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Abstract: We prove that the mutual information for vacuum state as defined by Araki
is finite for general Dirac Quantum Fields in Minkowski spacetime of any dimension.
In the case of two dimensional chiral conformal field theory (CFT) we use our previous
results for the free fermions to show that for a large class of chiral CFT the mutual
information is finite. We also provide a direct relation between relative entropy and the
index of a representation of conformal net.

1. Introduction

In the last few years there has been an enormous amount of work by physicists con-
cerning entanglement entropies in QFT, motivated by the connections with condensed
matter physics, black holes, etc.; see the references in [17] for a partial list of references.
However, some very basic mathematical questions remain open. Often, the mutual infor-
mation is argued to be finite based on heuristic physical arguments, and one can derive
the singularities of the entropies from the mutual information by taking singular limits.
But it is not even clear that such mutual information, which is well defined as a special
case of Araki’s relative entropy, is indeed finite. All the heuristic computations such those
done in [10] and [9] take this for granted and these papers contain a number of amazing
results about the nature of such mutual information. It is clear that there should be a rich
mathematical theory behind these physical considerations. See [16,18-21,24,29] for a
partial list of recent mathematical work.

In [21] we showed that mutual information for massless free fermions is finite, and
in [21] we calculate its value for all cases. In fact this is the only example where all
mutual information is known (see [4] for recent computations in the case of massless
bosons with two intervals). The method in §3 of [21] uses the explicit resolvent formula
for free fermions which unfortunately is not known in other cases such as free massive
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fermions. One of the goals on this paper is to improve on some of the estimates in §3 of
[21] so that we can obtain finiteness of mutual information for all free fermion theories
(cf. Corollary 3.7) without having the explicit resolvent formula available. The main
results which lead to Corollary 3.7 are Theorem 3.4 and Proposition 3.6.

We then consider more such finiteness results for chiral CFT in two dimensions by
embedding into free fermions and using monotonicity of relative entropy. First we show
that every lattice contains a finite index sublattice which can be embedded into free
fermions in Corollary 4.3. As a consequence we show that mutual information is finite
for all conformal net coming from lattices in Corollary 4.4. These immediately show that
all conformal nets which can be embedded as a subnet of conformal nets associated with
a lattice, and with a simply connected Lie group G at level k or so called Wess-Zumino-
Witten models, their cosets, orbifolds, simple current extensions and combinations of
such constructions, the mutual information is always finite. Our last result Theorem 4.5
gives a direct relation between relative entropy and the index of a representation of
conformal net, in a similar spirit to a result in §4 of [21].

The rest of this paper is structured as follows. After a preliminary section on von
Neumann entropy, Araki’s relative entropy, we consider the mutual information in an
algebraic quantum field theory with split property, and use free fermion theory as an
example. Then we consider a general problem motivated by computations of mutual
information in Sect. 3, where we prove a few keys results such as Thereom 3.4, Propo-
sition 3.6. The finiteness of mutual information in free fermion QFT is obtained as a
consequence in Corollary 3.7. In Sect. 4 we first show that a conformal net A4 associ-
ated with a lattice has a finite index subnet which can be embedded into free fermions.
It follows by monotonicity of relative entropy that mutual information for .4, is finite.
From this we derive the finiteness of mutual information for a large class of chiral CFTs.
In the last subsection we prove Theorem 4.5.

2. Preliminaries

2.1. Entropy and relative entropy. von Neumann entropy is the quantity associated with
a density matrix p on a Hilbert space H by

S(p) = —Tr(plog p).

von Neumann entropy can be viewed as a measure of the lack of information about a
system to which one has ascribed the state. This interpretation is in accord for instance
with the facts that S(p) > 0 and that a pure state p = |W)(W| has vanishing von
Neumann entropy.

A related notion is that of the relative entropy. It is defined for two density matrices

p, p’ by
S(p, p") =Tr(plogp — plogp’). (1)

Like S(p), S(p, p’) is non-negative, and can be infinite.

