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ABSTRACT ARTICLE HISTORY
We prove an analogue of the Donaldson-Uhlenbeck-Yau theorem Received 13 April 2018
for asymptotically cylindrical (ACyl) Kahler manifolds: If & is a reflex- Accepted 31 July 2018
ive sheaf over an ACyl Kahler manifold, which is asymptotic to a
u—stable holomorphic vector bundle, then it admits an asymptotic-
ally translation-invariant projectively Hermitian Yang-Mills metric L .

/ . 5 i N connections; reflexive
(with curvature in L.IOC across the singular set). Our progf combines sheaves; asymptotically
the analytic continuity method of Uhlenbeck and Yau with the geo- ¢ylindrical Kihler manifolds
metric regularization scheme introduced by Bando and Siu.
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Hermitian Yang-Mills

1. Introduction

In this paper we construct (singular) projectively Hermitian Yang-Mills (PHYM) met-
rics over a certain class of complete non-compact Kahler manifolds.

In the compact case this problem has been extensively studied. Its solution provides a
particularly beautiful example of the relation between canonical metrics and algebro-
geometric notions of stability: a holomorphic vector bundle over a compact Kéhler
admits a PHYM metric iff it is u-polystable. This was first proved for curves by
Narasimhan and Seshadri [1], for algebraic surfaces by Donaldson [2], and for arbitrary
compact Kahler manifolds by Uhlenbeck and Yau [3].

It is an interesting and important question to ask: under which hypothesis does a hol-
omorphic vector bundle over a complete non-compact Kahler manifolds admit a
PHYM metric?' The answer to this question is not completely understood, but a num-
ber of partial results have been obtained. For asymptotically conical Kéhler manifolds,
Bando proved the existence of PHYM metrics on holomorphic vector bundles which
are flat at infinity [5]. Ni and Ren [6] proved that a holomorphic vector bundle over a
complete non-compact Kahler manifold with a spectral gap admits a PHYM metric iff
it admits a metric whose failure to be PHYM is in L? for p>1 (using an argument
similar to Donaldson’s solution of the Dirichlet problem for the PHYM equation [7]).
Ni [8] showed that the same conclusion holds, for example, if the Kéhler manifold satis-
fies a L> Sobolev inequality and p € [1,7/2), or if it is non-parabolic (i.e., admits a posi-
tive Green’s function) and p =1.

CONTACT Adam Jacob @ ajacob@math.ucdavis.edu @ Mathematics, University of California Davis, Davis, CA, USA.
© 2018 Taylor & Francis
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1.1 Main result

In this article we concentrate on the asymptotically cylindrical (ACyl) case, and in view
of the applications we have in mind we work with reflexive sheaves (not just holomor-
phic vector bundles).

Theorem 1.1. Let V be an ACyl Kahler manifold with asymptotic cross-section D. Let &p
be a u-stable vector bundle over D, and & a reflexive sheaf asymptotic to &p.

Then there exists an asymptotically translation-invariant Hermitian metric H on &
which satisfies the projective Hermitian Yang-Mills (PHYM) equation

tr(zAFH)

KH = lAFH— k&

-idg =0, (1.2)

and |Fy| € L}, (V).

loc

Remark 1.3. A PHYM metric H on & is Hermitian Yang-Mills (HYM) iff the induced
metric h on det & is HYM, that is, iAF), = tr('rﬁ—ér”) is constant. Every asymptotically
translation-invariant line bundle over an ACyl Kahler manifold has a HYM metric;
however, this metric will typically not be asymptotically translation invariant. See

Section 2.3 for a detailed discussion.

Remark 1.4. The definition of ACyl Kahler manifolds we work with is given in
Definition 2.1; it includes being asymptotically fibred.

Remark 1.5. The question of the existence of HYM metrics on holomorphic bundles
(with trivial determinant) over ACyl Calabi-Yau 3-folds was studied earlier by Sa Earp
[9] (using the Yang-Mills heat flow). Our result improves on his in that we consider
general ACyl Kahler manifolds and handle reflexive sheaves; moreover, we give a com-
plete proof of the exponential decay to a PHYM metric over D (which is crucial for
applications).

Remark 1.6. In dimension four, there is prior work on the relation between ASD
instantons and holomorphic vector bundles over cylindrical manifolds by Guo [10] and
Owens [11].

Remark 1.7. Theorem 1.1 does not make any statement about the behavior of H near
singularities. Jacob, Sa Earp, and Walpuski [12], Chen and Sun [13] have studied this
behavior in the case of isolated singularities.

Examples and applications

There are plenty of examples of ACyl Kahler manifolds and reflexive sheaves on
them. Given any smooth projective variety Z containing a smooth divisor D and fibred
by |D|, V := Z\D can be given the structure of an ACyl Kéhler manifold [14, Section
4.2, Part 1]. Theorem 1.1 can be applied to any holomorphic vector bundle § on Z
such that &, is u-stable. One often wants to construct & by extending a holomorphic
vector bundle &p on D to all of Z. This can always be achieved with & being a reflexive
sheaf—by first extending &p as a torsion-free sheaf and then taking the reflexive hull.
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Whether or not this extension can be arranged to be a holomorphic vector bundle is a
subtle question. This is one of the reasons why it is desirable to allow reflexive sheaves.

ACyl Calabi-Yau 3-folds are an important ingredient in the construction of twisted
connected sum G,-manifolds [15-17]. Building on [9], S4 Earp and the second named
author gave a construction of a class of Yang-Mills connections, called G,-instantons,
over such twisted connected sums [18]; see [19] for a concrete example. We hope that
the current work will be a first step towards the construction of singular G,-instantons
on twisted connected sums. G,-instantons play a central role in Donaldson and
Thomas’ vision of gauge theory in higher dimensions [20], and understanding singular-
ities and their formation is an important part of making their ideas rigorous; see,
e.g., [21-23].

1.2. Proof idea

We first prove Theorem 1.1 for holomorphic vector bundles. After a suitable choice of an
initial Hermitian metric H, on &, we construct a PHYM metric using the
Uhlenbeck-Yau continuity method. The difficult part is the a priori C° estimate on the
endomorphism s relating Hy and the Hermitian metric H; = Hye® along the continuity
path. Unlike in [5, 8], a solution to the Poisson equation Af = |Kp,| cannot act as a bar-
rier, since on V such a solution does not have exponential decay—in fact, it decreases lin-
early along the cylindrical end. Instead, we use an adaptation to our setup of Sd Earp’s
argument in [9]: his proof first exploits the barrier to obtain a bound of the form
Isll3~ < |Is||7>, and then uses the Donaldson functional on transverse slices along the
cylindrical end to show that ||s||;» =<||s|,~. Besides the construction of the initial
Hermitian metric Hy, this is the point at which p-stability enters into the proof. To prove
a priori exponential decay bounds we use ideas of Haskins, Hein, and Nordstrom [14].

Once Theorem 1.1 is established for holomorphic vector bundles, we prove the gen-
eral case for a reflexive sheaf & following a geometric regularization scheme, introduced
by Bando and Siu [24], based on approximating & and V by a holomorphic vector bun-
dle and a family of ACyl Kahler metrics on a blow-up of V. The main difficulty is con-
trolling the barrier f as the metrics degenerate. Once f is controlled, the C° bound on
compact subsets away from the singular set of & follows, and the arguments from the
holomorphic vector bundle case can be applied directly.

