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1. Introduction

In the last few years there has been an enormous amount of work by physicists con-

cerning entanglement entropies in QFT, motivated by the connections with condensed 

matter physics, black holes, etc.; see the references in [12] for a partial list of references. 

However, some very basic mathematical questions remain open. For example, most of the 

entropies computed in the physics literature are infinite, so the singularity structures, 

and sometimes the cut off independent quantities, are of most interest. Often, the mutual 

information is argued to be finite based on heuristic physical arguments, and one can 

derive the singularities of the entropies from the mutual information by taking singular 

limits. But it is not even clear that such mutual information, which is well defined as a 

special case of Araki’s relative entropy, is indeed finite.

In this paper we begin to address some of these fundamental mathematical questions 

motivated by the physicists’ work on entropy. For related works, see [12], [19] and [25]. 

Unlike the main focus in [12], the mutual information considered in our paper can be 

computed explicitly in many cases and satisfies many conditions, but not all, proposed 

by physicists such as those in [8]. Our project is strongly motivated by Edward Witten’s 

questions, in particular his question to make physicists’ entropy computations rigorous. 

In this paper we focus on the Chiral CFT in two dimensions, where the results we 

have obtained are most explicit and have interesting connections to subfactor theory, 

even though some of our results, such as Theorem 4.4, do not depend on conformal 

symmetries and apply to more general QFT. The main results are:

1) Theorem 3.18: Exact computation of the mutual information (through the rela-

tive entropy as defined by Araki for general states on von Neumann algebras) for free 

fermions. Note that this was not even known to be finite, for example the main quantity 

defined in [12] is smaller and does not seem to verify the conditions in the physical lit-

erature. Our proof uses Lieb’s convexity and the theory of singular integrals; to the best 

of our knowledge, by Theorem 3.18, Theorem 4.2 and examples in Section 4.4, this is 

the first time that such relative entropies are computed in a mathematical rigorous way. 

The results verify earlier computations by physicists based on heuristic arguments, such 

as P. Calabrese and J. Cardy in [5] and H. Casini and M. Huerta in [9].

In particular, for the free chiral net Ar associated with r fermions, and two intervals 

A = (a1, b1), B = (a2, b2) of the real line, where b1 < a2, the mutual information 

associated with A, B is

F (A, B) = −
r

6
ln η ,

where η = (b1−a2)(b2−a1)
(b1−a1)(b2−a2) is the cross ratio of A, B, 0 < η < 1.

2) It follows from 1) and the monotonicity of the relative entropy that any chiral 

CFT in two dimensions that embeds into free fermions, and their finite index extensions, 

verify most of the conditions (not all, see Section 4.2.1) discussed for example in [8], see 

Theorem 4.1. This includes a large family of chiral CFTs. Much more can be obtained if 
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the embedding has finite index as in Theorem 4.2. In this case, we also verify a proposal 

(cf. (1) of Theorem 4.4) in [8] about an entropy formula related to a derivation of the 

c theorem. Theorem 4.2 also connects relative entropy and index of subfactors in an 

interesting and unexpected way. There is one bit of surprise: it is usually postulated that 

the mutual information of a pure state such as vacuum state for complementary regions 

should be the same. But in the Chiral case this is not true, and the violation is measured 

by global dimension of the chiral CFT as will be seen in Section 4.2.1.

The physical meaning of the last part of (2) is not clear to us. The violation, which 

is in some sense proportional to the logarithm of global index, also turns out to be 

what is called topological entanglement entropy (cf. Remark 4.3). In [13] the authors 

discuss chiral theories where entanglement entropy cannot be defined with the expected 

properties due to anomalies. The relation to our work is not clear. On the other hand, 

when considering full CFT, one does have global dimension equal to 1, and it remains 

an interesting question to investigate entropies in the full CFT framework.

The rest of this paper is structured as follows. After a preliminary section on von 

Neumann entropy, Araki’s relative entropy, graded nets and subnets, we consider the 

computation of mutual information in §3. In §4, we derive many of the properties of the 

mutual information in the vacuum state for all Chiral CFT which are embedded into 

free fermions, and their extensions, from the results of §3. In the last section we supply 

with two families of chiral CFT where our main results apply.

2. Preliminaries

2.1. Entropy and relative entropy

von Neumann entropy is the quantity associated with a density matrix ρ on a Hilbert 

space H by

S(ρ) = −Tr(ρ log ρ) .

Von Neumann entropy can be viewed as a measure of the lack of information about a 

system to which one has ascribed the state. This interpretation is in accord for instance 

with the facts that S(ρ) ≥ 0 and that a pure state ρ = |Ψ〉〈Ψ| has vanishing von Neumann 

entropy.

A related notion is that of the relative entropy. It is defined for two density matrices 

ρ, ρ′ by

S(ρ, ρ′) = Tr(ρ log ρ − ρ log ρ′) . (1)

Like S(ρ), S(ρ, ρ′) is non-negative, and can be infinite.

A generalization of the relative entropy in the context of von Neumann algebras of 

arbitrary type was found by Araki [2] and is formulated using modular theory. Given two 
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faithful, normal states ω, ω′ on a von Neumann algebra A in standard form, we choose the 

vector representatives in the natural cone P�, called |Ω〉, |Ω′〉. The anti-linear operator

Sω,ω′a|Ω′〉 = a∗|Ω〉, a ∈ A, is closable and one considers again the polar decomposition 

of its closure S̄ω,ω′ = JΔ
1/2
ω,ω′ . Here J is the modular conjugation of A associated with 

P� and Δω,ω′ = S∗
ω,ω′ S̄ω,ω′ is the relative modular operator w.r.t. |Ω〉, |Ω′〉. Of course, if 

ω = ω′ then Δω = Δω,ω′ is the usual modular operator.

A related object is the Connes cocycle (Radon–Nikodym derivative) defined as [Dω :

Dω′]t = Δit
ω,ψΔit

ψ,ω′ ∈ A, where ψ is an arbitrary auxiliary faithful normal state on A′.

Definition 2.1. The relative entropy w.r.t. ω and ω′ is defined by

S(ω, ω′) = 〈Ω| log Δω,ω′ Ω〉 = lim
t→0

ω([Dω : Dω′]t − 1)

it
, (2)

S is extended to positive linear functionals that are not necessarily normalized by the 

formula S(λω, λ′ω′) = λS(ω, ω′) + λ log(λ/λ′), where λ, λ′ > 0 and ω, ω′ are normalized. 

If ω′ is not normal, then one sets S(ω, ω′) = ∞.

For a type I algebra A = B(H), states ω, ω′ correspond to density matrices ρ, ρ′. 

The square root of the relative modular operator Δ
1/2
ω,ω′ corresponds to ρ1/2 ⊗ ρ′−1/2

in the standard representation of A on H ⊗ H̄; namely H ⊗ H̄ is identified with the 

Hilbert–Schmidt operators HS(H) with the left/right multiplication of A/A′. In this 

representation, ω corresponds to the vector state |Ω〉 = ρ1/2 ∈ H ⊗ H̄, and the abstract 

definition of the relative entropy in (2) becomes

〈Ω| log Δω,ω′ Ω〉 = TrHρ
1
2 (log ρ ⊗ 1 − 1 ⊗ log ρ′) ρ

1
2 = TrH(ρ log ρ − ρ log ρ′) . (3)

As another example, let us consider a bi-partite system with Hilbert space HA ⊗ HB

and observable algebra A = B(HA) ⊗ B(HB). A normal state ωAB on A corresponds to 

a density matrix ρAB. One calls ρA = TrHB
ρAB the “reduced density matrix”, which 

defines a state ωA on B(HA) (and similarly for system B). The mutual information is 

given in our example system by

S(ρAB , ρA ⊗ ρB) = S(ρA) + S(ρB) − S(ρAB) . (4)

For tri-partite system with Hilbert space HA ⊗ HB ⊗ HC and observable algebra 

A = B(HA) ⊗ B(HB) ⊗ B(HC), we have the following strong subadditivity (cf. [17]):

S(ρAB) + S(ρAC) − S(ρA) − S(ρABC) ≥ 0 . (5)

A list of properties of relative entropies that will be used later can be found in [24] (cf. 

Th. 5.3, Th. 5.15 and Cor. 5.12 [24]):
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Theorem 2.2. (1) Let M be a von Neumann algebra and M1 a von Neumann subalgebra 

of M . Assume that there exists a faithful normal conditional expectation E of M onto 

M1. If ψ and ω are states of M1 and M , respectively, then S(ω, ψ · E) = S(ω �M1, ψ) +

S(ω, ω · E);

(2) Let be Mi an increasing net of von Neumann subalgebras of M with the property 

(
⋃

i Mi)
′′ = M . Then S(ω1 � Mi, ω2 � Mi) converges to S(ω1, ω2) where ω1, ω2 are two 

normal states on M ;

(3) Let ω and ω1 be two normal states on a von Neumann algebra M . If ω1 ≥ μω, 

then S(ω, ω1) ≤ ln μ−1;

(4) Let ω and φ be two normal states on a von Neumann algebra M , and denote by ω1

and φ1 the restrictions of ω and φ to a von Neumann subalgebra M1 ⊂ M respectively. 