A generalization of the relative entropy in the context of von Neumann algebras of
arbitrary type was found by Araki [1,2] and is formulated using modular theory. Given
two faithful, normal states w, @’ on a von Neumann algebra A in standard form, we
choose the vector representatives in the natural cone P*, called |2), |Q') . The anti-

linear operator S, ya|Q') = a*|2), a € A, is closable and one considers again the
1/2

w.o - Here J is the modular conjugation

polar decomposition of its closure S, ., = JA
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of A associated with P* and A, ., = o Sw.w 18 the relative modular operator w.r.t.
|2), |€'). Of course, if » = o’ then A, = A, is the usual modular operator.
A related object is the Connes cocycle (Radon—-Nikodym derivative) defined as [ Dw :

Do'); = Azyw Afp’ o € A, where V is an arbitrary auxiliary faithful normal state on A’

Definition 2.1. The relative entropy w.r.t. w and o’ is defined by

Dw: Do/ — 1
S, @) = (Qlog Ayoy Q) = lim 222D = 1)
t—0 it

) 2

S is extended to positive linear functionals that are not necessarily normalized by the for-
mula SQw, V') = AS(w, o) +Ailog(r/1'), where A, 1’ > 0and w, ' are normalized.
If @' is not normal, then one sets S(w, @) = oo.

For a type I algebra A = B(H), states w, @’ correspond to density matrices p, p’.
The square root of the relative modular operator A:U/ i}, corresponds to p'/2 @ p/~1/2

in the standard representation of A on H ® H; namely H ® 7 is identified with the
Hiilbert-Schmidt operators H S(H) with the left/right multiplication of A/A’. In this
representation, w corresponds to the vector state |2) = pl/ 2 ¢ H ® H, and the abstract
definition of the relative entropy in (2) becomes

1 1
(Q[log Ao ) = Tryp? (logp @ 1 — 1 ®@log p’) p2
= Try(plog p — plog p"). 3)

As another example, let us consider a bi-partite system with Hilbert space H4 ® Hp
and observable algebra A = B(H4) ® B(Hp). A normal state w4 p on A corresponds
to a density matrix p4p. One calls pg = Tryy, pap the “reduced density matrix”, which
defines a state w4 on B(H4) (and similarly for system B). The mutual information is
given in our example system by

S(paB, pa @ pp) = S(pa) +S(pB) — S(pap). 4)

A list of properties of relative entropies that will be used later can be found in [23]
(cf. Th. 5.3, Th. 5.15 and Cor. 5.12 [23]):

Theorem 2.2.(1) Let M be a von Neumann algebra and M| a von Neumann subalgebra
of M. Assume that there exists a faithful normal conditional expectation E of M onto
M. If ¥ and w are states of M1 and M, respectively, then S(w, V¥ - E) = S(w |
M17 ’l’) + S(a),a) : E),

(2) Let be M; an increasing net of von Neumann subalgebras of M with the property
(U; Mi)" = M. Then S(w1 | M;, w2 | M;) converges to S(wi, wz) where wy, w are
two normal states on M;

(3) Let w and w1 be two normal states on a von Neumann algebra M. If w1 > pw, then
S, ) <lnp~';

(4) Let w and ¢ be two normal states on a von Neumann algebra M, and denote by
w1 and ¢y the restrictions of w and ¢ to a von Neumann subalgebra M1 C M
respectively. Then S(w1, ¢1) < S(w, ¢).

For type III factors, the von Neumann entropy is always infinite, but we shall see that
in many cases mutual information is finite.
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Let us describe the setting where the relative entropy we are interested in comput-
ing. We consider the formulation of algebraic quantum field theory ona D = d + 1
dimensional Minkowski spacetime (cf. [14]). Let DO be an open subset of space time
such that the closure of D O is compact. Let A(D O) be the algebra of observable asso-
ciated with DO, and w the vector state given by the vacuum vector. For simplicity we
will assume that DO is the double cone generated by an open set O on the time zero
slice R?. We shall assume that O has smooth boundary and the closure of O in R is
compact. Slightly abusing our notation we denote A(D O) simply by A(O) . Oy and
O are disjoint if O1 N O = ¥. Denote by P O the set which consists of finite union of
disjoint Os. Let Oy, O2 C PO, with O1 N 0> = (. Let w1, ) be the restriction of @
to A(O1), A(O3) respectively.

We shall assume that our theory is split (cf. [6] for bosonic case, [28] and [12] for
fermionic case), which means that w; ® w;, which is defined on elements of the form
xy,x € A(0y),y € A(02) by w1 Qwa(xy) = w1 (x)wy(y), extends to a normal faithful
state of the von Neumann algebra generated by .A(O1) and .A(O2). The basic quantity we
are interested in is the relative entropy (also called mutual information) S(w, w1 ® @»2).

As an example let us consider chiral free fermion CFT as discussed in details in §3 of
[21]. We will describe the formula for mutual information which is proved in Th. 3.18
of [21], and refer reader to §3 of [21] for more details.

