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Abstract: We describe the category of integrable sl(1|n)(1)-modules with the positive
level and show that the irreducible modules provide the full set of irreducible represen-
tations for the corresponding simple vertex algebra.

1. Introduction

Let g be the Kac–Moody superalgebra sl(1|n)(1), n ≥ 2. Recall that g0 = gl(1)n . We call
a g-module integrable if it is integrable over the affine Lie algebra sl(1)n , locally finite
over the Cartan subalgebra h ⊂ gl(1)n and with finite-dimensional generalized h-weight
spaces.

We normalize the invariant bilinear form on g in the usual way ((α, α) = 2 for
the non-isotropic roots α). We say that a module N has level k if the canonical central
element K in sl(1|n)(1) acts on N by k Id. LetFk be the category of the finitely generated
integrable g-modules of level k. This category is empty for k �∈ Z≥0. For k ∈ Z>0, the
irreducible objects in Fk are highest weight modules, which were classified in [15]
(see [7], Theorem C). In this paper we study the category Fk for k ∈ Z>0: we describe
the blocks (see Corollary 3.4.1 and Theorem 3.5.4) in terms of quivers with relations
and show that Duflo–Serganova functor provides an invariant for the atypical blocks
(see Corollary 4.5) and this invariant separates the blocks.

In Sect. 5 we study modules over the simple affine vertex superalgebra Vk(g). Recall
that the modules over affine vertex algebra V k(g) are the restricted g-modules of level
k.

Let u be an affine Lie algebra, V k(u) be the universal affine vertex algebra associated
with u at level k; let Vk(u) be the unique simple quotient of V k(u). Let k be such that
Vk(u) is integrable (as a u-module); for an appropriate normalization of the bilinear
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form, this means that k is a non-negative integer. In this case, the Vk(u)-modules are
the restricted integrable [u, u]-modules of level k. For k ≥ 0 the irreducible restricted
integrable [u, u]-modules of level k are highest weight modules. In particular, the vertex
algebra Vk(u) is rational and regular:

(a) there are finitely many (up to isomorphism) irreducible Vk(u)-modules;
(b) any representation is completely reducible.

For bounded Vk(u)-modules these results were proven in [6]. In [4] it is shown that
any Vk(u)-module is a direct sum of bounded modules, which implies the general result.

Let g be an (untwisted) affine Lie superalgebra and g1 �= 0. Let g# be the “largest
affine subalgebra” of g0 (see Sect. 5.2). Let k be such that Vk(g) is integrable as a
g#-module (for an appropriate normalization of the bilinear form, this means that k
is a non-negative integer). In Theorem 5.3.1 we prove that the Vk(g)-modules are the
restricted [g, g]-modules of level k which are g#-integrable. In addition, we show that the
irreducible bounded Vk(g)-modules are highest weightmodules if and only if theDynkin
diagram of g0 is connected (g is sl(1|n)(1) or osp(n|m)(1) for n = 1, 2), see Sect. 5.6.

For g = sl(1|n)(1) one has g# = sl(1)n . For a positive integer k the category of finitely
generated Vk(g)-modules with finite-dimensional generalized weight spaces is the full
subcategory of Fk with the objects annihilated by the Casimir operator.

In Appendix we recall the definition of DS-functor and prove several properties used
in Sect. 4.

Partial results of this paper were reported at the conferences in Uppsala in June 2016,
Kyoto in October 2016 and Vienna in January 2017.

2. Preliminaries

Let g = sl(1|n)(1). Recall that by definition an integrable g-module is integrable over the
affine Lie subalgebra sl(1)n ⊂ g0 and locally finite over the Cartan subalgebra h. Recall
also that h ∩ [sl(1)n , sl(1)n ] acts diagonally on any integrable sl(1)n -module.

Note thatFk is the full subcategory in the categoryO. In particular, it is equippedwith
a covariant duality functor D inherited from the contragredient duality in category O.
For any simple object L we have D(L) � L . In particular, Ext1(L , L ′) = Ext1(L ′, L)

for any two simple objects L and L ′.

2.1. Roots and sets of simple roots. View g as the affinization of ġ = sl(1|n). Choose a
basis ε1, . . . , εn of ḣ∗ such that the invariant form is given by

(εi , ε j ) =
{

−1 if i �= j
0 if i = j

.

Even roots of ġ are of form

{εi − ε j , |, i �= j, i, j = 1, . . . , n},
and all odd roots are isotropic

{±εi |, i = 1, . . . , n}.
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By δ we denote the smallest positive imaginary root of g. Then all real roots of g are of
the form α + jδ, where j ∈ Z and α is a root of ġ.

For a set of simple roots � we consider the standard partial order on h∗ given by
λ ≥� μ if and only if λ−μ ∈ Z≥0�. We denote by ρ the Weyl vector of� (i.e., ρ ∈ h∗
such that 2(ρ, α) = (α, α) for α ∈ �).

We fix a triangular decomposition of g0 and consider only triangular decompositions
of g which are compatible with it (i.e., �+

0
is fixed). We denote such sets of simple roots

by �, �′, etc. In fact, the categoryO depends only on a triangular decomposition of the
even part.

2.1.1. We fix a set of simple roots	0 of�+
0
and letB denote the set of all sets of simple

roots � such that 	0 ⊂ Z≥0�. To be precise let

	0 = {ε1 − ε2, . . . , εn−1 − εn, εn − ε1 + δ}.
For example,

� = {−ε1 + δ, ε1 − ε2, . . . , εn−1 − εn, εn} ∈ B. (1)

For any odd root β there exists a unique α ∈ 	0 such that (α, β) = −1 and a unique
α′ ∈ 	0 such that (β, α′) = 1; the set

� = {β, α′ − β} ∪ (	0\{α′})
is a unique set of simple roots containing β.

Note that all � ∈ B have the same Dynkin diagram. Every � contains exactly two
odd roots β1 and β2, (β1, β2) = 1 and all roots of 	0 are even roots of � and β1 + β2.
The Dynkin diagram is a cycle with n + 1 nodes: there are two nodes which correspond
to the odd isotropic roots and these nodes are adjacent. The minimal imaginary positive
root δ is the sum of all simple roots.

2.1.2. Odd reflections. Recall that for an odd root β belonging to a set of simple roots
�, the odd reflection rβ gives another set of simple roots rβ� which contains −β, the
roots α ∈ �\{β}, which are orthogonal to β, and the roots α + β for α ∈ � which are
not orthogonal to β. One has

�+(rβ�) = (�+(�)\{β}) ∪ {−β}. (2)

Any two sets of simple roots in B are connected by a chain of odd reflections. We call
a chain “proper” if it does not have loops (i.e. subsequences of the form rβr−β ). Two
sets of simple roots are connected by a unique “proper” chain of odd reflections. We
call � and �′ adjacent if they are obtained from each other by one odd reflection. The
adjacency graph with vertices in B is an infinite string (every vertex has two adjacent
vertices). For any two �,�′ ∈ B there is a unique proper chain of odd reflections
connecting them. We denote by d(�,�′) the number of odd reflections in this chain.