Then S(ω1, φ1) ≤ S(ω, φ).

For type III factors, the von Neumann entropy is always infinite, but we shall see 

that in many cases mutual information is finite. By taking singular limits, we can also 

explore the singularities of von Neumann entropy from mutual information (cf. 4.2 for 

an example) which is important from physicists’ point of view. The formal properties of 

von Neumann entropies are useful in proving properties of mutual information, see the 

proof of Th. 4.1.

2.2. Graded nets and subnets

This section is contained in [7]. We refer to [7] for more details and proofs.

We shall denote by Möb the Möbius group, which is isomorphic to SL(2, R)/Z2 and 

acts naturally and faithfully on the circle S1.

By an interval of S1 we mean, as usual, a non-empty, non-dense, open, connected 

subset of S1 and we denote by I the set of all intervals. If I ∈ I, then also I ′ ∈ I where 

I ′ is the interior of the complement of I. Intervals are disjoint if their closure are disjoint. 

We will denote by PI the set which consists of disjoint union of intervals.

A net A of von Neumann algebras on S1 is a map

I ∈ I 
→ A(I)

from the set of intervals to the set of von Neumann algebras on a (fixed) Hilbert space 

H which verifies the isotony property:

I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2)

where I1, I2 ∈ I.
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A Möbius covariant net A of von Neumann algebras on S1 is a net of von Neumann 

algebras on S1 such that the following properties 1–4 hold:

1. Möbius covariance: There is a strongly continuous unitary representation U of

Möb on H such that

U(g)A(I)U(g)∗ = A(gI) , g ∈ Möb, I ∈ I .

2. Positivity of the energy: The generator of the rotation one-parameter subgroup 

θ 
→ U(rot(θ)) (conformal Hamiltonian) is positive, namely U is a positive energy 

representation.

3. Existence and uniqueness of the vacuum There exists a unit U -invariant vec-

tor Ω (vacuum vector), unique up to a phase, and Ω is cyclic for the von Neumann 

algebra ∨I∈IA(I).

A Z2-grading on A is an involutive automorphism g = AdΓ of A, such that Γ2 = 1, 

ΓΩ = Ω, ΓA(I)Γ = A(I) for all I.

Given the grading g, an element x of A such that g(x) = ±x is called homogeneous, 

indeed a Bose or Fermi element according to the ± alternative, or simply even or odd 

elements. We shall say that the degree ∂x of the homogeneous element x is 0 in the Bose 

case and 1 in the Fermi case.

A Möbius covariant graded net A on S1 is a Z2-graded Möbius covariant net satisfying 

graded locality, namely a Möbius covariant net of von Neumann algebras on S1 such that 

the following holds:

4. Graded locality: There exists a grading automorphism g of A such that, if I1 and 

I2 are disjoint intervals,

[x, y] = 0, x ∈ A(I1), y ∈ A(I2) .

Here [x, y] is the graded commutator with respect to the grading automorphism g defined 

as follows: if x, y are homogeneous then

[x, y] ≡ xy − (−1)∂x·∂yyx

and, for the general elements x, y, it is extended by linearity. When the grading is trivial, 

i.e., when Γ = 1, we shall refer to A as a local net.

Note the Bose subnet Ab, namely the g-fixed point subnet Ag of degree zero elements, 

is local.

Moreover, setting

Z ≡
1 − iΓ

1 − i
,
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we have that the unitary Z fixes Ω and

A(I ′) ⊂ ZA(I)′Z∗

(twisted locality w.r.t. Z).

Theorem 2.3. Let A be a Möbius covariant Fermi net on S1. Then Ω is cyclic and 

separating for each von Neumann algebra A(I), I ∈ I.

If I ∈ I, we shall denote by ΛI the one parameter subgroup of Möb of “dilation 

associated with I ”.

Theorem 2.4. Let I ∈ I and ΔI , JI be the modular operator and the modular conjugation 

of (A(I), Ω). Then we have:

(i):

Δit
I = U(ΛI(−2πt)), t ∈ R, (6)

(ii): U extends to an (anti-)unitary representation of Möb � Z2 determined by

U(rI) = ZJI , I ∈ I,

acting covariantly on A, namely

U(g)A(I)U(g)∗ = A(ġI) g ∈ Möb � Z2 I ∈ I .

Here rI : S1 → S1 is the reflection mapping I onto I ′.

Corollary 2.5. (Additivity) Let I and Ii be intervals with I ⊂ ∪iIi. Then A(I) ⊂ ∨iA(Ii).

Theorem 2.6. For every I ∈ I, we have:

A(I ′) = ZA(I)′Z∗ .

In the following corollary, the grading and the graded commutator is considered on 

B(H) w.r.t. AdΓ.

Corollary 2.7. A(I ′) =
{

x ∈ B(H) : [x, y] = 0 ∀y ∈ A(I)
}

.

Let now G be a simply connected compact Lie group. By Th. 3.2 of [11], the vacuum 

positive energy representation of the loop group LG (cf. [26]) at level k gives rise to 

an irreducible local net denoted by AGk
. By Th. 3.3 of [11], every irreducible positive 

energy representation of the loop group LG at level k gives rise to an irreducible covariant 
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representation of AGk
. When no confusion arises we will write AGk

simply as Gk as in 

the last section 4.4.

Next we recall some definitions from [14]. Recall that I denotes the set of intervals 

of S1. Let I1, I2 ∈ I. We say that I1, I2 are disjoint if Ī1 ∩ Ī2 = ∅, where Ī is the closure 

of I in S1. Denote by I2 the set of unions of disjoint 2 elements in I. Let A be a graded 

Möbius covariant net. For E = I1 ∪ I2 ∈ I2, let I3 ∪ I4 be the interior of the complement 

of I1 ∪ I2 in S1 where I3, I4 are disjoint intervals. Let

A(E) := A(I1) ∨ A(I2), Â(E) := (A(I3) ∨ A(I4))′.

Note that A(E) ⊂ ZÂ(E)Z−1, and its index will be denoted by μA and is called the 

μ-index of A or global index of A. This generalizes the usual μ-index of A when A is 

local.

Let A be a graded Möbius net. By a Möbius subnet (cf. [18]) we shall mean a map

I ∈ I → B(I) ⊂ A(I)

that associates to each interval I ∈ I a von Neumann subalgebra B(I) of A(I), which is 

isotonic

B(I1) ⊂ A(I2), I1 ⊂ I2,

and Möbius covariant with respect to the representation U , namely

U(g)B(I)U(g)∗ = B(gI)

for all g ∈ Möb and I ∈ I, and we also require that AdΓ preserves B as a set. Note that by 

Lemma 13 of [18] for each I ∈ I there exists a conditional expectation EI : A(I) → B(I)

such that EI preserves the vector state given by the vacuum of A. Let P be the projection 

onto the closed subspace spanned by B(I)Ω.

Definition 2.8. Let A be a graded Möbius covariant net and B ⊂ A a subnet. We say 

B ⊂ A is of finite index if B(I) ⊂ A(I)is of finite index for some (and hence all) interval I. 

The index will be denoted by [A : B].

Assume that B ⊂ A has finite index and [A : B] = λ−1. Let I1 and I2 be two intervals 

obtained from an interval I by removing an interior point, and let J1 ⊂ I2. By [20] there 

are isometries w1 ∈ A(I1), v1 ∈ B(I1) such that a = λ−1EI(aw∗
1)w1, ∀a ∈ A(I). Let 

e1 = w1w∗
1 . Then

Pe1P = λP, e1v1v∗
1e1 = λe1, λ−1v∗

1e1v1 = 1 .

Similarly we have w2 ∈ A(J1), v2 ∈ B(J1) and e2 = w2w∗
2 which verify same relations 

as above. e1 ∈ A(I1), e2 ∈ A(J1) are known as Jones projections for B(I1) ⊂ A(I1) and 
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B(J1) ⊂ A(J1) respectively. They are related by an inner automorphism of B(I), which 

is the following Lemma:

Lemma 2.9. Let u = λ−1EI(w1w∗
2) ∈ B(I). Then u is unitary and we have e1 = ue2u∗.

Proof. First we have w1 = uw2 and so e1 = ue2u∗. Now compute

uu∗ = λ−2EI(w1w∗
2)EI(w2w∗

1) = λ−2EI(w1w∗
2EI(w2w∗

1)) = λ−1EI(w1w∗
1) = 1 ,

where in the third equality we have used that w∗
2EI(w2w∗

1) = λw∗
1 and in the last equality 

that EI(e1) = λ. �

The following is proved in exactly the same way as in [14]:

Lemma 2.10. If B ⊂ A is a Möbius subnet such that μA is finite and [A : B] < ∞. Then 

μB = μA[A : B]2.

3. Mutual information in the case of free fermions

3.1. Basic representation of LUr and free fermion net

Let H denote the Hilbert space L2(S1; Cr) of square-summable Cr-valued functions 

on the circle. The group LUr of smooth maps S1 → Ur, with Ur the unitary group on Cr, 

acts on H multiplication operators.

