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Abstract: We describe the category of integrable s[(1|n)()-modules with the positive
level and show that the irreducible modules provide the full set of irreducible represen-
tations for the corresponding simple vertex algebra.

1. Introduction

Let g be the Kac-Moody superalgebra s((1|n)(1), n > 2. Recall that g5 = g[ﬁ,l). We call
a g-module integrable if it is integrable over the affine Lie algebra 5[511), locally finite

over the Cartan subalgebra ) C g[fll) and with finite-dimensional generalized h-weight
spaces.

We normalize the invariant bilinear form on g in the usual way ((«, «) = 2 for
the non-isotropic roots «). We say that a module N has level k if the canonical central
element K ins[(1|n)") actson N by kId. Let Fi be the category of the finitely generated
integrable g-modules of level k. This category is empty for k ¢ Z>¢. For k € Z..¢, the
irreducible objects in Fj are highest weight modules, which were classified in [15]
(see [7], Theorem C). In this paper we study the category Fj for k € Z-o: we describe
the blocks (see Corollary 3.4.1 and Theorem 3.5.4) in terms of quivers with relations
and show that Duflo—Serganova functor provides an invariant for the atypical blocks
(see Corollary 4.5) and this invariant separates the blocks.

In Sect. 5 we study modules over the simple affine vertex superalgebra Vj (g). Recall
that the modules over affine vertex algebra V*(g) are the restricted g-modules of level
k.

Let u be an affine Lie algebra, V¥ (1) be the universal affine vertex algebra associated
with u at level k; let Vi (u) be the unique simple quotient of VK (u). Let k be such that
Vi (u) is integrable (as a u-module); for an appropriate normalization of the bilinear
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form, this means that £ is a non-negative integer. In this case, the Vi (u)-modules are
the restricted integrable [u, u]-modules of level k. For k£ > 0 the irreducible restricted
integrable [u, u]-modules of level k are highest weight modules. In particular, the vertex
algebra Vi (u) is rational and regular:

(a) there are finitely many (up to isomorphism) irreducible Vi (u)-modules;
(b) any representation is completely reducible.

For bounded Vj (u)-modules these results were proven in [6]. In [4] it is shown that
any Vi (u)-module is a direct sum of bounded modules, which implies the general result.

Let g be an (untwisted) affine Lie superalgebra and g7 # 0. Let g be the “largest
affine subalgebra” of g5 (see Sect. 5.2). Let k be such that Vi(g) is integrable as a
g*-module (for an appropriate normalization of the bilinear form, this means that k
is a non-negative integer). In Theorem 5.3.1 we prove that the Vi (g)-modules are the
restricted [g, g]-modules of level k which are g*-integrable. In addition, we show that the
irreducible bounded Vj (g)-modules are highest weight modules if and only if the Dynkin
diagram of gg is connected (g is sl(1jn)™ or osp(n|m)(1) forn =1, 2), see Sect. 5.6.

For g = sl(1|n)" one has g* = 5[1(11). For a positive integer k the category of finitely
generated Vi (g)-modules with finite-dimensional generalized weight spaces is the full
subcategory of F; with the objects annihilated by the Casimir operator.

In Appendix we recall the definition of D S-functor and prove several properties used
in Sect. 4.

Partial results of this paper were reported at the conferences in Uppsala in June 2016,
Kyoto in October 2016 and Vienna in January 2017.

2. Preliminaries

Let g = s[(1|n)(". Recall that by definition an integrable g-module is integrable over the
affine Lie subalgebra 5[;1) C g and locally finite over the Cartan subalgebra . Recall
also that h N [s [,(11), 5[,(11)] acts diagonally on any integrable 5[;1)-module.

Note that Fy is the full subcategory in the category O. In particular, it is equipped with
a covariant duality functor D inherited from the contragredient duality in category O.
For any simple object L we have D(L) ~ L. In particular, Ext' (L, L) = Ext' (L', L)
for any two simple objects L and L’.

2.1. Roots and sets of simple roots. View g as the affinization of g = sl(1|n). Choose a

basis €1, ..., &, of h* such that the invariant form is given by
I B
(€ e) = 0 ifi=j °

Even roots of g are of form
{Si —é&j, |,i ;é], i,j = 1,...,n},
and all odd roots are isotropic

{Fe;|,i=1,...,n}
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By § we denote the smallest positive imaginary root of g. Then all real roots of g are of
the form « + j§, where j € Z and « is a root of §.

For a set of simple roots ¥ we consider the standard partial order on h* given by
A >y pifandonly if A — u € ZsoX. We denote by p the Weyl vector of X (i.e., p € h*
such that 2(p, a) = (o, @) for @ € X).

We fix a triangular decomposition of gg and consider only triangular decompositions
of g which are compatible with it (i.e., Ag is fixed). We denote such sets of simple roots

by X, X/, etc. In fact, the category O depends only on a triangular decomposition of the
even part.

2.1.1.  We fix a set of simple roots Iy of A% and let B denote the set of all sets of simple
roots X such that ITp C Z>oX. To be precise let

Mo =1{e1 —&2,...,8n—1 — &n, &n — &1 +8}.
For example,
Y ={—61+8,61—862,...,En_1 —En, En} € B. (D)
For any odd root f there exists a unique « € Ilg such that (¢, ) = —1 and a unique

o’ € Ty such that (B, o) = 1; the set

T ={B,d — B} U I\ {a'})

is a unique set of simple roots containing .

Note that all ¥ € B have the same Dynkin diagram. Every X contains exactly two
odd roots 81 and B2, (B1, B2) = 1 and all roots of [Ty are even roots of X and 81 + f>.
The Dynkin diagram is a cycle with n + 1 nodes: there are two nodes which correspond
to the odd isotropic roots and these nodes are adjacent. The minimal imaginary positive
root § is the sum of all simple roots.

2.1.2. Odd reflections. Recall that for an odd root 8 belonging to a set of simple roots
X, the odd reflection rg gives another set of simple roots rg X which contains — g, the
roots « € X\{B}, which are orthogonal to g, and the roots « + 8 for « € ¥ which are
not orthogonal to 8. One has

AT(rgZ) = (AT(D\{B) U {-B}. 2

Any two sets of simple roots in B are connected by a chain of odd reflections. We call
a chain “proper” if it does not have loops (i.e. subsequences of the form rgr_g). Two
sets of simple roots are connected by a unique “proper” chain of odd reflections. We
call ¥ and ¥’ adjacent if they are obtained from each other by one odd reflection. The
adjacency graph with vertices in B is an infinite string (every vertex has two adjacent
vertices). For any two X, ¥’ € B there is a unique proper chain of odd reflections
connecting them. We denote by d(Z, ') the number of odd reflections in this chain.