Let � be a set of simple roots. One readily sees that the chain rβs rβs−1 . . . rβ1� is
proper if and only if β1, . . . , βs ∈ �+(�). Let β �∈ � be an odd root and �′ be the set
of simple roots containing β (by above, �′ is unique). If β ∈ �+(�), then the proper
chain which connects � and �′ does not contain the reflections r±β ; if β ∈ −�+(�),
then the proper chain is of the form �′ = rβs rβs−1 . . . rβ1�, where βs = β.
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2.2. Simple modules. For any � ∈ B we denote by L�(λ) the irreducible module
of highest weight λ with respect to the Borel subalgebra corresponding to �. Given an
irreducible highest weight module L and� ∈ Bwe set ρwt�L := λ if L = L�(λ−ρ�)

(where ρ� is the Weyl vector for �). For an odd root α ∈ � one has

ρwtrα�L =
{

ρwt�L if (λ, α) �= 0,
ρwt�L + α if (λ, α) = 0.

(3)

From (3), it follows that L�(λ) is integrable if and only if (λ, α) ∈ Z≥0 for every
even α ∈ �, and for two odd roots β1, β2 ∈ � one has either (λ, β1 + β2) ∈ Z>0 or
(λ, β1) = (λ, β2) = 0. Since δ is the sum of simple roots, a highest weight module
L�(λ) has level k = (λ,

∑
α∈� α). In particular, if L�(λ) is not one-dimensional, its

level is a positive integer.

2.2.1. Example. Let � be as in (1) and let bi = (λ + ρ�, εi ) for i = 1, . . . , n. Then
L�(λ) is integrable if and only if

(1) b1 − b2, . . . , bn−1 − bn ∈ Z>0;
(2) bn − b1 + n + k − 1 ∈ Z>0 or bn = 0, b1 = n + k − 1.

2.3.. Lemma. If L�(λ) is integrable, then there exists at most one positive real even
root α such that (λ + ρ�, α) = 0. Moreover, in this case α ∈ 	0 and α is a sum of the
two odd roots β1, β2 ∈ � and (λ + ρ, β1) = (λ + ρ, β2) = 0.

Proof. If β1, β2 denote two odd roots of �, then integrability condition implies that
(λ+ρ�, α) is a positive integer for all even α ∈ � and (λ+ρ, β1 +β2) is a non-negative
integer. Since every positive even real root is a non-negative linear combination of even
α ∈ � and β1 + β2, the statement follows. ��

2.3.1. We fix a set of simple roots � = {αi }ni=0, where α1, α2 are odd. Note that
(α1, α2) = 1. We set

P+(�) := {λ ∈ h∗| (λ, γ ) ∈ Z≥0 for all γ ∈ 	0 and
(λ, α1 + α2) = 0 
⇒ (λ, α1) = (λ, α2) = 0}.

By above, the irreducible objects of Fk are the highest weight modules L�(λ), where
λ ∈ P+(�); in other words, setting ai := (ρwt�L , αi ), we have

(i) ai ∈ Z>0 for i = 0 or i = 3, . . . , n;
(ii) a1 + a2 ∈ Z>0 or a1 = a2 = 0;
(iii) a0 + a1 + · · · + an = k + n − 1.

Notice that the numbers {ai }ni=0 determine L as a [g, g]-module; for the g-modules
L(λ), L(λ+ sδ) the numbers {ai }ni=0 are the same, however the Casimir element acts on
L(λ) and on L(λ + sδ) by different scalars.
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2.3.2. Lemma. Let L�(L) be an integrable highest weight module and (λ, α) is real
for each α ∈ �. Then there exists a set of simple roots �′ such that (λ + ρ�, α) ≥ 0 for
every α ∈ �′.

Proof. Recall that (λ+ρ�, δ) = k +n−1. Note that (�\{α1, α2})∪{α1 + sδ, α2 − sδ} is
a set of simple roots for any s ∈ Z. Therefore, without loss of generality we may assume
that

0 ≤ (λ + ρ�, α1) < k + n − 1. (4)

If 0 ≤ (λ+ρ�, α2), we take�′ = �. Assume that (λ+ρ�, α2) < 0. For r = 2, . . . , n+1
set βr := ∑r

i=2 αi (where αn+1 := α0). Then δ = βn+1 + α1, so (4) gives

(λ + ρ�, β2) < 0, (λ + ρ�, βn+1) > 0.

Let s be maximal such that (λ + ρ�, βs) < 0. For �′ := rβs . . . rβ2� the isotropic roots
are −βs and βs+1. Since (λ + ρ�,−βs), (λ + ρ�, βs+1) ≥ 0, �′ is as required. ��

2.3.3. Definitions. From now on L stands for an irreducible integrable highest weight
module on non-zero level.

Recall that L is called typical if (ρwt�L , α) �= 0 for any (isotropic) odd root α and
atypical otherwise. From (3), it follows that this notion does not depend on the choice
of � and, moreover, ρwt�L does not depend on � for typical L .

We say that L is �-tame if (ρwt�L , β) = 0 for some odd β ∈ �. Any atypical L
(for sl(1, n)(1)) is tame with respect to some �.

Let β be an odd root. We call an odd reflection rβ L-typical if for � containing β

one has (ρwt�L , β) �= 0 (by 2.1.1, � is unique for given β). Note that if � and �′ are
connected by a chain of odd L-typical reflections, then ρwt�(L) = ρwt�′(L).

We say that λ ∈ h∗ is integral if (λ, α) is integral for each α ∈ 	0. We say that
λ ∈ h∗ is regular if (λ, α) �= 0 for any even real root and that λ is singular otherwise.
Note that if λ integral, then there exists a unique λ̄ ∈ Wλ such that (λ̄, α) ∈ N for all
α ∈ 	0. Obviously λ̄ is regular if and only if λ is regular.

We say that L is�-regular if ρwt�L is regular and that L is regular if it is�-regular
for each �. We say that L is �-singular if it is not �-regular and that L is singular if it
is not regular. By 2.3.1, L is �-singular if and only if (ρwt L , α) = 0 for both odd roots
α ∈ � (in particular, in this case L is �-tame).

2.3.4. Lemma. Let L be a simple integrable module and HW (L) denote the set of
all ρwt�L for all � ∈ B.
(i) If L is typical then |HW (L)| = 1;
(ii) If L is regular atypical then |HW (L)| = 2;
(iii) Let L be singular atypical and � = {α0, . . . , αn} with odd α0, α1 be such that

ρwt�L is singular. Let m, l be such that

(ρwt�L , αm) ≥ 2 and (ρwt�L , αi ) = 1, for each i such that m < i ≤ n,

(ρwt�L , αl) ≥ 2 and (ρwt�L , αi ) = 1 for each i such that 2 ≤ i < l.

Then

HW (L) = {ρwt�L , ρwt�L + α1, ρwt�L + 2α1 + α2, . . . ,

ρwt�L + (l − 1)α1 + (l − 2)α2 + · · · + αl−1} ∪ {ρwt�L + α0, . . . ,

ρwt�L + (n − m + 1)α0 + (n − m)αn + · · · + αm+1}
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or equivalently

HW (L) = {ρwt�L + sα0 | s = 1 − l, . . . , n − m + 1}.
Remark. The existence of l,m follows from the assumption that k �= 0; one has
2 ≤ l ≤ m ≤ n.

Proof. The first assertion follows from (3) as any odd reflection is L typical. Now
assume that L is atypical and regular. Then there exists exactly one positive odd root
such that (ρwt�L , α) = 0. Let �′ ∈ B be such that α ∈ �′. Let �′′ = rα�′. Since
both ρwt�′L and ρwt�′′L are regular, all other odd reflections are L-typical. Hence
HW (L) = {ρwt�′L , ρwt�′′L}.

