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1. Introduction

In the last few years there has been an enormous amount of work by physicists con-
cerning entanglement entropies in QFT, motivated by the connections with condensed
matter physics, black holes, etc.; see the references in [12] for a partial list of references.
However, some very basic mathematical questions remain open. For example, most of the
entropies computed in the physics literature are infinite, so the singularity structures,
and sometimes the cut off independent quantities, are of most interest. Often, the mutual
information is argued to be finite based on heuristic physical arguments, and one can
derive the singularities of the entropies from the mutual information by taking singular
limits. But it is not even clear that such mutual information, which is well defined as a
special case of Araki’s relative entropy, is indeed finite.

In this paper we begin to address some of these fundamental mathematical questions
motivated by the physicists’ work on entropy. For related works, see [12], [19] and [25].
Unlike the main focus in [12], the mutual information considered in our paper can be
computed explicitly in many cases and satisfies many conditions, but not all, proposed
by physicists such as those in [8]. Our project is strongly motivated by Edward Witten’s
questions, in particular his question to make physicists’ entropy computations rigorous.
In this paper we focus on the Chiral CFT in two dimensions, where the results we
have obtained are most explicit and have interesting connections to subfactor theory,
even though some of our results, such as Theorem 4.4, do not depend on conformal
symmetries and apply to more general QFT. The main results are:

1) Theorem 3.18: Exact computation of the mutual information (through the rela-
tive entropy as defined by Araki for general states on von Neumann algebras) for free
fermions. Note that this was not even known to be finite, for example the main quantity
defined in [12] is smaller and does not seem to verify the conditions in the physical lit-
erature. Our proof uses Lieb’s convexity and the theory of singular integrals; to the best
of our knowledge, by Theorem 3.18, Theorem 4.2 and examples in Section 4.4, this is
the first time that such relative entropies are computed in a mathematical rigorous way.
The results verify earlier computations by physicists based on heuristic arguments, such
as P. Calabrese and J. Cardy in [5] and H. Casini and M. Huerta in [9].

In particular, for the free chiral net A, associated with r fermions, and two intervals
A = (a1,b1), B = (ag,b2) of the real line, where b; < as, the mutual information
associated with A, B is

F(A,B) = —% Inn
where n = G1=a2)(baza1) 44y tio of A, B, 0 1
= —a(be—ap) 18 the cross ratio of A, B, 0 <7 < 1.
2) Tt follows from 1) and the monotonicity of the relative entropy that any chiral
CFT in two dimensions that embeds into free fermions, and their finite index extensions,

verify most of the conditions (not all, see Section 4.2.1) discussed for example in [8], see
Theorem 4.1. This includes a large family of chiral CFTs. Much more can be obtained if
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the embedding has finite index as in Theorem 4.2. In this case, we also verify a proposal
(cf. (1) of Theorem 4.4) in [8] about an entropy formula related to a derivation of the
¢ theorem. Theorem 4.2 also connects relative entropy and index of subfactors in an
interesting and unexpected way. There is one bit of surprise: it is usually postulated that
the mutual information of a pure state such as vacuum state for complementary regions
should be the same. But in the Chiral case this is not true, and the violation is measured
by global dimension of the chiral CFT as will be seen in Section 4.2.1.

The physical meaning of the last part of (2) is not clear to us. The violation, which
is in some sense proportional to the logarithm of global index, also turns out to be
what is called topological entanglement entropy (cf. Remark 4.3). In [13] the authors
discuss chiral theories where entanglement entropy cannot be defined with the expected
properties due to anomalies. The relation to our work is not clear. On the other hand,
when considering full CFT, one does have global dimension equal to 1, and it remains
an interesting question to investigate entropies in the full CFT framework.

The rest of this paper is structured as follows. After a preliminary section on von
Neumann entropy, Araki’s relative entropy, graded nets and subnets, we consider the
computation of mutual information in §3. In §4, we derive many of the properties of the
mutual information in the vacuum state for all Chiral CFT which are embedded into
free fermions, and their extensions, from the results of §3. In the last section we supply
with two families of chiral CFT where our main results apply.

2. Preliminaries
2.1. Entropy and relative entropy

von Neumann entropy is the quantity associated with a density matrix p on a Hilbert
space H by

S(p) = —Tr(plogp) .

Von Neumann entropy can be viewed as a measure of the lack of information about a
system to which one has ascribed the state. This interpretation is in accord for instance
with the facts that S(p) > 0 and that a pure state p = |¥)(¥| has vanishing von Neumann
entropy.

A related notion is that of the relative entropy. It is defined for two density matrices

p;p" by
S(p,p') = Tr(plogp — plogp') . (1)

Like S(p), S(p, p') is non-negative, and can be infinite.
A generalization of the relative entropy in the context of von Neumann algebras of
arbitrary type was found by Araki [2] and is formulated using modular theory. Given two
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faithful, normal states w,w’ on a von Neumann algebra A in standard form, we choose the
vector representatives in the natural cone P¥, called |2),[€2’). The anti-linear operator
Swwal) =a*|Q), a € A, is closable and one considers again the polar decomposition
of its closure 5’%@/ = JAi{i,.

Pfand A, = S5 S, is the relative modular operator w.r.t. [©2), Q). Of course, if

Here J is the modular conjugation of A associated with
w=w' then A, = A, . is the usual modular operator.
A related object is the Connes cocycle (Radon—Nikodym derivative) defined as [Dw :

Duw')y = Afj’wAz’w, € A, where 9 is an arbitrary auxiliary faithful normal state on A’.

Definition 2.1. The relative entropy w.r.t. w and w’ is defined by

. no_
S(w,w') = (Q]log Ay o ) = lim w([Dw : Pw Je —1)

t—0 it

: (2)

S is extended to positive linear functionals that are not necessarily normalized by the
formula S(Aw, Nw') = AS(w,w’) + Alog(A/X), where A\, ' > 0 and w, w’ are normalized.
If ' is not normal, then one sets S(w,w’) = .

For a type I algebra A = B(H), states w,w’ correspond to density matrices p,p'.
The square root of the relative modular operator Ai/ i, corresponds to p'/? @ p/=1/?
in the standard representation of A on H ® H; namely H ® H is identified with the
Hilbert—Schmidt operators HS(H) with the left/right multiplication of A/A’. In this
representation, w corresponds to the vector state |Q2) = p'/? € H ® H, and the abstract

definition of the relative entropy in (2) becomes

(Qlog A Q) = Tryp? (logp® 1 — 1®logp') p2 = Tryy(plogp — plogp) . (3)

As another example, let us consider a bi-partite system with Hilbert space Ha ® Hp
and observable algebra A = B(H4) ® B(Hp). A normal state wap on A corresponds to
a density matrix pap. One calls p4 = Try,pap the “reduced density matrix”, which
defines a state wa on B(H ) (and similarly for system B). The mutual information is
given in our example system by

S(pap,pa @ pp) = S(pa) + S(pp) = S(panr) - (4)

For tri-partite system with Hilbert space Ha ® Hp ® Hc and observable algebra
A=B(Ha) @ B(Hp)® B(Hc), we have the following strong subadditivity (cf. [17]):

S(pap) + S(pac) — S(pa) — S(papc) >0 . (5)

A list of properties of relative entropies that will be used later can be found in [24] (cf.
Th. 5.3, Th. 5.15 and Cor. 5.12 [24]):
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Theorem 2.2. (1) Let M be a von Neumann algebra and My a von Neumann subalgebra
of M. Assume that there exists a faithful normal conditional expectation E of M onto
M. If ¢ and w are states of My and M, respectively, then S(w,v - E) = S(w| My, ) +
S(w,w - E);

(2) Let be M; an increasing net of von Neumann subalgebras of M with the property
(U; M;)" = M. Then S(w1 | M;,ws | M;) converges to S(wi,ws) where wy,ws are two
normal states on M ;

(3) Let w and wy be two normal states on a von Neumann algebra M. If wq > pw,
then S(w,w;) <Inp~t;

(4) Let w and ¢ be two normal states on a von Neumann algebra M, and denote by w1
and ¢1 the restrictions of w and ¢ to a von Neumann subalgebra My C M respectively.

