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Abstract— This paper focuses on the control of distributed
systems with uncertain initial conditions, where the constituent
subsystems are interconnected over directed graphs and rep-
resented by discrete-time, linear time-varying models. Specif-
ically, we consider distributed systems where the individual
subsystems are eventually time-periodic, by which we mean
that the state-space matrices of the subsystems are aperiodic
for an initial amount of time and then become time-periodic
afterwards. The information transfer between the subsystems
is subjected to a delay of one sampling period. Independent
norm constraints are placed on the disturbance input and the
uncertain initial state. We present convex synthesis conditions
for control design in this setting, employing a square `2 induced
norm as the performance measure. The synthesis conditions be-
come finite-dimensional when the underlying graph has a finite
set of vertices. An illustrative example on formation control of
fixed-wing unmanned aircraft systems (UAS) is also provided.

I. INTRODUCTION
In this paper, we deal with distributed systems where

the individual subsystems are modeled as discrete-time,
linear time-varying systems. Each subsystem has sensing and
actuation capabilities, and the subsystems are interconnected
over arbitrary directed graphs. The states of the individual
subsystems are referred to as temporal states and the inter-
connections between the subsystems are modeled as states,
which we call the spatial states. The focus of this paper is
on the control of distributed systems with uncertain initial
conditions, meaning that the temporal and spatial states are
allowed to have non-zero values at time t = 0.

Specifically, the distributed systems of interest belong
to the class of eventually time-periodic (ETP) distributed
systems, where the state-space matrices of the constituent
subsystems are aperiodic for an initial amount of time and
then become time-periodic afterwards. Data transfer between
the subsystems is subjected to a delay of one sampling
period. The uncertain initial state is constrained to lie in
a norm ball of some radius and the exogenous disturbance
inputs are required to satisfy an independent norm constraint.
The control design problem involves developing a distributed
controller with the same interconnection structure as the
nominal plant, which renders the closed-loop system stable
and guarantees some performance criterion provided in terms
of a square `2 induced norm performance measure [1], [2].

The primary motivation for this work is controlling the
transient response of a multi-mission network of agents. It is
conceivable that a multi-agent system would be required to
switch missions, which may be triggered by environmental
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factors, direct commands, or situational awareness. During
the switching process, the multi-agent system experiences a
transient behavior which could adversely affect the mission
performance. At the time of switching, the soon-to-be-active
distributed controller has to deal with a bounded, uncertain
initial (error) state of the network, which lies in some ellip-
soid and has to do with the previous mission operation. The
proposed approach incorporates this uncertainty in the initial
state into the control design process to design a distributed
controller, which would successfully recover the system from
this initial state and ultimately force the network to exhibit
the new desired behavior. This work has application in
consensus problems under switching topologies [3], [4], and
formation control involving concatenated trajectories, which
was studied in [5] for the case of a single UAS.

The approach employs the operator theoretic machinery
for distributed systems developed in [6] and builds upon the
work in [7] on control of linear time-varying systems with
uncertain initial conditions. The outline of the paper is as
follows. We gather relevant notations in Section II and for-
mulate the uncertain initial condition problem for distributed
systems in Section III. Section IV presents synthesis results
for control design in this setting. We conclude in Section V
with an illustrative example on formation control of a fixed-
wing UAS network.

II. PRELIMINARIES
We denote the set of integers by Z and the set of

nonnegative integers by N0. If Mi is a sequence of matrices,
then diag(Mi) denotes their block-diagonal augmentation.
We use In to denote an n×n identity matrix. Given Hilbert
spaces H , F and W , H⊕W refers to the Hilbert space direct
sum of H and W . The space of linear bounded operators
mapping H to F is denoted by L(H,F ); when H and F
are equal, we shorten this to L(H). Given X in L(H,F ),
the H to F induced norm of X is denoted by ‖X‖H→F . We
use X ≺ 0 to mean that a self-adjoint operator X ∈ L(H) is
negative definite, that is, for all nonzero h ∈ H , there exists
a positive scalar α such that 〈h,Xh〉 < −α‖h‖2.