Finally, let assume that L is atypical and singular. Then by Lemma 2.3 there exists
�0 such that (ρwt�L , α1) = (ρwt�L , α2) = 0 for both simple odd roots α1, α2 ∈ �0.
Moreover, m and l exist as follows from integrability condition. If we set

β1 = α0 + αn, . . . , βn−m = α0 + αn + · · · + αn−m+1,

then the reflection rβi are all L-atypical and we obtain that HW (L) contains ρwtrα0�L
and ρwtrβi ...rβ1rα0�L for all i = 1, . . . , n − m. Similarly, if we set

γ1 = α1 + α2, . . . , γl−2 = α1 + α2 + · · · + αl−1,

then HW (L) contains ρwtrα1�L and ρwtrγi ...rγ1rα1�L for all i = 1, . . . , l −2. All other
odd reflections are L typical and do not add new weights to HW (L).

The last formula follows form the identity

rα j . . . rα2rα1+α0(ρwt�L − jα0) = rα j . . . rα2(ρwt�L + jα1)

= ρwt�L + jα1 + ( j − 1)α2 + · · · + α j .

��

2.3.5. One readily sees that ρwt�L + jα0 is not regular for 1 − l < j < n − m + 1.
Corollary. If L is atypical, then HW (L) contains exactly two regular weights.

2.4. Character formulae. If L(λ) is typical, then ch L(λ) is given by the Kac–Weyl
character formula; if L(λ) is atypical and �-tame, ch L(λ) is given by Kac–Wakimoto
formula, see [15,17].

2.5. Adjacency relation on atypical simple modules. Note that if L is atypical, then all
weights of L are integral. We say that L ′ is adjacent to L if there exist � ∈ B and an odd
α ∈ � such that (ρwt�L , α) = 0 and ρwt�L ′ = ρwt�L−α. Note that if L ′ is adjacent
to L , then L is adjacent to L ′, as for�′ = rα� we have ρwt�′L = ρwt�′L ′ − (−α) and
−α ∈ �′. Therefore the adjacency relation defines the adjacency graph � with vertices
enumerated by isomorphism classes of atypical integrable simple g-modules of a fixed
level k and a fixed eigenvalue of the Casimir operator (i.e., the value (ρwt�L , ρwt�L)

is fixed (this value does not depend on �)).
We denote this graph by �. It is important to characterize the connected components

of �.
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2.5.1. Lemma. Let � ∈ B and α be an odd root of � such that (ρwt�L , α) = 0.
Then ρwt�L − α is integrable if and only if ρwt�L is regular.

Proof. If β ∈ � is an even root, then (−α, β) ≥ 0 and hence (λ − α, β) ∈ Z>0. If
β ∈ � is the second odd root, then (α + β, α) = 1 and therefore (λ − α, β + α) ∈ Z≥0
if and only if (λ, β) ≥ 1. Hence λ is regular. ��

2.5.2. Corollary. An atypical simple integrable module L has exactly two adjacent L ′
and L ′′. To construct them recall that by Lemma 2.3.4 there exist exactly two �1 and �2
in B such that L is �i -tame and ρwt�i L is regular. Then ρwt�1L

′ = ρwt�1 − α1 and
ρwt�2L

′′ = ρwt�2 −α2 where αi is the unique odd root in�i such that (ρwt�i L , αi ) =
0.

2.5.3. Remark. Let us fix � ∈ B. It follows from Corollary 2.5.2 that

ρwt�L ′ <� ρwt�L <� ρwt�L ′′

if ρwt�L is regular. If ρwt�L is singular, we have

ρwt�L <� ρwt�L ′ and ρwt�L <� ρwt�L ′′.

2.5.4. Theorem. Fix � ∈ B. Then every connected component �′ of � contains
exactly one L0 such that λ := ρwt�L0 is singular. Let β be any of two odd roots of �

and

S := {s ∈ Z | λ + sβ is regular}.
Then L ′ ∈ �′ if and only if L0 � L ′ or ρwt�L ′ = λ + sβ for some s ∈ S. Enumerate
elements of S∪{0} in increasing order assuming s0 = 0 and set Li := L�(λ + siβ−ρ�).
Then every Li is adjacent to Li−1 and Li+1.

Proof. Uniqueness of L0 follows from Remark 2.5.3 and Corollary 2.5.2. Let us prove
the existence. Start with some L such that ρwt�L is regular. There exists �′ such that L
is�′-tame. Let us pick up L with minimal d(�,�′). We claim that for such L ,� = �′.
Indeed, assume� �= �′. By Lemma 2.3.4,μ = ρwt�L = ρwt�′L is regular. There is a
unique odd α ∈ �′ for which (μ, α) = 0. Consider the smallest p > 0 such thatμ− pα
is not dominant. Then μ − (p − 1)α is singular. Let L ′ = L�′(μ − (p − 1)α − ρ�′). If
α′ is the second odd root of �′, then d(�, rα′�) = d(�,�′) − 1 and this contradicts
minimality of d(�,�′). To finish the proof of existence of L0 take odd β ∈ � such that
(μ, β) = 0 and consider the smallest q ≥ 0 such that μ − qβ is singular. Then L0 is the
simple module with ρwt�L0 = μ − qβ.

The last assertion of the theorem follows fom the description of HW (L) given in
Lemma 2.3.4. ��

For a fixed level k and a fixed eigenvalue of the Casimir element, a singular inte-
grable weight λ is determined by non-negative integers (λ, α2), . . . , (λ, αn) such that∑n

i=2(λ, αi ) = k.

2.5.5. Corollary. For each level k and each eigenvalue of the Casimir element, the
graph � has finitely many connected components. They are enumerated by singular
integrable weights of level k.
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3. The Category of Integrable sl(1|n)(1)-Modules at Non-zero Level

In this section we will describe Fk for k > 0.

3.1. Maximal integrable quotient of a Verma module. Let � ∈ B. We denote by M�(λ)

the Verma module with highest weight λ for the Borel subalgebra corresponding to �.
The Verma module M�(λ) has a unique simple quotient L�(λ). If L�(λ) is integrable,
then we denote by V�(λ) the maximal integrable quotient of M�(λ). Clearly we have a
surjection V�(λ) → L�(λ).

In [17] the following lemma is proved.

3.1.1. Lemma. Let L = L�(λ − ρ�) be an integrable module.

(i) If L is typical, then V�(λ − ρ�) = L.
(ii) If L is atypical and λ is singular, then V�(λ − ρ�) = L.
(iii) If λ is regular, then the character of V�(λ − ρ�) is given by typical formula

ch V�(λ − ρ�) =
∑
w∈W

sgn(w) chM�(w(λ) − ρ�).

Moreover if (λ, α) = 0 for some odd α ∈ �, then V�(λ − ρ�) has length two and
can be described by the following exact sequence

0 → L�(λ − α − ρ�) → V�(λ − ρ�) → L�(λ − ρ�) → 0.

(iv) For any � and �′ in B, such that λ = ρwt�L = ρwt�′L, we have V�(λ − ρ�) =
V�′(λ − ρ�′).