Let us decompose H = H+ ⊕ H−, where

H+ = {functions whose negative Fourier coefficients vanish} .

We denote by p the Hardy projection from H onto H+.

Denote by Ures(H) the group consisting of unitary operator A on H such that the 

commutator [p, A] is a Hilbert–Schmidt operator. Denote by Diff+(S1) the group of 

orientation preserving diffeomorphism of the circle. It follows from Proposition 6.3.1 and 

Proposition 6.8.2 in [26] that LUr and Diff+(S1) are subgroups of Ures(H). The basic 

representation of LUr is the representation on Fermionic Fock space Fp = Λ(pH) ⊗Λ((1 −

p)H)∗ as defined in §10.6 of [26]. For more details, see [26] or [30]. Such a representation 

gives rise to a graded net as follows. Denote by Ar(I) the von Neumann algebra generated 

by c(ξ)′s, with ξ ∈ L2(I, Cr). Here c(ξ) = a(ξ) + a(ξ)∗ and a(ξ) is the creation operator 

defined as in Chapter 1 of [30]. Let Z : Fp → Fp be the Klein transformation given by 

multiplication by 1 on even forms and by i on odd forms. It follows from §15 of chapter 

2 of [30] that Ar is a graded Möbius covariant net, and Ar will be called the net of r

free fermions. It follows from Prop. 1.3.2 of [29] that Ar is strongly additive and §15 of 

chapter 2 of [30] that μAr
= 1.

Fix Ii ∈ PI, i = 1, 2, and I1, I2 disjoint, that is Ī1 ∩ Ī2 = ∅, and I = I1 ∪ I2.
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For bounded operators A, B : Fp → Fp, we define A+ = ΓAΓ, A− = A − A+, where 

Γ is an operator on Fp given by multiplication by 1 on even forms and −1 on odd forms. 

An operator A is called even (resp. odd) if A = A+ (resp. A = A−).

We define a graded tensor product ⊗2 by the following formula:

A ⊗2 B = A ⊗ B+ + AΓ ⊗ B− ,

where A ⊗2 B is considered as an operator on Hilbert space tensor product Fp ⊗ Fp.

Let A1, A2, B1, B2 be even or odd operators, i.e. ΓAiΓ = Ai or −Ai, ΓBiΓ = Bi or 

−Bi, i = 1, 2. Define the degree d(A) = 0 or 1 if A is even or odd.

It follows from the definition of ⊗2 that:

(A1 ⊗2 B1)∗ = (−1)d(A1)d(B1)A∗
1 ⊗2 B∗

1 ,

(A1 ⊗2 B1) · (A2 ⊗2 B2) = (−1)d(B1)d(A2)A1A2 ⊗2 B1B2 .

For A ∈ Ar(I1), B ∈ Ar(I2), we define

ω(A ⊗2 B) = 〈Ω, AB Ω〉

where Ω is the vacuum vector in Fp.

Lemma 3.1. (1) ω extends to a normal faithful state on the von Neumann algebra {A ⊗2B,

A ∈ Ar(I1), B ∈ Ar(I2)}′′ (denoted by Ar(I1)⊗̂2Ar(I2)) on Fp ⊗ Fp. There exists a 

unitary operator U1 : Fp → Fp ⊗ Fp such that:

U1ABU∗
1 = A ⊗2 B for every A ∈ Ar(I1), B ∈ Ar(I2) .

(2) The unitary operator U1 in (1) can be chosen such that U∗
1 (Γ ⊗ Γ)U1 = Γ, hence 

U∗
1 (B(Fp) ⊗ 1)U1 commutes with ZAr(I2)Z−1 and therefore is AdΓ invariant as a set 

and lies in Ar(I ′
2) when I2 is an interval.

Proof. (1) is proved in Prop. 2.3.1 of [31]. We note that by (2) the state ω1 ⊗2 ω2 defined 

in Definition 3.3 is a normal state on type III factor Ar(I1) ∨ Ar(I2), and hence can 

be represented by a unique vector ψ in the positive cone associated with vector state 

ω on Fp. Since both ω1 ⊗2 ω2 and ω are AdΓ invariant, it follows that AdΓ preserves 

the positive cone, and ω1 ⊗2 ω2 is also represented by Γψ. By uniqueness we must have 

Γψ = ψ. Now U1 in (2) is uniquely fixed by the condition U1ψ = Ω ⊗ Ω, and it follows 

that U∗
1 Γ ⊗ ΓU1 = Γ, hence U∗

1 B(Fp) ⊗ 1U1 is AdΓ invariant as a set, graded commuting 

with Ar(I2) and therefore lies in Ar(I ′
2) when I2 is an interval by Corollary 2.7. �

Remark 3.2. If B ⊂ A is a graded subnet, the proof of (3) then applies to B, and for 

any interval I, by choosing I1n ⊂ Ic
2n ⊂ I with ∪∞

n=1I1n = I, we can get an increasing 

sequence of AdΓ invariant (as a set) finite dimensional type I factors Bn such that ∪nBn

is strongly dense in B(I).
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3.2. Mutual information for free fermions

Let I1, I2 ∈ PI and I = I1 ∩ I2 as above.

Definition 3.3. We set

ω1 ⊗2 ω2(AB) = 〈Ω ⊗ Ω, A ⊗2B Ω ⊗ Ω〉, ∀A ∈ Ar(I1), B ∈ Ar(I2) .

By (1) Lemma 3.1 ω1 ⊗2 ω2 defines a normal state on Ar(I). We note that the restriction 

of ω1 ⊗2 ω2 to Ar(I1) and Ar(I2) is the same as ω.

The mutual information we will compute is S(ω, ω1⊗2ω2). When we wish to emphasize 

the underlying net, we will also write the mutual information as SAr
(ω, ω1 ⊗2 ω2). When 

B ⊂ Ar is a subnet, we write SB(ω, ω1 ⊗2 ω2) the mutual information for the net B

obtained by restricting ω, ω1 ⊗2 ω2 from Ar to B. Note that by (4) of Th. 2.2 SB(ω, ω1 ⊗2

ω2) ≤ SAr
(ω, ω1 ⊗2 ω2).

ω on Ar(I) is quasi-free state as studied by Araki in [1]. To describe this state, it is 

convenient to use Cayley transform V (x) = (x − i)/(x + i), which carries the (one point 

compactification of the) real line onto the circle and the upper half plane onto the unit 

disk. It induces a unitary map

Uf(x) = π− 1
2 (x + i)−1f(V (x))

of L2(S1, Cr) onto L2(R, Cr). The operator U carries the Hardy space on the circle onto 

the Hardy space on the real line (cf. [28]). We will use the Cayley transform to identify 

intervals on the circle with one point removed to intervals on the real line. Under the 

unitary transformation above, the Hardy projection on L2(S1, Cr) is transformed to the 

Hardy projection on L2(R, Cr) given by:

Pf(x) =
1

2
f(x) +

∫

i

2π

1

(x − y)
f(y)dy ,

where the singular integral is (proportional to) the Hilbert transform.

We write the kernel of the above integral transformation as C:

C(x, y) =
1

2
δ(x − y) −

i

2π

1

(x − y)
. (7)

The quasi free state ω is determined by

ω
(

a(f)∗a(g)
)

= 〈g, Pf〉.

Slightly abusing our notations, we will identify P with its kernel C and simply write
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ω
(

a(f)∗a(g)
)

= 〈g, Cf〉.

C will be called covariance operator.

Recall Ii ∈ PI, i = 1, 2, and I1, I2 are disjoint, that is Ī1 ∩ Ī2 = ∅, and I = I1 ∪ I2. 

We assume that I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) in increasing order.

3.3. Computation of mutual information in finite dimensional case

Choose finite dimensional subspaces Hi of L2(Ii, Cr), i = 1, 2, and denote by 

CAR(Hi) ⊂ A(Ii) the corresponding finite dimensional factors of dimensions 22dimHi

generated by a(f), f ∈ Hi. Let ρ12, ρ1, ρ2 be the density matrices of the restriction 

of ω to CAR(H1) ⊗2 CAR(H2), CAR(H1), CAR(H2) respectively, and ρ1 ⊗2 ρ2 of the 

restriction of ω1 ⊗2 ω2 to CAR(H1) ⊗2 CAR(H2). Our goal in this section is to compute 

the relative entropy S(ρ12, ρ1 ⊗2 ρ2).

Note that since CAR(H1) is type I factor, AdΓ acts on CAR(H1) by an inner 

automorphism Adu, u ∈ CAR(H1). Since Adu has order two, by suitably choosing 

phase factor we can assume that u2 = 1. Note that ΓuΓ = u3 = u, so u is even, 

and Γu commutes with CAR(H1). So Γu ⊗ B−, 1 ⊗ B+ generates a type I factor 

C̃AR(H2) isomorphic to CAR(H2), and commuting with CAR(H1) ⊗ 1. It follows that 

CAR(H1) ⊗2 CAR(H2) = CAR(H1) ⊗ C̃AR(H2). Let us show that ω1 ⊗2 ω2, when 

restricting to CAR(H1) ⊗ C̃AR(H2), is the tensor product state ρ1 ⊗ ρ′
2, where ρ1, ρ′

2

denote the restriction of ω to CAR(H1), C̃AR(H2) respectively. Since ω1 ⊗2 ω2 clearly 

agrees with ρ1 ⊗ ρ′
2 on A ⊗ B+, it is sufficient to check that

ω1 ⊗2 ω2(ab̃) = ω(a)ω(b̃), ∀a ∈ CAR(H1) ⊗ 1, b̃ = Γu ⊗ b−, b− ∈ CAR(H1)− .