Given an integer sequence n(t, k) mapping Z× V to N0,
we define `({Rn(t,k)}) to be the vector space of mappings w :
(t, k)∈Z×V 7→w(t, k)∈Rn(t,k). We denote by `2({Rn(t,k)})
the subspace of `({Rn(t,k)}) which is a Hilbert space under
the inner product 〈w, v〉 :=

∑
(t,k) w(t, k)T v(t, k) < ∞.

When the dimensions are clear from context, we abbreviate
the notations to simply ` and `2.

We denote a directed graph with set of vertices V
and set of directed edges E by G(V,E). For a vertex
k ∈ V , the vertex degree, denoted by v(k), is given by
v(k)=max{m(k), p(k)}, where m(k) and p(k) denote the



Fig. 1: A 2-regular directed graph with dashed arrows
representing the virtual edges

indegree and outdegree of k, respectively. The maximum
over the vertex degrees of the graph is denoted by s(G).
We call a directed graph d-regular if m(k)=p(k)=d for each
k ∈ V . A directed graph G(V,E) can always be transformed
into an s(G)-regular directed graph by adding, if necessary,
virtual edges and/or virtual nodes. We then define s(G), or
simply s, permutations ρ1, ρ2, . . . , ρs of the set of vertices
V . The permutations satisfy the property that if (i, j) ∈ E,
then there exists r such that ρr(i) = j and ρ−1r (j) = i. For
example, the directed graph shown in Fig. 1 is converted to
a 2-regular directed graph by adding virtual edges which are
represented in the figure by dashed arrows. Also, the two
permutations ρ1 and ρ2 are defined as follows: ρ1(1) = 2,
ρ1(2) = 3, ρ1(3) = 1, ρ2(1) = 3, ρ2(3) = 2 and ρ2(2) = 1.
In this work, without any loss of generality, we assume that
the underlying graph structure is d-regular. Any virtual edges,
for instance, added to ensure graph regularity will correspond
to spatial states with zero dimensions, and the developed
results will still apply. The advantage of working with a d-
regular directed graph is that it enables us to express the
state-space equations of the distributed system in a compact
operator form as will be seen in Section III.

Given integer sequences r(t, k) and m(t, k) mapping
Z×V to N0, an operator X∈L(`2({Rr(t,k)}), `2({Rm(t,k)}))
is called a graph-diagonal operator if there exists a uniformly
bounded sequence of matrices X(t, k)∈Rm(t,k)×r(t,k) such
that, for all (t, k)∈Z×V and w∈`2({Rr(t,k)}), the equality
(Xw)(t, k)=X(t, k)w(t, k) holds. An operator W=[Wij ]
is said to be a partitioned graph-diagonal operator if each
constituent block Wij is graph-diagonal. We define the
graph-diagonal realization of the partitioned graph-diagonal
operator W as (JW Kx)(t, k)= [Wij(t, k)]x(t, k). J·K is a
homomorphism from the space of partitioned graph-diagonal
operators to that of graph-diagonal operators, which is iso-
metric and preserves products, addition, and ordering.

We define the following unitary shift operators mapping `
to `, (S0w)(t, k)=w(t−1, k) and (Sjw)(t, k)=w(t, ρ−1j (k)),
for j = 1, . . . , s. If Q is a graph-diagonal operator, then
S∗iQSi is also graph-diagonal, namely,

(S∗0QS0)(t, k)=Q(t+1, k) and (S∗jQSj)(t, k)=Q(t, ρj(k)),

for j = 1, . . . , s. The composite shift operator S is defined as

S := diag(S0, S0S1, . . . , S0Ss).

III. PROBLEM FORMULATION
A. Operator-theoretic framework

We consider a discrete-time distributed system G, whose
interconnection structure is described by a directed graph
with a finite set of vertices. The vertices of the graph
correspond to the individual subsystems, G(k), and the
directed edges describe the interconnections between the
subsystems. We assume a delay of one sampling period in
the information transfer between the subsystems, meaning
that the information sent by a subsystem at the current time
step reaches the target subsystem at the next time step. The
state space equations of the subsystem G(k) can be written as

x0(t+ 1, k)
x1(t+ 1, ρ1(k))

...
xs(t+ 1, ρs(k))