Then S(wi,¢1) < S(w, ¢).

For type III factors, the von Neumann entropy is always infinite, but we shall see
that in many cases mutual information is finite. By taking singular limits, we can also
explore the singularities of von Neumann entropy from mutual information (cf. 4.2 for
an example) which is important from physicists’ point of view. The formal properties of
von Neumann entropies are useful in proving properties of mutual information, see the
proof of Th. 4.1.

2.2. Graded nets and subnets

This section is contained in [7]. We refer to [7] for more details and proofs.

We shall denote by Méb the Mdébius group, which is isomorphic to SL(2,R)/Zy and
acts naturally and faithfully on the circle S*.

By an interval of S' we mean, as usual, a non-empty, non-dense, open, connected
subset of S* and we denote by Z the set of all intervals. If I € Z, then also I’ € T where
I’ is the interior of the complement of I. Intervals are disjoint if their closure are disjoint.
We will denote by PZ the set which consists of disjoint union of intervals.

A net A of von Neuwmann algebras on S' is a map

TeT— Al

from the set of intervals to the set of von Neumann algebras on a (fixed) Hilbert space
‘H which verifies the isotony property:

L Ccl,= A(Il) - A(IQ)

where I1,I> € T.
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A Mébius covariant net A of von Neumann algebras on S* is a net of von Neumann
algebras on S! such that the following properties 1-4 hold:

1. MOBIUS COVARIANCE: There is a strongly continuous unitary representation U of
Mob on H such that

U(g)ADU(g)* = A(gl), geMsb, I€T.

2. POSITIVITY OF THE ENERGY: The generator of the rotation one-parameter subgroup
0 — U(rot(0)) (conformal Hamiltonian) is positive, namely U is a positive energy
representation.

3. EXISTENCE AND UNIQUENESS OF THE VACUUM There exists a unit U-invariant vec-
tor Q (vacuum vector), unique up to a phase, and $Q is cyclic for the von Neumann
algebra V ez A(I).

A Zjy-grading on A is an involutive automorphism g = AdI' of A, such that ' = 1,
rQ=QrAIr = A(I) for all I.

Given the grading g, an element z of A4 such that g(x) = +x is called homogeneous,
indeed a Bose or Fermi element according to the £ alternative, or simply even or odd
elements. We shall say that the degree dx of the homogeneous element x is 0 in the Bose
case and 1 in the Fermi case.

A Mébius covariant graded net A on St is a Zo-graded Mobius covariant net satisfying
graded locality, namely a Mdbius covariant net of von Neumann algebras on S! such that
the following holds:

4. GRADED LOCALITY: There exists a grading automorphism g of A such that, if I; and
I are disjoint intervals,

[m,y] =0, x¢€ A<I1),y € A(IQ) .

Here [z, y] is the graded commutator with respect to the grading automorphism g defined
as follows: if x,y are homogeneous then

Ox-0y

[z,y] = zy — (=1)"Wyx

and, for the general elements z, y, it is extended by linearity. When the grading is trivial,
i.e., when I' = 1, we shall refer to A as a local net.

Note the Bose subnet Ay, namely the g-fixed point subnet A48 of degree zero elements,
is local.

Moreover, setting
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we have that the unitary Z fixes 2 and
A(I'Y C ZA(D) Z*
(twisted locality w.r.t. Z).

Theorem 2.3. Let A be a Mobius covariant Fermi net on S'. Then € is cyclic and
separating for each von Neumann algebra A(I), I € T.

If I € Z, we shall denote by A; the one parameter subgroup of Méb of “dilation
associated with 1.

Theorem 2.4. Let I € T and Ay, J; be the modular operator and the modular conjugation
of (A(I),Q). Then we have:

(1):
A =U(A(=27t)), t €R, (6)
(ii): U extends to an (anti- )unitary representation of Mob x Zy determined by
U(r)) = ZJ;, 1 €1,
acting covariantly on A, namely
U(g)ADU(g)*=A(gI) geMébxZy I €T .
Here rp: St — S' is the reflection mapping I onto I'.
Corollary 2.5. (Additivity) Let I and I; be intervals with I C U;I;. Then A(I) C V;A(I;).
Theorem 2.6. For every I € I, we have:
Al =ZAI)Z* .

In the following corollary, the grading and the graded commutator is considered on
B(H) w.r.t. AdT.

Corollary 2.7. A(I') = {z € B(H): [z,y] =0Vy e A(I)}.

Let now G be a simply connected compact Lie group. By Th. 3.2 of [11], the vacuum
positive energy representation of the loop group LG (cf. [26]) at level k gives rise to
an irreducible local net denoted by Ag,. By Th. 3.3 of [11], every irreducible positive
energy representation of the loop group LG at level k gives rise to an irreducible covariant
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representation of Ag,. When no confusion arises we will write Ag, simply as G as in
the last section 4.4.

Next we recall some definitions from [14]. Recall that Z denotes the set of intervals
of 8. Let I, I, € T. We say that I, I, are disjoint if I; N Iy = @), where T is the closure
of I in S'. Denote by Z, the set of unions of disjoint 2 elements in Z. Let A be a graded
Mobius covariant net. For £ = [y Uy € Iy, let I3U I be the interior of the complement
of I UI, in S* where I3, I, are disjoint intervals. Let

A(E) = A(I,) V A(LL), A(E):= (A(I3)V A(Ly)).

Note that A(E) ¢ ZA(E)Z~', and its index will be denoted by p4 and is called the
pu-index of A or global index of A. This generalizes the usual p-index of A when A is
local.

Let A be a graded Mébius net. By a Mdbius subnet (cf. [18]) we shall mean a map

e - B(I)c Al)

that associates to each interval I € 7 a von Neumann subalgebra B(I) of A(I), which is
isotonic

B(Il) C A(IQ),Il C I27
and Mobius covariant with respect to the representation U, namely

U(g)B(I)U(g)" = B(gl)

for all g € Méb and I € Z, and we also require that AdI" preserves B as a set. Note that by
Lemma 13 of [18] for each I € 7 there exists a conditional expectation E : A(I) — B(I)
such that E; preserves the vector state given by the vacuum of A. Let P be the projection
onto the closed subspace spanned by B(I)S2.

Definition 2.8. Let A be a graded M&bius covariant net and B C 4 a subnet. We say
B C Ais of finite index if B(I) C A(I)is of finite index for some (and hence all) interval I.
The index will be denoted by [A : B].

Assume that B C A has finite index and [A : B] = A7!. Let I; and I3 be two intervals
obtained from an interval I by removing an interior point, and let J; C I5. By [20] there
are isometries wy € A(I1),v1 € B(I1) such that a = A"'E[(aw})w;,Va € A(I). Let
e; = wiwj. Then

Pei P = AP, ejvivie; = deq, A_lvi‘elvl =1.