3.1.2. Lemma. Let L and L ′ be two non-isomorphic simple integrable modules. Then
Ext1(L , L ′) �= 0 if and only of L and L ′ are two adjacent atypical modules. In this case
Ext1(L , L ′) = C.

Proof. Consider an extension given by a non-split exact sequence

0 → L ′ → M → L → 0.

Choose some� ∈ B and letλ = ρwt�L ,μ = ρwt�L ′. Ifλ andμ are incomparablewith
respect to≤� , then the above sequence splits since a vector of weight λ−ρ� generates a
submodule isomorphic to L in M . Note that duality implies Ext1(L , L ′) = Ext1(L ′, L).
Therefore without loss of generality we may assume that μ <� λ. But then M is a
quotient of V�(λ − ρ�). By Lemma 3.1.1 we know that the length of V�(λ − ρ�) is
at most 2. Hence, M � V�(λ − ρ�), L is atypical and λ is regular. Then there exists
�′ ∈ B such that L is �′-tame and ρwt�L = ρwt�′L . By Lemma 3.1.1 (iv) we obtain
ρwt�′L ′ = ρwt�′L − α for odd α ∈ �′ such that (λ, α) = 0. Hence, by definition L
and L ′ are adjacent. That proves the statement. ��

3.2. Self-extensions of simple modules.

3.2.1. Recall that g is the affinization of ġ = sl(1|n). Fix � ∈ B and α ∈ �. Note
that �\{α} is the set of simple roots of some subalgebra isomorphic to ġ � sl(1|n). Let
h ∈ h∗ be such that
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β(h) =
{
0 if β ∈ �,β �= α

1 if β = α.
.

Let N be such that h acts locally finitely and the eigenvalues are bounded: there exists
a “maximal” eigenvalue, i.e. an eigenvalue a such that a + j is not an eigenvalue for any
positive integer j . In this case we denote by Ntop the generalized h-eigenspace with the
maximal eigenvalue.

Observe that if L = L�(λ) is simple, then Ltop is a simple sl(1|n)-module with
highest weight λ|ḣ where ḣ is the Cartan subalgebra of ġ. If L is integrable, then Ltop is
finite-dimensional.

The centre of sl(1|n)
(1)
0

is two-dimensional: it is spanned by K and z, where z is a
central element in sl(1|n)0 = gln .

3.2.2. Lemma. Let L be a simple module and

0 → L → M → L → 0

be a non-split exact sequence, then the sequence

0 → Ltop → Mtop → Ltop → 0

also does not split.

Proof. If Mtop � Ltop ⊕ Ltop, the two copies of Mtop generate two proper distinct
submodules of M . Since M has length 2, it is a direct sum of two simple modules. ��

3.3.. Recall now the following result from [8].
Lemma. If N is a simple ġ-module, then Ext1(N , N ) = 0 if N is atypical and

Ext1(N , N ) = C if N is typical.

3.3.1. Corollary. For a simple atypical g-module L, Ext1(L , L) = 0.

Proof. It is easy to find � and α ∈ � such that Ltop is atypical. Then the statement
follows from Lemmas 3.2.2 and 3.3. ��

3.3.2. In [17] the following statements are proved (Lemma 4.13).
Lemma. Let L be a simple module and � ∈ B be such that ρwt�L is regular. Let ω

be a weight such that (ω, α) = 1 for some odd α ∈ � and (ω, β) = −1 for another odd
β ∈ � and (ω, γ ) = 0 for all even γ ∈ �. Then V�(λ − ρ� + tω) is a flat deformation
of V�(λ − ρ�).

3.3.3. Corollary. Under assumptions of Lemma3.3.2 themodule V�(λ−ρ�+tω)/(t p)
is an indecomposablemodulewhich has a filtrationwith associated quotients isomorphic
to V�(λ − ρ�).

3.4. Typical blocks inFk . Let L̇ be a typical finite-dimensional sl(1|n)-module of high-
est weight λ̇ and letF(L̇) be the block containing L̇ in the category of finitely generated
sl(1|n)-modules. It is easy to deduce from [8] that the functor N �→ Nλ (here Nλ is
the subspace with generalized weight λ) provides an equivalence betweenF(L̇) and the
category of finite-dimensional C[z]-modules with nilpotent action of z − λ(z).
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3.4.1. Retain notation of Sect. 3.2.1.
Corollary. For any typical simple module L in Fk there exists a block Fk(L) of Fk

which has one up to isomorphism simple module L. The functor N �→ Ntop provides an
equivalence between Fk(L) and the typical block of the category of finitely generated
sl(1|n)-modules. The functor N → Nλ provides an equivalence betweenFk(L) and the
category of finite-dimensional C[z]-modules with nilpotent action of z − λ(z).

3.5. Atypical blocks of Fk .

3.5.1. The following theorem is a direct consequence of Lemma 3.1.2, Corollary 3.3.1,
and Theorem 2.5.4.

Theorem. The Ext quiver of an atypical block in Fk coincides with a connected
component of the graph � and is of the form

. . .
x �� •

x ��

y
�� •

x ��

y
�� •

y
��

x �� •
x

��
y

�� . . .
y

��

3.5.2. Lemma. There is no indecomposable module M in Fk such that M/radM =
L1, radM/rad2M = L2, rad2M = L3 for pairwise non-isomorphic simple modules
L1, L2, L3.

Proof. Assume that suchmodule exists. Then the vertices corresponding to {L1, L2, L3}
generate a connected subgraph of �. It follows from Theorem 2.5.4 and Lemma 2.3.4
that there exist � and α ∈ � such that L top

i has the same h-eigenvalue for i = 1, 2, 3
(see Sect. 3.2.1 for the notation h). It was shown in [8] that there is no similar inde-
composable ġ-module Mtop with Mtop/radMtop = Ltop

1 , radMtop/rad2Mtop = L2,
rad2Mtop = Ltop

3 . The statement follows. ��

3.5.3. Let F1
k be the full subcategory of Fk consisting of the modules with diagonal

action of h.
Theorem. The typical blocks in F1

k are completely reducible with a unique ir-
reducible module. Any atypical block in F1

k is equivalent to the category of finite-
dimensional representations of the quiver of Theorem 3.5.1 with relations xy + yx = 0
and x2 = y2 = 0.

Proof. The statement about a typical block is a consequence of Corollary 3.4.1.
Nowwe prove the statement for an atypical block.We use the same argument as in the

proof of Lemma 3.5.2. This lemma implies the relation x2 = y2 = 0. Consider a module
M with a simple cosocle Li . Then radM/rad2M = L⊕a

i−1 ⊕ L⊕b
i+1 with a, b ∈ {0, 1}.

Then the next layer of the radical filtration rad2M/rad3M is isomorphic to L⊕c
i for

c ∈ {0, 1, 2}. By induction we obtain that all even layers of the radical filtration are
direct sums of several copies of Li and odd layers are direct sums of several copies of
Li−1 and Li+1.