Let X be a set of simple roots. One readily sees that the chain rg rg,_, ...7g X is
proper if and only if By, ..., Bs € AT(Z).Let B8 ¢ T be an odd root and X’ be the set
of simple roots containing B8 (by above, £’ is unique). If 8 € A*(X), then the proper
chain which connects ¥ and ¥’ does not contain the reflections rypg;if B e —AT(Y),
then the proper chain is of the form ¥’ = rg rg _, ...rg X, where B; = B.
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2.2. Simple modules. For any ¥ € B we denote by Ly () the irreducible module
of highest weight A with respect to the Borel subalgebra corresponding to . Given an
irreducible highest weight module L and ¥ € Bweset pwts L := Aif L = Ly (A —px)
(where py is the Weyl vector for X). For an odd root @ € X one has

pwts L if (&, «a) #0,

3
pwtsL +a if (A, a)=0. )

pwrraEL =

From (3), it follows that Lx (A) is integrable if and only if (A, &) € Zx¢ for every
even « € %, and for two odd roots 81, B2 € X one has either (A, 81 + 82) € Z~q or
(X, B1) = (A, B2) = 0. Since ¢ is the sum of simple roots, a highest weight module
Lx(A) has level k = (A, )", cx ). In particular, if Ly (1) is not one-dimensional, its
level is a positive integer.

2.2.1. Example. Let X be asin (1) and let b; = (A + px, &) fori = 1,...,n. Then
Ly (%) is integrable if and only if

(1) b1 = ba, ..., byp—1 — by € Zo;
2) by—b1+n+k—1€Z-gorb,=0,by =n+k—1.

2.3. Lemma. If Lx()\) is integrable, then there exists at most one positive real even
root « such that (A + px, o) = 0. Moreover, in this case a € Iy and « is a sum of the
two odd roots By, B2 € T and (L +p, B1) = (A +p, B2) = 0.

Proof. If B1, B2 denote two odd roots of X, then integrability condition implies that
(A + pyx, @) is a positive integer for all even @ € X and (A + p, B1 + B2) is a non-negative
integer. Since every positive even real root is a non-negative linear combination of even
o € ¥ and B + B, the statement follows. O

2.3.1. We fix a set of simple roots ¥ = {a;}_,, where a, o are odd. Note that
(a1, op) = 1. We set

P*(Z):={r € b*| (A, y) € Zso forall y € TIp and
A ar+a) =0 = (A, a1) = (A, ) =0},

By above, the irreducible objects of F are the highest weight modules Ly (1), where
A € P*(X); in other words, setting a; := (pwtg L, o;), we have

(i) aj € Zwgfori =0o0ri =3,...,n;
(i1) ay+ar € Z-pora; = ar = 0;
(iii) ag+ay+---+a, =k+n — 1.

Notice that the numbers {a; l'.’_o determine L as a [g, g]-module; for the g-modules

L(A), L(A+s6) the numbers {q; }l’?_:O are the same, however the Casimir element acts on

L(}) and on L(A + s8) by different scalars.
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2.3.2. Lemma. Let Ly (L) be an integrable highest weight module and (A, @) is real
for each a € X. Then there exists a set of simple roots &' such that (A + pg, a) > 0 for
everya € X',

Proof. Recall that (A + px, §) = k+n — 1. Note that (Z\{a1, aa}) U{ag +56, ap — 58} is
a set of simple roots for any s € Z. Therefore, without loss of generality we may assume
that

0<(A+pyg,a)) <k+n-—1. @

If0 < (A+px, ay), wetake X’ = X. Assume that (A+px, @) < 0.Forr =2, ..., n+1
set B, 1= Zf:z o; (where o471 1= ). Then § = B,41 + a1, so (4) gives

()\'+p21 132) < 01 ()\‘+1027 /31’1+1) > 0

Let s be maximal such that (A + px, B5) < 0. For ¥/ := rg, ..., % the isotropic roots
are —fy and Bg41. Since (A + px, —Bs), (A + px, Bs+1) = 0, T’ is as required. O

2.3.3. Definitions. From now on L stands for an irreducible integrable highest weight
module on non-zero level.

Recall that L is called typical if (pwts L, o) # 0 for any (isotropic) odd root & and
atypical otherwise. From (3), it follows that this notion does not depend on the choice
of ¥ and, moreover, pwty L does not depend on X for typical L.

We say that L is X-tame if (pwts L, f) = 0 for some odd B € X. Any atypical L
(for sl(1, n)D) is tame with respect to some X.

Let B be an odd root. We call an odd reflection rg L-typical if for ¥ containing j
one has (pwtg L, B) # 0 (by 2.1.1, ¥ is unique for given B). Note that if ¥ and X’ are
connected by a chain of odd L-typical reflections, then pwty (L) = pwty/(L).

We say that A € h* is integral if (A, ) is integral for each a € ITp. We say that
A € b* is regular if (A, a) # 0 for any even real root and that A is singular otherwise.
Note that if A integral, then there exists a unique A € WA such that (A, «) € N for all
a € Ty. Obviously A is regular if and only if A is regular.

We say that L is X-regular if pwts L is regular and that L is regular if it is X-regular
for each X. We say that L is X-singular if it is not X -regular and that L is singular if it
is not regular. By 2.3.1, L is X-singular if and only if (ow?L, o) = 0 for both odd roots
o € X (in particular, in this case L is X-tame).

2.3.4. Lemma. Let L be a simple integrable module and HW (L) denote the set of
all pwts L forall ¥ € B.

(1) If L is typical then | HW(L)| = 1;
(i) If L is regular atypical then |HW (L)| = 2;
(iii) Let L be singular atypical and ¥ = {«ay, ..., a,} with odd ag, a1 be such that
pwty L is singular. Let m, | be such that

(pwts L, o) > 2 and (pwitsL, o;) = 1, foreachi suchthatm <i <n,
(pwtsL,ap) > 2 and (pwitsL, ;) = 1 foreachi suchthat2 <i <.

Then

HW(L) ={pwtsL, pwts L + oy, pwtsL +201 +ay, ...,
pwitsL+( — Do+ —2)ar+---+a;_1}U{pwtsL +ap, ...,
pwitsL+n—m+ Dag+ (n —m)a, + -+ i1}
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or equivalently
HW(L) ={pwtsL +sag|s=1—1,...,n —m+1}.

Remark. The existence of [, m follows from the assumption that k # 0; one has
2<l<m<n.