Let H denote the Hilbert space L?(S'; C") of square-summable C”-valued functions
on the circle. L

FixI; € PI,i = 1,2,and Iy, I disjoint, thatis I{ N[ = ¥, and I = I1 U I>. Denote
by A, the graded conformal net associated with r chiral free fermions. We will write
the normal faithful state w; ®> wy with graded tensor product in §3 of [21] simply as
w1 ® w2, and the mutual information we are interested is now S 4, (w0, w1 ® w2).

The vacuum state w on A, (I) is a quasi-free state as studied by Araki in [3]. To
describe this state, it is convenient to use Cayley transform V(x) = (x —i)/(x +1i),
which carries the (one point compactification of the) real line onto the circle and the
upper half plane onto the unit disk. It induces a unitary map

Uf() =n"2(x+)" f(V(x))

of L2(S!', C") onto L%(R, C"). The operator U carries the Hardy space on the circle
onto the Hardy space on the real line . We will use the Cayley transform to identify
intervals on the circle with one point removed to intervals on the real line. Under the
unitary transformation above, the Hardy projection on L>(S!, C") is transformed to the
Hardy projection on L*(R, C") given by

] 1
PF@) =37+ / e 0.

where the singular integral is (proportional to) the Hilbert transform.
We write the kernel of the above integral transformation as C:

1

Cx.y) = —a(x—y) (e

®)

The quasi free state w is determined by

w(a(f)*a@) = (g, Pf).
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Slightly abusing our notations, we will identify P with its kernel C and simply write

o(a(f)*a(®) = (8. Cf).
C will be called covariance operator.

Definition 2.3. Let P; be projections from L2(1,C") onto L%(I;, C"), and C; = P;CP;,
i=1,2.
Let

oc =P1(CInC+(1—C)In(1 = C))Py — (C1 InCy + Py — C) In(Py — C1))
+P2(CInC+ (1 —C)In(1 — C))Py — (C2In C2 + (P — C2) In(P3 — C2))

and o, be the same as in the definition of o¢ with C replaced by C, = pCp, if pisa
projection commuting with Py.

As a consequence of Theorem 3.18 of [21] we have

Proposition 2.4.

S(w, w1 ® wp) = lim Tr(oc,) = Tr(oc)
p—1

where p — 1 strongly.

3. Estimation of Relative Entropy

Proposition 2.4 suggests that it is useful to study the following general problem. Let
‘H be a Hilbert space of countable dimension, and P be a projection on H. Let A be
a positive bounded operator on H and B := PAP + (1 — P)A(l — P). It is useful
to note that if U := 2P — 1, then U2 = 1 and B = %(A + UAU). In particular

B > %A. Lettq ;= PAInAP +(1 — P)AIn A(1 — P) — B1n B. Then the problem is
to compute/estimate Tr(z4).

Proposition 3.1. (/)

—/oot P pa(-P)——(1— Py~ —ar;
M= 0 t+A t+A t+B)

(2)
Ta+e < T4, Ve > 0.
Proof. Ad (1): We note that [|#(P = P + (1 — P)=: (1 — P) — =L5)|| < 3, and when
t is large
t A A?/1?
r+A ) 1+A/t
Note that

PIAPIPIAIP—IB
(1-5)pra-m(i=F)a-r=(1-7)
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Hence

t+B

A%/1? A2%/¢? B2/t?
=P P+(1—P) (1-P)—
1+ A/t 1+A/t 1+ B/t

(P pra-pm—a-p-
(er(_)H—A(_ __>

and its norm is bounded by constant multiplied by 1/¢> when ¢ goes to infinity, hence
the improper integral is absolutely convergent in operator norm, and (1) follows by
functional calculus. Ad (2): By (1) we have

o 1 1 1
= t{\P———P+(1—-P)— (1 —-P)— —— )dt
Fase /0 ( t+A+e * )t+A( ) t+B+e)

o 1 1 1

So

€ 1 1 1
—tppe= | t(P—PrA—P)— (1 —P)— — s
TA ™ Thse /0 ( t+A ( )t+A( ) t+B>

o0 1 1 1
+ e{\P—P+(1—-P)——({ - P)— ——)dt.
€ t+A t+A t+B

Since ! is operator convex (cf. [8]), P25 P + (1 — P)5(1 — P) — -1z > 0 and (2)

) x 1+A +A
is proved. O

As aconsequence of (2) of the above Proposition, we have the following improvement
of Theorem 3.12 of [21]:

Proposition 3.2. Let p be a finite rank projection commuting with P, and A, B as above.
Assume that A — B is trace class. Then

Tr(ta) = Tr(za,).