Similarly we have wy € A(Jy),v2 € B(J1) and es = wowj which verify same relations
as above. e; € A([1),e2 € A(Jy) are known as Jones projections for B(I1) C A(I;) and
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B(J1) C A(Jy) respectively. They are related by an inner automorphism of B(T), which
is the following Lemma:

Lemma 2.9. Let u = A" E;(wyw}) € B(I). Then u is unitary and we have ey = uequ*.
Proof. First we have w; = uws and so e; = uesu™. Now compute
uu® = N2 Ep(wiw3) Er(wow}) = N 2B (wiw} Er(wow?)) = X Er(wiw}) =1,

where in the third equality we have used that w} Er(wow?) = Awj and in the last equality
that E[(el) =\ O

The following is proved in exactly the same way as in [14]:

Lemma 2.10. If B C A is a Mébius subnet such that 4 is finite and [A : B] < co. Then
ps = palA: BJ%.

3. Mutual information in the case of free fermions
3.1. Basic representation of LU, and free fermion net

Let H denote the Hilbert space L?(S*;C") of square-summable C"-valued functions
on the circle. The group LU, of smooth maps S* — U,., with U, the unitary group on C”,
acts on H multiplication operators.

Let us decompose H = Hy & H_, where

H, = {functions whose negative Fourier coefficients vanish} .

We denote by p the Hardy projection from H onto H,.

Denote by U,es(H) the group consisting of unitary operator A on H such that the
commutator [p, A] is a Hilbert-Schmidt operator. Denote by Diff*(S') the group of
orientation preserving diffeomorphism of the circle. It follows from Proposition 6.3.1 and
Proposition 6.8.2 in [26] that LU, and Diff*(S') are subgroups of U,es(H). The basic
representation of LU, is the representation on Fermionic Fock space F), = A(pH)QA((1—
p)H)* as defined in §10.6 of [26]. For more details, see [26] or [30]. Such a representation
gives rise to a graded net as follows. Denote by .A,.(I) the von Neumann algebra generated
by c(€)’s, with £ € L2(I,C"). Here c(€) = a(§) + a(£)* and a(€) is the creation operator
defined as in Chapter 1 of [30]. Let Z : F,, — F, be the Klein transformation given by
multiplication by 1 on even forms and by ¢ on odd forms. It follows from §15 of chapter
2 of [30] that A, is a graded Mobius covariant net, and A, will be called the net of r
free fermions. It follows from Prop. 1.3.2 of [29] that A, is strongly additive and §15 of
chapter 2 of [30] that u4, = 1.

Fix I; € PZ,i=1,2, and I, I, disjoint, that is I, NI, =0, and [ = I, U I,.
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For bounded operators A, B : Fj, — F),, we define AT =TAl', A~ = A— A", where
I' is an operator on F}, given by multiplication by 1 on even forms and —1 on odd forms.
An operator A is called even (resp. odd) if A = AT (resp. A= A7).

We define a graded tensor product ®, by the following formula:

ARyB=A® BT+ Al'® B~ ,

where A ®; B is considered as an operator on Hilbert space tensor product F}, ® F),.
Let Ay, Ay, By, By be even or odd operators, i.e. 'A;I' = A; or —A;, I'B;,I' = B; or
—B;, i =1,2. Define the degree d(A) =0 or 1 if A is even or odd.
It follows from the definition of ®5 that:

(A1 ® By)*" = (—l)d(Al)d(Bl)AT ®2 BT,
(A1 ® By) - (Ay @3 By) = (—1)4BV4A2) A4, Ay @9 B B, .

For A € A.(I1), B € A,(I2), we define
w(A®y B) =(Q,ABQ)
where 2 is the vacuum vector in Fj,.

Lemma 3.1. (1) w extends to a normal faithful state on the von Neumann algebra { A®, B,
A€ A.(I), B € A.(I2)}" (denoted by A,.(I1)®2.A,(I3)) on F, ® F,. There exists a
unitary operator Uy : Fp, — F, ® F, such that:

U,ABUY = A®y B for every Ae A.(I), Be A.(I) .

(2) The unitary operator Uy in (1) can be chosen such that Uy (I @ T)U; = T, hence
Ui (B(F,) ® 1)Uy commutes with ZA,(I5)Z~" and therefore is AdT invariant as a set
and lies in A, (1) when Iy is an interval.

Proof. (1) is proved in Prop. 2.3.1 of [31]. We note that by (2) the state wq ®2ws defined
in Definition 3.3 is a normal state on type III factor A, (I1) V A, (I2), and hence can
be represented by a unique vector v in the positive cone associated with vector state
w on Fj,. Since both w; ®3 wp and w are AdI' invariant, it follows that AdI' preserves
the positive cone, and w; ®9 ws is also represented by I'Y). By uniqueness we must have
' = 4. Now U; in (2) is uniquely fixed by the condition U1y = Q ® Q, and it follows
that UfT @ 'U; =T, hence U{B(F,) ® 1U; is AdT invariant as a set, graded commuting
with A, (I2) and therefore lies in A, (I5) when I5 is an interval by Corollary 2.7. O

Remark 3.2. If B C A is a graded subnet, the proof of (3) then applies to B, and for
any interval I, by choosing Iy, C I5,, C I with U211, = I, we can get an increasing
sequence of AdI" invariant (as a set) finite dimensional type I factors B,, such that U, B,
is strongly dense in B([).
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3.2. Mutual information for free fermions
Let I1,I5 € PZ and I = I; N I, as above.
Definition 3.3. We set
w1 ®wa(AB)=(Q®Q, A®:BQ®QD), VAe A.(I1), Be A (L) .

By (1) Lemma 3.1 w; ®ow> defines a normal state on A,.(I). We note that the restriction
of w1 ®a wy to A,.(I7) and A, (1) is the same as w.

The mutual information we will compute is S(w, w; ®2w2). When we wish to emphasize
the underlying net, we will also write the mutual information as S4,.(w, w1 ®2wsz). When
B C A, is a subnet, we write Sp(w,w; ®2 ws) the mutual information for the net B
obtained by restricting w, w; ®aws from A, to B. Note that by (4) of Th. 2.2 Sp(w,w; ®2
w2) < Sa, (w, w1 @2 w2).

w on A, (I) is quasi-free state as studied by Araki in [1]. To describe this state, it is
convenient to use Cayley transform V(z) = (z —4)/(x + i), which carries the (one point
compactification of the) real line onto the circle and the upper half plane onto the unit
disk. It induces a unitary map

1

Uf(z) =n"2(x+i) 7 f(V(x))

of L?(S',C") onto L?*(R,C"). The operator U carries the Hardy space on the circle onto
the Hardy space on the real line (cf. [28]). We will use the Cayley transform to identify
intervals on the circle with one point removed to intervals on the real line. Under the
unitary transformation above, the Hardy projection on L?(S!,C") is transformed to the
Hardy projection on L?(R,C") given by:

Pia) = 35@)+ [ 5= s Ty

where the singular integral is (proportional to) the Hilbert transform.
We write the kernel of the above integral transformation as C":

1 1

Clz,y) = lé(x—y)—%m .

2

The quasi free state w is determined by

w(alf) alg)) = 9. PS).

Slightly abusing our notations, we will identify P with its kernel C' and simply write
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w(a(f) alg)) = (g,Cf).

C will be called covariance operator.
Recall I; € PI,i = 1,2, and I, I, are disjoint, that is [; NI, =, and I = I, U I,.
We assume that I = (aq,b1) U (ag,b2) U... U (an, by,) in increasing order.

3.3. Computation of mutual information in finite dimensional case

Choose finite dimensional subspaces H; of L*(I;,C,),i = 1,2, and denote by
CAR(H;) C A(I;) the corresponding finite dimensional factors of dimensions 22dimH:
generated by a(f),f € H;. Let pi2, p1, p2 be the density matrices of the restriction
of w to CAR(H;) ® CAR(H2), CAR(H;), CAR(H>) respectively, and p; ®2 p2 of the
restriction of wy ®9 wae to CAR(H;) ®2 CAR(Hz). Our goal in this section is to compute
the relative entropy S(p12, 01 ®2 p2).