Proof. The first assertion follows from (3) as any odd reflection is L typical. Now
assume that L is atypical and regular. Then there exists exactly one positive odd root
such that (pwtg L, o) = 0. Let ¥’ € B be such thata € X'. Let X" = r,X’. Since
both pwty/ L and pwtyr L are regular, all other odd reflections are L-typical. Hence
HW(L) = {pwty/ L, pwtgrL}.

Finally, let assume that L is atypical and singular. Then by Lemma 2.3 there exists
%o such that (pwtx L, o) = (pwts L, ap) = 0 for both simple odd roots oy, p € Xo.
Moreover, m and [ exist as follows from integrability condition. If we set

Bi=ao+ay,...,Bp—m =ao+oyu +- -+ 0y,

then the reflection rg, are all L-atypical and we obtain that H W (L) contains PWlr, 5 L
and pWlry ~-’ﬁ1’aozL foralli =1,...,n — m. Similarly, if we set

Yi=aptoz, ..., Y1—2=aytay+---+0o—q,

then H W (L) contains pWr,, s L and PWLr, 1y o sLforalli =1,...,/—2. All other
odd reflections are L typical and do not add new weights to H W (L).
The last formula follows form the identity

Fa, o Taytagrag(PWis L — jag) = Ta; T (pwts L+ jay)
= pwtgL + ja; +(j — Daz +--- +a;.

2.3.5. One readily sees that pwtyx L + jag isnotregularfor 1 —/ < j <n—m+ 1.
Corollary. If L is atypical, then HW (L) contains exactly two regular weights.

2.4. Character formulae. If L(A) is typical, then ch L()) is given by the Kac—Weyl
character formula; if L(A) is atypical and X-tame, ch L(A) is given by Kac—Wakimoto
formula, see [15,17].

2.5. Adjacency relation on atypical simple modules. Note that if L is atypical, then all
weights of L are integral. We say that L' is adjacent to L if there exist & € B and an odd
a € Y suchthat (pwts L, o) = 0and pwts L' = pwrs L —a. Note that if L’ is adjacent
to L, then L is adjacent to L', as for ¥’ = r, X we have pwts/ L = pwts/L' — (—a) and
—a € X', Therefore the adjacency relation defines the adjacency graph I with vertices
enumerated by isomorphism classes of atypical integrable simple g-modules of a fixed
level k and a fixed eigenvalue of the Casimir operator (i.e., the value (pwts L, pwts L)
is fixed (this value does not depend on X)).

We denote this graph by I'. It is important to characterize the connected components
of .
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2.5.1. Lemma. LetX € B and a be an odd root of ¥ such that (pwtsL,a) = 0.
Then pwts L — « is integrable if and only if pwts L is regular.

Proof. If B € X is an even root, then (—«, 8) > 0 and hence (A — o, B) € Z~g. If
B € X is the second odd root, then (« + 8, ) = 1 and therefore (A — a, B + @) € Z>g
if and only if (A, ) > 1. Hence X is regular. O

2.5.2. Corollary. An atypical simple integrable module L has exactly two adjacent L'
and L". To construct them recall that by Lemma 2.3.4 there exist exactly two ¥ and X,
in B such that L is ¥;-tame and pwts, L is regular. Then pwts, L' = pwts, — o and
pwts, L = pwts, — oo where a; is the unique odd root in 3 such that (pwts, L, ;) =
0.

2.5.3. Remark. Letus fix ¥ € B. It follows from Corollary 2.5.2 that
owts L' <sx pwisL <5 pwtsL”
if pwts L is regular. If pwty L is singular, we have

owts L <5 pwts L' and pwtsL <35 pwtsL”.

2.5.4. Theorem. Fix ¥ € B. Then every connected component ' of T' contains
exactly one Lq such that A := pwty Ly is singular. Let B be any of two odd roots of X
and

S:={s € Z| L+ spB is regular}.

Then L' € T ifand only if Ly ~ L' or pwits L' = A+ sB for some s € S. Enumerate
elements of SU{0} in increasing order assuming so = Qand set L; := Ly (A + s5; B—px).
Then every L; is adjacent to L;_1 and Lj..

Proof. Uniqueness of L follows from Remark 2.5.3 and Corollary 2.5.2. Let us prove
the existence. Start with some L such that pwty L is regular. There exists X’ such that L
is X’-tame. Let us pick up L with minimal d (X, £’). We claim that for such L, ¥ = ¥’.
Indeed, assume ¥ # ¥’. By Lemma 2.3.4, u = pwty L = pwtys L isregular. There is a
unique odd @ € ¥’ for which (i, @) = 0. Consider the smallest p > 0 such that u — pa
is not dominant. Then u — (p — Da is singular. Let L' = Ly/(u — (p — Da — px/). If
o is the second odd root of X/, then d(X, ryyX) = d(X, £’) — 1 and this contradicts
minimality of d(Z, ¥’). To finish the proof of existence of L take odd 8 € T such that
(i, B) = 0 and consider the smallest ¢ > 0 such that u — g is singular. Then Ly is the
simple module with pwts Lo = u — gp.

The last assertion of the theorem follows fom the description of HW (L) given in
Lemma2.34. O

For a fixed level k and a fixed eigenvalue of the Casimir element, a singular inte-
grable weight X is determined by non-negative integers (A, @2), ..., (A, &) such that

Z?:Z()" o;) = k.

2.5.5. Corollary. For each level k and each eigenvalue of the Casimir element, the
graph T has finitely many connected components. They are enumerated by singular
integrable weights of level k.
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3. The Category of Integrable s/ (1 |n)(1)-M0dules at Non-zero Level

In this section we will describe Fj, for k > 0.

3.1. Maximal integrable quotient of a Verma module. Let ¥ € B. We denote by Mx (1)
the Verma module with highest weight A for the Borel subalgebra corresponding to X.
The Verma module My, () has a unique simple quotient Ly (). If Ly (A) is integrable,
then we denote by Vx (1) the maximal integrable quotient of My (1). Clearly we have a
surjection Vx(A) = Ly (X).

In [17] the following lemma is proved.

3.1.1. Lemma. Let L = Lx (A — px) be an integrable module.

(1) If L is typical, then Vx, (A — py) = L.
(1) If L is atypical and X is singular, then Vx (A — px) = L.
@iii) If A is regular, then the character of Vs (A — px) is given by typical formula

chVs(t —px) = ) sgn(w) ch Mz (w() — px).
weW

Moreover if (A, o) = 0 for some odd o € X, then Vs (A — px) has length two and
can be described by the following exact sequence

0> Lyt —a—pz)—> Vs(A—p3x) > Lx(A —px) = 0.

(iv) Forany X and ¥’ in B, such that . = pwts L = pwts' L, we have Vs (A — px) =
Ver(h — px).