=Ā(t, k)


x0(t, k)
x1(t, k)

...
xs(t, k)

+B̄(t, k)

[
w(t, k)
u(t, k)

]
,

[
z(t, k)
y(t, k)

]
=

[
C̄1(t, k)
C̄2(t, k)

]
x0(t, k)
x1(t, k)

...
xs(t, k)

+D̄(t, k)

[
w(t, k)
u(t, k)

]
, (1)

where B̄(t, k) =
[
B̄1(t, k) B̄2(t, k)

]
and

D̄(t, k) =

[
D11(t, k) D12(t, k)
D21(t, k) D22(t, k)

]
, for all t ∈ Z and k ∈ V.

The state vector in (1) is denoted by x(t, k), which is parti-
tioned into (s+ 1) separate vector-valued channels, namely,
x(t, k) = (x0(t, k), . . . , xs(t, k)). x0(t, k) denotes the state
vector of the subsystem G(k) and is called the temporal state.
The vector xi(t, k), which we call the ith spatial state, is
associated with the interconnection (ρ−1i (k), k) at time t.
The spatial states representing the virtual interconnections,
which are added to make the graph structure regular, have
zero dimensions. For instance, the spatial states x1(t, 1),
x2(t, 1), and x2(t, 2) of the distributed system with an
underlying graph structure as in Fig. 1 have zero dimensions.
The vectors w(t, k), u(t, k), z(t, k), and y(t, k) denote the
exogenous disturbance, control input, performance output
and the measurements, respectively. The vectors xi(t, k),
w(t, k), u(t, k), z(t, k), and y(t, k) are real and have time-
varying dimensions which we denote by ni(t, k), nw(t, k),
nu(t, k), nz(t, k), and ny(t, k), respectively. We define
n(t, k)=

∑s
i=0 ni(t, k). It is noted that the system matrices

are also partitioned according to the partitions in x(t, k). In
the sequel, we assume D22(t, k)=0 for all (t, k)∈Z×V . The
matrix sequences Aij(t, k), Bi1(t, k), Bi2(t, k), C1j(t, k),
C2j(t, k), D11(t, k), D12(t, k), and D21(t, k), for i, j =
0, . . . , s, define the graph-diagonal operators Aij , Bi1, Bi2,
C1j , C2j , D11, D12, and D21, respectively. These graph-
diagonal operators are then used to form partitioned graph-
diagonal operators, A, Bi, and Ci, for i = 1, 2, given by

A =

A00 · · · A0s

...
. . .

...
As0 · · · Ass

 , Bi =

B0i

...
Bsi

 and Ci =

C
∗
i0
...
C∗is


∗

.



Then, the system equations (1) of G can be equivalently
expressed in the following compact operator form:xz

y

 =

SA SB1 SB2

C1 D11 D12

C2 D21 0

xw
u

 , (2)

where S is the composite shift operator defined earlier.
The matrix sequences used in (1) satisfy JAK(t, k)=Ā(t, k),
JB1K(t, k)=B̄1(t, k), JC1K(t, k)=C̄1(t, k), and so on.

We develop our results for a special class of distributed
systems, namely, the class of eventually time-periodic (ETP)
distributed systems, where the subsystems are assumed to be
eventually periodic. Given integers hk≥0 and qk≥1, we say
the subsystem G(k) is (hk, qk)-eventually periodic if its state-
space matrices are aperiodic over an initial finite horizon of
length hk and then become periodic afterwards with period-
icity qk. For example, the matrix sequence Aij(t, k) satisfies

Aij(t+ hk +mqk, k) = Aij(t+ hk, k), for t,m ∈ N0.

If the subsystems G(k) are (hk, qk)-eventually periodic, then
the distributed system G is (h, q)-ETP with h= maxk hk and
q being the least common multiple of the integers qk.