Note that since CAR(H;) is type I factor, AdI' acts on CAR(H;) by an inner
automorphism Adu,u € CAR(H;). Since Adu has order two, by suitably choosing
phase factor we can assume that u? = 1. Note that Tul’ = u® = u, so u is even,
and Tu commutes with CAR(H;). So I'u ® B~,1 ® BT generates a type I factor
(/JKF{(HQ) isomorphic to CAR(Hz), and commuting with CAR(H;) ® 1. It follows that
CAR(H,) ®2 CAR(Hy) = CAR(H;) ® C/Kl/%(Hg) Let us show that wy ®2 wse, when
restricting to CAR(H;) ® C/Xf{(Hg), is the tensor product state p; ® ph, where p1, ph
denote the restriction of w to CAR(H,), m(Hg) respectively. Since wy Q9 wy clearly
agrees with p; ® ph on A ® BT, it is sufficient to check that

w1 @2 wy(ab) = w(a)w(d), Ya € CAR(H,)®1, b=Tu®b", b~ € CAR(H,)™ .
The left-hand side of the above is
(Q, au)(Q,67Q) =0
and the right-hand side is
(Q, a){(Q,ub™Q) =0
since u is even. We also note that w restricted tof\C:Xf/{(Hg) is the same as w restricted
to CAR(Hz) under the natural isomorphism of CAR(H3) with CAR(H>).

So we have shown the analog of (4) in this graded local context:

Proposition 3.4.

S(p12,p1 @2 p2) = S(p1) + S(p2) — S(p12) -
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Now we turn to the computation of von Neumann entropy S(p1). Let p; be the
projection onto the finite dimensional subspace H; of L?*(I1,C,). p1 on CAR(H;) is
quasi free state given by covariance operator C,, = p1Cp;. Let K be the operator such
that

(1+exp(=K)) =Cp, .
Since K is self adjoint, we can choose an orthonormal basis ¥;, 1 < i < dimH; of H;

such that Kt; = \;%, where \; are real eigenvalues of K.
CAR(H,) acts on the Fermionic Fock space F(Hy). Let

K = ZAia(wi)*a(¢i) .

According to [1] and [10], the density matrix of p; (still denoted by p;1) as an operator
on F(Hy) is given by the following

p1 = cexp(—Ky) ,

where ¢! = Tr(exp(—K1)).

By a simple computation we find that Tr(exp(—Ki)) = det(1 + e X)

and

S(pl) = Tl"(pl lnp1) = TI‘((I - Cpl) 10g(1 - Cpl) + Cpl log Cpl) . (8)
Definition 3.5. Let P; be projections from L?(I,C") onto L?(I;,C"), and C; = P;CP;,i =

1,2.
Let

oc = P1 (01D0+ (1 — C) 111(1 — O))Pl — (Ol lnC’1 + (Pl — Cl) ln(P1 — Ol))+
P2(ClnC+(1-C)In(1 = C))P2 — (C2InCy + (P2 — C2) In(P2 — Cy))

and o¢, be the same as in the definition of o with C replaced by C, = pCp, if p is a
projection commuting with P;.

Denote by p the projection from L?(I,C") onto H; @& H,. By Proposition 3.4 and
equation (8) we have proved the following

Proposition 3.6.

S(p12,p1 @2 p2) = Tr(oc,) -
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3.4. Inequality from operator convexity
The proof of the following result can be found in [6] (See Th. 2.6 and Th. 4.19 of [6]):

Theorem 3.7. (1) For all operator convex functions f on R, and all orthogonal projec-
tions p, we have pf(pAp)p < pf(A)p for every selfadjoint operator A; (2) f(t) = t1n(t)
is operator convez.

(1) of the above Theorem is known as Sherman-Davis Inequality. It in instructive to
review the idea of the proof of (1) which is also used in the proof of Th. 3.12: Consider
the selfadjoint unitary operator UP = 2p — I; by operator convexity we have

f(%A+ %U”AUP) < - f(4)+ %f(UpAU”) :

DN | =

Now notice that
1 1
EA + §UPAUP = Ap + Al*P? f(UpAUp) = Upf(A)Up ’

where A, = pAp, and the inequality follows.
For (2), see e.g. [6].

Lemma 3.8. (1)
S(w,w1 ®2 wp) = lim Tr(oc,) > Tr(oc)
p—1

where p — 1 strongly.
(2) The mutual information for r free fermion net is r times the mutual information
for 1 free fermion net.

Proof. (1): The first follows from Proposition 3.6 and (2) of Th. 2.2. To prove the in-
equality, we use the fact that xlnx is operator convex, and so P;CInCP; > Cy In(Cy,
and similarly with C' replaced by 1 — C' by Th. 3.7. It follows that ¢ > 0,0, > 0. Since
op goes to o strongly as p — 1 strongly, the inequality follows.

(2): For the case of r free fermions, the trace in (1) is over L?(R,C") which is r direct
sum of the Hilbert space L?(R,C), and (2) follows. 0O

We shall prove later that the inequality in the above Lemma is actually an equality.
It would follow if one can show that o¢, goes to o¢ in tracial norm. This is not so easy,
and we note that P1(C'InC + (1 — C)In(1 — C))Py is not trace class. To overcome this
difficulty and to compute the mutual information we prove the reverse inequality by
applying Lieb’s joint convexity and regularized kernel as in the next two sections.
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3.5. Reversed inequality from Lieb’s joint convexity
We begin with the following Lieb’s Concavity Theorem:

Theorem 3.9. (1) For all m xn matrices K, and all 0 < t <1, the real valued map given
by (A, B) — Tr(K*A'"tK B) is concave where A, B are non-negative m X m and n X n

matrices respectively;
(2) If A>0,B >0 and K is trace class, then

(A,B) = Tr(K*A*™'KB), 0<t<l,

is jointly concave;
(8) If A>€l,B>el,e >0 and K is trace class, then

(A,B) - Tr(K*Aln AK — K*AK In B)
is jointly convex.

Proof. (1) is proved in Th. 6.1 of [6]. (2) follows from (2) by functional calculus. To
prove (3), we note that

Tr(K*A'"tKB) — Tr(K*AK)
t—1

Tr(K*Aln AK — K*AK In B) = lim
t—0
and (3) follows from (2). O

Lemma 3.10. Assume that S is trace class, then Tr(ST) = Tr(TS) where T is any
bounded operator, and if the sequence of bounded operators T,, — T strongly, then
Tr(ST,) — Tr(ST).

Proof. The equality is proved in [27]. Let e; be an orthonormal basis, and S = U|S| be
the polar decomposition of S. Then

Te(T,S) =Y (e, ToU|S|'/?(S| %e;) .

7

Note that
(e, TuU|SV218|Y2e5) | < ||TLU|SM e 1112 el < eles, |Sles), Vi,

where ¢ is a constant, so the last part of the Lemma follows by Lebesgue dominated
convergence theorem. O

Lemma 3.11. Suppose that K > el,L > el,e > 0 and K — L is trace class. Then
In K —In L is trace class.
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Proof. Note that

o0

1 1 T/ 1
mK=—[(——Vat, WmL=—[(———)at
. /(K—i—t 1+t> o /(L—i—t 1+t>

0

0

Hence
InK —InL = /Oo dt 7 1 (K-1L) L dt
n — 1n = = J— —_ - .
t L+t L+t K+t
0 0
We have

dt
1

1
mK—InL -
[ Ll < /HL+t Deri

< [oelun

where || - ||1 denotes tracial norm. O

Hdt <||K—L|j1e?,

Theorem 3.12. Let A > €,¢ > 0,B := P1 AP + P2 AP5, where Py is a projection,
P, + P =1, and p is a finite rank projection commuting with Py. Assume that A — B
is trace class. Then

Tr(A(lnA—InB)) > Tr(A4,(In 4, —InB,)) .