1.3. Conventions

We denote by ¢ >0 a generic constant, which depends only on V, &, and the reference
metric Hy constructed in Section 3. Its value might change from one occurrence to the
next. Should ¢ depend on further data we indicate this by a subscript. We write x <y
for x<cy and x < y for ¢ 'y <x<c¢y. O(x) denotes a quantity y with |y| < x.

2. ACyl Kahler manifolds

In this section we briefly introduce some notation, recall the necessary linear analysis,
and provide the details promised in Remark 1.3.
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Definition 2.1. Let (D, gp,Ip) be a compact Kdhler manifold. A Kéhler manifold (V, g,
I) is called ACyl with asymptotic cross-section (D,gp,Ip) if there exists a constant
dy >0, a compact subset K C V and a diffeomorphism n: V\K — (1,00) x §' x D
such that

|Vk(7r*g —goo)| + |Vk(n*1 — [oc)| — O(e—évf)’
fOr all k € NO) Wlth

g = dPBAPDgy and I, = <(1’ _01> S,

Here (£,0) are the canonical coordinates on (0,00) x S'. The connection V and
norms |- | are both taken to be the ones induced by g.,. Moreover, we assume that the
map V\K — (1,00) x §' is holomorphic.

In what follows, we suppose that an ACyl Kdhler manifold V with asymptotic cross-
section D has been fixed. By slight abuse of notation we denote by £: V — [0,00) a
smooth extension of fon: V\K — (1,00) such that /<1 on K. Given L>1, we
define the truncated manifold

vy == ¢7Y([0,L]).
Given z = (L,0) € (1,00) x S', we set
D,:=n"({(L,0)} x D). (2.2)

2.1. Reflexive sheaves and Hermitian metrics

Definition 2.3. Let &p = (Ep,dp) be a holomorphic vector bundle over D. Let & be a
reflexive sheaf over V with singular set S := sing(4’) and underlying smooth vector bun-
dle E — V\S. We say that & is asymptotic to &p if the following hold:

° T}lere exists a constant Ly> 2 such that S C V;,_;. In particular, E|V\VL0 has
a O-operator.

e Denote by &, = (Ex,0s) the pullback of &p = (Ep,dp) to (Ly,o0) x S' x D.
Choose an auxiliary Hermitian metric on Ep and pull it back to E...” There
exists a bundle isomorphism T : E|V\VL0 — E covering m and a constant
S5 > 0 such that

V(7,0 — 84)| = Oe™2¢Y),

for all k € Ny anii ! = L.
We say that (&, 0) is asymptotically translation-invariant if it is asymptotic to some
holomorphic vector bundle over D.

Definition 2.4. Let & be a reflexive sheaf over V asymptotic to &p. Let Hp be a
Hermitian metric on Ep. Denote by Hy, the pullback of Hp to é~. A Hermitian metric
on & is a Hermitian metric H on & |V\s- We say that it is asymptotic to Hp if there
exist a constant 0y > 0 such that
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\Vk(7,.H — Hy)| = O(e %)

for all k € Ny and ¢ > Ly. (We take the background metric, used in the comparison, to
be H,.) We say that H is asymptotically translation-invariant if it is asymptotic to
some Hermitian metric Hp.

Given a Hermitian metric H on a holomorphic vector bundle (&,0), there exists a
unique connection Ap, called the Chern connection, which preserves the Hermitian
metric and satisfies V?{j{ = 0; see, e.g., [25, Theorem 3.18]. We denote the curvature of
this connection by Fy.

Definition 2.5. A Hermitian metric H on a reflexive sheaf & is called projectively
Hermitian Yang-Mills (PHYM) if Ky € C*(V\S, isu(E, H)) defined by

tr(zAFH)

KH = IAFH— rkg)

[idy

vanishes.

2.2, Linear analysis

In the subsequent sections we need a few results about linear analysis on ACyl Kahler
manifolds. We will simply state the required results and sketch their proofs. For a nice
review of linear analysis on ACyl manifolds we refer the reader to [14, Section 2.1]; see
also Maz’ya and Plamenevskii [26] and Lockhart and McOwen [27].

Fix a holomorphic vector bundle & asymptotic to &p and a Hermitian metric H
asymptotic to Hp.

Definition 2.6. For k € N,o € (0,1) and J € R, define
CE (V)= {f € C(V) s If o < o0 ),
with

of

e e

and set
00 ko
V)= (V).
2= 0 (V)
Similarly, we define C5*(V, isu(E, H)) and C3*(V, isu(E, H)).
Proposition 2.7. For 0 <0 < pl, the linear map C§+2’“(V) DR — C];“(V) defined by
(f,A) — Af —AAL

is an isomorphism.

Proof. This is [14, Proposition 2.7] together with the observation that

/ Al = —vol(S! x D).
v
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Definition 2.8. A holomorphic vector bundle (&§p,d) over D is simple if every holo-

morphic endomorphisms of &p is a homothety, that is: H*(6nd(&p)) = C - idg,.

Proposition 2.9. If Hp is HYM, &p is simple and |0| < g, 1, then the linear operator
Vi Vi, o Cy 2% (V,isu(E, H)) — Cy*(V, isu(E, H))

is Fredholm of index zero.

Proof. We use the theory explained in [14, Section 2.1]. The linear operator Vi, Vp, is
asymptotic to the translation-invariant linear operator

_81%_8(2) + V>IIF-IDVHD
acting on sections of isu(E.,, Hy,). Since Hp is PHYM,

1 — =
> Vit Vit = 0, Oni, = 05, Do

The latter is invertible because &p is simple. Consequently, the spectrum of —d7 +
Vi, Vi, is contained in [4p, oc), for some Zp > 0. This implies the Fredholm property
for |0| </Zp by [14, Proposition 2.4]. Since V}; Vy, is formally self-adjoint and 0 is
not a critical weight, the index is zero; cf. [27, Theorem 7.4].

2.3. Hermitian Yang-Mills metrics on line bundles

Proposition 2.10. Let ¥ be a line bundle asymptotic to ¥p and denote by hp a
Hermitian metric on ¥p with®

, 27 - deg(¥p)
AF = ’L :: - ~ < <~ -
MM = A O ol (D)

Then there exists a unique Hermitian metric hy asymptotic to hp and A € R such that
h := hoe 4! satisfies

iNFp = A.
Proof. Let h_; be any Hermitian metric asymptotic to hp. We have
J—iAF,_, € C¥(V).
By Proposition 2.7 there is a unique pair f € C;°(V) and A € R such that
A(f —Al) = L —iAF),_,.
The proposition follows with hy :=h_¢/. O

The number A(¥) defined by Proposition 2.10 is an invariant of the asymptotically
translation-invariant line bundle . It can be computed as

1
A(Y):=————~| A—iAF
(£) vol(S! x D) /V/ A
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with h denoting any Hermitian metric asymptotic to some hp as in Proposition 2.10. It
is closely related to the first Chern class: if ¥ and ¥, are both asymptotic to ¥p,
then ¢;(%1) — c1(¥,) € H2(V) and

21 ((c1(Z1) — a(£) U], [V])

A(Z1) —A(ZLr) = (n — 1)!-vol(S' x D)

It follows from the above that & as in Theorem 1.1 admits an asymptotically transla-
tion invariant HYM metric iff A(det &) = 0.

3. The Uhlenbeck-Yau continuity method

In this section we begin the proof of Theorem 1.1 in the case when & is a holomorphic
vector bundle. We use the continuity method introduced by Uhlenbeck and Yau [3];
see also Lubke and Teleman’s beautiful books [28, 29].