3.1.2. Lemma. Let L and L' be two non-isomorphic simple integrable modules. Then
Ext!(L, L) # 0 ifand only of L and L' are two adjacent atypical modules. In this case
Ext!(L, L) =C.

Proof. Consider an extension given by a non-split exact sequence
0—-L —->M-—L—0.

Choose some ¥ € BandletA = pwty L, u = pwty L' If A and u are incomparable with
respect to <y, then the above sequence splits since a vector of weight A — py, generates a
submodule isomorphic to L in M. Note that duality implies Ext! (L,L") = Ext! (L', L).
Therefore without loss of generality we may assume that @ <y X. But then M is a
quotient of Vx (A — px). By Lemma 3.1.1 we know that the length of Vx (A — pyx) is
at most 2. Hence, M >~ Vx (A — pyx), L is atypical and A is regular. Then there exists
%’ € Bsuch that L is ¥’-tame and pwtsy L = pwty/L. By Lemma 3.1.1 (iv) we obtain
owts' L' = pwts/L — o for odd @ € ¥’ such that (A, o) = 0. Hence, by definition L
and L' are adjacent. That proves the statement. O

3.2. Self-extensions of simple modules.

3.2.1. Recall that g is the affinization of § = sl(1|n). Fix X € B and « € X. Note
that 3\ {«} is the set of simple roots of some subalgebra isomorphic to g =~ sl(1|n). Let
h € b* be such that
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0if e, B4
lif =

Let N be such that 4 acts locally finitely and the eigenvalues are bounded: there exists
a “maximal” eigenvalue, i.e. an eigenvalue a such that a + j is not an eigenvalue for any
positive integer j. In this case we denote by N'°P the generalized h-eigenspace with the
maximal eigenvalue.

Observe that if L = Lx () is simple, then L'P is a simple sl(1|n)-module with
highest weight A|; where b is the Cartan subalgebra of §. If L is integrable, then L7 is
ﬁnite-dimensiona?.

The centre of s[(1 |n)(61) is two-dimensional: it is spanned by K and z, where z is a
central element in sl(1|n)5 = gl,.

p(h) =

3.2.2. Lemma. Let L be a simple module and
O—-L—->M-—-L—-0
be a non-split exact sequence, then the sequence
0— L' > M'"? - L'7 - 0
also does not split.

Proof. If M'P ~ L'P @ L'P, the two copies of M7 generate two proper distinct
submodules of M. Since M has length 2, it is a direct sum of two simple modules. O

3.3. Recall now the following result from [8].
Lemma. If N is a simple §-module, then Ext'(N, N) = 0 if N is atypical and
Ext!(N, N) = Cif N is typical.

3.3.1. Corollary. For a simple atypical g-module L, Ext'(L, L) = 0.

Proof. 1t is easy to find ¥ and « € X such that L' is atypical. Then the statement
follows from Lemmas 3.2.2 and 3.3. O

3.3.2. In [17] the following statements are proved (Lemma 4.13).

Lemma. Let L be a simple module and ¥ € B be such that pwts L is regular. Let @
be a weight such that (w, o) = 1 for some odd o € ¥ and (w, B) = —1 for another odd
B e Xand(w,y)=0foralleveny € X. Then Vx (A — px + tw) is a flat deformation

of Ve (A — px).

3.3.3. Corollary. Underassumptions of Lemma 3.3.2 the module Vs (A—px+tw)/(t?)
is an indecomposable module which has a filtration with associated quotients isomorphic
to Vg (A — px).

3.4. Typical blocks in Fy. Let L be a typical finite- dimensional s[(1|n)-module of high-
est weight A and let F (L) be the block containing L inthe category of finitely generated
sl(1|n)-modules. It is easy to deduce from [8] that the functor N +— N, (here N is
the subspace with generalized weight A) provides an equivalence between F (L) and the
category of finite-dimensional C[z]-modules with nilpotent action of z — A(z).



644 M. Gorelik, V. Serganova

3.4.1. Retain notation of Sect. 3.2.1.

Corollary. For any typical simple module L in Fy there exists a block Fi (L) of Fi
which has one up to isomorphism simple module L. The functor N — N'°P provides an
equivalence between Fi. (L) and the typical block of the category of finitely generated
sl(1|n)-modules. The functor N — N, provides an equivalence between Fi (L) and the
category of finite-dimensional C[z]-modules with nilpotent action of z — *(2).

3.5. Atypical blocks of F.

3.5.1. The following theorem is a direct consequence of Lemma 3.1.2, Corollary 3.3.1,
and Theorem 2.5.4.

Theorem. The Ext quiver of an atypical block in Fy coincides with a connected
component of the graph I and is of the form

3.5.2. Lemma. There is no indecomposable module M in Fy such that M /rad M =
Ly, radM/rad*M = L», rad*M = L for pairwise non-isomorphic simple modules
Ly, Ly, Ls.

Proof. Assume that such module exists. Then the vertices corresponding to {L1, L, L3}
generate a connected subgraph of I'. It follows from Theorem 2.5.4 and Lemma 2.3.4
that there exist ¥ and o € X such that L;Op has the same h-eigenvalue fori = 1,2, 3
(see Sect. 3.2.1 for the notation h). It was shown in [8] that there is no similar inde-
composable g-module M7 with M'P /radM'? = L', radM'°? /rad> M'*P = L,,
rad*M'? = L. The statement follows. O

3.5.3. Let .7-",(1 be the full subcategory of Fj consisting of the modules with diagonal
action of h.

Theorem. The typical blocks in fkl are completely reducible with a unique ir-
reducible module. Any atypical block in ]-'kl is equivalent to the category of finite-
dimensional representations of the quiver of Theorem 3.5.1 with relations xy + yx = 0
and x* = y> = 0.

Proof. The statement about a typical block is a consequence of Corollary 3.4.1.

Now we prove the statement for an atypical block. We use the same argument as in the
proof of Lemma 3.5.2. This lemma implies the relation x> = y*> = 0. Consider a module
M with a simple cosocle L;. Then radM/rad*M = L®, & LY with a, b € {0, 1}.
Then the next layer of the radical filtration rad*>M/rad®M is isomorphic to LfB” for
¢ € {0, 1, 2}. By induction we obtain that all even layers of the radical filtration are
direct sums of several copies of L; and odd layers are direct sums of several copies of
L;_1and L;41.