This paper concerns the control synthesis problem for
system G, where x(0, k)6=0 for some k ∈ V , x(0, k) being
the state vector of the subsystem G(k) at time t = 0. This
uncertain initial state is modeled as an exogenous disturbance
acting on the system at time t=−1. The matrix sequences
defining the system operators of G and the exogenous
disturbances for t < 0 are given as follows:

Ā(t, k) = 0, B̄2(t, k) = 0, D̄12(t, k) = 0, D̄i1(t, k) = 0,

C̄i(t, k) = 0, for t < 0, k ∈ V and i = 1, 2,

B̄1(t, k) =

{
0 for t < −1, k ∈ V,

In(0,k) for t = −1, k ∈ V,
(3)

w(t, k) =

{
0 for t < −1, k ∈ V,

x(0, k) for t = −1, k ∈ V.
The preceding formulation allows the state vector at t=0
to have non-zero values for some k∈V . We note that the
distributed system G with the uncertain initial state, x(0, k),
is well-posed since Ā(t, k)=0 for all t < 0 and k∈V . For a
detailed discussion on well-posedness and stability, see [6].

B. Isomorphic distributed system with a zero initial state

The synthesis results in [6], which form the basis for this
work, are developed for distributed linear time-varying sys-
tems with zero initial conditions, i.e. x(0, k)=0 for all k∈V .
Therefore, it is helpful to construct from G an (h+1, q)-ETP
distributed system G̃ having a zero initial state. We denote
the state space operators of G̃ by Ã, B̃i, C̃i, D̃i1, and D̃12

for i=1, 2. The state-space equations of G̃ are written in
operator form asx̃z̃

ỹ

 =

SÃ SB̃1 SB̃2

C̃1 D̃11 D̃12

C̃2 D̃21 0

x̃w̃
ũ

 . (4)

The matrix sequences that define the state-space operators
and the inputs of G̃ are related to (3) as follows:

Fig. 2: Closed-loop system with partitions in the exogenous
input and performance output channels

JÃK(t, k) = Ā(t− 1, k), JB̃iK(t, k) = B̄i(t− 1, k),

JC̃iK(t, k)=C̄i(t− 1, k), JD̃12K(t, k)=D12(t− 1, k), (5)

JD̃i1K(t, k) = Di1(t− 1, k), w̃(t, k) = w(t− 1, k), and
ũ(t, k) = u(t− 1, k), for t ∈ Z, k ∈ V, and i = 1, 2.

The above transformation ensures that the system G̃ has a
zero initial state, namely, x̃(0, k) = 0.

This paper extends the work of [7], which was devel-
oped for eventually periodic systems with uncertain initial
conditions, to the class of ETP distributed systems with
an uncertain initial state. The uncertain initial state x(0, k)
for k∈V consists of the temporal and spatial states of all
the subsystems at time t = 0. Therefore, in our controller
synthesis, we have different possibilities of placing the norm
constraints on the initial temporal and spatial states of the
subsystems. The performance of the resulting controller,
thereby, depends on the choice of combining the initial
temporal and spatial states of the subsystems. In this paper,
the norm constraints are placed on the combined uncertain
spatial and temporal initial states of all the subsystems. Other
possibilities include placing independent norm constraints
on the uncertain spatial and temporal initial states of the
distributed system, or considering the uncertain initial states
of each of the subsystems separately and placing independent
norm constraints on each of them.

IV. MAIN RESULTS
We first gather some definitions and results based on

[2]. Consider the distributed system in Fig. 2, where the
exogenous input signal w and the performance output z are
partitioned into Nw and Nz channels, respectively.

Definition 1: Let F and T be partitioned graph-diagonal
operators. Then, for a given γ, F and T are said to be γ-
admissible scales if they are of the form

JF K(t, k) = diag(f1I, . . . , fNw
I),

JT K(t, k) = diag(t1I, . . . , tNz
I),

where fi > 0, tj > 0, and
∑Nw

i=1 fi +
∑Nz

j=1 tj < 2γ.
This definition is an extension of its LTV counterpart in [2]
to the class of distributed systems. For each partition in the
input channel, w, we define an operator Pi, which projects
onto the ith vector-valued channel of w. Likewise, we define
the operator Qj , which projects onto the jth vector-valued
channel of z. Let the closed-loop system of Fig. 2 be denoted
by M , where M is an operator mapping ⊕Nw

i=1`2 to ⊕Nz
j=1`2.