The left-hand side of the above is

〈Ω, auΩ〉〈Ω, b−Ω〉 = 0

and the right-hand side is

〈Ω, aΩ〉〈Ω, ub−Ω〉 = 0

since u is even. We also note that ω restricted to C̃AR(H2) is the same as ω restricted 

to CAR(H2) under the natural isomorphism of C̃AR(H2) with CAR(H2).

So we have shown the analog of (4) in this graded local context:

Proposition 3.4.

S(ρ12, ρ1 ⊗2 ρ2) = S(ρ1) + S(ρ2) − S(ρ12) .
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Now we turn to the computation of von Neumann entropy S(ρ1). Let p1 be the 

projection onto the finite dimensional subspace H1 of L2(I1, Cr). ρ1 on CAR(H1) is 

quasi free state given by covariance operator Cp1
= p1Cp1. Let K be the operator such 

that

(1 + exp(−K)) = Cp1
.

Since K is self adjoint, we can choose an orthonormal basis ψi, 1 ≤ i ≤ dimH1 of H1

such that Kψi = λiψ, where λi are real eigenvalues of K.

CAR(H1) acts on the Fermionic Fock space F (H1). Let

K1 :=
∑

i

λia(ψi)
∗a(ψi) .

According to [1] and [10], the density matrix of ρ1 (still denoted by ρ1) as an operator 

on F (H1) is given by the following

ρ1 = c exp(−K1) ,

where c−1 = Tr
(

exp(−K1)
)

.

By a simple computation we find that Tr
(

exp(−K1)
)

= det(1 + e−K) and

S(ρ1) = Tr(ρ1 ln ρ1) = Tr
(

(1 − Cp1
) log(1 − Cp1

) + Cp1
log Cp1

)

. (8)

Definition 3.5. Let Pi be projections from L2(I, Cr) onto L2(Ii, C
r), and Ci = PiCPi, i =

1, 2.

Let

σC = P1

(

C ln C + (1 − C) ln(1 − C)
)

P1 −
(

C1 ln C1 + (P1 − C1) ln(P1 − C1)
)

+

P2

(

C ln C + (1 − C) ln(1 − C)
)

P2 −
(

C2 ln C2 + (P2 − C2) ln(P2 − C2)
)

and σCp
be the same as in the definition of σC with C replaced by Cp = pCp, if p is a 

projection commuting with P1.

Denote by p the projection from L2(I, Cr) onto H1 ⊕ H2. By Proposition 3.4 and 

equation (8) we have proved the following

Proposition 3.6.

S(ρ12, ρ1 ⊗2 ρ2) = Tr(σCp
) .
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3.4. Inequality from operator convexity

The proof of the following result can be found in [6] (See Th. 2.6 and Th. 4.19 of [6]):

Theorem 3.7. (1) For all operator convex functions f on R, and all orthogonal projec-

tions p, we have pf(pAp)p ≤ pf(A)p for every selfadjoint operator A; (2) f(t) = t ln(t)

is operator convex.

(1) of the above Theorem is known as Sherman–Davis Inequality. It in instructive to 

review the idea of the proof of (1) which is also used in the proof of Th. 3.12: Consider 

the selfadjoint unitary operator Up = 2p − I; by operator convexity we have

f
(1

2
A +

1

2
UpAUp

)

≤
1

2
f(A) +

1

2
f(UpAUp) .

Now notice that

1

2
A +

1

2
UpAUp = Ap + A1−p, f(UpAUp) = Upf(A)Up ,

where Ap = pAp, and the inequality follows.

For (2), see e.g. [6].

Lemma 3.8. (1)

S(ω, ω1 ⊗2 ω2) = lim
p→1

Tr(σCp
) ≥ Tr(σC)

where p → 1 strongly.

(2) The mutual information for r free fermion net is r times the mutual information 

for 1 free fermion net.

Proof. (1): The first follows from Proposition 3.6 and (2) of Th. 2.2. To prove the in-

equality, we use the fact that x ln x is operator convex, and so P1C ln CP1 ≥ C1 ln C1, 

and similarly with C replaced by 1 − C by Th. 3.7. It follows that σ ≥ 0, σp ≥ 0. Since 

σp goes to σ strongly as p → 1 strongly, the inequality follows.

(2): For the case of r free fermions, the trace in (1) is over L2(R, Cr) which is r direct 

sum of the Hilbert space L2(R, C), and (2) follows. �

We shall prove later that the inequality in the above Lemma is actually an equality. 

It would follow if one can show that σCp
goes to σC in tracial norm. This is not so easy, 

and we note that P1

(

C ln C + (1 − C) ln(1 − C)
)

P1 is not trace class. To overcome this 

difficulty and to compute the mutual information we prove the reverse inequality by 

applying Lieb’s joint convexity and regularized kernel as in the next two sections.



R. Longo, F. Xu / Advances in Mathematics 337 (2018) 139–170 153

3.5. Reversed inequality from Lieb’s joint convexity

We begin with the following Lieb’s Concavity Theorem:

Theorem 3.9. (1) For all m ×n matrices K, and all 0 ≤ t ≤ 1, the real valued map given 

by (A, B) → Tr(K∗A1−tKB) is concave where A, B are non-negative m × m and n × n

matrices respectively;

(2) If A ≥ 0, B ≥ 0 and K is trace class, then

(A, B) → Tr(K∗A1−tKB), 0 ≤ t ≤ 1,

is jointly concave;

(3) If A ≥ εI, B ≥ εI, ε > 0 and K is trace class, then

(A, B) → Tr(K∗A ln AK − K∗AK ln B)

is jointly convex.

Proof. (1) is proved in Th. 6.1 of [6]. (2) follows from (2) by functional calculus. To 

prove (3), we note that

Tr(K∗A ln AK − K∗AK ln B) = lim
t→0

Tr(K∗A1−tKB) − Tr(K∗AK)

t − 1

and (3) follows from (2). �

Lemma 3.10. Assume that S is trace class, then Tr(ST ) = Tr(TS) where T is any 

bounded operator, and if the sequence of bounded operators Tn → T strongly, then 

Tr(STn) → Tr(ST ).

Proof. The equality is proved in [27]. Let ei be an orthonormal basis, and S = U |S| be 

the polar decomposition of S. Then

Tr(TnS) =
∑

i

〈ei, TnU |S|1/2|S|1/2ei〉 .

Note that

|〈ei, TnU |S|1/2|S|1/2ei〉| ≤ ||TnU |S|1/2ei|| ‖|S|1/2ei‖ ≤ c〈ei, |S|ei〉, ∀i ,

where c is a constant, so the last part of the Lemma follows by Lebesgue dominated 

convergence theorem. �

Lemma 3.11. Suppose that K ≥ εI, L ≥ εI, ε > 0 and K − L is trace class. Then 

ln K − ln L is trace class.
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Proof. Note that

ln K = −

∞
∫

0

(

1

K + t
−

1

1 + t

)

dt, ln L = −

∞
∫

0

(

1

L + t
−

1

1 + t

)

dt .

Hence

ln K − ln L = −

∞
∫

0

(

1

K + t
−

1

L + t

)

dt =

∞
∫

0

(

1

L + t
(K − L)

1

K + t

)

dt .

We have

|| ln K − ln L||1 ≤

∞
∫

0

∥

∥

∥

∥

1

L + t
(K − L)

1

K + t

∥

∥

∥

∥

1

dt

≤

∞
∫

0

∥

∥

∥

∥

1

L + t

∥

∥

∥

∥

‖K − L‖1

∥

∥

∥

∥

1

K + t

∥

∥

∥

∥

dt ≤ ||K − L||1 ε−1 ,

where || · ||1 denotes tracial norm. �

Theorem 3.12. Let A ≥ ε, ε > 0, B := P1AP1 + P2AP2, where P1 is a projection, 

P1 + P2 = 1, and p is a finite rank projection commuting with P1. Assume that A − B

is trace class. Then

Tr
(

A(ln A − ln B)
)

≥ Tr
(

Ap(ln Ap − ln Bp)
)

.

Proof. Apply Th. 3.9 to A, B and unitary Up = 2P − I, with f(A, B, K) =

Tr(K∗A ln AK − K∗AK ln B), K is a finite rank projection, we have

f

(

1

2
(A + UpAUp),

1

2
(B + UpBUp), K

)

≤
1

2
f(A, B, K) +

1

2
f(UpAUp, UpBUp, K) .