We fix some

0<o< min{év, 55‘, \ /"\.D}

and will shortly construct a background Hermitian metric Hy on & which is asymptotic-
ally translation-invariant and satisfies
Ku, € CX(V, isu(E, Hy)). (3.1)
Given such an Hy, we define a map*
£: C3°(V,isu(E, Hy)) x [0,1] — C5°(V,isu(E, Hy))
by
£(s,t) :== Ad(es/z)KHoes +t-s.
Set
I:={te[0,1]: £(s,t) = 0 for some s € C5*(V,isu(E, Hy))}.
We will show that 1 € I,IN(0,1] is open and I is closed; hence, I =[0,1]. Since

£(s,0) = 0 precisely means that H = Hoe* satisfies Eq. (1.2), this will prove Theorem
1.1 when & is a holomorphic vector bundle.

Proposition 3.2. There exists an asymptotically translation-invariant Hermitian metric
H, on & satistying Eq. (3.1) and an s € C°(V,isu(E, Hy)) such that £(s,1) = 0.

Proof. We use a trick discovered by Liibke and Teleman [28, Lemma 3.2.1]. By the
Donaldson-Uhlenbeck-Yau theorem [2, 3, 30] there exists a PHYM metric Hp on &p.
One can easily construct a Hermitian metric H_; asymptotic to Hp (at rate dy_, = 0)
which satisfies

k:=Ky , € CF(V,isu(E,H_,)).
The Hermitian metric
Hy:=H_€"
is asymptotic to Hp (at rate oy, = 0). We have Eq. (3.1), and
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Kk € C5°(V,isu(E, Hy))
satisfies

£(—x,1) = Adle™*/?)(Ky_,) —k = 0.

4. Linearising £=0

Having just proved that 1 € I, the next step is to show that I N (0, 1] is open. This will
be established in this section by linearizing the equation £ = 0.
Since

L(s,t) = Ad(e/?) (Ky, + iAD (e *O,e)) + -5,
it extends to a smooth map
£ GV, isu(E, Hy)) x [0,1] — CY*(V, isu(E, Hy)).

The fact that 1N (0,1] is open is an immediate consequence of the following two
propositions and the implicit function theorem for Banach spaces; see, e.g., [31,
Theorem A.3.3].

Proposition 4.1. If (s,t) € C;*(V,isu(E, Ho)) x (0,1] is a solution of £(s,t) =0, then
the linearization

d
Lo = a’:(s, t): C3*(V,isu(E, Hy)) — CY*(V,isu(E, Hy))

is invertible.
Proposition 4.2. If (s,t) € C;*(V, isu(E, Hy)) x [0, 1] is a solution of £(s,t) = 0, then
s € C5°(V,isu(E, Hy)).

The proofs of both of these results are essentially identical to those of the analogous
results in the compact setting; see [29, Lemma 4.6 and Lemma 4.8]. The proofs make
use of the explicit formulae for Ad(e*/?)Ky,s and its derivative in the direction of s.
The derivation of these, while rather straight-forward, is somewhat tedious and there-
fore relegated to Appendix A.

Proof of Proposition 4.2. By Proposition A.1 and since O(s) as defined in Eq. (A.3) is
invertible, the equation £(s,t) = 0 is equivalent to

1
<E V;IOVHO + t>5 + B(VHOS & VHOS) = C(KHO)-

where B and C are linear with coefficients depending on s, but not on its derivatives.
The result now follows from a standard elliptic bootstrapping procedure. 0

Proof of Proposition 4.1. By Proposition A.8 and using
£(s,t) = Ad(e/?)Kpjps —t -5 = 0,
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the linear operator L, is given by
Liss =~ V5 V; (id + Ad(e=/2)) Y(s/2)3
L. —s/2 . .
+Z [s, (id — Adle ))Y(s/2)s} + 15

with Y as defined in Eq. (A.2). Since s € Cﬁ‘“(V, isu(E, Hp)), the linear operator L, can
be connected to %V}}U Vi, +t by a path of bounded linear operators which are asymp-
totic to 3 (07 — 95 + Vi, Va,) + t. The argument in the proof of Proposition 2.9 shows
that this is a path of Fredholm operators. Therefore, the index of L,, agrees with that of
%Vgo Vu, +t and thus vanishes. To see that L, has trivial kernel and thus is invertible,
observe that

/V<Ls_t§, (id + Ad(e~ 2))Y(s/2)3)

>t /V (ady/s(id — Ad(e /%)Y (s/2) +id)3, (id + Ad(e /%)) Y(s/2)3)

with
2(s) = Y(5/2) (id + Adle ) (adya (id — Adle ) ¥(s/2) + id).

Since Ad(ef) = ¢** and spec(ad;) C R, it follows from

(e/2 —1) x /2 —1 2sinh(x)
(141 —e ) — 41| = >2
) ( +e ) 4( e ) /2 + o )

for all x € R, that

/ (Loss, Ade /)Y (s/2)8) = 2t [ 3.
A4 Vv

Therefore, L, has trivial kernel. n

5. A priori estimate

Given the following a priori estimate, it is an immediate consequence of Arzela-Ascoli
theorem that I is closed.

Proposition 5.1. If (s, t) € C3°(V,isu(E, Hy)) x [0, 1] satisfies £(s,t) = 0, then
[sll e < e
The proof of this proposition, to which this section is devoted, has two steps: First
we prove that [|s]|» is bounded by a constant depending only on H, using ideas from

[9]. This implies that [|s|| is bounded by a constant depending only on k and H, by
an argument of Bando and Siu [24, Proposition 1] (For the reader’s convenience we
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give a detailed proof of this in Appendix C). The second step is a decay estimate which

is similar to [14, Steps 3 and 4 in the proof of Theorem 4.1].

5.1. A priori C* estimate

Proposition 5.2. If (s, t) € C3*(V,isu(E, Hy)) x [0, 1] satisfies £(s,t) = 0, then

sl e < e

Proof. By Theorem C.1 it suffices to prove the proposition for k = 0. Fix Ly > 1, but

independent of s, and set

N =[5l and M= il )

Step 1. We have
N<M—|-C(Lo + 1).

We can assume that |s| achieves its maximum at xy € Vi, because otherwise the esti-

mate holds trivially. From Proposition A.9 and £(s,t) = 0 it follows that
Als* + 4tls]* < — 4(Ky,, 5);
hence,
Als|* < 4N|Kgy,|-
Denote by f € C(z)“(V) and A >0 the unique solution to
A(f — Al) = 4|Kp,|.

Applying  the  maximum  principle to the  subharmonic
|s|> = N(f — A¢) on V, we have

NP <M+ N(ALo + 2[f]| =) SN (M + ALy +2][f] ).

This implies the assertion.
Step 2. We have

\/M = ||KH0€S‘DZ

2(V\Vi, ) + 1.
Here D, is as in Eq. (2.2) for z = (L, 0) € (Ly,0) x S*.
Step 2.1. If xy € V\Vy, is such that

[sl(x0) = M,
then for all L > {(x,) we have

1
I8/l oy = 3 M= €(x0) — L.

By the maximum principle applied to |s|* — N(f — Af) on V, we have
M? — Nf (%) + NAL(x0) < |Isl| i~ (ov,) + NIlf lli(av,) + NAL.

