) = 0, for all t ∈ Z, then the

interconnection (ρ−1i0 (k0), k0) is altogether removed from the
graph of the reduced order system. Similarly, if mP

j0
(t, k0) =

0, for all t ∈ Z, then ∆̂j0(t, k0) is removed from the ∆red

operator.
Lemma 4: The reduced order system Gred,δ is strongly

stable, and its given realization is balanced.
Proof: There exists a unique operator Q such that

Q∗ΣQ = diag(Γ,Ω). It is not difficult to verify that Q also
satisfies

Q∗SAQ=

[
S 0
0 S

][
Ared Ā12

Ā21 Ā22

]
=S̃ ¯̄A, CQ=

[
Cred C̄2

]
= ¯̄C,

Q∗SB=

[
S 0
0 S

][
Bred

B̄2

]
=S̃ ¯̄B, Q∗∆Q=diag(∆red, ∆̄2)= ¯̄∆,

where Ā12, Ā21, Ā22, C̄2, B̄2, and ∆̄2 are appropriately
defined partitioned graph-diagonal operators. Namely, the
operator Q is applied to the operators of Gδ in order to group
together the non-truncated blocks.

Since Σ satisfies (5) and (6), then using the operator Q it
is not difficult to show that the following hold:

¯̄Adiag(Γ,Ω) ¯̄A∗ − S̃∗diag(Γ,Ω)S̃ + ¯̄B ¯̄B∗ ≺ 0, (7)
¯̄A∗S̃∗diag(Γ,Ω)S̃ ¯̄A− diag(Γ,Ω) + ¯̄C∗ ¯̄C ≺ 0. (8)

From the (1, 1)-terms in (7) and (8), we get

AredΓA∗red − S∗ΓS +BredB
∗
red ≺ 0,

A∗redS
∗ΓSAred − Γ + C∗redCred ≺ 0.

That is, the reduced order system Gred,δ is strongly stable,
and the realization (Ared, Bred, Cred, Dred,∆) is balanced
with balanced generalized gramian Γ.

We now derive an upper bound on the `2-induced norm
of the error system resulting from balanced truncation.

Theorem 1: If Ω = I , i.e., for all i = 1, . . . , d, j =
1, . . . , r, and (t, k) ∈ Z×V , ΩT (t, k) = I , ΩSi (t, k) = I , and
ΩPj (t, k) = I , then the reduced order system Gred,δ satisfies
‖(Gδ −Gred,δ)‖ < 2, for all ∆ ∈∆.

Proof: Since Gδ and Gred,δ are strongly stable systems,
then so is the error system Eδ = { 12 (Gδ−Gred,δ) : ∆ ∈∆}.
Notice that 1

2 (Gδ −Gred,δ) =

[
∆red 0

0 ¯̄∆

]
?


SAred 0 1√

2
SBred

0 S̃ ¯̄A 1√
2
S̃ ¯̄B

− 1√
2
Cred

1√
2

¯̄C 0

 .
We want to construct an operator V � 0 that commutes with
every diag(∆red,

¯̄∆) and satisfies (4) for the given realization
of the error system Eδ .

By direct application of the Schur Complement Formula
twice to (7) and (8), we can see that[

−R1 K∗

K −S∗aR2Sa

]
≺ 0,

where Sa = diag(S̃, I, S̃), Ri = diag(Γ−1,Ω−1, Iqi ,Γ,Ω),

K =

0 0 ¯̄A

0 0 ¯̄C
¯̄A ¯̄B 0

, with q1 = nu and q2 = ny . We then

define the operators L and P , respectively, as

L =
1√
2


−I 0 0 I 0
I 0 0 I 0
0 I 0 0 I

0 0
√

2Iny 0 0
0 −I 0 0 I

 ,

P =
1√
2


I I 0 0 0
0 0 I 0 I

0 0 0
√

2Inu 0
−I I 0 0 0
0 0 I 0 −I

 .
We pre- and post- multiply the previous inequality by
diag(P ∗, L) and diag(P,L∗), respectively, to obtain[

−P ∗R1P P ∗K∗L∗

LKP −LS∗aR2SaL
∗

]
≺ 0, (9)



where LKP =

[
M N12

N21 N22

]
=



Ared 0 0 1√
2
Bred Ā12

0 Ared Ā12
1√
2
Bred 0

0 Ā21 Ā22
1√
2
B̄2 0

−1√
2
Cred

1√
2
Cred

1√
2
C̄2 0 −1√

2
C̄2

Ā21 0 0 1√
2
B̄2 Ā22


.