Definition 2: For the system depicted in Fig. 2, the square
`2 induced norm of M is defined as

‖M‖sq = sup
‖Piw‖≤1

Nz∑
j=1

‖QjMw‖.



Lemma 1 ([2]): For a given γ and M , ‖M‖sq < γ if
there exists γ-admissible scales F and T such that

‖T− 1
2MF−

1
2 ‖`2→`2 < 1.

Lemma 2 ([2]): Suppose that M satisfies ‖M‖sq < γ.
If (a) M is time-periodic, or (b) the product Nw.Nz ≤ 2,
then there exists γ-admissible scales F and T such that
‖T− 1

2MF−
1
2 ‖`2→`2 < 1.

We now state our synthesis objective.
Definition 3: A controller K, with zero initial state and

having the same interconnection structure as the nominal
plant G, is a γ-admissible synthesis for G if the closed-loop
system M is stable and satisfies the performance inequality

‖M‖sq= sup
α≤1,‖w‖≤1

‖Mw‖<γ,

where α = (
∑
k∈V x

T (0, k)x(0, k))
1
2 .

Specifically, our goal is to develop a distributed controller K
composed of (N, q)-ETP subcontrollers, where N≥h, and
having the same interconnection structure as the nominal
plant G. As reasoned earlier, it is convenient to work with the
(h+1, q)-ETP distributed system G̃ which has a zero initial
state. We now rephrase the synthesis objective for the dis-
tributed system, G̃. Namely, a feedback controller K̃ is a γ-
admissible synthesis for G̃ if the closed-loop system, denoted
by M̃ , is stable and further satisfies the performance criterion
‖M̃‖sq < γ, where ‖M̃‖sq = supα≤1, ‖w‖≤1‖M̃w̃‖.

The following theorem connects the square `2 induced
norm measure to the standard `2 induced norm measure.

Theorem 1: The closed-loop performance inequality
‖M̃‖sq < γ holds, for some γ, if and only if there exist
positive scalars t1, f1, f2, and associated graph-diagonal
operators T̃ and F̃ , defined by the matrix sequences

T̃ (t, k) = t1I, for t ∈ Z, k ∈ V,

F̃ (t, k) =

{
f1I for t = 0, k ∈ V,
f2I for t 6= 0, k ∈ V,

such that t1 + f1 + f2 < 2γ and ‖T̃− 1
2 M̃F̃−

1
2 ‖`2→`2 < 1.

Proof: The proof makes use of Lemmas 1 and 2. To
have independent norm constraints on the uncertain initial
state and the disturbance input, we equivalently reformulate
the distributed system G̃ into a distributed system with two
exogenous input channels (Nw=2) and one performance out-
put channel (Nz=1). The exogenous input channels consist
of the uncertain initial state channel and the disturbance input
channel. The input channel corresponding to the uncertain
initial state is relevant only at time t=0, where it has a value
x(0, k); at all other times, this channel has zero dimensions.
On the other hand, the disturbance input channel has zero
dimensions at t=0, and at all other times, it has a value of
w(t, k). Whenever a particular channel is irrelevant, that is,
has zero dimensions, the matrix blocks corresponding to that
input channel will also have conformable zero dimensions.
Then, the proof of the “if” direction follows immediately
from Lemma 1. Since Nw=2 and Nz=1, Lemma 2 can be
invoked to prove the “only if” direction.

Before we state the main result, let us define some impor-
tant sets. Let P denote the set of partitioned graph-diagonal
operators. Given a partitioned graph-diagonal operator X
with the following structure X=diag(X0, . . . , Xs), where Xi

is graph-diagonal, then S∗XS is in P . We now define the
subset X of P as
X = {X ∈ P : X = diag(X0, . . . , Xs) = X∗,

X−1 ∈ L(⊕sj=0`2), and Xj � 0 for j = 0, . . . , s}.