(5.3)

function
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We can assume that M = 8|f|| 1~(v\v,,) and N<2M, because otherwise N can
already be bounded independent of s using Step 1. With these assumptions it follows
that

NA (€)= L) < 5l < o) = M2 + 2Nfl 1o 11, )

1
<N (Islimuy — M)
Step 2.2. There are Ly < L; <L, with L, — L; < M such that

M2 < ||S||L2(VL2\VL1)'

By Step 2.1 we have
M= |slz~(av,)

for 0 <L —{(xp) < M; hence, using the mean value inequality [32, Theorem 9.20],
Als|* < 4|Ky,||s|, and |Ky,| = e~ it follows that

Mzs/ |s|”> + e~ %LoM.
Vie\Vio)

Since Ly > 1, the second term on the RH.S. can be rearranged. Summing over
L—"4(xo) = 1,...,k (with k < M) yields the asserted inequality.
Step 2.3. We have

s (D) — 1/2 SM“KHoeS\DZ 1(D,)

At this stage the u-stability of §p comes into play via the Donaldson functional .#;
see Appendix B. Since Ly 3> 1 and &p is pi-stable, &, is u-stable as well. Denote by
Hp, the PHYM metric on &p, inducing the same metric on det (&, ) as Holp . Set
o, := log(Hp 'Ho|p ). By the construction of Hy in Proposition 3.2 we
have g, € C3°(V, isu(E, Hy)).

Using Theorem B.3, Proposition B.1, and Proposition B.2 we have

s I = [ log(e“e“l’z) |L2(Dz) -1
< M(Hng HDZeO'eS‘Dz)
=M (Holp,, Hp.) + M (Ho|p,, Ho€'| )

— 0Ly

D,

= | IsllKupe, | +e
This implies the asserted inequality.
Comparing the lower bounds from Step 2.2 with the upper bounds obtained by inte-
grating Step 2.3 completes the proof of Step 2.
Step 3. We have

2 p 2
||KHoeS\DZ 2(V\Vy,) e 4 ||FIO‘IOHL2(VI.0)'

Here Fy;, denotes the curvature of the PU(r)-connection induced by Hy.
Once this is proved, the desired control on M follows and the proof of Proposition
5.2 will be complete.
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Step 3.1. We have

2 2 2 -0 2
[ K, LZ(V\VLQ)S/V|FIO-IOeS| —|E, I+ ce ™ + || g 12(viy)*

If H is a Hermitian metric on a holomorphic bundle & over an n-dimensional
Kahler manifold X with Kahler form w, then

ga(H)Ao" =2 = c(|F;’,|2 - |KH|2>V01 (5.4)
with

)_r—l

qa(H) == 26,(H a(H)

and ¢, denoting the k-th Chern form associated with H.
If X is compact, then the integral of the L.H.S. of Eq. (5.4) depends only & hence,

2 2 2 2
[ K1, P = [ oo Pt [ Ve P = 1, P
z z z

|Fu, — FHO\DZ| <e % and |KH0\DZ| <e L,

Since

it follows that

2 2 2 — 0L
/ |KH065|DZ | S/ |FIO-IOES|DZ | o |F;10‘Dz | + € (
D, D.

< [o]
"‘/ |FHoeS
Dz

o 2 o |2
[ e =I5 <0
Since s € C3°(V, isu(E, Hy)), we have

/V(q4(HOeS) - q4(H0))/\a)"_2 = 0.

2 |F;I0|2 +675L.

Step 3.2. We have

Using Eq. (5.4), we obtain

2 2
[ el =165 = [ e
\4 \4

To see that the R.H.S. is non-positive, we use Eq. (5.3) and £(s,t) = 0 to derive

/ Ko = / 2ls < ] 1K |l
174 \74 Vv
2

1 1 1 1
ng5|KH0|2 +Et2|5|2 :/V§|KHO|2 +§|KH085 .

P |KH0 |2‘
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5.2. Decay estimate

Proof of Proposition 5.1. To complete the proof we need to establish quantitative expo-
nential decay bounds for s using the a priori estimate in Proposition 5.2 and the qualita-
tive information that s € C3°(V, isu(E, Hy)).

Fix Ly > 1 as in the proof of Proposition 5.2.

Step 1. We have

/ |Va,s|* <.
V\Vi

From Proposition A.9 and £(s,t) = 0 it follows that
Als]® +2|v( = $) Vi, s|” < — 4(Kg,, 5)

with v(—s) as defined in Eq. (A.11). Since
1— e ad: lI—e¢ * 1
v(—s) = ST and ¢ = ,
ads X 1+ |x|

IVisl” = (1 + llsll ) (1K [ls) = Alsf?)- (5.5)

it follows that

Integrating this over V and using Eq. (3.1) as well as Proposition 5.2 yields the

asserted estimate.
Step 2. For some ¢ >0 and all L > Ly, we have

/ |S|2 Se—Zz:L and |VH05|2 Se—Zz:L.
V\Vi V\Vi
Since &p is simple, for all s € I'(D, &ndy(&p)) we have
[ 5= [ ot = [ Vit
D D D
Because Ly > 1, this implies that

[ 2= / Vsl (5.6)
ovy 1A%3

for L > L. Therefore, it suffices to prove the second inequality.
Integrating Eq. (5.5) over V\V and using Eq. (5.6) yields

/ Vs = e + / Vsl
V\VL vy
sMLJr/ Vsl
vy

The assertion now follows from Proposition 5.8, which will be proved at the end of
this section.
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Step 3. With ¢ >0 as above
||S||C£<‘x < Chae
As in the proof of Proposition 4.2, we can write £(s,t) = 0 in the form
G Vi Vi, + t> 5+ B(Vis ® Vigs) = e, (57)
where B is linear with coefficients depending on s, and by Eq. (3.1)
lefl gex < ko

Using standard interior estimates the assertion follows from Proposition 5.2 and
Step 2.

Step 4. We prove the proposition.

Since

V605 ® Vigslas = [ Vil
we note that

1 *
H EVHOVHos—l— ts < Gk

ko
Cy

with ¢ := min{2¢, 0}. From Proposition 2.9 it follows that
||5||Cf;x < Gk
Repeating this argument a finite number of times we finally arrive at & = 0. O

Proposition 5.8. If f : [0,00) — [0, 00) satisfies

fL) <Ae™ —Bf'(L)
with A,B >0, then

F1)< (24 -+7(0)e™
with ¢ := min{J, 1/2B}.

Proof. The function g : [0,00) — R defined by
g(L) :=f(L) — (24 + f(0))e

satisfies g(0) = —2A <0 and ¢'(L) < —g(L)/B. Tt follows that g <0, which proves
the proposition. O

6. The Bando-Siu continuity method

To prove Theorem 1.1 for reflexive sheaves & we use a regularization scheme based on
ideas of Bando and Siu [24]. We construct a one-parameter family of ACyl Kahler
manifolds {V, : ¢ € (0, 1]} whose underlying complex manifold V is obtained by blow-
ing up S:=sing(&). As ¢ tends to zero, the exceptional divisor shrinks and
\N/E resembles V' more and more closely. V carries a holomorphic vector bundle &,
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which agrees with & outside S, and to which Theorem 1.1 can be applied to construct a
PHYM metric H,. The desired PHYM metric on & will be constructed by taking the
limit as ¢ tends to zero.

Proposition 6.1. There is a complex manifold V, a holomorphic map #: V — V
which induces a biholomorphic map to V\S, and a holomorphic vector bundle
& over V such that

V\s>-

Moreover, there exists a one-parameter family of Kéhler metrics {g, : ¢ € (0,1]} on V
such that:

Elina-r(s) = n<5

o on#t '(V\B(S)) we have g, = #t'g, and
e for L Ly, the Neumann—Poincaré constant of (& ~'(V1),g.) is bounded above by a
constant independent of €. Here Ly is as in Definition 2.3.