Proof. Apply Th. 3.9 to A, B and unitary UP = 2P — I, with f(A,B,K) =
Tr(K*Aln AK — K*AK In B), K is a finite rank projection, we have

1 1 1 1
f <§(A + UPAUP), 5(B + UPBUP), K) < 5f(A, B,K) + §f(U”AUP, UPBU?, K) .
Note that
1 1
f (E(A + UPAU?), 5(B + UPBU?), K) = f(Ap + A1, B, + B1_,, K)

and

f(Ap + A1—p, By + Bip, K)
= TI'(K(AP In Ap + Al—p In Al_p)K — K(Ap + Al_p)Kln(Bp + Bl—p))

and
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1 1
5 (A, BK) + 2 f(UPAUP, UPBU, K) =

1 1

ST (KA AK — KAK InB) + STe(KU?AIn AUPK — KUPAUPKU? In BU”) .

Observe that KU? = [K,2p|+UPK and KIn B = [K,InB]+In BK, K In(B,+ B1_,) =
[K,In(Bp, + B1_p)] + In(B, + B1_,)K. We will let K — 1 strongly eventually. Up to
terms that go to 0 as K — 1 strongly, we can freely permute K and UP. By permuting
K with In(B, + B1—,) and In B on the left hand side and righthand side of the above
inequality respectively, we get terms on the left hand side of the above inequality

*TT(K(AP + A1-p)[K, In(Bp + Bl—p)])
and on the right hand side of the above inequality
—%Tr(KA[K, In B] + KUPA[K, In B]U?)
= —Tr(K(pA[K,In Blp+ (1 — p)A[K,In B](1 — p)).
Up to terms that go to 0 as K — 1 strongly, we have that
—Tr(K(pA[K, In Bp + (1 — p)A[K,In B](1 — p)))
is equal to
_Tr(K(pAp[K, In B] + (1 — p)A(1 — p)[K, In B)(1 — p))) _
This is the same as
*TT(K(AP + A1-p)[K, In(Bp + Bl—p)])

up to terms that go to 0 as K — 1 strongly since In B — In(B), + B1_,) is trace class by
Lemma 3.11, and p is of finite rank.

So by permuting K with U? and In B, In(B, + B1_,) in the inequalities above, by
Lemma 3.10, use In B —In(B, + B1_)) is trace class by Lemma 3.11, and p is finite rank,
we have that up to terms which go to zero as K — 1 strongly,

Tr (K (4y(n 4, = By) + A1y (n A1 = B1 )
< Tr(K(pA(lnA —InB)p+(1—-p)A(ln A —1n B)(1 —p))) .

By Lemma 3.11, In A4, —InB,,In A;_, —InB1_,,In A — In B are trace class operators,
and by Lemma 3.10 let K — 1 strongly, we get

Tr(Ap(ln Ap,—1In Bp)) + Tr(Al_p(ln Ai_p—In Bl_p)) <TrA(lInA—-1nB) .
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As in the proof of Lemma 3.8, by operator convexity of zlnz we have
(1-pA_pInA_,(1—-p)>Bi_,InB_,
and so
Tr(Al,p(ln Ai_p—InBi_p)) =Tr(AipInA_, —Bi_,In Bl,p) >0
and the theorem is proved. O
3.6. Regularized Kernel for one free fermion case

Note that, by Lemma 3.8, the mutual information for r free fermion net is r times the
mutual information for 1 free fermion net. In this section we will determine the mutual
information for 1 free fermion net.

This section is inspired by formal computations in [10]. The regularization is also
motivated by Th. 3.12 which applies to strictly positive operators.

Recall that the Hardy projection on L?(RR,C) is given by:

1 1
21 (z — y)

1
Pf() = 5f@) + | Fw)dy .
where the integral is the singular integral or Hilbert transform.
We write the kernel of the above integral transformation as C.
1 ) 1
C = b(z—9y)— — ——— 9
(@) = 50 =) = 5= = )
Recall I; € PZ,i = 1,2, and I, I, are disjoint, that is I; NIy = 0, and I = I; U I,. We
assume that I = (a1,b1) U (a1,b1) U... U (an,by) in increasing order.

Then resolvent of C' as restriction of an operator on L?(I,C)

i1
2rxr —y

-1
RB) = (C—1/21 )" = ( +55(fvy)) (10)

has the following expression ([22] or Page 133 of [21]):

i oo los(557E) (Z(@)-2(w)

R(8) = (8 —1/4) " | B3(e—y) + = .y

where
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It is useful to consider the following regularized operator: Let ¢y > 0, and E := 10 f;ef)

Note that

lteo S py €
1+260_ _1+2€0

Then we have

ElmE+(1-E)n(l-E)= / [(ﬂ - %)(RE(ﬁ) — Rp(-p)) - ﬁi—ﬂl s ,

where Rg(f) = E+%+ﬁ
We note that the integral above is absolutely convergent in norm. This can be seen

as follows: the integrand is

B 2 2B P
PR = R0 = = -+ 5

1
2

For 1/2 < 8 <1, since

we have

B/2—2B(E — 1)?

- )
5+%_[(E_%)2_62](ﬁ+%) = B4+1/2 \ 1+ 2¢ '

is bounded by % when S is large.
To evaluate the above integral using resolvent, let t = 8(1 + 2¢y) we get

On the other hand
H 28 B/2-28(E 1)
B+s (E-35)2-8206+3)

EWME+(1— E)In(l - E)
7 ¢ 1 2t 1
- / K N 5) (B() = R(=0) = 75 1(1 + 260) 1 + 260

1+ 260
2(1+42€0)

Now we determine the kernel K7°(z,y),z,y € I; of

PlElnE + (1 — E) ln(l — E)Pl — E1 lnE1 — (Pl — El)ln(Pl — El) .
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Lemma 3.13. Suppose f € C*(I; x I) and f(x,y) = —f(y,x). Let g(z,y) = fi%;’) if

x#y and g(z,x) = %, Then g(xz,y) is continuous on Iy x I.

Proof. It is enough to check continuity at (y,y),y € I;. Since f € C*(I; x I1), we can
write f(/,1') = 5L(y, y) (2’ =)+ 5L (v, 9) (' —y) +o(a'—y') = G (y, y) («' =y ) +0(a'—y/)
where in the second = we have used f(z,y) = —f(y,«) and hence %(y, y) = —g—g(y, Y).

It follows that lim ./ y)—(y.y) 9(2',y") = 9(y,y). O

We shall denote by Z; 1, (x) = Zi(x) — Z1, (x). Even though both Z;(x) and Z;, (x)
are singular when z is close to the boundary of its domain, it is crucial that Z; 1, () is
a smooth function on the closure of I.

Lemma 3.14. Let

> In (;—é) (Zi(z) - ZI(y))> — sin (%m (Z%) (Zp(z) - le(y))>

sin(
Gt z,y) =
rT—y

ifv#y and G(t,z,z) = 5~ In (:;%) (Z1(2) = Z},(2)), t > 3.
2
Then G(t,x,y) is continuous on (3,00) x Iy x I and

where M is a constant.