Consider the full subcategory C of F1
k which contains only modules with semisim-

ple subquotients isomorphic to Li , Li−1 or Li+1 and let C′ be the full subcategory of
ġ-modules which contains only modules with semisimple subquotients isomorphic to
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Ltop
i , Ltop

i−1 or L
top
i+1. We claim that the functor ?top defines an equivalence between C and

C′. Indeed, ?top is exact and provides a bijection on isomorphism classes of simple mod-
ules. To construct the left adjoint functor � consider the parabolic subalgebra p := b+ ġ
and set �(?) to be the maximal quotient of U (g)⊗U (p)? which lie in C. We leave it to
the reader to check that� is also exact. Now theorem follows from the analogous results
in [8] for ġ. ��
3.5.4. Theorem. Any atypical block in Fk is equivalent to the category of finite-
dimensional representations of the quiver of Theorem 3.5.1 with relations x2 = y2 = 0
and nilpotent action of xy + yx.

Proof. The relations x2 = y2 = 0 follow again from Lemma 3.5.2.
Let F l

k denote the full subcategory of Fk whose objects has a filtration of length
≤ l with adjoint quotients from F1

k . Then Fk = lim→ F l
k . Thus, the statement follows

from Theorem 3.5.3. ��

4. Invariants of Simple Objects in the Same Block

Let g = sl(1|n)(1) with n > 2. The reader can find the definition and properties of the
functor DSx in Sect. 6. Take a non-zero x ∈ gβ , where β is an odd isotropic root; then
[x, x] = 0.

In this section we will show that DSx is an invariant for atypical blocks, i.e. for
irreducible modules L , L ′ ∈ Fk one has

(i) DSx (L) = 0 if and only if L is typical;
(ii) if L is atypical, then DSx (L) ∼= DSx (L ′) if and only if L and L ′ lie in the same

block.

For n = 2 gx is a commutative two-dimensional Lie algebra (spanned by d and K )
and (i), (ii) also hold. Note that in this case the graph � is connected.

4.1.. Fix a set of simple roots �; let α1, α2 ∈ � be odd roots. Since for any odd root β
the orbit Wβ contains either α2 or −α2, in the light of Proposition 6.4 we may assume
that x ∈ gα2 or x ∈ g−α2 . Then gx ∼= sl

(1)
n−1 with the set of simple roots

�x := {α0, α1 + α2 + α3, α4, . . . , αn}.

4.2.. Lemma. Let N be an integrable quotient of M�(λ) and let L ′ be a simple
subquotient of DSx (N ). Then there exists a weight μ of N such that the restriction of
μ to hx := gx ∩ h is the highest weight of L ′ and (μ, α2) = 0, (μ + ρ�,μ + ρ�) =
(λ + ρ�, λ + ρ�).

Proof. This lemma is a consequence of Proposition 6.3. Indeed, let ν be the highest
weight of L ′. Then ν is the restriction of someweightμ tohx . The condition Lμ∩Kerx �=
Lμ ∩ Imx implies (μ, α2) = 0. It is easy to see that the restriction of ρ� to hx equal to
ρ�x . If we denote by (−,−)gx the invariant scalar product on h

∗
x , then (ν, ν)gx = (μ,μ)

as h∗
x = α⊥

2 /Cα2. Thus, by Proposition 6.3 we obtain

(λ + ρ�, λ + ρ�) = (ν + ρ�x , ν + ρ�x ) = (μ + ρ�,μ + ρ�).

��
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4.3.. Proposition. Let L be an irreducible typical integrable highest weight module.
Then DSx (L) = 0 for any non-zero x ∈ gβ , where β is an odd isotropic root.

Proof. Set λ := ρwt�L; since L is typical, λ does not depend on �. First, nore that if
λ is non-integral, then (μ, β) �∈ Z for each weght μ of L and each odd root β. Hence,
DSx (L) = 0 by Lemma 4.2. Thus, we may assume that λ is integral. By Lemma 2.3.2,
we can (and will) assume that (λ, α) > 0 for each α ∈ �.

Let � = {αi }ni=0 and α1, α2 are odd. By Proposition 6.4 it sufficies to show that
DSx (L) = 0 for x ∈ g±α2 . Assume that DSx (L) �= 0. Then by Lemma 4.2 there exists
a weight μ in L such that (μ, α2) = 0 and (μ + ρ�,μ + ρ�) = (λ, λ), or equivalently
(λ − μ − ρ�, λ + μ + ρ�) = 0. On the other hand, since λ − ρ� is the highest weight
of L we have

λ − μ − ρ� =
n∑

i=0

kiαi

for somenon-negative integers k0, . . . , kn . Setai := (μ+ρ�, αi ). CombiningLemma4.2
and Proposition 6.4, we conclude that μ|hx is an integrable weight, that is

a2 = 0, a1 + a3 ≥ 0, ai > 0 for i �= 1, 2, 3. (5)

Set λ′ := μ + ρ� − a1α2, ν := λ − λ′. One has

(λ′, α1) = (λ′, α2) = 0, (λ′, αi ) ≥ 0 for i = 0, . . . , n.

By above, (μ + ρ�,μ + ρ�) = (λ, λ) and (μ, α2) = 0, so (μ + ρ�,μ + ρ�) = (λ′, λ′).
Thus, (λ, λ) = (λ′, λ′) or, equivalently, (ν, λ + λ′) = 0. Since a1 = (λ, α1) + k0 − k2,
one has k2 + a1 ≥ 0 and therefore ν ∈ Z≥0�.

Since (λ, αi ) > 0 and (λ′, αi ) ≥ 0 for each i = 0, . . . , n we obtain λ = λ′. However,
(λ′, α2) = 0, a contradiction. ��

Recall that, by Lemma 3.1.1, a Verma module M(λ) has at most two integrable
quotients: L(λ) and V (λ) such that V (λ)/L(λ − β) = L(λ).

4.4.. Proposition. Let N be an integrable quotient of an atypical Verma module M(λ).

(i) DSx (N ) ∼= Lgx (λ|hx )
⊕s , where s = 1 if N = L(λ) and s = 0 or s = 2 otherwise.

(ii) Let (λ, β) = 0 for an isotropic simple root β. Then

DSx (N ) ∼= Lgx (λ|hx )
⊕s where

⎧⎨
⎩
s = 1 if N = L(λ),

s = 0 if x ∈ g−β, N �= L(λ),

s = 2 if x ∈ gβ, N �= L(λ).

Proof. By 3.1, M(λ) = M�′(λ′), where (λ′, α) = 0 for some isotropic α ∈ �′. Thus
for (i) we can assume that (λ, β) = 0 for an isotropic simple root β. By above, we have
DSx (N ) = DSy(N ), where y in gβ or in g−β . Therefore (i) is reduced to (ii). Let us
prove (ii).

By Proposition 6.4 DSx (N ) is gx -integrable (where gx = sl(1)n ), so completely re-
ducible. Let L ′ be a simple submodule of DSx (N ). By Lemma 4.2 there exists a weight
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μ in N such that μ|hx is the highest weight of L
′ and (μ, β) = 0, (μ + ρ�,μ + ρ�) =

(λ + ρ�, λ + ρ�). Set ν := λ − μ. Then

(ν, β) = 0, (λ + ρ�, ν) + (λ + ρ� − ν, ν) = 0

and ν ∈ Z≥0� that is ν ∈ Z≥0�x + Zβ.
Since N is integrable and (λ, β) = 0, we get (λ, α) ≥ 0 for each α ∈ �. Thus

(λ + ρ�, ν) ≥ 0 and so (λ + ρ� − ν, ν) ≤ 0.
Since L ′ is gx -integrable and ν ∈ Z≥0�x + Zβ, one has (λ + ρ − ν, ν) ≥ 0 and the

equality holds if and only if ν ∈ Zβ. Therefore, ν ∈ Zβ. Since λ − ν is a weight of N ,
one has ν ∈ {0, β}. Hence,

DSx (N ) = Lgx (λ|hx )
⊕s, where s := dim DSx (Nλ ⊕ Nλ−β).