Note that

f

(

1

2
(A + UpAUp),

1

2
(B + UpBUp), K

)

= f(Ap + A1−p, Bp + B1−p, K)

and

f(Ap + A1−p, Bp + B1−p, K)

= Tr
(

K(Ap ln Ap + A1−p ln A1−p)K − K(Ap + A1−p)K ln(Bp + B1−p)
)

and
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1

2
f(A, B, K) +

1

2
f(UpAUp, UpBUp, K) =

1

2
Tr(KA ln A K − KAK ln B) +

1

2
Tr(KUpA ln A UpK − KUpAUpKUp ln B Up) .

Observe that KUp = [K, 2p] +UpK and K ln B = [K, ln B] +ln B K, K ln(Bp +B1−p) =

[K, ln(Bp + B1−p)] + ln(Bp + B1−p)K. We will let K → 1 strongly eventually. Up to 

terms that go to 0 as K → 1 strongly, we can freely permute K and Up. By permuting 

K with ln(Bp + B1−p) and ln B on the left hand side and righthand side of the above 

inequality respectively, we get terms on the left hand side of the above inequality

−Tr
(

K(Ap + A1−p)[K, ln(Bp + B1−p)]
)

and on the right hand side of the above inequality

−
1

2
Tr

(

KA[K, ln B] + KUpA[K, ln B]Up
)

= −Tr
(

K(pA[K, ln B]p + (1 − p)A[K, ln B](1 − p)
)

.

Up to terms that go to 0 as K → 1 strongly, we have that

−Tr
(

K
(

pA[K, ln B]p + (1 − p)A[K, ln B](1 − p)
)

)

is equal to

−Tr
(

K
(

pAp[K, ln B] + (1 − p)A(1 − p)[K, ln B](1 − p)
)

)

.

This is the same as

−Tr
(

K(Ap + A1−p)[K, ln(Bp + B1−p)]
)

up to terms that go to 0 as K → 1 strongly since ln B − ln(Bp + B1−p) is trace class by 

Lemma 3.11, and p is of finite rank.

So by permuting K with Up and ln B, ln(Bp + B1−p) in the inequalities above, by 

Lemma 3.10, use ln B − ln(Bp + B1−p) is trace class by Lemma 3.11, and p is finite rank, 

we have that up to terms which go to zero as K → 1 strongly,

Tr
(

K
(

Ap(ln Ap − ln Bp) + A1−p(ln A1−p − ln B1−p)
)

)

≤ Tr
(

K
(

pA(ln A − ln B)p + (1 − p)A(ln A − ln B)(1 − p)
)

)

.

By Lemma 3.11, ln Ap − ln Bp, ln A1−p − ln B1−p, ln A − ln B are trace class operators, 

and by Lemma 3.10 let K → 1 strongly, we get

Tr
(

Ap(ln Ap − ln Bp)
)

+ Tr
(

A1−p(ln A1−p − ln B1−p)
)

≤ TrA(ln A − ln B) .
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As in the proof of Lemma 3.8, by operator convexity of xlnx we have

(1 − p)A1−p ln A1−p(1 − p) ≥ B1−p ln B1−p

and so

Tr
(

A1−p(ln A1−p − ln B1−p)) = Tr(A1−p ln A1−p − B1−p ln B1−p

)

≥ 0

and the theorem is proved. �

3.6. Regularized Kernel for one free fermion case

Note that, by Lemma 3.8, the mutual information for r free fermion net is r times the 

mutual information for 1 free fermion net. In this section we will determine the mutual 

information for 1 free fermion net.

This section is inspired by formal computations in [10]. The regularization is also 

motivated by Th. 3.12 which applies to strictly positive operators.

Recall that the Hardy projection on L2(R, C) is given by:

Pf(x) =
1

2
f(x) +

∫

i

2π

1

(x − y)
f(y)dy ,

where the integral is the singular integral or Hilbert transform.

We write the kernel of the above integral transformation as C.

C(x, y) =
1

2
δ(x − y) −

i

2π

1

(x − y)
. (9)

Recall Ii ∈ PI, i = 1, 2, and I1, I2 are disjoint, that is Ī1 ∩ Ī2 = ∅, and I = I1 ∪ I2. We 

assume that I = (a1, b1) ∪ (a1, b1) ∪ ... ∪ (an, bn) in increasing order.

Then resolvent of C as restriction of an operator on L2(I, C)

R0(β) = (C − 1/2 + β)−1 ≡

(

−
i

2π

1

x − y
+ β δ(x − y)

)−1

(10)

has the following expression ([22] or Page 133 of [21]):

R0(β) =
(

β2 − 1/4
)−1

⎛

⎝β δ(x − y) +
i

2π

e
− i

2π log
(

β−1/2

β+1/2

)

(Z(x)−Z(y))

x − y

⎞

⎠ , (11)

where

Z(x) = log

(

−

∏n
i=1(x − ai)

∏n
i=1(x − bi)

)

. (12)
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It is useful to consider the following regularized operator: Let ε0 > 0, and E := C+ε0

1+2ε0
. 

Note that

1 + ε0

1 + 2ε0
≥ E ≥

ε0

1 + 2ε0
.

Then we have

E ln E + (1 − E) ln(1 − E) =

∞
∫

1
2

[

(

β −
1

2

)(

RE(β) − RE(−β)
)

−
2β

β + 1
2

]

dβ ,

where RE(β) = 1
E− 1

2
+β

.

We note that the integral above is absolutely convergent in norm. This can be seen 

as follows: the integrand is

(

β −
1

2

)(

RE(β) − RE(−β)
)

−
2β

β + 1
2

=
β/2 − 2β(E − 1

2 )2

[(E − 1
2 )2 − β2](β + 1

2 )
.

For 1/2 ≤ β ≤ 1, since

1 + ε0

1 + 2ε0
≥ E ≥

ε0

1 + 2ε0
,

we have

∥

∥

∥

∥

2β

β + 1
2

=
β/2 − 2β(E − 1

2 )2

[(E − 1
2 )2 − β2](β + 1

2 )

∥

∥

∥

∥

≤
3β

β + 1/2

(

ε0

1 + 2ε0

)−2

.

On the other hand

∥

∥

∥

∥

2β

β + 1
2

=
β/2 − 2β(E − 1

2 )2

[(E − 1
2)2 − β2](β + 1

2)

∥

∥

∥

∥

is bounded by 1
β2 when β is large.

To evaluate the above integral using resolvent, let t = β(1 + 2ε0) we get

E ln E + (1 − E) ln(1 − E)

=

∞
∫

1
2

(1+2ε0)

[(

t

1 + 2ε0
−

1

2

)

(

R(t) − R(−t)
)

−
2t

t + 1
2 (1 + 2ε0)

1

1 + 2ε0

]

dβ.

Now we determine the kernel Kε0

1 (x, y), x, y ∈ I1 of

P1E ln E + (1 − E) ln(1 − E)P1 − E1 ln E1 − (P1 − E1) ln(P1 − E1) .



158 R. Longo, F. Xu / Advances in Mathematics 337 (2018) 139–170

Lemma 3.13. Suppose f ∈ C1(I1 × I1) and f(x, y) = −f(y, x). Let g(x, y) = f(x,y)
x−y if 

x �= y and g(x, x) = ∂f
∂x . Then g(x, y) is continuous on I1 × I1.

Proof. It is enough to check continuity at (y, y), y ∈ I1. Since f ∈ C1(I1 × I1), we can 

write f(x′, y′) = ∂f
∂x (y, y)(x′−x) + ∂f

∂y (y, y)(y′−y) +o(x′−y′) = ∂f
∂x (y, y)(x′−y′) +o(x′−y′)

where in the second = we have used f(x, y) = −f(y, x) and hence ∂f
∂x (y, y) = −∂f

∂y (y, y). 

It follows that lim(x′,y′)→(y,y) g(x′, y′) = g(y, y). �

We shall denote by ZI,I1
(x) = ZI(x) − ZI1

(x). Even though both ZI(x) and ZI1
(x)

are singular when x is close to the boundary of its domain, it is crucial that ZI,I1
(x) is 

a smooth function on the closure of Ī1.

Lemma 3.14. Let

G(t, x, y) =
sin

(

1
2π ln

(

t− 1
2

t+ 1
2

)

(

ZI(x) − ZI(y)
)

)

− sin
(

1
2π ln

(

t− 1
2

t+ 1
2

)

(

ZI1
(x) − ZI1

(y)
)

)

x − y

if x �= y and G(t, x, x) = 1
2π ln

(

t− 1
2

t+ 1
2

)

(

Z ′
I(x) − Z ′

I1
(x)

)

, t > 1
2 .

Then G(t, x, y) is continuous on (1
2 , ∞) × I1 × I1 and

|G(t, x, y)| ≤

∣

∣

∣

∣

1

2π
ln

(

t − 1
2

t + 1
2

)∣

∣

∣

∣

M, (t, x, y) ∈ (
1

2
, ∞) × I1 × I1 ,

where M is a constant.