Consider the full subcategory C of F, kl which contains only modules with semisim-
ple subquotients isomorphic to L;, L;—1 or L;4; and let C’ be the full subcategory of
g-modules which contains only modules with semisimple subquotients isomorphic to
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LI, LI or Li%". We claim that the functor 77 defines an equivalence between C and
C'. Indeed, 7"°P is exact and provides a bijection on isomorphism classes of simple mod-
ules. To construct the left adjoint functor ® consider the parabolic subalgebrap := b+g
and set ®(?) to be the maximal quotient of U (g)®y (p)? which lie in C. We leave it to
the reader to check that @ is also exact. Now theorem follows from the analogous results

in[8]forg. O

3.5.4. Theorem. Any atypical block in Fy is equivalent to the category of finite-
dimensional representations of the quiver of Theorem 3.5.1 with relations x* = y* = 0
and nilpotent action of xy + yx.

Proof. The relations x> = y?> = 0 follow again from Lemma 3.5.2.
Let f,i denote the full subcategory of F; whose objects has a filtration of length

< [ with adjoint quotients from .7-';. Then F; = lim f,i. Thus, the statement follows
from Theorem 3.5.3. 0O

4. Invariants of Simple Objects in the Same Block

Let g = sl(1jn)" with n > 2. The reader can find the definition and properties of the
functor DSy in Sect. 6. Take a non-zero x € gg, where f is an odd isotropic root; then
[x,x]=0.

In this section we will show that DS, is an invariant for atypical blocks, i.e. for
irreducible modules L, L’ € F; one has
(1) DS,(L) = 0if and only if L is typical;
(ii) if L is atypical, then DS, (L) = DS, (L’) if and only if L and L’ lie in the same

block.

For n = 2 g, is a commutative two-dimensional Lie algebra (spanned by d and K)
and (i), (ii) also hold. Note that in this case the graph I' is connected.

4.1. Fix a set of simple roots X; let a1, oy € X be odd roots. Since for any odd root
the orbit W8 contains either oy or —op, in the light of Proposition 6.4 we may assume

()
[n

that x € go, Or X € g_4,. Then g, = sl | with the set of simple roots

Yy = {ag, a1 + a2 + 3,04, ...,0,}.

4.2. Lemma. Let N be an integrable quotient of Mx().) and let L' be a simple
subquotient of DSy (N). Then there exists a weight | of N such that the restriction of
wto by = gy NG is the highest weight of L' and (ju, ap) = 0, (u + px, 4 + pxg) =
(A +p3z, A+ p3).

Proof. This lemma is a consequence of Proposition 6.3. Indeed, let v be the highest
weight of L". Then v is the restriction of some weight u to by. The condition L,,NK erx #
L, N Imx implies (i, ap) = 0. Itis easy to see that the restriction of py to f, equal to
ps, - If we denote by (—, —)g, the invariant scalar product on b, then (v, v)g. = (i, @)

as hi = 012L /Cay. Thus, by Proposition 6.3 we obtain

A+pz, A+pp)=@+px,v+pon)=(U+ps, 4+po5).
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4.3. Proposition. Let L be an irreducible typical integrable highest weight module.
Then DS, (L) = 0 for any non-zero x € gg, where B is an odd isotropic root.

Proof. Set A := pwtsL; since L is typical, A does not depend on X. First, nore that if
A is non-integral, then (u, 8) ¢ Z for each weght u of L and each odd root 8. Hence,
DS, (L) = 0by Lemma 4.2. Thus, we may assume that A is integral. By Lemma 2.3.2,
we can (and will) assume that (A, ) > O for each @ € X.

Let ¥ = {o;}?_, and a1, a2 are odd. By Proposition 6.4 it sufficies to show that
DSy (L) = 0for x € g+q,. Assume that DS, (L) # 0. Then by Lemma 4.2 there exists
a weight ¢ in L such that (u, @2) = 0 and (1 + px, i + px) = (A, A), or equivalently
(A — @ — ps, L+ p+ px) = 0. On the other hand, since A — py is the highest weight
of L we have

n
A— 1 —p3 =Zkiai
i=0

for some non-negative integers ko, . . . , k,. Seta; := (u+px, ;). Combining Lemma4.2
and Proposition 6.4, we conclude that u|y, is an integrable weight, that is

ap=0, a;j+a3 >0, a; >0for i#1,2,3. 5
Set A := u+px —ajaz, v:=i— A" Onehas
MN,a) =N, a2) =0, W,a;)>0 for i=0,...,n.

By above, (u + px, it + px) = (A, 1) and (i, a2) = 0,50 (L + px, p+px) = A, 1)),
Thus, (A, 1) = (1, 1) or, equivalently, (v, A + A") = 0. Since a; = (A, ay) + ko — ko,
one has k» + a1 > 0 and therefore v € Z>p 2.

Since (A, ;) > Oand (A, ;) > Oforeachi =0, ..., n we obtain . = A’. However,
(X, ap) = 0, a contradiction. 0O

Recall that, by Lemma 3.1.1, a Verma module M (X) has at most two integrable
quotients: L(A) and V (1) such that V(L)/L(A — B) = L(A).

4.4. Proposition. Let N be an integrable quotient of an atypical Verma module M (A).

(i) DSx(N) = Ly, ()L|bx)®s, where s = 1 if N = L(X) and s = 0 or s = 2 otherwise.
@ii) Let (A, B) = 0 for an isotropic simple root B. Then

s=1ifN=L(®),
DSy (N) = Lg, (M, )% where { s =0 ifx € g_p, N # L),
s=2ifxegg, N#LQ).

Proof. By 3.1, M().) = Myx/(\), where (A, @) = 0 for some isotropic @ € X’. Thus
for (i) we can assume that (A, ) = 0 for an isotropic simple root 8. By above, we have
DS, (N) = DSy(N), where y in gg or in g_g. Therefore (i) is reduced to (ii). Let us
prove (ii).

By Proposition 6.4 DS, (N) is gx-integrable (where g, = 5[5,1)), so completely re-
ducible. Let L’ be a simple submodule of DS, (N). By Lemma 4.2 there exists a weight
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win N such that |y, is the highest weight of L and (1, ) = 0, (1 + px, pu + px) =
A+ ps, A+ px). Setv := A — u. Then

(U,,B)z(), ()L+PE,V)+()L+IOE_V’V)=0

and v € Z>oX thatis v € Z>oZ, + Zp.

Since N is integrable and (A, 8) = 0, we get (A,«) > 0 for each « € X. Thus
(A+px,v)>0andso (A + px —v,v) <O0.

Since L’ is gy-integrable and v € Z>0 X, + Zf, one has (A + p — v, v) > 0 and the
equality holds if and only if v € Zp. Therefore, v € Zf. Since A — v is a weight of N,
one has v € {0, 8}. Hence,

DSy (N) = Ly, (A,)®*, where s := dim DS, (N; & Ny_p).