Note that N ′ := Nλ ⊕ Nλ−β is a module over a copy of sl(1|1) generated by g±β (one
has x ∈ sl(1|1)). If N = L(λ), then N ′ is a trivial sl(1|1)-module; and if N/L(λ−β) =
L(λ), then N ′ is a Verma sl(1|1)-module of highest weight zero. The assertion follows.
��

4.5.. Corollary. Let L ∈ Fk be an irreduciblemodule. Then DSx (L) = 0 if and only if L
is typical. For atypical L, DSx (L) is integrable sl(1)n−1-module and DSx (L) ∼= DSx (L ′)
if and only L and L ′ lie in the same block.

Proof. Retain notation of Theorem 2.5.4. If L j , L j+1 are simple objects in an atypical
block B and j ≥ 0 (resp. j < −1), then there exists a Verma module M(λ) such that its
maximal integrable quotient V (λ) such that V (λ)/L j ∼= L j+1 (resp., V (λ)/L j+1 ∼= L j ).
FromProposition 4.4, we get DSx (L j ) ∼= DSx (L j+1), so DSx (L) is a non-zero invariant
of an atypical block.

Let us show that this invariant separates blocks. Fix a set of simple roots � and take
x ∈ g−α2 . Let λ# ∈ hx be the highest weight of DSx (L), DSx (L ′). Let us show that
L , L ′ are in the same block. Indeed, each block contains a unique�-singular irreducible
module. Thus we can (and will) assume that L , L ′ are �-singular. Let L = L(λ), L ′ =
L(λ′). One has λ# = λ|hx = λ′|hx . Since λ, λ′ are �-singular, λ = λ′, that is L ∼= L ′ as
required. ��

5. Modules Over Simple Affine Vertex Superalgebras

In this section

g = Cd ⊕ CK ⊕
⊕
n∈Z

ġ ⊗ tn

is an untwisted affine Lie superalgebra, i.e. the affinization of a finite-dimensional Kac–
Moody Lie superalgebra ġ and k �= −h∨. Here d ∈ h is the standard element ([d, xts] =
sxts for x ∈ ġ) and g = [g, g] ⊕ Cd.
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5.1. Definitions. Recall that a [g, g]-module (resp., g-module) N is called restricted if
for every a ∈ ġ, v ∈ N there exists n such that (atm)v = 0 for eachm > n. A particular
case of the restricted g-modules are the bounded modules, i.e. the modules where d acts
diagonally with integral eigenvalues bounded from above; as before, denote by Ntop

the eigenspace with the maximal eigenvalue. A bounded module N is called almost
irreducible if any nontrivial submodule of N has a non-zero intersection with Ntop.

Let N be a restricted [g, g]-module of level k with k �= −h∨. The Sugawara construc-
tion equips N with an action of the Virasoro algebra {Ln}n∈Z, see [13], 12.8 for details.
Moreover, the [g, g]-module structure on N can be extended to a g-module structure by
setting d|N := −L0|N .

For a restricted g-module the action of L0 and the Casimir element � are related
by the formula � = 2(K + h∨)(d + L0). Therefore, the above procedure assigns to a
restricted [g, g]-module of level k �= −h∨ a restricted g-module with the zero action of
the Casimir operator.

5.2. The subalgebra g#. Recall that (for affine g) the g0-integrable modules exist only
at level zero or in the case when the Dynkin diagram of g0 is connected, see [15]. We
consider the integrability with respect to the “largest affine subalgebra” of g0, see below.

Recall that ġ0 is a reductive Lie algebra and it can be decomposed as ġ0 = ġ# × ṫ,
where ġ# is a simple Lie algebra (the “largest part” of ġ0) and t is a reductive Lie algebra:

for ġ = sl(m|n), osp(m|n) with n ≥ m one has ġ# = sln, spn respectively;
for ġ = osp(m|n) with m > n one has ġ# = som ;
for the exceptional Lie superalgebras F(4),G(3) one has ġ# = B3,G2 respectively;

for D(2, 1, a) we have ġ0 = A1 × A1 × A1 with the corresponding roots α1, α2, α3

subject to the relation ||α1||2 : ||α2||2 : ||α3||2 = 1 : a : (−a − 1); we take ġ# = A1,
which corresponds any copy of A1 if a �∈ Q and the copy with the root αi (i ∈ {1, 2, 3})
such that |||αi ||2| is maximal (see [10], 6.1).

We have a natural embedding of the affine algebra g# (which is the affinization of
ġ#) to g0.

5.3. Modules over affine vertex superalgebras. Let V k(g) be the affine vertex algebra
and Vk(g) be its simple quotient.

There is a natural equivalence between the categories of V k(g)-modules and the
restricted [g, g]-modules of level k if k �= −h∨, see [6], Thm. 2.4.3.

If g is a Lie algebra and k �= 0 is such that Vk(g) is [g, g]-integrable, then the Vk(g)-
modules correspond to the integrable [g, g]-modules, see [6], Thm. 3.1.3 and [4], Thm.
3.7.

5.3.1. Theorem. If Vk(g) is integrable as a g#-module and k �= 0, then the Vk(g)-
modules are the restricted [g, g]-modules of level k which are integrable over g#. As g#-
modules these modules are direct sums of irreducible integrable highest weight modules.

The V0(g)-modules are trivial.

5.3.2. Remark. Normalize the non-degenerate bilinear form by the condition (α, α) =
2, where α is the longest root in ġ#. Then Vk(g) is integrable over g# if and only if k is
a non-negative integer.
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5.3.3. Using Sect. 5.1 we obtain the following corollary.
Corollary. For g = sl(1|n)(1) and a positive integer k, the category of finitely

generated Vk(g)-modules with finite-dimensional weight spaces is the full subcategory
of Fk whose objects are annihilated by the Casimir operator.

5.4. Proof of Theorem 5.3.1. Introduce the vacuum g-module of level k:

V k := Indgġ+n+h Ck,

where Ck is the trivial ġ + n-module with K acting by k Id and d acting by zero. As a
[g, g]-module V k(g) is isomorphic to V k .

Let �0 ∈ h∗ be such that �0(K ) = 1,�0(ḣ) = �0(d) = 0. Note that V k is a ġ0-
integrable quotient of the Verma module M(k�0) and that L(k�0) is a unique simple
quotient of V k . As a [g, g]-module Vk(g) is isomorphic to L(k�0).

Recall that for a given non-degenerate bilinear form h∨ = (ρ, δ), where ρ is the
Weyl vector and δ is the minimal imaginary root.

5.4.1. Theorem. Let k �= −h∨ be such that L(k�0) is g#-integrable. Then L(k�0)

is a unique g#-integrable quotient of V k.

Proof. Let N be some non-zero integrable quotient of V k . From [10] it follows that the
character of N is given by the KW-character formula (see Sect. 4 for the cases h∨ �= 0
and for A(n, n)(1), and Sect. 6 for the remaining cases). Hence N is irreducible. ��

5.4.2. We denote by |0〉 the highest weight vector of V k (and its image in L(k�0)).
We normalize the bilinear form as in Remark 5.3.2 and fix a triangular decomposition

in ġ in such away that themaximal root θ lies in the root system of ġ#. Then α0 = δ−θ is
a simple root and (α0, α0) = 2. Let f0 be a non-zero element in g−α0 ; note that f0 ∈ g#.