Proof. The proof has three steps.

Step 1. Construction of V and &.

We follow the method of Bando and Siu [24, p. 46], see also [33, Section 4.1].

Since &” is coherent, there exists a locally free sheaf # and a surjective morphism
F* — & — 0. Since & is reflexive, by dualising, we get 0 — & — %. This defines a
rational section ¢, : V ——> Gr.(7), with locus of indeterminacy S. By a result of
Hironaka [34, Part I, Chapter 0, Section 5], there exists a holomorphic map
7: V — V, which is biholomorphic outside S and equivalent to a sequence of blow-
ups along smooth submanifolds (of codimension at least three), such that ¢ o7
extends to a section V — Gr,(7*.%). This section defines the desired holomorphic vec-
tor bundle & over V.

Step 2. The model metric.

Denote by wrs the Fubini-Study form on P”~'. The Kahler form

i '65<1||2+821 ||2>
W, =1 - —1lo
 F T 08

on C"\{0} uniquely extends to a Kahler form on Bl,C" which induces &*wps on the
exceptional divisor P"~!'. More precisely, if we denote by r the radial coordinate, by
0 the 1-form arising from the S!'-action and by @ : C"\{0} — P" ! the projection,
then

@, = (& + r*)w* wps + rdrad. (6.2)

Fix a smooth function y: [0,00) — [0, 1] which is equal to one on [0,1] and van-
ishes outside [0,2]. For 0 <¢ < 1, set y, := y(-/2y/¢) and define a Kihler form on
BIOC” bY

= 09 (316 + 20e) - £ tog )
Wy =1 5 L 5,108 )

This agrees with @, on B /,, it agrees with the flat Kahler form wy on C"\B ;(0),
and it satisfies
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|w; — | < ¢|logeé]

on B ;(0)\B,//,(0). Moreover, we have

n

wr. N\ 2n—2
&A1+(8/r) .

Step 3. Construction of g..

V is constructed by a finite sequence of blow-ups along smooth submanifolds. In
fact, by induction we can assume that there is just one blow-up, say, along C C V.
Denote by p: V — [0,00) the distance to C. For 0 <& < &,

2
W, := " w + i00 <(;{8 o p) -;—nlogpz)

defines a Kihler form on V whose restriction to 7~ '(V\B,(S)) agrees with 7*w. We
extend the resulting family of Kahler metrics to be constant for ¢ € [g, 1].

Step 4. Estimate of the Neumann-Poincaré constant.

Fix L > Ly. We use the discretization method of Grigor'yan and Saloff-Coste [35,
Section 3.1] to estimate the Neumann-Poincaré constant of (7~ '(Vy),g.). Fix
0<o < 1. Pick a maximal set of points {xj:j € J} C V_y,, of distance at least o
from each other. Set

Ag:=VI\Vi_1pp, Aj= AS‘ = Vi\VL_1,
. P #o_ o
Aj=1 1(B(,(xj)), Aj =7 1(B4a(xj)) and Aj =7 I(ng(x]')).

Set I:=JU{0}. .o/ := {(A;,A},A*):ieI} is a good covering of V; in V; in the
sense of Grigor'yan and Saloff-Coste [35, Definition 3.1]. This means that, for all i €
LA, CA; C A? and for some constants Q;, Q, the following hold:

We have Vi C Uier A and U,‘GIA;# C Vi.

For each i € I, |{j e I : A¥ ﬂAJ# # 0} Q.

If d(A;,Aj)) =0, then there is a k=k(i,j) €I such that A; UA; C A}.
Moreover, vol(A;) Q,min{vol(A;), vol(A;)}.

According to [35, Theorem 3.7] the Neumann-Poincaré constant of V; can be esti-
mated by Q1A (2 + Q?Q,A,). Here the continuous Poincaré constant A, and the dis-
crete Poincaré constant A, [35, Definition 3.4 and Definition 3.6] are the smallest
constants such that,

[V -Fafenf 19 wa [ -FePeaf v e
A ' A A i A?

and

Y IFG) = FIPm(i) < Aaé (f.f)-

i€l
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Here
S ST R
6-f) = ZW — fG)Pm(i.j).
(JEIXI
with

mii.j) = {ma"{m(i)am@} if (A Aj) =0

0 otherwise.

While the measures of A;, A, and A¥ are dependent of &, they are uniformly compar-
able. Consequently, the constants Q; and Q, and discrete Poincaré constant A, can be
bounded independently of ¢. Thus it remains to show that A, can be bounded inde-
pendently of & that is, we can find a constant such that Eq. (6.3) holds for all
i€l and ¢ € (0,1]. For i =0, Eq. (6.3) is obvious. For i € ], such estimates follow
from scaling considerations and uniform weak Poincaré inequalities

U =Fal<er[
B, (x) By (x)

(with ¢ >0 independent of x and r) for certain model spaces, for example, Bl,C* x
C"~* equipped with the Kahler metric induced by

/1 1 1
i00 (E l2|* + %log 2> + > |w|2> .

The existence of these uniform Poincaré constants in turn can also be established
using the discretization method as follows. We can assume that r > 1. Denote by 7 :
Bl,CF x C"~F — C" the projection. For i € 72" C C", set

A=7'(B(i), A :=#7 "(B,(i)) and A* =7 1(Bs(i)).

If we set I, := {i € Z"" N #(B,(x))}, then .«Z,, := {(A, A],A¥):ieL,} is a good
covering of B,(x) in B,,(x); moreover, the constants Q; and Q, as well as the continu-
ous Poincaré constant A, of .&7,, can be bounded independently of x and r. The dis-
crete Poincaré constant of .., can be bounded by a constant times r%; see, e.g. [36,
Section 3.4]. [35, Theorem 3.7] thus establishes the desired uniform weak Poincaré
inequalities. N

We denote V equipped with the metric g, by V.. Given a subset U C V, we
set U := 7~ ' (U).

Using Theorem 1.1 for holomorphic vector bundles, for each ¢ € (0, 1], we construct
a PHYM metric H, on & over V,. We can assume that the metric on det & induced
by H, agrees with a fixed asymptotically translation-invariant metric & which does not
depend on ¢. Define 5, € C*(V,, isu(E, H,)) by

5. 0= longlfia.

The PHYM metric H on &, whose existence was asserted in Theorem 1.1, can be
constructed using the following proposition and the Arzela-Ascoli theorem by taking
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the limit of the metrics H, over V\U = \N/{;\U as ¢ tends to zero. Here U is an arbi-
trary neighborhood of S C V.

Proposition 6.4. For all ¢ € (0, 1], we have

- g ‘
HSZ:”CE(V,;\U) X Ck,U

Proof. Set
tr(iA.Fy,)
r
and let f, € C3(V,) and A, >0 be the unique solution to
A (f: — Al) = 4|K,].