Theorem 2: Suppose G is an (h, q)-ETP distributed sys-
tem with an uncertain initial state. Then, there exists an
(N, q)-ETP γ-admissible synthesis K, for some γ, if there
exist positive scalars t1, f1, f2, p, r, and positive definite
matrices Xi(t, k) and Yi(t, k) satisfying the LMIs

t1 + f1 + f2 < 2γ, JXK(0, k) ≺ f1I, (6)
t

N∗X

{
L∗
[
S∗XS 0

0 R

]
L−
[
X 0
0 F

]}
NX

|

(t, k) ≺ 0, (7)

t

N∗Y

{
L

[
Y 0
0 P

]
L∗−

[
S∗Y S 0

0 T

]}
NY

|

(t, k) ≺ 0, (8)

s
Xi I
I Yi

{
(t, k) � 0,

[
p 1
1 f2

]
� 0,

[
r 1
1 t1

]
� 0, (9)

for t = 0, 1, . . . , N + q − 1, k ∈ V , and i = 0, . . . , s, where
ImNY = ker

[
B∗2 D∗12

]
, ImNX = ker

[
C2 D21

]
,

and L =

[
A B1

C1 D11

]
. The matrix sequences defining the

graph-diagonal operators T , F , P , and R are given by
T (t, k)=t1I , F (t, k)=f2I , P (t, k)=pI , R(t, k)=rI , and
X,Y ∈X are (N, q)-ETP, namely, Xi(N+q, k)=Xi(N, k)
and Yi(N+q, k)=Yi(N, k).

Proof: Consider the (h+ 1, q)-ETP distributed system
G̃ defined in (4). The existence of a γ-admissible (N+1, q)-
ETP controller K̃ for G̃ is equivalent to the existence of
a γ-admissible (N, q)-ETP controller K for the (h, q)-ETP
distributed system G defined in (3). By Theorem 1, a γ-
admissible (N+1, q)-ETP synthesis K̃ for G̃ renders the
closed-loop system M̃ stable and achieves the performance
inequality ‖T̃− 1

2 M̃F̃−
1
2 ‖`2→`2 < 1 for some graph-diagonal

operators T̃ and F̃ , as defined in Theorem 1, with positive
scalars t1, f1, and f2 satisfying t1 + f1 + f2 < 2γ.
Now, combining the above two statements we can say that
a γ-admissible synthesis K for the distributed system G
exists if and only if a 1-admissible synthesis K̃ exists for
the scaled (h+1, q)-ETP system G̃s which has the following
representation:

G̃s=

Ãs B̃s1 B̃s2
C̃s1 D̃

s
11 D̃

s
12

C̃s2 D̃
s
21 0

=
 Ã B̃1F̃

− 1
2 B̃2

T̃−
1
2 C̃1 T̃−

1
2 D̃11F

− 1
2 T̃−

1
2 D̃12

C̃2 D̃21F̃
− 1

2 0

 ,
where the operators Ã, B̃i, C̃i, D̃1i, and D̃21, for i =
1, 2, are defined in (5). Since the distributed system G̃s

has a zero initial state, by combining Theorem 24 and
Corollary 22 in [6], we can say that a distributed controller
K̃ composed of (N+1, q)-ETP subcontrollers and having
the same structure as G̃s exists if, for all t=0, 1, . . . , N+q,



k∈V , and i=0, 1, . . . , s, there exist positive definite matrices
Xs
i (t, k) and Y si (t, k), with Xs

i (N+q+1, k)=Xs
i (N+1, k)

and Y si (N+q+1, k)=Y si (N+1, k), satisfying the LMIs
t

Ñs∗

X

{
L̃s

∗
[
S∗XsS 0

0 I

]
L̃s−

[
Xs 0
0 I

]}
Ñs
X

|

(t, k)≺0, (10)

t

Ñs∗

Y

{
L̃s
[
Y s 0
0 I

]
L̃s

∗
−
[
S∗Y sS 0

0 I

]}
Ñs
Y

|

(t, k)≺0, (11)

s
Xs
i I
I Y si

{
(t, k) � 0, (12)

where L̃s =

[
Ãs B̃s1
C̃s1 D̃s

11

]
, Im Ñs

Y = ker
[
B̃s

∗

2 D̃s∗

12

]
, and

Im Ñs
X = ker

[
C̃s2 D̃s

21

]
. From inequality (11), it is not

difficult to obtain
t([

I 0

0 T̃−
1
2

]
Ñs
Y

)∗{[
Ã B̃1

C̃1 D̃11

] [
Y s 0

0 F̃−1

] [
Ã B̃1

C̃1 D̃11

]∗
−
[
S∗Y sS 0

0 T̃

]}([
I 0

0 T̃−
1
2

]
Ñs
Y

)|

(t, k) ≺ 0. (13)

We note that

Im

([
I 0

0 T̃−
1
2

]
Ñs
Y

)
= Im ÑY = ker

[
B̃∗2 D̃∗12

]
.