5.4.3. Corollary. Let k �= −h∨ be such that L(k�0) is g#-integrable. Then L(k�0) =
V k/I , where the submodule I is generated by f k+10 |0〉.
Proof. Since L(k�0) is g#-integrable, f k+10 |0〉 is a singular vector in V k . Let I be the
submodule of V k generated by this vector. By Theorem 5.4.1, it is enough to show that
V k/I is g#-integrable. From [13], Lemmas 3.4, 3.5, it suffices to check that for each α

in the set of simple roots of g# the root spaces g±α act nilpotently on v, where v is the
image of |0〉 in V k/I . Clearly, g±α|0〉 = 0 for α �= α0 and gα0v = gk+1−α0

v = 0. The
assertion follows. ��

5.4.4. Remark. Theorem 5.4.1 and Corollary 5.4.3 hold also in the case when g is a
twisted affinization (g is any symmetrizable affine Lie superalgebra). In Corollary 5.4.3
the following change should be done if α0

2 ∈ �: f0 should be chosen in g−α0/2 and I is
generated by f 2k+10 |0〉. The proofs are the same.

5.4.5. For each a ∈ V k(g) let Y (a, z) be the corresponding vertex operator. The fol-
lowing lemma is standard (see, for example, [1], Prop. 3.4).

Lemma. Let I ⊂ V k(g) be a cyclic submodule generated by a vector a ∈ V k(g).
A V k(g)-module N is a V k(g)/I -module if and only if Y (a, z)N = 0.
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5.4.6. By [9], Thm. 3.2.1 any restricted integrable [g#, g#]-module is completely re-
ducible. Let us show that Vk(g)-modules are restricted [g, g]-modules of level k which
are integrable over [g#, g#].

Take k = 0. Then Vk(g) is one-dimensional. Hence, Vk(g)-modules are restricted
[g, g]-modules of zero level which are annihilated by [g, g].

Take k �= 0. From Lemma 5.4.5 and Corollary 5.4.3, we conclude that Vk(g)-
modules are restricted [g, g]-modules which are annihilated by Y ( f k+10 |0〉, z). Note that
Y ( f k+10 |0〉, z) ∈ V k(g#) and Vk(g#) := V k(g#)/I ′, where I ′ is the g#-submodule of
V k(g#) which is generated by f k+10 |0〉. In particular, Vk(g#) is a subalgebra of Vk(g).
By [4], Thm. 3.7, the Vk(g#)-modules are direct sums of irreducible integrable high-
est weight [g#, g#]-modules of level k. We conclude that the Vk(g)-modules are the
restricted integrable [g#, g#]-modules of level k as required. This completes the proof
of Theorem 5.3.1. ��

5.5. Integrable bounded g-modules. If g is an affineLie algebra, then, by [9], Thm. 3.2.1,
the restricted integrable [g, g]-modules are completely reducible and the irreducible ones
are highest weight modules. The situation is similar for g = osp(1|2n)(1), but is different
for other affine Lie superalgebras, see Sect. 5.6.4 below.

5.5.1. Proposition. If N is a bounded g-module which is [ġ0, ġ0]-integrable, then
Nn �= 0.

Proof. Set E := Ntop. Since E ṅ ⊂ Nn, it is enough to show that E ṅ �= 0.
Note that s := [ġ0, ġ0] is a semimple Lie algebra. Note that E is a ġ-module which is

s-integrable. Therefore E is a direct sum of finite-dimensional s-modules. In particular,
ṅ0 acts locally nilpotently on E . Therefore, ṅ acts locally nilpotently on E . Let 0 =
ṅ0 ⊂ ṅ1 ⊂ . . . ⊂ ṅs = ṅ be the derived series of ṅ (ṅi = [ṅi+1, ṅi+1]). Set E(0) := E
and E(i) := E(i − 1)ṅ

i
for i = 1, . . . , s. By induction E(i) �= 0, since ni/ni−1 is a

finite-dimensional abelian Lie superalgebra which acts locally nilpotently on E(i − 1).
Hence, E ṅ = E(s) �= 0 as required. ��

5.5.2. Remark. From Proposition 5.5.1 a bounded irreducible g-module which is in-
tegrable over [ġ0, ġ0] is a highest weight module. In particular, a bounded irreducible
sl(1|n)(1)-module which is sl(1)n -integrable is an irreducible highest weight module.

5.6. Bounded Vk(g)-modules. A V k(g)-module is called positive energy (see [3]) if it
is Z-graded [g, g]-module of level k: M = ⊕m∈ZMm with (atn)Mm ⊂ Mm−n with the
grading bounded from below. For such a module we extend the [g, g]-action to the g-
action by dv := −mv for v ∈ Mm . Thus the positive energy V k(g)-modules correspond
to the bounded g-modules of level k. (In [4] a similar object is called an admissible
module; in [6] all modules are assumed to be of this form.)

A positive energy V k(g)-module is ordinary (see [4]) if the grading is given by
the action of L0 and the homogeneous components are finite-dimensional. Thus the
ordinary modules are the bounded g-modules of level k with the zero action of the
Casimir operator.

5.6.1. Let V be a vertex operator algebra and A(V ) be its Zhu algebra.
Thm. 2.30 in [3] (see also Thm. 2.2.1 in [18]) for the trivial twisting gives
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Proposition. The restriction functor N �→ Ntop is a functor from the category of
positive energy V -modules up to a shift of grading to the category of A(V )-modules,
which is inverse to the induction functor E �→ V (E) from the A(V )-modules to the full
subcategory of almost irreducible V -modules (up to a shift of grading). In particular,
these functors establish a bijective correspondence between the irreducible positive
energy V -modules and the irreducible A(V )-modules.

For V = V k(g) the positive energy V -modules correspond to the bounded g-modules
of level k; the ordinary (see [4]) modules correspond to the bounded modules of level k
with the zero action of the Casimir element.

5.6.2. As in [6] Thm. 3.1.1, 3.1.2, the Zhu algebra of V k(g) is U(ġ) and the Zhu
algebra of Vk(g) isU(g)/(ek+1θ ), where f0 = eθ t−1 (eθ ∈ ġθ ). This implies the following
corollary.

Corollary. Let k be a non-negative integer and let E be a ġ-module satisfying
ek+1θ E = 0. There exists a unique almost irreducible g#-integrable g-module N =
⊕∞

i=0N
i of level k such that N i is the i th eigenspace of −d and N 0 = E. This module

has a natural structure of Vk-module. Moreover, N is irreducible if and only if E is
irreducible.

5.6.3. If g is such that the Dynkin diagram of g0 is connected, then [ġ0, ġ0] = ġ#.
Combining Lemma 5.5.1 and Theorem 5.3.1 we obtain the following corollary.

Corollary. Let g be such that the Dynkin diagram of g0 is connected and k be a
non-negative integer. Then a bounded Vk(g)-module contains a singular vector (v such
that nv = 0). In particular, the irreducible bounded Vk(g)-modules are the g#-integrable
highest weight g-modules of level k.