Proof. The continuity of G follows from Lemma 3.13. To prove the inequality, we note 

that

|G(t, x, y)| ≤

∣

∣

∣

∣

1

2π
ln

(

t − 1
2

t + 1
2

)∣

∣

∣

∣

∣

∣

∣

∣

ZI,I1
(x) − ZI,I1

(y)

x − y

∣

∣

∣

∣

.

We note that ZI,I1
(x) − ZI,I1

(y) is smooth on Ī1 × Ī1, and apply Lemma 3.13 we have 

proved the inequality. �

By Lemma 3.14, we have that the kernel before Lemma 3.13 is given by

Kε0

1 (x, y) =
−1

π

∞
∫

1
2

(1+2ε0)

(

t
1+2ε0

− 1
2

)

t2 − 1/4
G(t, x, y)dt .

Lemma 3.15. (1) Kε0

1 (x, y) is continuous, uniformly bounded and converges uniformly on 

I1 × I1 to K0
1 (x, y) as ε0 goes to 0;
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(2) The kernel of

P1C ln C + (1 − C) ln(1 − C)P1 − C1 ln C1 − (P1 − C1) ln(P1 − C1)

is given by the bounded continuous function K0
1(x, y), and moreover its trace is given by

∫

I1

K0
1 (x, x)dx = lim

ε0→0

∫

I1

Kε0

1 (x, x)dx;

(3)

∫

I1

K0
1 (x, x)dx =

1

12

∑

(ai,bi)∈I2,(aj ,bj)∈I1

ln

(

(aj − ai)(bj − bi)

(bj − ai)(aj − bi)

)

.

Proof. (1): It is clear Kε0

1 (x, y) is continuous and uniformly bounded by Lemma 3.14. 

By Lemma 3.14 again

|Kε0

1 (x, y) − K0
1 (x, y)| ≤

1

2π2
M

∞
∫

1/2

∣

∣

∣

∣

∣

(

t
1+2ε0

− 1
2

)

t2 − 1/4
χ(

1
2

(1+2ε0),∞
) −

1

t + 1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

ln

(

t − 1
2

t + 1
2

)∣

∣

∣

∣

dt

where χ(

1
2

(1+2ε0),∞
) denotes the characteristic function. We note that the integrand above 

is bounded and when t is large decays like a constant multiply by 1
t2 .

The uniform convergence now follows by Lebesgue’s dominated convergence theorem.

(2): Note that as ε0 goes to 0, P1E ln E + (1 − E) ln(1 − E)P1 − E1 ln E1 − (P1 −

E1) ln(P1 − E1) converges to

P1C ln C + (1 − C) ln(1 − C)P1 − C1 ln C1 − (P1 − C1) ln(P1 − C1)

strongly. (2) now follows from (1) and [3] which contains more general results on the 

trace of operators with integrable kernels.

(3): By Lemma 3.14 and (2) we have

∫

I1

K0
1 (x, x)dx =

−1

2π2

1
∫

1
2

1

t + 1/2
ln

(

t − 1
2

t + 1
2

)

⎛

⎝

∑

(ai,bi)∈I2,(aj ,bj)∈I1

ln

(

(aj − ai)(bj − bi)

(bj − ai)(aj − bi)

)

⎞

⎠ dt .

To finish the proof we just need to show −1
2π2

∫ 1
1
2

1
t+1/2 ln

(

t− 1
2

t+ 1
2

)

= 1/12. By change of 

integration variable to u = ln
(

t− 1
2

t+ 1
2

)

it is sufficient to check that
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0
∫

−∞

ueu

1 − eu
du =

−1

6π2
.

Since the anti-derivative of ueu

1−eu is −Li2(eu) − u ln(1 − eu) where Li2(x) :=
∑∞

k=1
xk

k2 is 

the dilogarithm, the desired equality follows from

∞
∑

k=1

1

k2
=

π2

6
. �

Remark 3.16. We note that the previous Lemma works in exactly the same way when 

we replace I1 by I2, and P1 by P2.

3.7. The proof of Theorem 3.18

Definition 3.17. If I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) in increasing order, define

G(I) :=
1

6

⎛

⎝

∑

i,j

log |bi − aj | −
∑

i<j

log |ai − aj | −
∑

i<j

log |bi − bj |

⎞

⎠ .

Theorem 3.18. Let I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) ∈ PI and I1 ∪ I2 = I, Ī1 ∩ Ī2 = ∅. 

Then

SAr
(ω, ω1 ⊗2 ω2) = r

(

G(I1) + G(I2) − G(I1 ∪ I2)
)

.

Proof. By Lemma 3.8 it is sufficient to prove r = 1 case.

Recall that E := C+ε0

1+2ε0
. Apply Theorem 3.12 to A = E and A = (1 − E) respectively, 

we have

TrσE ≥ TrσEp
.

Now let ε0 go to 0 and by (2), (3) of Lemma 3.15, Lemma 3.8 and Remark 3.16, Theo-

rem 3.18 is proved. �

4. Subnets of free fermion nets and their finite index extensions

4.1. Formal properties of entropy for free fermion nets and their subnets

In the previous section we use Cayley transformation to identify punctured circle 

with real line as a tool to compute relative entropy. Now we return to general discussion 

about formal properties of entropy, and it is now convenient to be back to intervals on 

the circle. Let I ∈ PI be disjoint union of intervals on the circle. Explicitly we write 
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I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) in anti-clockwise order on the unit circle. We note 

that relative entropies as computed in Th. 3.18 is invariant under Möb transformations 

on the circle. The results of this section are inspired by [8].

By Theorem 3.18, we have FAr
(A, B) := S(ω, ωA ⊗2 ωB) < ∞ where A, B are union of 

disjoint intervals. When no confusion arises, we will simply write FAr
(A, B) as F (A, B).

We can extend the definition mutual information to more general union of disjoint 

intervals by the following

F (A ∪ B, A ∪ C) = F (A, B ∪ C) + F (B, C) − F (A, C) − F (A, B) .

Theorem 4.1. (1)

F (A ∪ B, A ∪ C) ≥ 0;

F (A ∪ B, A ∪ C) is continuous from inside in the following sense: if An ⊂ A, Bn ⊂

B, Cn ⊂ C is an increasing sequence of intervals such that ∪nAn = A, ∪nBn =

B, ∪nCn = C, then limn F (An ∪ Bn, An ∪ Cn) = F (A ∪ B, A ∪ C);

(2)

F (A, B) + F (A, C) + F (A ∪ B, A ∪ C) + F (A ∩ C, A ∩ B)

= F (B, C) + F (A, B ∪ C) + F (A, B ∩ C).

(3) There exists function G : PI → R such that

F (A, B) = G(A) + G(B) − G(A ∪ B) − G(A ∩ B) .

Such G is uniquely determined by its value on connected open intervals;

(4) One can choose G(a, b) = r
6 ln |b − a| in (3) for the r free fermion net Ar, and 

such a choice determines

G(I) =
r

6

⎛

⎝

∑

i,j

ln |bi − aj | −
∑

i<j

ln |ai − aj | −
∑

i<j

ln |bi − bj |

⎞

⎠

for I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) on unit circle with anti-clockwise order;

(5) F (A ∪B, A ∪C) = F (A ∪B, C) −F (A, C) = F (B, A ∪C) −F (B, A); In particular 

F (A ∪ B, A ∪ C) increases with B, C;

(6) If B ⊂ A is a graded subnet, then (1), (2), (3) is also true for the system of mutual 

information associated with B.

Proof. (1) and (5) for free fermions can be checked by using explicit formulas in Th. 3.18, 

but here we present general arguments which will also works for other cases such as 

subnets of free fermions.
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Choose increasing sequence of finite dimensional factors IAn
, IBn

, invariant under the 

conjugate action of Γ such that (
⋃

n IAn
)′′ = Ar(A), (

⋃

n IBn
)′′ = Ar(B), and denote by 

ρAnBn
, ρAn

⊗2 ρBn
the restrictions of ω and ω1 ⊗2 ω2 to IAn

∨ IBn
respectively. Let ρAn

and ρBn
be the restrictions of ω to IAn

and IBn
respectively.

By Proposition 3.6

S(ρAnBn
, ρAn

⊗2 ρBn
) = S(ρAn

) + S(ρBn
) − S(ρAnBn

) .

To simplify notations, let us write S(An) := S(ρAn
), S(An ∪ Bn) := S(ρAnBn

). Then we 

have

F (A, B) = lim
n→∞

S(An) + S(Bn) − S(An ∪ Bn) .

It follows that

F (A ∪ B, A ∪ C) = lim
n→∞

(

S(An ∪ Bn) + S(An ∪ Cn) − S(An) − S(An ∪ Bn ∪ Cn)
)

.

Note that

S(An ∪ Bn) + S(An ∪ Cn) − S(An) − S(An ∪ Bn ∪ Cn) ≥ 0

by strong subadditivity of von Neumann entropy, (1) follows and (2) also follows from 

the limit formula and the fact that F (A, B) is finite by Theorem 3.18.

(3): Starting with arbitrary real valued function G defined on open connected intervals 

of S1, we can define G(A) for any A ∈ PI as follows: define G(A ∪ B) = G(A) + G(B) −

F (A, B) when A and B are disjoint. It is easy to see that such G(A ∪ B) is well defined 

and only depends on A ∪ B thanks to (2).