Then, inequalities (13) and (10) reduce to

JÑ∗Y K(t, k)

{
JL̃K(t, k)

t
Y s 0

0 F̃−1

|

(t, k) JL̃K∗(t, k)

−

t
S∗Y sS 0

0 T̃

|

(t, k)

}
JÑY K(t, k) ≺ 0 and (14)

JÑ∗XK(t, k)

{
JL̃K∗(t, k)

t
S∗XsS 0

0 T̃−1

|

(t, k) JL̃K(t, k)

−

t
Xs 0

0 F̃

|

(t, k)

}
JÑXK(t, k) ≺ 0, (15)

where L̃ =

[
Ã B̃1

C̃1 D̃11

]
. Given that the synthesis condi-

tions (6)-(9) hold, we need to show that the inequalities
(12), (14), and (15) hold, where X(t, k)=Xs(t+1, k) and
Y (t, k)=Y s(t+1, k) for t=0, . . . , N+q−1. Applying the
Schur complement formula to the third condition in (9), we
get r ≥ 1/t1. It is easy to see that the inequality (7), along
with r ≥ 1/t1, results in

JN∗XK(t, k)

{
JLK∗(t, k)

t
S∗XS 0

0 T−1

|

(t, k) JLK(t, k)

−

t
X 0
0 F

|

(t, k)

}
JNXK(t, k) ≺ 0, (16)

where L=

[
A B1

C1 D11

]
. Likewise, we note from (9) that p ≥

1/f2 and rewrite inequality (8) as

JN∗Y K(t, k)

{
JLK(t, k)

t
Y 0
0 F−1

|

(t, k) JLK∗(t, k)

−

t
S∗Y S 0

0 T

|

(t, k)

}
JNY K(t, k) ≺ 0. (17)

Using (5), we see that the inequalities (16), (17), and the first
coupling condition in (9) evaluated at t = 0, 1, . . . , N+q−1
are equivalent to the inequalities (15), (14), and (12) eval-
uated at t = 1, . . . , N+q, respectively. Evaluating the first
coupling condition in (9) at t = 0 and applying the Schur
complement formula result in Xi(0, k) � Y −1i (0, k) for
i = 0, . . . , s, which is equivalent to

Xs
i (1, k) � Y s

−1

i (1, k). (18)

From the second inequality in (6), we can see that

Xs
i (1, k) ≺ f1I. (19)

Combining (18) and (19), we can write

Xs
i (1, k) ≺ f1I and Y si (1, k) � 1/f1I. (20)

Using (5), it is not difficult to see that (18) and (20) imply
(12), (14), and (15) at t = 0. Notice that Xs

i (0, k) and
Y si (0, k) are inconsequential here, and are only required to
satisfy the coupling condition (12), which is always possible.
Thus, we have shown that the inequalities (12), (14), and (15)
hold for t = 0, 1, . . . , N + q, and thereby a γ-admissible
synthesis for G exists if the inequalities (6)-(9) hold.

The solutions Xi(t, k), Yi(t, k), t1, and f2 obtained from
above can be used to construct an (N, q)-ETP controller
with a zero initial condition. We first form an (h, q)-ETP
distributed system from G̃s by discarding the inconsequential
part at t=0. Then, using the solutions Xi(t, k) and Yi(t, k),
an (N, q)-ETP controller is constructed following the proce-
dure outlined in [8], [6].