Proof. The continuity of G follows from Lemma 3.13. To prove the inequality, we note
that

1 t*l ZI[(Qi)—Z]](y)
t <=1 2 41 41
e Y e =

We note that Zj 1, (z) — Zr.1,(y) is smooth on I; x I, and apply Lemma 3.13 we have
proved the inequality. O

By Lemma 3.14, we have that the kernel before Lemma 3.13 is given by

—1 (1+t2 ~3)
K (ry) = — / N vty
2 (1+42¢0)

Lemma 3.15. (1) K{°(x,y) is continuous, uniformly bounded and converges uniformly on
I x I to K9(z,y) as ey goes to 0;
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(2) The kernel of

PlC’lnC + (1 — C) 111(1 - C)P1 - Cl 111 Ol — (Pl - 01) ln(P1 — Cl)

is given by the bounded continuous function K (x,vy), and moreover its trace is given by

eg—0

/K?(xm)dm = lim [ K{°(z,x)dz;
11 Il

(3)

(ai,bi)€l2,(aj,bj)el J

[rrean=g 5 6w

Proof. (1): It is clear Ki°(z,y) is continuous and uniformly bounded by Lemma 3.14.

By Lemma 3.14 again
t+—1
’hl ( %)'dt
t+ 3

where X (1(119¢,),00) denotes the characteristic function. We note that the integrand above
is bounded and when ¢ is large decays like a constant multiply by t%

)
1 (95— 2) 1
K - K < —M [ |20 22 —

| 1 (Ivy) 1 (x,y)| = 9r2 / 12— 1/4 X(%(1+260),OO) t+ 1/2
1/2

The uniform convergence now follows by Lebesgue’s dominated convergence theorem.
(2): Note that as €y goes to 0, PyEInE 4+ (1 — E)In(1 — E)P; — EyInE; — (P —
E,)In(Py — Ey) converges to

P1ClnC+ (1 — C) 111(]. — C)P1 — Cl thl — (Pl — Cl)h’l(Pl — 01)

strongly. (2) now follows from (1) and [3] which contains more general results on the
trace of operators with integrable kernels.
(3): By Lemma 3.14 and (2) we have

1

~1 1 t—1 :—a;)(b; — bi
ﬁ/t 121n< ?) > 1“(? a,)(j. b.)> dt .
L 2N ) poeratapen (05~ @)@ =)

2

_1
To finish the proof we just need to show % fll ﬁ In (ET%) = 1/12. By change of
2 2

t—1

2) it is sufficient to check that

integration variable to v = In ( P
+3



160 R. Longo, F. Xu / Advances in Mathematics 337 (2018) 189-170
0

ue* -1
du=— .
/ 1—ev Y 672

— 00

Since the anti-derivative of 1“_5; is —Lix(e*) — uln(1 — €*) where Lix(z) := Y 7o, i—: is

the dilogarithm, the desired equality follows from

2T g
— k 6
Remark 3.16. We note that the previous Lemma works in exactly the same way when
we replace I1 by I, and Py by Ps.

3.7. The proof of Theorem 3.18

Definition 3.17. If I = (a1, 1) U (az,b2) U ... U (ay, by) in increasing order, define
1
G(I) ::6 Zlog|bi—aj|—Zlog|ai—aj\—210g|bi—bj\
i.j i<y i<j

Theorem 3.18. Let I = (Cthl) U ((12,1)2) U...uU (an,b") € PT and Il UIQ = I,jl ﬂfg = @
Then

SAT(w,wl ®9 wy) = T(G(Il) +G(I2) — G(1 U IQ)) .

Proof. By Lemma 3.8 it is sufficient to prove r = 1 case.

Recall that E := 10_%2 Apply Theorem 3.12 to A = F and A = (1 — E) respectively,

we have
TTUE Z TI'O'Ep .

Now let ¢y go to 0 and by (2), (3) of Lemma 3.15, Lemma 3.8 and Remark 3.16, Theo-
rem 3.18 is proved. O

4. Subnets of free fermion nets and their finite index extensions
4.1. Formal properties of entropy for free fermion nets and their subnets

In the previous section we use Cayley transformation to identify punctured circle
with real line as a tool to compute relative entropy. Now we return to general discussion

about formal properties of entropy, and it is now convenient to be back to intervals on
the circle. Let I € PZ be disjoint union of intervals on the circle. Explicitly we write
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I = (a1,b1) U (az,b2) U...U (an,by,) in anti-clockwise order on the unit circle. We note
that relative entropies as computed in Th. 3.18 is invariant under Méb transformations
on the circle. The results of this section are inspired by [8].
By Theorem 3.18, we have Fl4, (A, B) := S(w,wa®z2wp) < 0o where A, B are union of
disjoint intervals. When no confusion arises, we will simply write Fl4, (4, B) as F(A, B).
We can extend the definition mutual information to more general union of disjoint
intervals by the following

F(AUB,AUC)=F(A,BUC)+ F(B,C)—-F(A,C)—-F(A,B) .
Theorem 4.1. (1)
F(AUB,AuUC) >0

F(AUB,AUQC) is continuous from inside in the following sense: if A, C A, B, C
B,C, C C is an increasing sequence of intervals such that U, A, = A,U,B, =
B,U,C,, = C, then lim, F(A,UB,, A, UC,) = F(AUB,AUC);

(2)

F(A,B)+ F(A,C)+ F(AUB,AUC) + F(ANC,AN B)
= F(B,C)+ F(A,BUC) + F(A,BNC).

(8) There exists function G : PZ — R such that
F(A,B)=G(A)+G(B)-—G(AUB)—G(ANDB) .

Such G is uniquely determined by its value on connected open intervals;
(4) One can choose G(a,b) = gIn|b—a| in (3) for the r free fermion net A, and

such a choice determines

r
G(I):g Zln|bi—aj|—Zln|ai—aj|—Zln|bi—bj|
i.J

1<j i<j

for I =(a1,b1) U (ag,b2)U...U (an,b,) on unit circle with anti-clockwise order;

(5) F(AUB,AUC) = F(AUB,C)—-F(A,C) = F(B,AUC)— F(B, A); In particular
F(AUB,AUQ) increases with B, C,

(6) If B C A is a graded subnet, then (1), (2), (3) is also true for the system of mutual
information associated with B.

Proof. (1) and (5) for free fermions can be checked by using explicit formulas in Th. 3.18,
but here we present general arguments which will also works for other cases such as
subnets of free fermions.
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Choose increasing sequence of finite dimensional factors I4,, I, , invariant under the
conjugate action of I' such that (U,, 1a,)” = A-(4), (U,, I8,)" = A-(B), and denote by
PA, B, PA, @2 pp, the restrictions of w and wy ®2 we to 14, V Ip, respectively. Let pa,
and pp, be the restrictions of w to 14, and I, respectively.

By Proposition 3.6

S(pa,B,,pa, ®2p08,) = S(pa,) +S(ps,) —S(pa,B,) -

To simplify notations, let us write S(A,) := S(pa, ), S(An, U By) :== S(pa, B, ). Then we
have

F(A,B) = li_>m S(A,) + S(B,) — S(A,UB,) .
It follows that

F(AUB,AUC) = lim (S(A, U By,)+ S(A, UCy) — S(A,) — S(A, U B, UC,)).

n—oo

Note that
S(A,UB,)+S(A,UC,)—S(4,) —S(A,UB,UC,) >0

by strong subadditivity of von Neumann entropy, (1) follows and (2) also follows from
the limit formula and the fact that F(A, B) is finite by Theorem 3.18.

(3): Starting with arbitrary real valued function G defined on open connected intervals
of S, we can define G(A) for any A € PZ as follows: define G(AUB) = G(A) + G(B) —
F(A, B) when A and B are disjoint. It is easy to see that such G(A U B) is well defined
and only depends on A U B thanks to (2).

(4): This follows from Theorem 3.18, (1) and direct computations.