K, := iAFy, — -idg,

Here A, and A, denote the dual Lefschetz operator and the Laplace operator on V,
respectively.
If we can prove that

”ﬁ:HLx(‘”/n\U)ch; A, <c and ||FH1||L2(\7E,LO)<C’

then the argument in Section 5 will yield the asserted bounds on s,.
The proof of the above bounds on f;, A, and Fj; proceeds in four steps.
Step 1. We have

||FH1HL2(\"/E,LO)<C and ||Kc||c§(V\VL0)<Ck§

in particular, A, < c.
Recall that p denotes the distance to S. By Eq. (6.2), we have

vol,, _ (,02 + £2> codim(s)fland |ﬁgg _ <,02 + 82) -1
volp,  \p? +1 Bl  \p*+1
for any 2-form f. Consequently,

2 5\ codim(S) —3
2 pte 2
|F}~I1 |ggVOlgn = <p2 n 1) |FH1| VOlgl.

Since codim$ > 3, this implies the asserted L~bound. The second inequality is a con-
sequence of the fact that g, and thus K, does not depend on ¢ on V\Vp,. Both esti-
mates together yield A, < |[K; ||y, <c

Step 2. There is a constant f, such that on V\Vy, we have

e =Tl < and IV, <e

From Proposition 6.1 it follows that the weighted Neumann—Poincaré inequality [14,

Theorem 4.18] holds for_ c=1 and ,u:é with a constant ¢>0 independent of ¢;

2
hence, for some constant f,

oL

le*(f = ) sy S IV -
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Using the previous step, we have

e (RS AR S

v,
<K+ A oy e 5 (= 7.) e
<lle (%~ 7.)lsr.)

Combined with the above this yields

IVefe

ol

le ¥ (% = 7.) (o <

This in turn implies the second of the asserted inequalities.
Step 3. We have

Vell g (7,0 < v
Define F : [Ly,00) — [0,00) by
F(L) := / Vil
Jwnvy,
By the previous step, we have
F(L)<c.
Setting f, ; := / [yv,fe> We have

0V,_Iﬁ: _fc,L| <</0VLV;: _fr|

Using integration by parts, the Neumann-Poincaré inequality on 0V, and the previ-
ous step, we have

ng/

. V\VL

K, + AL — Tyl + /w VAN — Tl

5/ e—m_ﬂH/ VA = Fol
VAV ovi

oL

<e T—F(L).

It follows from Proposition 5.8 that F(L) <e %t for some y> 0. From interior esti-
mates it follows that

|vztfc| <e !
on V\V, and
HV{;ﬁ:”Lx(f/u\U) <cy.

By the exponential decay of f;, the above bound implies the assertion by integrating
the gradient of f, along a path down the tubular end of V. O

The L? curvature bound asserted in Theorem 1.1 is a consequence of the following
proposition.
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Proposition 6.5. For each ¢ € (0, 1], we have

Proof. Since h is fixed, it suffices to estimate F2 , the curvature of the PU(r)-connection
induced by H,. '

For each fixed ¢ € (0, 1], we have a bound of the desired form; however, it might a
priori depend on &. To see that it does not, we use a topological argument. With g, as
defined in Eq. (5.4) we have

Fg =L+ 1.

12(V,y)

B

94 (I:IC) —q4 (Hl) = di(s,)
where 7 is the transgression form associated with g, and can be bounded in terms of
|s¢| and |[VHS,|. Using Eq. (5.4) and K; = 0, we derive

/~ |F;~I£|2V0L;S/~ q4(I:I£)/\a);’72

\% Vi

:/VL (q4(ﬁ1) +dr>,\w?_2

S/~ Fa, |§£VOL, +1
Vi

S/:W%@mh+l
Vi

<L+1.

Here the second term in the third step arises from Stokes’ theorem and the fourth
step uses the argument from Step 1 in the proof of Proposition 6.4. O

This finishes the proof of Theorem 1.1.

7. Uniqueness of PHYM metrics

We have the following basic uniqueness result for asymptotically translation-invariant
PHYM metrics.

Proposition 7.1. Let & be a reflexive sheaf over V asymptotic to &p and let h be an
asymptotically translation-invariant Hermitian metric on det E. If &p is simple, then
there exists at most one asymptotically translation-invariant PHYM metric
on & inducing h.

Proof. If Hy and H were two asymptotically translation-invariant PHYM metrics induc-
ing h, then they must be asymptotic to the same PHYM metric Hp on &p (by unique-
ness in the compact case). Then, for some 6 >0,

s = log(H, 'H) € C3*(V\S, isu(E, Hy)).
Moreover, by [37, p. 13],
Alogtre’ <0
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on V\S. The argument in the proof of [24, Theorem 2(a)] shows that
logtre’ € Wllo‘f(V); hence, logtre’ is  weakly  subharmonic and thus
logtre’ < logrké because s tends to zero at infinity. However, because of the inequality
of arithmetic and geometric means, logtre® > logrké with equality iff s = 0. O

Appendix A: Useful formulae for Chern connections

Let & = (E,0) be a rank r holomorphic vector bundle. Given a Hermitian metric
H on &, there exists a unique Hermitian covariant derivative V = Vg on E such that
ngl = 0. The connection Ay associated with Vy is called the Chern connection
induced by H.

Fix a Hermitian metric Hy and s € I'(iu(E, H)). Set

H:=Hye' and A, := i/zAH = ei/zAHOeS-

Since ¢/2 : (E,H) — (E, Hp) is an isometry, both Ag = Ay, and A, are connections
on the principal U(r)-bundle U(E, Hy). Set

A(s) = Ad(e”/?)Kpyer = iAF; .

All of the following results can be found in [29, Section 6], in the setting of holomor-
phic principal bundles. We summarize them here for the reader’s convenience.

Proposition A.1. We have
R(s) = (2 —2cosh(ad,,)) Ky,
—|—§®(S)VBUVHOS
—|—§A(5Y( —5/2) AOy,s) — éA(aHoY(s/Z) ADs)
LAY~ 5/2)01s A Y(5/2)B5 + Y(5/2)B5A Y~ 5/2)044)
with Y(s) € End(gl(E)) defined by

Y(s) = (A2)

and O(s) € End(gl(E)) defined by

Os) = Y(s/2) —i—zY( —5/2) _ (A3)

Remark A.4. Since ad :=[s,-] € I'(End(gl(E))) is self-adjoint with respect to Hy, so is
Y(s). Both cosh(ad,/,) and ©(s) preserve u(E,Hy) because their power series expan-
sions involve only even powers of ad, and ad’ preserves u(E, Hy). Also note that ©(s)
is self-adjoint with respect to Hy and its first eigenvalue is at least one.

Proof of Proposition A.1. Since Opyes = On, + €~ *Op,e€’, we have

BAS = eS/Z(GHo + eis(aHoes))eis/z

= O, + €/ (Ou,e /%) + e 52 (O, e )e ¥/ (A.5)
= 6H0 + 673/2(61.[065/2
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using de’/? = O(e’e /%) = e 0e /% + (0e*)e /2, and
0;. = ¢20e=* = + ¢/*(De*?) = 8 — (Be/?)e /2.
Using
deexp(y) = (Y(x)y)e" = € (Y(—x)y)
we obtain
A=A+ %Y( —5/2)0u,s — %Y(S/Z)g&
From this it follows that
F; = Fu, + %Y( —5/2)00y,s — %Y(s/Z)@Hﬁs
+%5Y( —$/2)A0u,s — %BHOT(S/Z)/@S
1 — —
1 (Y(—5/2)0,5 A Y(s5/2)Ds + Y(5/2)Ds A Y( —5/2)0p,s).
Applying iA and using the Kahler identities
i[A,0] =0y, and i[A,0y)= -0
as well as
. 1_, 1 e 1, 1
8H 8H0 = _VH qu +—[KH0, ] and 0 0= _VH qu - —[KHO, '],
0 2 0 2 2 0 2
we obtain

1
¢/’ Ky, oo = Kny, + i (Y(—s/2) — Y(s/2))adKg,

3 (X(5/2) + V(= 5/2) V5, Vs
+%A(5Y( —5/2) AOy,s) — %A(BHOY(S/Z) A Os)

_ iA(Y( — §/2) s A Y (5/2)3s + Y(s/2)Fs A (= 5/2)0h0).