Note that N’ := N, @ N,_g is a module over a copy of s[(1|1) generated by g+ (one
has x € s[(1|1)).If N = L(}), then N’ is a trivial s[(1|1)-module; and if N/L (A — B) =
L(}), then N’ is a Verma s[(1]|1)-module of highest weight zero. The assertion follows.
[m}

4.5. Corollary. Let L € Fj be anirreducible module. Then DS, (L) = Oifandonlyif L
is typical. For atypical L, DSy (L) is integrable 5[,(11_)1-m0dule and DS (L) = DS, (L")
if and only L and L’ lie in the same block.

Proof. Retain notation of Theorem 2.5.4. If L, L ;11 are simple objects in an atypical
block B and j > 0 (resp. j < —1), then there exists a Verma module M (1) such that its
maximal integrable quotient V (1) such that V(X)/L; = L 41 (resp., V(A)/L 1 = Lj).
From Proposition 4.4, we get DSy (L ;) = DSy (L j41), 50 DSy (L) is anon-zero invariant
of an atypical block.

Let us show that this invariant separates blocks. Fix a set of simple roots X and take
X € g_qo,. Let aoe b be the highest weight of DS, (L), DS,(L’). Let us show that
L, L’ are in the same block. Indeed, each block contains a unique X-singular irreducible
module. Thus we can (and will) assume that L, L’ are X-singular. Let L = L(1), L' =
L()). One has A¥ = Alp, = A'lp,. Since A, A" are X-singular, A = A, thatis L = L’ as
required. O

5. Modules Over Simple Affine Vertex Superalgebras

In this section

g=CdoCka@ie:"

nez

is an untwisted affine Lie superalgebra, i.e. the affinization of a finite-dimensional Kac—
Moody Lie superalgebra g and k # —h". Here d € b is the standard element ([d, xt°] =
sxt® forx € g)and g = [g, g] ® Cd.
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5.1. Definitions. Recall that a [g, g]-module (resp., g-module) N is called restricted if
foreverya € g, v € N there exists n such that (at™)v = 0 for each m > n. A particular
case of the restricted g-modules are the bounded modules, i.e. the modules where d acts
diagonally with integral eigenvalues bounded from above; as before, denote by NP
the eigenspace with the maximal eigenvalue. A bounded module N is called almost
irreducible if any nontrivial submodule of N has a non-zero intersection with NP,

Let N be arestricted [g, g]-module of level k with k # —h" . The Sugawara construc-
tion equips N with an action of the Virasoro algebra {L, },cz, see [13], 12.8 for details.
Moreover, the [g, g]-module structure on N can be extended to a g-module structure by
setting d|y := —Lo|n.

For a restricted g-module the action of Ly and the Casimir element €2 are related
by the formula Q = 2(K + hY)(d + Lg). Therefore, the above procedure assigns to a
restricted [g, g]-module of level k # —h" a restricted g-module with the zero action of
the Casimir operator.

5.2. The subalgebra g*. Recall that (for affine g) the gg-integrable modules exist only
at level zero or in the case when the Dynkin diagram of g is connected, see [15]. We
consider the integrability with respect to the “largest affine subalgebra” of gg, see below.
Recall that gg is a reductive Lie algebra and it can be decomposed as g5 = §* x
where g* is a simple Lie algebra (the “largest part” of gp) and tis areductive Lie algebra:
for § = sl(m|n), osp(m|n) with n > m one has §* = sl,,, sp, respectively;
for § = osp(m|n) with m > n one has §* = s0,,;
for the exceptional Lie superalgebras F(4), G(3) one has §* = B3, G, respectively;
for D(2, 1, a) we have g5 = A x Ay x A with the corresponding roots o, a3, a3
subject to the relation lNatll? @ Nlaal)? s llesl|> = 1:a: (—a — 1); we take g* = A1,
which corresponds any copy of A if a ¢ Q and the copy with the root «; (i € {1, 2, 3})
such that |||o; ||?| is maximal (see [10], 6.1).
. We have a natural embedding of the affine algebra g* (which is the affinization of
g") to gg.

5.3. Modules over affine vertex superalgebras. Let V*(g) be the affine vertex algebra
and Vi (g) be its simple quotient.

There is a natural equivalence between the categories of V*(g)-modules and the
restricted [g, g]-modules of level k if k # —hY, see [6], Thm. 2.4.3.

If g is a Lie algebra and k # O is such that Vi (g) is [g, g]-integrable, then the Vi (g)-
modules correspond to the integrable [g, g]-modules, see [6], Thm. 3.1.3 and [4], Thm.
3.7.

5.3.1. Theorem. If Vi(g) is integrable as a g"-module and k # 0, then the Vi (g)-

modules are the restricted [g, gl-modules of level k which are integrable over g*. As g*-

modules these modules are direct sums of irreducible integrable highest weight modules.
The Vo (g)-modules are trivial.

5.3.2.  Remark. Normalize the non-degenerate bilinear form by the condition (¢, @) =
2, where « is the longest root in g*. Then V(g) is integrable over g* if and only if k is
a non-negative integer.
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5.3.3. Using Sect. 5.1 we obtain the following corollary.

Corollary. For g = sl(1|n)V and a positive integer k, the category of finitely
generated Vi (g)-modules with finite-dimensional weight spaces is the full subcategory
of Fi whose objects are annihilated by the Casimir operator.

5.4. Proof of Theorem 5.3.1. Introduce the vacuum g-module of level k:

VK .= Ind?

g+n+h

Cr.

where C is the trivial g + n-module w1th K acting by kId and d acting by zero. As a
[g. g]-module V¥ (g) is isomorphic to V¥,

Let Ag € b* be such that Ayg(K) = 1, Ao(b) = Ao(d) = 0. Note that V¥ is a 95-
integrable quotient of the Verma module M (kAg) and that L(kA) is a unique simple
quotient of V. As a [g, g]-module Vj(g) is isomorphic to L(kAg).

Recall that for a given non-degenerate bilinear form &Y = (p, §), where p is the
Weyl vector and § is the minimal imaginary root.

5.4.1. Theorem. Letk # —h" be such that L(kA) is g*-integrable. Then L(kAq)
is a unique g"-integrable quotient of V.

Proof. Let N be some non-zero integrable quotient of V. From [10] it follows that the
character of N is given by the KW-character formula (see Sect. 4 for the cases 1Y # 0
and for A(n, )", and Sect. 6 for the remaining cases). Hence N is irreducible. O

5.4.2. We denote by |0) the highest weight vector of V¥ (and its image in L(kAyo)).
We normalize the bilinear form as in Remark 5.3.2 and fix a triangular decomposition

in g in such a way that the maximal root € lies in the root system of §*. Then atg = 8§ —6 is

a simple root and (ag, ctg) = 2. Let fj be a non-zero element in g_,; note that fo € g#.