(5): The identities follow from (3).

(6): We note that by Theorem 3.18 and monotonicity of relative entropy in (4) of
Th. 2.2 that for B, Fg(A, B) < F4,(A, B) < co. For (1) and (2) we can use Remark 3.2
and proceed in exactly the same way as in free fermion net case. (3) and (5) are proved
in the same way as in free fermion net case. O

4.2. Structure of singularities in the finite indez case

G from (3) in Th. 4.1 can be thought as “regularized” version of von Neumann entropy
which is always infinite in our case (cf. [23]). From (3) of the above Theorem we see that
if we only allow G to be defined on PZ then G is highly non unique. Due to the continuity
properties of F(A, B), we require that G(A) depends continuously only on the length
r4 of interval A. In addition we require that G(A) = G(A€) for a connected interval,
and we set G(f) = 0. Still such G is highly non unique. However, we shall impose
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further conditions coming from studying the singularities of relative entropy when we
allow intervals to approach each other. Let B, = (a1,a2.) UC = (ag,b2) € PZ, with
|age — ag| = € > 0. We shall consider the singular limit when e goes to zero while fixing
ay and C. Let By = (a1, az). We will denote by BoUC = (a1, bs), i.e., BoUC is obtained
from By U C by adding the point as: notice in the process the number of components
decrease by 1.

To probe the singularity structure of von Neumann entropy, we can consider F (B, C)
which goes to co as € — 0 while fixing a; and C. As an example, by Th. 3.18

Fa (B.,C) = %(1n|a2 —a1| + 1 |by — az| — In by — ay| — In(e)) + ofe) .

Since G(B. UC) = G(B,) + G(C) — F(B, (), the singularity structure of G(B. U C) is
the same as that of —F(B, C) as e — 0. In fact this is also true for general case: consider

G(AUB.UC) = G(A)+G(B.UC) — F(A,B.UC) .

One can see that the singularity structure of G(AUB.UC) is the same as that of G(B.UC')
as € — 0, since the rest of terms are bounded. So we can not expect G(B. U C) to be
close to

G(ByUC)
when € — 0, but we may demand that

lim G(B. U C) — P(e) = G(Bo0C) (13)

e—0

for some function P(e) which is independent of B, C. The equation is a condition that
connects the value of G for different components and as we shall see is a very useful
condition. Equation (13) is of course equivalent to

G(BoUC) = G(Bo) + G(C) — lim (P(e) + F(B.,C)) . (14)

e—0

In general we may take multiple singular limits. Equation (13) allows us to evaluate such
limits. Let us consider such an example in details. Let A = (aq,b2), Be, = (a1, a2, ),
Ce, = (baey, b3), |a2e, — as| = €1 > 0, |bae, — b2| = €2 > 0. Let €; goes to 0 first, we find

F(AUBy, AU C.,) = G(AUB,) + G(AUC.,) — G(ADBy U C.,) — G(A)

since the same function P(e;) appears in both G(AU Be,) and G(AU B, U C.,) with
opposite signs. Then let €; goes to 0 we get by the same argument

F(AUBy, AUCy) = G(AUBy) + G(AUCy) — G(AUBUCy) — G(A) .
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It is easy to see that the result is independent of the order of taking limits, and this
way we can extend the definition of F'(A, B) to any F(A,B) with A € PZ,B € PI.
Such F(A,B) is used in [8]. In the case of free fermions, by Th. 3.18 we have that
P(e) =r/6lne+ o(e), and we have

(bg — az)(bs — a1)
(b — az)(b2 — a1)

F(AUB,, AUC,) = —% In

Now we will show that equation (13) is also true for a large class of examples. We assume
that B C A, has finite index.

Note that by Lemma 2.10 ug = pua [A: B> = [A: B> = A2,

Let F1(A,B) := F4,(A,B)—Fg(A,B) and G1(A) = G4, (A)—Gg(A). Then Fy (A, B)
verifies (2) and (3) of Th. 4.1. Note that F}(A, B) is not non-negative in general, be-
ing the difference of two non-negative numbers, but is always bounded by finite index
assumptions.

We examine possible solutions of equation (14) for G;. Let B.,C be two con-
nected intervals as in equation (14), and E the unique conditional expectation from
A-(Be)V A-(C) to B(B.) V B(C) which preserves the state wy ®2 ws. Then S 4(w,w; ®2
we) = Sp(w, w1 ®2 wa) + S(w,w - E) by Th. 2.2. Note that by Pimsner—Popa inequal-
ity E(z) > A2z for positive z, and so Fy(B,C) = S(w,w - E) < InA72. By Th. 4.4
lim¢_,0 F1(B,,C) = In A~1, and equation (14) is simply

Gl(BODC) = Gl(Bo) + Gl(C) — (P —1In )\) ,

where P is a constant. Up to a constant in the definition of G1(A) we can set P =1n A,
and it follows that G1(A) is a constant multiplied by the arc length of A. But since we
also require G1(4) = G1(A°), G1(A) = 0.

In this case we get Gp(A) = GA(A) for any connected interval A, and use Gp =
G 4, — G the system of solutions of equation (14) for B.

We have proved the following:

Theorem 4.2. Assume that a subnet B C A, has finite indezx, then:
(1): Gp((a,b)) = §In|b— a| and verifies equation (1) and (3) of Th. 4.1, and

r
FB(A,B) = —6|1n77AB| s

where A, B are two overlapping intervals with cross ratio 0 < nap < 1;
(2) Let B = (a1, az2.), C = (ag,b2), |aze — az| = € > 0. Then:

r 1
Fr(B,C) = 6(1n|ag —ai|+In|by — as| —In|by — a;| — In(e)) — §1HMB+0(€)

as € goes to 0.
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In exactly the same way if B C C is a subnet with finite index where B is as in the
above theorem, then we also get a system of solutions of equation (14) for C as in the
above theorem.

Remark 4.3. It is interesting to note that the constant term in (2) of Th. 4.2 seems to
be related to the topological entropy discussed in [15] even with the right factor: in our
case we have additional factor 1/2 since we are discussing chiral half of CFT.

We conjecture that the above theorem is true for any rational conformal net, where r
is replaced by the central charge. More examples where Th. 4.2 applies are discussed in
Section 4.4.

Notice also that the cross ratio enters in formulas concerning nuclearity (partition
function) [4] and entanglement entropy [12], so we can infer relations about the mutual
information and these quantities.

4.2.1. Failure of duality is related to global dimension
By Th. 3.18 for the free fermion net A,., and two intervals A = (a1,b1), B = (ag, b2),
where by < ag, we have

FA(A7B) = %11177’

where n = % is the cross ratio, 0 < n < 1. For simplicity we denote by
Fa,(n) = Fa(A, B).