Recalling that Ω = I , one can see that

P ∗R1P=diag
(

1

2

[
(Γ−1+Γ) (Γ−1−Γ)
(Γ−1−Γ) (Γ−1+Γ)

]
,diag (I,Inu ,I)

)
.

Similarly, since Ω = I , then LS∗aR2SaL
∗ is equal to

diag
(

1

2

[
S∗(Γ−1+Γ)S S∗(Γ−Γ−1)S
S∗(Γ−Γ−1)S S∗(Γ−1+Γ)S

]
,diag (I, Iny , I)

)
.

If we define the desired operator V as

V =
1

2

(Γ−1 + Γ) (Γ−1 − Γ) 0
(Γ−1 − Γ) (Γ−1 + Γ) 0

0 0 2I

 � 0,

then, from (9), we can see that
−
[
V 0
0 Inu

]
M∗

M −

[S 0

0 S̃

]∗
V−1

[
S 0

0 S̃

]
0

0 Iny


 ≺ 0.

We can also easily verify that V commutes with every
diag(∆red,

¯̄∆). Then, invoking Lemma 2 with γ = 1, we
conclude that ‖ 12 (Gδ−Gred,δ)‖ < 1, i.e., ‖(Gδ−Gred,δ)‖ <
2, for all ∆ ∈∆.

The error bound for the case of a general Ω is given next.
The theorem follows by scaling and repeated application of
Theorem 1. Lemma 4 ensures that we can apply BT to the
resulting intermediate reduced order systems.

Theorem 2: The reduced order system Gred,δ satisfies
‖(Gδ −Gred,δ)‖ < 2Φ(Ω), for all ∆ ∈∆.

The symbol Φ(Ω) is defined at the end of Section II. The
bound in Theorem 2 may become infinite when there are
infinitely many distinct entries in Ω. However, if the graph
is finite, i.e., V and E are finite sets, and if the subsystems
are (h, q)-eventually time-periodic for some integers h ≥ 0
and q > 0, i.e., the state-space matrices satisfy

JZK(t+ h+ zq, k) = JZK(t+ h, k), Z ∈ {A,B,C,D},

for all t, z ∈ N0 and k ∈ V , then the given bound is
guaranteed to be finite. This is because, if the subsystems
are (h, q)-eventually time-periodic, then, there exists a bal-
anced generalized gramian Σ if and only if there exists an
(h, q)-eventually time-periodic balanced generalized gramian
Σeper; see the averaging techniques of [15], [16]. Thus, when
evaluating Φ(Ωeper), we restrict t to the finite time-horizon h
and the first time-period truncation, i.e., 0 ≤ t ≤ h+q−1. If

in addition, the graph is finite, then Φ(Ωeper) is guaranteed to
be finite. Finally, we note that finite time-horizon subsystems,
standard LPV subsystems, and time-periodic subsystems are
special cases of eventually time-periodic subsystems.

V. CONCLUSION

BT is extended to the class of interconnected NSLPV
subsystems modeled in an LFT framework. The proposed
method exhibits the characteristics of BT for standard state-
space systems, and allows for preserving and simplifying the
interconnection structure and the uncertainty structure. How-
ever, the method suffers from the conservatism introduced
by imposing a block-diagonal structure on the generalized
gramians. Future research will focus on generalizing the CFR
method to the class of systems treated here, as CFR presents
a partial solution to the conservatism of BT. In addition,
we plan to work on identifying classes of systems with
guaranteed structured generalized gramians.
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