(4): This follows from Theorem 3.18, (1) and direct computations.

(5): The identities follow from (3).

(6): We note that by Theorem 3.18 and monotonicity of relative entropy in (4) of 

Th. 2.2 that for B, FB(A, B) ≤ FAr
(A, B) < ∞. For (1) and (2) we can use Remark 3.2

and proceed in exactly the same way as in free fermion net case. (3) and (5) are proved 

in the same way as in free fermion net case. �

4.2. Structure of singularities in the finite index case

G from (3) in Th. 4.1 can be thought as “regularized” version of von Neumann entropy 

which is always infinite in our case (cf. [23]). From (3) of the above Theorem we see that 

if we only allow G to be defined on PI then G is highly non unique. Due to the continuity 

properties of F (A, B), we require that G(A) depends continuously only on the length 

rA of interval A. In addition we require that G(A) = G(Ac) for a connected interval, 

and we set G(∅) = 0. Still such G is highly non unique. However, we shall impose 
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further conditions coming from studying the singularities of relative entropy when we 

allow intervals to approach each other. Let Bε = (a1, a2ε) ∪ C = (a2, b2) ∈ PI, with 

|a2ε − a2| = ε > 0. We shall consider the singular limit when ε goes to zero while fixing 

a1 and C. Let B0 = (a1, a2). We will denote by B0∪̄C = (a1, b2), i.e., B0∪̄C is obtained 

from B0 ∪ C by adding the point a2: notice in the process the number of components 

decrease by 1.

To probe the singularity structure of von Neumann entropy, we can consider F (Bε, C)

which goes to ∞ as ε → 0 while fixing a1 and C. As an example, by Th. 3.18

FAr
(Bε, C) =

r

6

(

ln |a2 − a1| + ln |b2 − a2| − ln |b2 − a1| − ln(ε)
)

+ o(ε) .

Since G(Bε ∪ C) = G(Bε) + G(C) − F (Bε, C), the singularity structure of G(Bε ∪ C) is 

the same as that of −F (Bε, C) as ε → 0. In fact this is also true for general case: consider

G(A ∪ Bε ∪ C) = G(A) + G(Bε ∪ C) − F (A, Bε ∪ C) .

One can see that the singularity structure of G(A ∪Bε∪C) is the same as that of G(Bε∪C)

as ε → 0, since the rest of terms are bounded. So we can not expect G(Bε ∪ C) to be 

close to

G(B0∪̄C)

when ε → 0, but we may demand that

lim
ε→0

G(Bε ∪ C) − P (ε) = G(B0∪̄C) (13)

for some function P (ε) which is independent of B, C. The equation is a condition that 

connects the value of G for different components and as we shall see is a very useful 

condition. Equation (13) is of course equivalent to

G(B0∪̄C) = G(B0) + G(C) − lim
ε→0

(

P (ε) + F (Bε, C)
)

. (14)

In general we may take multiple singular limits. Equation (13) allows us to evaluate such 

limits. Let us consider such an example in details. Let A = (a2, b2), Bε1
= (a1, a2ε1

), 

Cε2
= (b2ε2

, b3), |a2ε1
− a2| = ε1 > 0, |b2ε2

− b2| = ε2 > 0. Let ε1 goes to 0 first, we find

F (A∪̄B0, A ∪ Cε2
) = G(A∪̄B0) + G(A ∪ Cε2

) − G(A∪̄B0 ∪ Cε2
) − G(A)

since the same function P (ε1) appears in both G(A ∪ Bε1
) and G(A ∪ Bε1

∪ Cε2
) with 

opposite signs. Then let ε1 goes to 0 we get by the same argument

F (A∪̄B0, A∪̄C0) = G(A∪̄B0) + G(A∪̄C0) − G(A∪̄B0∪̄C0) − G(A) .
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It is easy to see that the result is independent of the order of taking limits, and this 

way we can extend the definition of F (A, B) to any F (A, B) with A ∈ PI, B ∈ PI. 

Such F (A, B) is used in [8]. In the case of free fermions, by Th. 3.18 we have that 

P (ε) = r/6 ln ε + o(ε), and we have

F (A∪̄B0, A∪̄C0) = −
r

6
ln

∣

∣

∣

∣

(b2 − a2)(b3 − a1)

(b3 − a2)(b2 − a1)

∣

∣

∣

∣

.

Now we will show that equation (13) is also true for a large class of examples. We assume 

that B ⊂ Ar has finite index.

Note that by Lemma 2.10 μB = μAr
[A : B]2 = [A : B]2 = λ−2.

Let F1(A, B) := FAr
(A, B) −FB(A, B) and G1(A) = GAr

(A) −GB(A). Then F1(A, B)

verifies (2) and (3) of Th. 4.1. Note that F1(A, B) is not non-negative in general, be-

ing the difference of two non-negative numbers, but is always bounded by finite index 

assumptions.

We examine possible solutions of equation (14) for G1. Let Bε, C be two con-

nected intervals as in equation (14), and E the unique conditional expectation from 

Ar(Bε) ∨ Ar(C) to B(Bε) ∨ B(C) which preserves the state ω1 ⊗2 ω2. Then SA(ω, ω1 ⊗2

ω2) = SB(ω, ω1 ⊗2 ω2) + S(ω, ω · E) by Th. 2.2. Note that by Pimsner–Popa inequal-

ity E(x) ≥ λ−2x for positive x, and so F1(Bε, C) = S(ω, ω · E) ≤ ln λ−2. By Th. 4.4

limε→0 F1(Bε, C) = ln λ−1, and equation (14) is simply

G1(B0∪̄C) = G1(B0) + G1(C) − (P − ln λ) ,

where P is a constant. Up to a constant in the definition of G1(A) we can set P = ln λ, 

and it follows that G1(A) is a constant multiplied by the arc length of A. But since we 

also require G1(A) = G1(Ac), G1(A) = 0.

In this case we get GB(A) = GA(A) for any connected interval A, and use GB =

GAr
− G1 the system of solutions of equation (14) for B.

We have proved the following:

Theorem 4.2. Assume that a subnet B ⊂ Ar has finite index, then:

(1): GB((a, b)) = r
6 ln |b − a| and verifies equation (14) and (3) of Th. 4.1, and

FB(A, B) = −
r

6
| ln ηAB | ,

where A, B are two overlapping intervals with cross ratio 0 < ηAB < 1;

(2) Let B = (a1, a2ε), C = (a2, b2), |a2ε − a2| = ε > 0. Then:

FB(B, C) =
r

6

(

ln |a2 − a1| + ln |b2 − a2| − ln |b2 − a1| − ln(ε)
)

−
1

2
ln μB + o(ε)

as ε goes to 0.
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In exactly the same way if B ⊂ C is a subnet with finite index where B is as in the 

above theorem, then we also get a system of solutions of equation (14) for C as in the 

above theorem.

Remark 4.3. It is interesting to note that the constant term in (2) of Th. 4.2 seems to 

be related to the topological entropy discussed in [15] even with the right factor: in our 

case we have additional factor 1/2 since we are discussing chiral half of CFT.

We conjecture that the above theorem is true for any rational conformal net, where r

is replaced by the central charge. More examples where Th. 4.2 applies are discussed in 

Section 4.4.

Notice also that the cross ratio enters in formulas concerning nuclearity (partition 

function) [4] and entanglement entropy [12], so we can infer relations about the mutual 

information and these quantities.

4.2.1. Failure of duality is related to global dimension

By Th. 3.18 for the free fermion net Ar, and two intervals A = (a1, b1), B = (a2, b2), 

where b1 < a2, we have

FA(A, B) =
−r

6
ln η ,

where η = (b1−a2)(b2−a1)
(b1−a1)(b2−a2) is the cross ratio, 0 < η < 1. For simplicity we denote by 

FAr
(η) = FA(A, B).

One checks that FAr
(A, B) = FAr

(Ac, Bc), which is in fact equivalent to

FAr
(η) − FAr

(1 − η) =
−r

6
ln

(

η

1 − η

)

.

Similarly for B ⊂ Ar with finite index, by Th. 4.2 FB(A, B) = FB(Ac, Bc) is equivalent 

to

FB(η) − FB(1 − η) =
−r

6
ln

(

η

1 − η

)

.

We note that FAr
(A, B) = FAr

(Ac, Bc) for the free fermion net Ar. However here we 

show that FB(A, B) �= FB(Ac, Bc) with B ⊂ Ar has finite index [Ar : B] = λ−1 > 1. By 

Lemma 2.10 μB = [Ar : B]2.

We note that, as before the proof of Th. 4.2, S(ω, ω · E) = F1(η) = FA(η) − FB(η) is 

a decreasing function of η, and 0 ≤ F1(η) ≤ FA(η). So we have

lim
η→1

F1(η) = 0 .

On the other hand, by Th. 4.4
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lim
η→0

F1(η) = ln[Ar : B] =
1

2
ln μB .

It follows that FB(A, B) �= FB(Ac, Bc) due to the fact that μB > 1.