One checks that Fx (A, B) = F4, (A€, B¢), which is in fact equivalent to

—r n
Fa(n)—Fa(l—n)=—In(—"—]).
a () = Fa (1) = i ()
Similarly for B C A, with finite index, by Th. 4.2 Fg(A, B) = Fp(A°, B°) is equivalent
to

Fg(n) — Fp(1 —n) = % In <%) :
We note that Fa, (A, B) = Fa,(A° B°) for the free fermion net A,. However here we
show that Fg(A, B) # Fg(A¢, B¢) with B C A, has finite index [A, : B] = A~} > 1. By
Lemma 2.10 pg = [A, : B]%
We note that, as before the proof of Th. 4.2, S(w,w - E) = F1(n) = Fa(n) — Fg(n) is
a decreasing function of n, and 0 < Fy(n) < F4(n). So we have

lim Fi(n) =0.

n—1

On the other hand, by Th. 4.4
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. 1
}]%Fl(n) =In[A, : Bl = 3 Inug .
It follows that Fp(A, B) # Fp(A¢, B°) due to the fact that pug > 1.
4.8. Computation of limit of relative entropy

In this section we determine the exact limit of relative entropies which are necessary
for analyzing the singularity structures of entropies in Section 4.2. The goal is to prove
the following:

Theorem 4.4. Assume that subnet B C A has finite index, B is strongly additive. Let I
and Is be two intervals obtained from an interval I by removing an interior point, and
let J, C I3,n > 1 be an increasing sequence of intervals such that

Udhm=5L J.nL=0.
n

Let E,, be the conditional expectation from A(I1) V A(J,) to A(I1) V B(J,) such that
E,(zy) = zE(y),Vz € A(L1),y € A(Jp). Then

li_>m S(w,w-E,)=1[A:B].
4.3.1. Basic idea from Kosaki’s formula
Denote by ¢, = w - E,,. By Kosaki’s formula (cf. [16])

oo

1 1
S(w,w-FE,)=sup sup |Ink— / (w(x’{xt)— + ¢n(ytyf)—2)dt ,
meN z+y, =1 t t
k—1

where z; is a step function which is equal to 0 when ¢ is sufficiently large. To motivate
the proof of Th. 4.4, it is instructive to see how we can get S(w, \w) = —In A, 0 < A< 1
from Kosaki’s formula. By tracing the proof in [16], one can see that the path which

gives approximation to —In A is given by the following continuous path

A t -
= — _ >
#{t) = oyl = st 2
and with such a choice we have
Ink — / (w(xtxt)g + qbn(ytyt)t—z)dt =—In(A+1/k)
k—1

which tends to —In A as k goes to co. This suggests that for the proof of Th. 4.4, we need

)2 and )\(L)Q

to choose path z,y, such that w(zjz,) and ¢, (yy;) are close to ( Xrt

A
Py
respectively, and this motivates our Proposition 4.5 and the proof of Th. 4.4.
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4.3.2. A key step in the proof of Th. J./

Let ey € A(I1),e2 € A(Jy) be Jones projections for B(I1) C A(I1) and B(J1) C A(J1)
respectively as in Lemma 2.9. Let P be the projection from the vacuum representation
of A onto the vacuum representation of B. By Lemma 2.9, there is a unitary u € B(I)
such that ueju* = eg. Choose isometry vy € B(Jp) such that )\_1036202 = 1. Note
that equovies = Aeg, and Peo P = AP. It follows that PeérP = AP, Pe; P = 0 by our
assumption that [I, P] = 0.

Since B is strongly additive, we can find a sequence of bounded operators u, €
B(Iy)V B(J,),n > 2 such that u, — u,u’ — u* strongly. Let eg,, := upeju’. Then
€on, — €9 strongly.

Proposition 4.5. For any ¢ > 0, one can find n > 2 and e € A(I1) V A(J,) such that
lw(e) — 1] <€, fw(e”) =1 <€, |w(e*e) —1| <€, |pn(ee™) — A <e€.

Proof. Let us first denote by e = A\~ v}ea,eav2. We will show that given e > 0, we can
choose n sufficiently large such that e verifies the conditions in the Proposition. First
we observe that since es, — es strongly, it follows that e — 1 strongly, and hence by
choosing n sufficiently large we can have

lw(e) — 1] < e fw(e”) — 1] <€, |w(e’e) — 1] <e€.
Now let us evaluate

On(ee”) = ¢n()\721136%62?1211;626271@2) = >\71¢n(11;€2n6262n112) .

Recall the definition of ¢,, as a state on A(I;) V A(J,): For any =,y with = € A(I),y €
A(Jn),

on(xy) = (Q, zPyPQ) .

Recall that es = ef +e,, Peg P = AP, Pe, P = 0. To evaluate ¢y, (v3u,e1ul,eatiy,e1ulvs),
we approximate u,, with finite linear combination of operator of the form w1,,u2,, with
U1 € B(I1),usm € B(J,), then we move those operators in A(17) to the left of those
operators in A(J,) using commuting or anti-commuting relations, and it is crucial to
observe the operators that belong to A(J,) has only one term ej or e, , and the rest
are in B(J,,). When compressed such term with P and acting on €2, we see that ej is
replaced with A, and e, is replaced with 0. We note that ej commuting with A(Iy). It
follows that

Pn(ee”) = an()\_21);62“621)21);‘6262“@2) = )\_lqﬁn(v;‘egnegegnw) = <Q,v§(unelu;)2vgﬂ) .

Since v} (uneiu) vy goes to vieave = A strongly, the Proposition is proved. O



168 R. Longo, F. Xu / Advances in Mathematics 337 (2018) 189-170

4.3.3. The proof of Th. 4.4
Recall ¢, = w - E,. By Pimsner—Popa inequality, E,(z) > Az for any positive z €
A(I) vV A(Jy,), it follows that ¢, > Aw, and hence by Th. 2.2

S(w,w- E,) <[A:B].

Note that by monotonicity of relative entropy S(w,w - E,) increases with n, hence
lim,, 00 S(w,w - E,,) exists and is less or equal to [A : B].
By Kosaki’s formula

o0

1 1
S En) = sup sup [k~ [ (wlefeo; + onlud) )t | |
meN ze+ye=1 t t

k—1
where x; is a step function which is equal to 0 when t is sufficiently large. Since we can
approximate any continuous function with step functions in the strong topology and vice
versa, we can assume that x; is continuous and is equal to 0 when t is sufficiently large.
Given € > 0, for fixed k,m € N choose e as in Proposition 4.5 and

t -1
= —_ < < .
=1 T £© kT <t<m
We have
) t to t O\ .
w<$t.’1}t) =1- >\—+t (e) — )\—HOJ( ) + A—H w(e 6)
and
' 2
b (yeyi) = (A——H) ¢n(e€®) .

By Proposition 4.5 we can choose n large enough such that

[ ot = (3% <.
/ ¢n(yty:) - /\()\LH)Q g <e€,

kfl
and with such a choice of n we have:

oo

Ink — / (w(xtzt);—kqﬁn(ytyt)t—z)dtz

k-1
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Ink — / ((%ﬂ)% + (ﬁ)%) dt +1/m — 2

k-1

:ln(k)\kj’_1>—ln()\+im)+l/m—2€.

It follows that

lim S(w,w- E,)>1n (%—1—1) —In (M—Lm) +1/m —2e.

n—oo

Let k,m go to oo and € go to 0, we have proved theorem. O
4.4. More examples

4.4.1. Orbifold examples

Take U(1)ggz C U(1)1. This is Zgy orbifold of U(1);. So Th. 4.2 apply to the net
U(1)4x2. Another special case is when k& = 1, we can take a further Zs orbifold of U(1)4
which corresponds to complex conjugation on U(1) to get a tensor product of two Ising
model with central charge % It follows that Ising model with central charge % verifies
Th. 4.2, and in particular violates duality discussed in Section 4.2.1.

More generally, we can take any finite subgroup of U(n) which commutes with AdT’
and obtain orbifold subnet of U(n);. This provides a large family of examples which
verify Th. 4.2.

4.4.2. Conformal inclusions
By [32], we have the following inclusions with finite index:

SUN)m X SU(M)n X U(L)yn(m+n)2 C Spin(2mn); C U(mn); .

So Th. 4.2 apply to the net SU(n)m X SU(m)n X U(1)pmn(m+n)2- If we take m = n, then
since U(1)4p4y verifies Th. 4.2 by the example in previous section, it follows that the
net associated with SU(n), x SU(n),, and hence the net associated with SU(n),, also
verifies Th. 4.2.
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