V. ILLUSTRATIVE EXAMPLE
The control approach developed in the preceding is applied

to the formation tracking problem of a network of three fixed-
wing UAS. The interconnection structure of the network is
the same as the one shown in Fig. 1. The UAS network
is tasked to track a time-parameterized path consisting of a
straight line segment followed by a circular trajectory. The
information about the reference trajectory is known only to
G(1), which acts as the leader and the other two aircraft in the
network follow the leader while maintaining the formation.
The dynamic model of each UAS is based on the commer-
cially available 6-foot Telemaster radio-controlled aircraft. A
nonlinear rigid-body model of the UAS is developed based
on flight test data. The nonlinear model has twelve states,
which include the three aircraft positions, the three linear
velocities, the three Euler angles representing the orientation
of the aircraft, and the three angular velocities. The UAS
model has four inputs, namely, the elevator, aileron, rudder
and throttle commands.

We adopt a decoupled control design approach and design
two distributed controllers, one for the straight line trajectory
and the other for the circular trajectory. The measurements
consist of the airspeed, the GPS position, the orientation,



Fig. 3: The two plots on the left show the roll angle and
the pitch angle variations for the leader during trajectory
switching at t = 64 sec. The two plots on the right show

the relative error in the X-position between the subsystems.
(Solid blue line: UIC distributed controller; dotted blue
line: LTI distributed controller; solid red line: reference

trajectory)
and the angular velocities. We assume that each UAS is
subjected to exogenous disturbances in the form of steady
winds and atmospheric turbulence, which are modeled using
the Dryden turbulence model [9], as well as sensor noise
with covariance as described in [5]. The nonlinear system
describing the UAS motion is linearized about the respective
trim conditions, namely, straight and level flight for the
straight line trajectory and steady right turn for the circular
trajectory. The resulting linear time-invariant (LTI) system
is discretized using zero-order hold with a sampling time of
40 ms. The subsystems share their position, airspeed, and
the yaw angle over the communication network. Thus, each
subsystem has twelve temporal states, five spatial states, four
control inputs, ten measurements, and thirteen exogenous
disturbance inputs. The performance output of the leader
consists of the ten measurements and the four control inputs,
whereas the performance channel of the followers consists
of the relative errors in the position, airspeed, and the yaw
angle. A distributed system comprised of the three LTI
subsystems is formed for each of the two trim conditions.

We now design feedback controllers for the two distributed
systems using the synthesis conditions provided in Theorem
2. For each of the three subsystems, uncertainty in all
the twelve temporal and five spatial states is considered.
Since an LTI distributed system is equivalent to a (0, 1)-
ETP distributed system, we seek an (N, 1)-ETP distributed
controller, where N ≥ 0. The synthesis problem is solved
using Yalmip/SDPT3 [10], [11] on a Dell desktop computer
with a four core Intel Xeon, 3.07 GHz processor and 6 GB of
RAM running Windows 7. For a finite horizon length of five
(N=5), we obtain γmin ≈ 60.8, 60.2, for the straight line and
circular controller synthesis problems, respectively. The wall
clock times for solving the two optimization problems are
11.6 min and 18 min, respectively. The distributed controllers

are then constructed using the solutions Xi(t, k), Yi(t, k), t1,
and f2 obtained from the synthesis optimization problem.

The performances of the resulting uncertain initial con-
dition (UIC) distributed controllers are compared with dis-
tributed LTI controllers designed based on [6] in a realistic
MATLAB based simulation environment. The simulation
setup is characterized by a steady wind of 3 m/s magnitude,
light turbulence, sensor noise, and second-order actuator
dynamics. The UIC distributed controller exhibits better
performance during the trajectory transition phase as seen
from the variation of the roll and pitch angles of the leader
in Fig. 3. We also observe that the relative position error
between the subsystems is smaller with the UIC distributed
controller. To summarize, the UIC distributed controller
makes the transition to the new reference trajectory with
less aggressive state variations and without experiencing
significant degradation in the tracking performance.

VI. CONCLUSION
This paper solves the control synthesis problem for dis-

tributed systems with uncertain initial conditions, where the
distributed controller inherits the interconnection topology of
the plant. Uncertainty in both the temporal and spatial initial
states of the system are considered and finite-dimensional
convex synthesis conditions for the existence of a distributed
controller are presented. The developed control approach
provides a systematic method for improving the performance
of a distributed system during switching between trajectories
or network topologies. The effectiveness of the approach is
demonstrated through an illustrative example.
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