5.4.3. Corollary. Letk # —h" be such that L(k Ao) is g*-integrable. Then L(kAo) =
vk /1, where the submodule I is generated by f k+1 |0).

Proof. Since L(kAo) is g*-integrable, f(’)‘+1|0) is a singular vector in V¥, Let I be the
submodule of V* generated by this vector. By Theorem 5.4.1, it is enough to show that
vk /1 is g*-integrable. From [13], Lemmas 3.4, 3.5, it suffices to check that for each «
in the set of simple roots of g# the root spaces g act nilpotently on v, where v is the
image of |0) in V¥/I. Clearly, g+¢|0) = 0 for & # ag and ooV = gktxlov = 0. The
assertion follows. 0O

5.4.4. Remark. Theorem 5.4.1 and Corollary 5.4.3 hold also in the case when g is a
twisted affinization (g is any symmetrizable affine Lie superalgebra). In Corollary 5.4.3
the following change should be done if % € A: fo should be chosen in g_4, /2 and I is

generated by fj 2k+110). The proofs are the same.

5.4.5. Foreacha € Vk(g) let Y (a, z) be the corresponding vertex operator. The fol-
lowing lemma is standard (see, for example, [1], Prop. 3.4).

Lemma. Let I C V¥(g) be a cyclic submodule generated by a vector a € V*(g).
A VK(g)-module N is a V¥(g)/I-module if and only if Y (a, z) N = 0.
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5.4.6. By [9], Thm. 3.2.1 any restricted integrable [g*, g*]-module is completely re-
ducible. Let us show that Vi (g)-modules are restricted [g, g]-modules of level k& which
are integrable over [g¥, g*].

Take k = 0. Then Vi(g) is one-dimensional. Hence, Vi (g)-modules are restricted
[g, g]-modules of zero level which are annihilated by [g, g].

Take k # 0. From Lemma 5.4.5 and Corollary 5.4.3, we conclude that Vi (g)-
modules are restricted [g, g]-modules which are annihilated by Y ( f(’;‘“ |0, z). Note that
Y(fé“rl 10),2) € Vk(g") and Vi(g*) := V¥(g*)/I', where I’ is the g*-submodule of
V¥(g") which is generated by fé‘”lO). In particular, Vi (g") is a subalgebra of Vi (g).
By [4], Thm. 3.7, the Vi (g*)-modules are direct sums of irreducible integrable high-
est weight [g¥, g*]-modules of level k. We conclude that the V(g)-modules are the
restricted integrable [g¥, g*]-modules of level k as required. This completes the proof
of Theorem 5.3.1. O

5.5. Integrable bounded g-modules. 1If gis an affine Lie algebra, then, by [9], Thm. 3.2.1,
the restricted integrable [g, g]-modules are completely reducible and the irreducible ones
are highest weight modules. The situation is similar for g = osp(1]21)", but is different
for other affine Lie superalgebras, see Sect. 5.6.4 below.

5.5.1. Proposition. If N is a bounded g-module which is |gg, ggl-integrable, then
N™ £0.

Proof. Set E := N'°_Since E® C N, it is enough to show that E™ 3 0.

Note that 5 := [§g, §g] is a semimple Lie algebra. Note that £ is a g-module which is
s-integrable. Therefore E is a direct sum of finite-dimensional s-modules. In particular,
nig acts locally nilpotently on E. Therefore, 0 acts locally nilpotently on E. Let 0 =
1% c al ¢ ... c#® =1 be the derived series of & (7' = [n'*!, ai*1]). Set E(0) := E
and E()) := EG — D" fori = 1,...,s. By induction E(i) # 0, since n/n'~! is a
finite-dimensional abelian Lie superalgebra which acts locally nilpotently on E(i — 1).
Hence, E™ = E(s) # 0 as required. O

5.5.2. Remark. From Proposition 5.5.1 a bounded irreducible g-module which is in-
tegrable over [gg, gg] is a highest weight module. In particular, a bounded irreducible

s(1|n)(V-module which is 5[£1)-integrable is an irreducible highest weight module.

5.6. Bounded Vi (g)-modules. A vk (g)-module is called positive energy (see [3]) if it
is Z-graded [g, g]-module of level k: M = ®,,czM,, with (at")M,, C M,,_, with the
grading bounded from below. For such a module we extend the [g, g]-action to the g-
action by dv := —mu for v € M,,. Thus the positive energy V*(g)-modules correspond
to the bounded g-modules of level k. (In [4] a similar object is called an admissible
module; in [6] all modules are assumed to be of this form.)

A positive energy V*(g)-module is ordinary (see [4]) if the grading is given by
the action of Loy and the homogeneous components are finite-dimensional. Thus the
ordinary modules are the bounded g-modules of level & with the zero action of the
Casimir operator.

5.6.1. Let V be a vertex operator algebra and A(V) be its Zhu algebra.
Thm. 2.30 in [3] (see also Thm. 2.2.1 in [18]) for the trivial twisting gives
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Proposition. The restriction functor N — N'°P is a functor from the category of
positive energy V-modules up to a shift of grading to the category of A(V)-modules,
which is inverse to the induction functor E +— V (E) from the A(V)-modules to the full
subcategory of almost irreducible V-modules (up to a shift of grading). In particular,
these functors establish a bijective correspondence between the irreducible positive
energy V-modules and the irreducible A(V)-modules.

For V = V¥(g) the positive energy V-modules correspond to the bounded g-modules
of level k; the ordinary (see [4]) modules correspond to the bounded modules of level k
with the zero action of the Casimir element.

5.6.2. As in [6] Thm. 3.1.1, 3.1.2, the Zhu algebra of Vk(g) is U(g) and the Zhu
algebra of Vi (g) is U(g)/(eé‘“), where fy = egt ! (ey € §g). This implies the following
corollary.

Corollary. Let k be a non-negative integer and let E be a g-module satisfying
eé‘”E = 0. There exists a unique almost irreducible g*-integrable g-module N =
EB?iONi of level k such that N' is the ith eigenspace of —d and N° = E. This module
has a natural structure of Vi-module. Moreover, N is irreducible if and only if E is
irreducible.

5.6.3. If g is such that the Dynkin diagram of go is connected, then [gg, g5] = g

Combining Lemma 5.5.1 and Theorem 5.3.1 we obtain the following corollary.

Corollary. Let g be such that the Dynkin diagram of go is connected and k be a
non-negative integer. Then a bounded Vi (g)-module contains a singular vector (v such
thatwv = 0). In particular, the irreducible bounded Vi (g)-modules are the g*-integrable
highest weight g-modules of level k.