This implies the asserted identity because

—-x/2 _ 1 x/2 _ 1
(e 48 > = 2 —2cosh(x/2).

b= x/2 x/2

x
4

Proposition A.8. We have

(A.6)

(A7)

d86) = ivgsvgs (id + Ad(e™*/)) Y(s/2)3 — i [8(5), (id — Adle™/)v(s/2)3].
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Proof. We have
d

d
Sl Fr =4 [S
=0 Asits As <dt

dt

As+is :
t=0

Using Egs. (A.5) and (A.7), we compute
d
dt|,_,

= % (e_5/20H0 (e‘/ZAd(e—S/Z)Y(S/2)§)> _ (Ad(e_S/Z)Y(S/Z)fs)e_‘/zaHOes/z)

e (s+18)/2 (8}10 e(s+t§)/2)

=5 (0 (adte2)0(6/209) + om0, Adte )71/
= %aASAd(e—S/z)Y(sﬁ)@;

and, using Eqs. (A.6) and (A.7), we compute

d
d |,

(5e(s+t§)/z)e— (s+13)/2

t=0

- _%@((Y(S/Z)ﬁ)es/z)e’s/z — (565/2)673/2(1”(5/2)3))
=~ 2(80r(s/2) — @), (s/2)])

A —
INCE d

1 .
= — §8ASY(5/2)5.
It follows that
—|  A(s+13) _d iAF;
def,_, T t:01 Asvs
i ~ R A
- EA(aAﬁASAd(e 2)Y(s/2)5 — 8A58ASY(S/2)S>
- iiA(E ;. — ) (id + Ad(e=*/2)) Y (s/2)s

zA (a 0 +0;.0; )(id — Ad(e=2))Y(s/2)s
_ ngsvgs (id + Adle*2)) Y(s/2)3

— 186, (i — Adle=)r(s/2)3]

Proposition A.9. We have

(R(s) — Kg,,s) = (iAD(e *Op,€’),s) = iA|s|2 +%|v( —5)Vg,s|* (A.10)
where v(s) € End(gl(E)) is defined by
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(s) :== /Y(s). (A.11)

Proof. We compute
(AD(e*0n,€),5) = (AD(Y( = $)0s). )
= iAO(Y (= 5)Op,s, s) + iA(X(— 5)Opys A Op,5)
= 9 (01,5, Y(9)5) + (Y(— )5, Oy )
— 0 (D) + [0 — )P

1
= E0*a|s|2 + Jo( = $),s)>.

Appendix B: The Donaldson functional

Let (X,g,I) be a compact Kahler manifold and let & be a holomorphic vector bundle
over X. Given a metric Hy and s € C*(X, isu(&, Hy)), the value of the Donaldson func-
tional at (Hy, Hoe®) is

1
M (Hy, Hye') ::// (s,Ad(e“S/z)KHoew> du.
0Jx

This functional was introduced in [2, Section 1.2] and [[30], Section II]. We refrain
from a lengthy discussion and only marshal the following three facts, which are used in
Section 5.

Proposition B.1. ([38, Proposition 5.1]). We have
M (Hy, Hy) = . (Hy,H,) + #(H,, H).

Proposition B.2. We have .4/ (Hy, Hoe*) < [s||Kpes

Proof. This holds because m(u) := .#(Hy, Hoe"*) is convex [30, Proof of Lemma 24],
m(0) =0 and m'(1) =< [i|s||Knes- O

Theorem B.3. (Donaldson [30, Lemma 24]; see also [38, Proposition 5.3]). If
H, is PHYM, then

Isll 2 — 1 = 4 (Ho, Hoe).

Appendix C: Bando-Siu interior estimate

Theorem C.1 (Bando and Siu [24, Proposition 1]). Let (X, g,I) be a Kahler manifold of
dimension n with bounded geometry and let & be a holomorphic vector bundle over X. If
H, and H are Hermitian metrics on & and s := log(H; 'H) € C*(X, isu(&, Hy)), then
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_
rk+2 >

VII%ZSH 1(B,(x))

S ékp <||S||L°°(Bz,(x)) + 1Kk | (8, () + 7 7f||kaH||LP(BZr(x))

k
+ZTZ+I 1V, Fr, ||Lx(32,(x))>
=0

where &, is a smooth function which vanishes at the origin and depends only on
ke N,p € (1,00), and the geometry of X.

It suffices to prove this in the case where Hj is a flat metric on a trivial holomorphic
bundle over B, C C". The theorem is not a straight-forward consequence of standard
bootstrapping techniques because we only have

As = A(Ky) + C(Vs ® Vs)

where A and C are linear with coefficients depending on s; see Proposition A.1. The
usual Sobolev estimates will not suffice to prove Theorem C.1 without any control of
Vs. However, if we assume C%® bounds on Vs of the above form, then the usual
method does give the desired estimates. It is well known to analysts that for an equation
of this form C®f bounds on Vs can be obtained from a bound on the Morrey norm
| Vsl j220-2:213 see Definition E.1. We give full details of this fact, which is completely
general and has nothing to do with Hermitian Yang-Mills metrics, in Appendix D. All
of this being said, it thus suffices to prove the following proposition.

Proposition C.2. Denote by Hy a flat Hermitian metric on the trivial holomorphic bun-
dle of rank r over B, C C". If H = Hye® with s € C*(B,,isu(r)), then

[S] o (El) = ||VS||L2.11172+21(BI)
<e (Il + 1Kl )

where o € (0,1) depends on ||s||;x s, in a monotonely decreasing way, and ¢ is a smooth
function which vanishes at the origin.

Proof. For x € B define f, : (0,1] — [0,00) by
fr(r) :—/ G| Vs|?
B,(x)

with G,(-) :== |- —x|*~*". We will show that
fi(r) < er’®

with ¢ and « as in the proposition. This implies the asserted Morrey bound.
In the following we fix x € B; and r € (0,1/2] and omit writing the subscript x to
simplify notation.
Step 1. We have f(r) <e.
Fix a smooth function y: [0,00) — [0, 1] which is equal to one on [0, 1] and van-
ishes outside [0,2]. Set y,(-) := (] - —x|/r). Using
Vs =& (1-Alsf),

which follows from Proposition A.9 and the observation before Eq. (5.5), we compute
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i< / 7,G - [VsP

Bzy (X)

58/ XTG' (_A|5|2)+XrG
By, (x)

Ssrz"/ |s|2 + er?
By (x)\B,(x)
<e.

Step 2. We have f(r) < yf(2r) + er* for some constant y € (0, 1) depending on |1l 5,)-
Set
5 ::% scisu(r) and o:= loglete ®).
By (0)\B.(¥)

Observe that
Vs> <M|Vo|* and | =M|s — 5
with M >0 some constant depending on |[s|[;x(, and [|Kpl;«(,) in a monotonely
increasing way. Arguing as in the previous step we have

Vo> <M(1—Alal).
Using the above and Poincaré’s inequality we have
/‘ GIVs'<M|  7,G-(=Alo]’) +e1,G
B,(X) BZr(-x)

sM.r % lo]* + &r?
Bar(x)\B, (x)
=M?*.r— " s — 5 + &
By, (x)\B,(x)
sM?.P2 2 |Vs|* + &r?
BZr(x)\Br(z)
2 2
=M fBZI(x)\Br(x)G|Vs| + er’.