4.3. Computation of limit of relative entropy

In this section we determine the exact limit of relative entropies which are necessary 

for analyzing the singularity structures of entropies in Section 4.2. The goal is to prove 

the following:

Theorem 4.4. Assume that subnet B ⊂ A has finite index, B is strongly additive. Let I1

and I2 be two intervals obtained from an interval I by removing an interior point, and 

let Jn ⊂ I2, n ≥ 1 be an increasing sequence of intervals such that

⋃

n

Jn = I2, J̄n ∩ Ī1 = ∅ .

Let En be the conditional expectation from A(I1) ∨ A(Jn) to A(I1) ∨ B(Jn) such that 

En(xy) = xEI(y), ∀x ∈ A(I1), y ∈ A(Jn). Then

lim
n→∞

S(ω, ω · En) = [A : B] .

4.3.1. Basic idea from Kosaki’s formula

Denote by φn = ω · En. By Kosaki’s formula (cf. [16])

S(ω, ω · En) = sup
m∈N

sup
xt+yt=1

⎛

⎝ln k −

∞
∫

k−1

(

ω(x∗
t xt)

1

t
+ φn(yty

∗
t )

1

t2

)

dt

⎞

⎠ ,

where xt is a step function which is equal to 0 when t is sufficiently large. To motivate 

the proof of Th. 4.4, it is instructive to see how we can get S(ω, λω) = − ln λ, 0 < λ < 1

from Kosaki’s formula. By tracing the proof in [16], one can see that the path which 

gives approximation to − ln λ is given by the following continuous path

x(t) =
λ

λ + t
, y(t) =

t

λ + t
, t ≥ k−1

and with such a choice we have

ln k −

∞
∫

k−1

(

ω(x∗
t xt)

1

t
+ φn(yty

∗
t )

1

t2

)

dt = − ln(λ + 1/k)

which tends to − ln λ as k goes to ∞. This suggests that for the proof of Th. 4.4, we need 

to choose path xt, yt such that ω(x∗
t xt) and φn(yty

∗
t ) are close to 

(

λ
λ+t

)2
and λ

(

t
λ+t

)2

respectively, and this motivates our Proposition 4.5 and the proof of Th. 4.4.
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4.3.2. A key step in the proof of Th. 4.4

Let e1 ∈ A(I1), e2 ∈ A(J1) be Jones projections for B(I1) ⊂ A(I1) and B(J1) ⊂ A(J1)

respectively as in Lemma 2.9. Let P be the projection from the vacuum representation 

of A onto the vacuum representation of B. By Lemma 2.9, there is a unitary u ∈ B(I)

such that ue1u∗ = e2. Choose isometry v2 ∈ B(J1) such that λ−1v∗
2e2v2 = 1. Note 

that e2v2v∗
2e2 = λe2, and Pe2P = λP . It follows that Pe+

2 P = λP, Pe−
2 P = 0 by our 

assumption that [Γ, P ] = 0.

Since B is strongly additive, we can find a sequence of bounded operators un ∈

B(I1) ∨ B(Jn), n ≥ 2 such that un → u, u∗
n → u∗ strongly. Let e2n := une1u∗

n. Then 

e2n → e2 strongly.

Proposition 4.5. For any ε > 0, one can find n ≥ 2 and e ∈ A(I1) ∨ A(Jn) such that

|ω(e) − 1| < ε, |ω(e∗) − 1| < ε, |ω(e∗e) − 1| < ε, |φn(ee∗) − λ| < ε .

Proof. Let us first denote by e = λ−1v∗
2e2ne2v2. We will show that given ε > 0, we can 

choose n sufficiently large such that e verifies the conditions in the Proposition. First 

we observe that since e2n → e2 strongly, it follows that e → 1 strongly, and hence by 

choosing n sufficiently large we can have

|ω(e) − 1| < ε, |ω(e∗) − 1| < ε, |ω(e∗e) − 1| < ε .

Now let us evaluate

φn(ee∗) = φn(λ−2v∗
2e2ne2v2v∗

2e2e2nv2) = λ−1φn(v∗
2e2ne2e2nv2) .

Recall the definition of φn as a state on A(I1) ∨ A(Jn): For any x, y with x ∈ A(I1), y ∈

A(Jn),

φn(xy) = 〈Ω, xPyPΩ〉 .

Recall that e2 = e+
2 +e−

2 , Pe+
2 P = λP, Pe−

2 P = 0. To evaluate φn(v∗
2une1u∗

ne2une1u∗
nv2), 

we approximate un with finite linear combination of operator of the form u1mu2m with 

u1m ∈ B(I1), u2m ∈ B(Jn), then we move those operators in A(I1) to the left of those 

operators in A(Jn) using commuting or anti-commuting relations, and it is crucial to 

observe the operators that belong to A(Jn) has only one term e+
2 or e−

2 , and the rest 

are in B(Jn). When compressed such term with P and acting on Ω, we see that e+
2 is 

replaced with λ, and e−
2 is replaced with 0. We note that e+

2 commuting with A(I1). It 

follows that

φn(ee∗) = φn(λ−2v∗
2e2ne2v2v∗

2e2e2nv2) = λ−1φn(v∗
2e2ne2e2nv2) = 〈Ω, v∗

2(une1u∗
n)2v2Ω〉 .

Since v∗
2(une1u∗

n)2v2 goes to v∗
2e2v2 = λ strongly, the Proposition is proved. �
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4.3.3. The proof of Th. 4.4

Recall φn = ω · En. By Pimsner–Popa inequality, En(x) ≥ λx for any positive x ∈

A(I1) ∨ A(Jn), it follows that φn ≥ λω, and hence by Th. 2.2

S(ω, ω · En) ≤ [A : B].

Note that by monotonicity of relative entropy S(ω, ω · En) increases with n, hence 

limn→∞ S(ω, ω · En) exists and is less or equal to [A : B].

By Kosaki’s formula

S(ω, ω · En) = sup
m∈N

sup
xt+yt=1

⎛

⎝ln k −

∞
∫

k−1

(

ω(x∗
t xt)

1

t
+ φn(yty

∗
t )

1

t2

)

dt

⎞

⎠ ,

where xt is a step function which is equal to 0 when t is sufficiently large. Since we can 

approximate any continuous function with step functions in the strong topology and vice 

versa, we can assume that xt is continuous and is equal to 0 when t is sufficiently large. 

Given ε > 0, for fixed k, m ∈ N choose e as in Proposition 4.5 and

xt = 1 −
t

λ + t
e, k−1 ≤ t ≤ m .

We have

ω(x∗
t xt) = 1 −

t

λ + t
ω(e) −

t

λ + t
ω(e∗) +

(

t

λ + t

)2

ω(e∗e)

and

φn(yty
∗
t ) =

(

t

λ + t

)2

φn(ee∗) .

By Proposition 4.5 we can choose n large enough such that

m
∫

k−1

∣

∣

∣ω(xtx
∗
t ) −

( λ

λ + t

)2∣

∣

∣

dt

t
≤ ε ,

m
∫

k−1

∣

∣

∣φn(yty
∗
t ) − λ

( t

λ + t

)2∣

∣

∣

dt

t2
≤ ε ,

and with such a choice of n we have:

ln k −

∞
∫

k−1

(

ω(x∗
t xt)

1

t
+ φn(yty

∗
t )

1

t2

)

dt ≥
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ln k −

m
∫

k−1

(

( λ

λ + t

)2 1

t
+

( t

λ + t

)2 λ

t2

)

dt + 1/m − 2ε

= ln
( k

kλ + 1

)

− ln
( m

λ + m

)

+ 1/m − 2ε .

It follows that

lim
n→∞

S(ω, ω · En) ≥ ln
( k

kλ + 1

)

− ln
( m

λ + m

)

+ 1/m − 2ε .

Let k, m go to ∞ and ε go to 0, we have proved theorem. �

4.4. More examples

4.4.1. Orbifold examples

Take U(1)4k2 ⊂ U(1)1. This is Z2k orbifold of U(1)1. So Th. 4.2 apply to the net 

U(1)4k2 . Another special case is when k = 1, we can take a further Z2 orbifold of U(1)4

which corresponds to complex conjugation on U(1) to get a tensor product of two Ising 

model with central charge 1
2 . It follows that Ising model with central charge 1

2 verifies 

Th. 4.2, and in particular violates duality discussed in Section 4.2.1.

More generally, we can take any finite subgroup of U(n) which commutes with AdΓ

and obtain orbifold subnet of U(n)1. This provides a large family of examples which 

verify Th. 4.2.

4.4.2. Conformal inclusions

By [32], we have the following inclusions with finite index:

SU(n)m × SU(m)n × U(1)mn(m+n)2 ⊂ Spin(2mn)1 ⊂ U(mn)1 .

So Th. 4.2 apply to the net SU(n)m × SU(m)n × U(1)mn(m+n)2 . If we take m = n, then 

since U(1)(4n4) verifies Th. 4.2 by the example in previous section, it follows that the 

net associated with SU(n)n × SU(n)n, and hence the net associated with SU(n)n also 

verifies Th. 4.2.
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