5.6.4. Below we give an example of a cyclic bounded s[(1]|2)"-module which is ﬁ[g)-
integrable, but is not s[(1|2)V-integrable (the action of b is not locally finite).

Consider the usual Z-grading on s((1]2): g = g_1 ® go @ g1, where go = g5 =
slp x Cz and g are irreducible sl;-modules. Let f, /, e be the standard generators of
slp. Consider the triangular decomposition of g with n = Ce + g1 + Y o, §1*.

View C|[z] as a module over p := h+ go + n by the trivial action of Cd + gg+n and K
acting by Id. Consider the induced module M := [ ndg(C[z]. Then M has level 1 and
M?P is a free C[z]-module. As an sl;-module M7 is a direct sum of countably many
copies of Ag_1, so e2M"P = 0.

From Corollary 5.6.2 it follows that M has an almost irreducible quotient N which
is 5[&1)-integrable and N'°P = M'°P_ Since z acts freely on M'°P, N is not s[(1]|n)D-
integrable. Note that M is bounded and cyclic (generated by the image of 1 € C[z]), so
N is also bounded and cyclic. It is not hard to see that the Casimir acts freely on N.

5.6.5. Remark. The example in Sect. 5.6.4 gives a cyclic g-bounded g*-integrable mod-
ule of level 1 with a free action of the Casimir operator. In the light of Theorem 5.3.1, this
module is a cyclic almost irreducible positive energy Vi(g)-module with a free action
of Lo (in particular, this module is not ordinary, see Sect. 5.6 for definition).

5.6.6. Letusshow thatif the Dynkin diagram of g is not connected, then for sufficiently
large integral k there exists an irreducible bounded Vi (g)-module which is not a highest
weight module.
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Let g be such that the Dynkin diagram of g5 is not connected. In this case g5 = g x t,
where t is semisimple. Take any irreducible t-module E and view it as gz-module via

the trivial action of g*. Set E/ := Indga E. As g*-module E’ is a direct sum of copies

of Agy, so there exists m such that ej' E’ = 0. Let L be an irreducible quotient of E’.
By Corollary 5.6.2, for each integral k > m — 1 there exists an irreducible bounded
g”-integrable g-module N of level k such that N'°? = L. Note that E is an t-quotient
of L. In particular, h acts locally finitely on N if and only if the Cartan algebra of t acts
locally finitely on E.

6. Appendix: The Functor DS,

In this section we assume that g is a Kac—-Moody Lie superalgebra.
Take x € g7 satisfying [x, x] = 0. The following construction is due to Duflo and
Serganova, see [5]. For a g-module N introduce

DSy(N) := Keryx/Impyx.

Let g* be the centralizer of x in g. We view DS, (N) as a module over g*. Note
that [x, g] C g acts trivially on DSy (N) and that g, := DS,(g) = g*/[x, gl is a Lie
superalgebra. Thus, DS, (N) is a g,-module and DS, is a functor from the category of
g-modules to the category of g,-modules.

In [5,16] the functor DS, was studied for finite-dimensional g. However, certain
properties can be easily generalized to the affine case. In particular, DSy is a tensor
functor, i.e. there is a canonical isomorphism DS, (N1 ® N2) >~ DS, (N1) ® DSy (N2).

6.1. Proposition. Let g = g1 be the affinization of a Lie superalgebra § and assume
that x € §. If g # O, then g, is the affinization of §x, If §x = O then g, is the abelian
two-dimensional Lie algebra generated by K and d.

Proof. Since
g=CdoCKkaPier"
nez

and g ® t" is isomorphic to the adjoint representation of g for every n, the statement
follows. 0O

6.2. Let g = §! be the affinization of a Lie superalgebra § and assume that x € . Let
by (resp., X) be the set of simple roots of § (resp., g).

Let B1, ... B € X be a set of mutually orthogonal isotopic simple roots, fix non-zero
root vectors x; € gg; foralli =1,...,r. Letx := x; +---+x,. Itis shown in [5] that
gy is a finite-dimensional Kac—Moody superalgebra with roots

At ={aeAl(B)=0,a £+Bi=1,...,r}
and the Cartan subalgebra

by i= (B N+~ N B1)/(Chp, @& Chg,).
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Assume that AL is not empty, then A is the root system of the Lie superalgebra g,. One
can choose a set of simple roots E such that A+(Ex) = At N AL Let gx C g be the
affinization of g,: the affine Lie superalgebra with a set of simple roots X, containing
Y, such that A*(Z,) C A™.

For example, if § = A(m|n), B(m|n) or D(m|n),then g, = A(m —r|n—r), B(m —
rln—r)or D(m —rin—r).If § = C(n), Gz or Fy, thenr = 1 and g is the Lie algebra
of type C,—1, A1 and Aj respectively. If g = D(2, 1; o), thenr = 1 and g, = C.

6.3. Proposition. Let g = 3V be the affinization of a Lie superalgebra § and assume
that x € §. Let x € g and N be a restricted g-module. If the Casimir element Q4 acts
ona N by a scalar C, then the Casimir element Qg acts on the gx-module DS, (N) by
the same scalar C.

Proof. Let us write the Casimir element Q24 in the following form (see [13], (12.8.3))

oo
Qg =2 + K)d + Q0 + 22 Q).
i=I

where Q(i) = Y v;v/ for some basis {v;}in § ® r~ and the dual basis {v/} in § ® t'.
Similarly we have

o0
Qq, =2(h" + K)d +Q0+2)_ Q(i).
i=1

We claim that Q, (i) = Q()(mod[x, U(g)]). Indeed, we use the decomposition g =
gx ® m, where m is a free C[x]-module. Using a suitable choice of bases we can write

Q) = Q@)+ Y ug’

for the pair of dual bases {us} in m ® r~ and {u*} inm @ /. If i > 0, then > ugut
is x-invariant element via the embedding m @ m <— U(g). If i = 0, then XZ‘ usu® is
x-invariant element via the embedding $2(m) < U(g). Since m @ m and S%(m) are
free C[x]-modules, we obtain in both cases that ) usu® lies in the image of ad x.

Now the statement follows from the fact that [x, U(g)] annihilates DS, (N). O

6.4. Proposition. If N is an integrable g-module, then DS (N) is an integrable g,-
module. Moreover, if x = w(y) for some element y of the Weyl group of g, then gx = gy
and DS, (N) = DSy (N).

Proof. The first statement is obvious and the second is an immediate consequence of
the identities g, = w(gy), DSy(N) = w(DSy(N)). O
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