This gives the asserted inequality with y = M?/(1 + M?).
Step 3. We have f(r) < er*.
We can assume that y > 1/2. Set g(r) := f(r) + 4f’j

g(r) < ykg(zkr).

1 By the second step

Setting k := log,[1/2r], we have y* <r** for some o € (0,1) depending only on 7;

hence, by the first step
f(r) < er’”.

Appendix D: Hildebrandt’s C'# estimate

The following result is well-known to analysts. It can be traced back to Hildebrandt’s
work on harmonic maps [40, Section 6].
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Proposition D.1. Suppose o € (0,1). Let U be an open subset of R" with smooth
boundary, and let f: U — R be a solution of a partial differential equation of the
form

Af = A + B(Vf) + C(Vf & Vf) (D.2)

where A € C°(U,R¥), B € C°(U,End(R¥)), and C € C°(U, Hom(R* ® R¥, R¥)). For each
V CcC U, we have

IV llconcry S e(lIVS

where ¢ is a smooth increasing function vanishing at the origin (depending on
A,B,C,U and V), and f§ € (0,1) depends only on a.

We will make heavy use of Morrey and Campanato spaces. For the reader’s conveni-
ence all necessary definitions and results are summarized in Appendix E.

Proof. Set R :=d(V,0U). Define ¢ : [0,R] — [0,00) by

¢U%=mm{[”JVf—§7mfrx€V}

Ln—2+2x2 (U) )

By definition
[Vflpiy) < sup{rf’zqﬁ(r) tr> 0} < [Vflpiw)-
We will show that
(r) <er

with ¢ as in the proposition. The assertion then follows from Morrey’s Embedding
Theorem in the form of Theorem E.5.
Trivially, we have

¢(r) < 8rn—2+2a‘

The following proposition strengthens this estimate using Eq. (D.2).

Proposition D.3. For 0 <s<r< R and o< 1, we have

n+2
d(s) < c( > ¢(r) +er" 2

Nl @

We will postpone the proof of Proposition D.3 while we explain how the proof of
Proposition D.1 is completed. To improve the exponent we use the following lemma,
whose proof is very simple and deferred to the end of this section.

Lemma D.4. If ¢ : [0,R] — [0,00) is a non-decreasing function and c,e>0,0> >0
are constants such that for all 0 <s<r<R

06 <c() 601+ o,

then we have
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$(R)
D)= cop (—Rﬁ +e|rP.
We derive that
||Vf||£2,n—2+2ﬂ(v) < &
with o = %oc If o’ < 1, then by Proposition E.3 we have
||vf“LZ.n—2+21/(V) <¢

and we can restart the argument with o' instead of o and V instead of U. Iterating this
a finite number of times we will eventually end up in the case ' > 1. In this case

o(r) ertF
with ff = % This completes the proof of Proposition D.I. O

Proof of Proposition D.3. Fix a ball B,(x) C U with centre x € V. We may assume that
f(x) =0, because in all that follows we can work with f — f(x) instead.
Step 1. We can write f = g+ h with g,h: B,(x) — R* satisfying

Ag =A+B(Vf) +C(Vf® Vf) and gy ) =0 (D.5)
and

Ah=0 and Hhlog o = flog, -

Step 2. We have

ol

and  [|Al[ g, ) < er”.

ol

18l (8, (x)) < &7

By Theorem E.4 and Theorem E.5 we have [f] .y <& From f(x) = 0 it follows that
|1l (8, (x)) < &r*. The maximum principle implies the asserted bound on h; the bound

on g then follows.
Step 3. We have

/ |Vg|2 <8rn72+3a‘
Br(x)

Since g vanishes on 0B, (x) and using Eq. (D.5),

/ Vgl = / (Ag.g)
B,(x) B,(x)

= fB,(x) |g|(1 + |Vf|2)
Lo 243,

Step 4. For s < r, we have

L s (n+2) .
/ |Vh — Vh | = <> |Vh — Vh,,[.
Bi(x) ' r B, '

This is Theorem E.6 for Vh.
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Step 5. We complete the proof of the proposition.
Using the preceding steps, we compute

/ |Vf - v_fx‘5|2 </ |Vh - WX-S + Vg - v—gx,s|2
By(x) ' By (x)

s/ |Vh—w1x,5|2+/ Vel
By(x) By(x)

SIORS LT i L
J B,(x) J B,(x)

< (i)nJrZ/ |Vf _ V_fx,r|2 +8rn72+31.
B, (x)

r

Taking the supremum over x € V yields the asserted statement. O

Proof of Lemma D.4. This is similar to but somewhat simpler than [39, Lemma 3.4]. If
we choose 7 <1 such that y := ct* P <1, then

¢(FR) < yop(zF—1R)F + % (¢*R)”

R
< (Vk dﬁﬂ) g _Sy)rﬁ> (+*R)".

From this the assertion follows immediately. O

Appendix E: Morrey and Campanato spaces

An excellent exposition of Morrey and Campanato spaces can be found in Struwe’s lec-
ture notes [41, Kapitel 8 and 10]. We only state the definitions and the results we make
use of.

Assume that U C R” is open with smooth boundary. Let 1 <p <oo and 4 > 0.

Definition E.1. The Morrey space (L/*(U), || - lp2(r)) is the normed vector space
defined by

DHV) = {f € V() : oy < )

with
) 1/p
Fllsy = _sup G*/ W>.
x€U,r>0 B,(x)NU
Definition E.2. The Campanato space (£P*(U),|| - || v (uy) is the normed vector space
defined by

PP U) = {f eI’(U): [ﬂyp,;_(m < oo}

and
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Hf”;ﬂ’-’-(U) = HfHLP(U) + [ﬂfﬂ”’(U)‘

Here the Campanato semi-norm is defined by

) B 1/p
[ﬂyPJ»(U) = sup <"/“/ If — fx.r|p>
x€U,r>0 B, (x)NU

with

Both Morrey and Campanato spaces are Banach spaces. The following shed some
more light on the relation between Morrey, Campanato, and Holder spaces, and the
Campanato regularity properties of harmonic functions.

Proposition E.3. ([41, Lemma 10.3.1]). If A< n, then for all f € PPH(U) we have

1l vy = W1l v -

Theorem E.4. (Poincaré inequality). For all f € L»*(U), we have
[f]g/?-/‘-*?(u) = ||vf||1,v-2(U)-

Theorem E.5. (Morrey embedding [41, Satz 8.6.5]). For all f € #P""P*(U), we have

[fleosm) = flgpoos

Theorem E.6. ([41, Lemma 10.2.1] and [39, Lemma 3.10]). If f € W"(B,(x)) satisfies
Af =0 and 0<s<r, then

. s (n+2) -,
[ r-7.k= () [ -7,
J By(x) r J B, (x)

Notes

1. This question was also raised in Yau’s 2015 Shanks Lecture [4, p. 66].
The definition is insensitive to the precise choice, since D is compact.

3. Such a Hermitian metric exists and is unique up to multiplication by a positive constant;
see, e.g., [xxxx, Corollary 2.1.6].

4. The prefactor Ad(e*/?) is needed because K, need not be HO-self-adjoint.
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