5.6.4. Below we give an example of a cyclic bounded sl(1|2)(1)-module which is sl(1)2 -
integrable, but is not sl(1|2)(1)-integrable (the action of h is not locally finite).

Consider the usual Z-grading on sl(1|2): ġ = ġ−1 ⊕ ġ0 ⊕ ġ1, where ġ0 = ġ0 =
sl2 × Cz and ġ±1 are irreducible sl2-modules. Let f, h, e be the standard generators of
sl2. Consider the triangular decomposition of g with n = Ce + ġ1 +

∑∞
s=1 ġt

s .
ViewC[z] as a module over p := h+ ġ0 +n by the trivial action ofCd + ġ0 +n and K

acting by I d. Consider the induced module M := I ndgpC[z]. Then M has level 1 and
Mtop is a free C[z]-module. As an sl2-module Mtop is a direct sum of countably many
copies of �g−1, so e2Mtop = 0.

From Corollary 5.6.2 it follows that M has an almost irreducible quotient N which
is sl(1)2 -integrable and Ntop = Mtop. Since z acts freely on Mtop, N is not sl(1|n)(1)-
integrable. Note that M is bounded and cyclic (generated by the image of 1 ∈ C[z]), so
N is also bounded and cyclic. It is not hard to see that the Casimir acts freely on N .

5.6.5. Remark. The example in Sect. 5.6.4 gives a cyclic g-bounded g#-integrable mod-
ule of level 1 with a free action of the Casimir operator. In the light of Theorem 5.3.1, this
module is a cyclic almost irreducible positive energy V1(g)-module with a free action
of L0 (in particular, this module is not ordinary, see Sect. 5.6 for definition).

5.6.6. Let us show that if theDynkin diagramofg0 is not connected, then for sufficiently
large integral k there exists an irreducible bounded Vk(g)-module which is not a highest
weight module.
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Let g be such that the Dynkin diagram of g0 is not connected. In this case ġ0 = ġ#×t,
where t is semisimple. Take any irreducible t-module E and view it as ġ0-module via

the trivial action of ġ#. Set E ′ := Indġġ0
E . As ġ#-module E ′ is a direct sum of copies

of �ġ1, so there exists m such that emθ E ′ = 0. Let L be an irreducible quotient of E ′.
By Corollary 5.6.2, for each integral k ≥ m − 1 there exists an irreducible bounded
g#-integrable g-module N of level k such that Ntop = L . Note that E is an t-quotient
of L . In particular, h acts locally finitely on N if and only if the Cartan algebra of t acts
locally finitely on E .

6. Appendix: The Functor DSx

In this section we assume that g is a Kac–Moody Lie superalgebra.
Take x ∈ g1 satisfying [x, x] = 0. The following construction is due to Duflo and

Serganova, see [5]. For a g-module N introduce

DSx (N ) := KerN x/ImN x .

Let gx be the centralizer of x in g. We view DSx (N ) as a module over gx . Note
that [x, g] ⊂ gx acts trivially on DSx (N ) and that gx := DSx (g) = gx/[x, g] is a Lie
superalgebra. Thus, DSx (N ) is a gx -module and DSx is a functor from the category of
g-modules to the category of gx -modules.

In [5,16] the functor DSx was studied for finite-dimensional g. However, certain
properties can be easily generalized to the affine case. In particular, DSx is a tensor
functor, i.e. there is a canonical isomorphism DSx (N1 ⊗ N2) � DSx (N1) ⊗ DSx (N2).

6.1.. Proposition. Let g = ġ(1) be the affinization of a Lie superalgebra ġ and assume
that x ∈ ġ. If ġx �= 0, then gx is the affinization of ġx , If ġx = 0 then gx is the abelian
two-dimensional Lie algebra generated by K and d.

Proof. Since

g = Cd ⊕ CK ⊕
⊕
n∈Z

ġ ⊗ tn

and ġ ⊗ tn is isomorphic to the adjoint representation of ġ for every n, the statement
follows. ��

6.2.. Let g = ġ(1) be the affinization of a Lie superalgebra ġ and assume that x ∈ ġ. Let
�̇ (resp., �) be the set of simple roots of ġ (resp., g).

Let β1, . . . βr ∈ �̇ be a set of mutually orthogonal isotopic simple roots, fix non-zero
root vectors xi ∈ gβi for all i = 1, . . . , r . Let x := x1 + · · · + xr . It is shown in [5] that
ġx is a finite-dimensional Kac–Moody superalgebra with roots

�̇⊥ := {α ∈ �̇| (α, βi ) = 0, α �= ±βi i = 1, . . . , r}
and the Cartan subalgebra

hx := (β⊥
1 ∩ · · · ∩ β⊥

r )/(Chβ1 ⊕ · · · ⊕ Chβr ).
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Assume that �̇⊥ is not empty, then �̇⊥ is the root system of the Lie superalgebra ġx . One
can choose a set of simple roots �̇x such that �+(�̇x ) = �+ ∩ �̇⊥. Let gx ⊂ g be the
affinization of ġx : the affine Lie superalgebra with a set of simple roots �x containing
�̇x such that �+(�x ) ⊂ �+.

For example, if ġ = A(m|n), B(m|n) or D(m|n), then ġx = A(m − r |n− r), B(m −
r |n− r) or D(m − r |n− r). If ġ = C(n), G3 or F4, then r = 1 and ġx is the Lie algebra
of type Cn−1, A1 and A2 respectively. If ġ = D(2, 1;α), then r = 1 and gx = C.

6.3.. Proposition. Let g = ġ(1) be the affinization of a Lie superalgebra ġ and assume
that x ∈ ġ. Let x ∈ ġ and N be a restricted g-module. If the Casimir element �g acts
on a N by a scalar C, then the Casimir element �gx acts on the gx -module DSx (N ) by
the same scalar C.

Proof. Let us write the Casimir element �g in the following form (see [13], (12.8.3))

�g = 2(h∨ + K )d + �0 + 2
∞∑
i=1

�(i),

where �(i) = ∑
v jv

j for some basis {v j } in ġ ⊗ t−i and the dual basis {v j } in ġ ⊗ t i .
Similarly we have

�gx = 2(h∨ + K )d + �0 + 2
∞∑
i=1

�x (i).

We claim that �x (i) ≡ �(i)(mod[x,U (g)]). Indeed, we use the decomposition ġ =
ġx ⊕ m, where m is a free C[x]-module. Using a suitable choice of bases we can write

�(i) = �x (i) +
∑

usu
s

for the pair of dual bases {us} in m ⊗ t−i and {us} in m ⊗ t i . If i > 0, then
∑

usus

is x-invariant element via the embedding m ⊗ m ↪→ U (g). If i = 0, then
∑

usus is
x-invariant element via the embedding S2(m) ↪→ U (g). Since m ⊗ m and S2(m) are
free C[x]-modules, we obtain in both cases that

∑
usus lies in the image of ad x .

Now the statement follows from the fact that [x,U (g)] annihilates DSx (N ). ��

6.4.. Proposition. If N is an integrable g-module, then DSx (N ) is an integrable gx -
module. Moreover, if x = w(y) for some element y of the Weyl group of g0, then gx

∼= gy
and DSx (N ) ∼= DSy(N ).

Proof. The first statement is obvious and the second is an immediate consequence of
the identities gx = w(gy), DSx (N ) = w(DSy(N )). ��
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