Proof. When A > € > 0 the proposition is Theorem 3.12 of [21]. Now replace A by
A + € and use (2) of Proposition 3.1, we have Tr(ca+¢) < Tr(o4). On the other hand
since o4+ converges to o4 strongly, it follows that

lim Tr(oa+e) = Tr(oa)
e—0

and so we have

Iim Tr(og+e) = Tr(oa)
e—0

and the proposition follows by Theorem 3.12 of [21]. O

As an application of Proposition 3.2, we specialize A and H as follows. We take
H = L%*0,C), 0 = 01 U0, € PO. P is the projection onto L2%(0;,C), and A is
given by a kernel K (x, y) = K (x — y) which is singular when x = y but smooth when
X # y.

Itis instructive to review how S(w, w1 ® wy) = Tr(o¢) is proved. Choose a sequence
of finite rank projections p, which converges strongly to 1 and commute with P. Then
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by the property of relative entropy S(w, w1 ® w2) = lim, Tr(oc,, ). Since C), > 0
converges to C strongly, we have S(w, w1 ® w2) > Tr(oc). The reversed inequality
would follow from Theorem 3.12 of [21] if we can drop the assumption that A is strictly
positive. In [21] we use regularized kernel and explicit form of resolvent in the chiral free
fermion case (cf. (1) of Lemma 3.15 in [21]) to prove the reversed inequality. Now with
Proposition 3.2 we will always have S(w, w1 ® w2) = Tr(oc) even without knowing
the explicit form of the resolvent of C. In particular this identity is also true for free
massive fermions, where the corresponding covariance operator C is given by formula
187 in [10].

To motivate the next result, note that our goal is to estimate Aln A — B In B when
A — B is trace class. The derivative of x In x is singular at x = 0, this explains that when
A, B has 0 in their spectrum one needs additional conditions. Note that the derivative of
x21n x is bounded when x is close to zero, and when A, B are positive we can consider
Aln+/A— B In /B with condition that vA— /B B being trace class. It is more convenient
in applications to replace last condition by |A — B|'/? being trace class, and that is the
condition we impose in Theorem 3.4.

Lemma 3.3.
! T L[
, > 0.
t+B T 12
Proof. For any unit vector ¢ € H we have
A Ap,d).
||t+B ¢l < (1B ¢¢>

Note that (¢ + B)2 = t2+2tB + B2 > t? + tA, and so

1 1
A A<A A
(t + B)? 2+ tA

and

1 1 1 1
A— < —({A——A9p, < ||All-
gt o) = Horgne )z
and the Lemma follows. 0O

1
Theorem 3.4. Suppose that |A — B|2 is trace class, then T4 is also trace class.

Proof. By (1) of Proposition 3.1,

+ B

o0 1 | 1
+ t{P—P+(1—-—P)—— (1 —-P)— ——)dt.
1 t+A t+A t+B

/Oot(P ! P+(1—-P) ! (1-P) ! dt
1 t+A t+A t+B

1
1 1 1
tA=/t P—P+(1—-P)—A—-P)— ——)dt
0 t+A t+A t

Note that

=—BIn(B+ 1)+ PAIn(A+ P+ (1 — P)AIn(A+ 1)(1 — P).
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By Lemma 3.11 of [21] In(A + 1) — In(B + 1) is trace class, it follows that
Aln(A+1)—BIn(B+1)=A(n(A+1)—In(B+1))+(A—B)In(B +1)

is trace class, and sois —BIn(B+ 1)+ PAIn(A+ H)P + (1 — P)AIn(A+ 1)(1 — P).
Hence, it is sufficient to show that

1
1 1 1
/t P—P+(1—-P)—1A—-P)— ——)dt
0 t+A t+A t+B

is trace class. Let 0 < € < 1 be a small number, and denote by

1
1 1 1
DE:=/t P—P+(1—-P)— ({1 —-P)— ——)dt.
p t+A t+A t+B

We note that D > 0 is an increasing sequence of positive trace class operators which
converge in norm to

! 1 1 1
f t\P—P+(1—-P)—— (1 —P)— —— | dt,
0 t+A t+A t+B

it is sufficient to show that Tr(Dc) is bounded by a constant independent of €.
By assumption B — A is trace class, we can find an ONB of v; of H which are the
eigenvectors of B — A with eigenvalues A;. We have

! 1 1 ! 11
TI'(DG) I/ Tr (t (m — t+B>> dt If Tr (t (—Bm( — A)))
byt
=50 [ v )

where the interchange of sum and integral in the third equality follows since the integrand
is a continuous function of ¢ in tracial norm. First assume that A; > 0. Then from
(t + B)yrj = Ay + (¢ + Aj)Y; we have

1 1 1
= - Ay ).
+BV Y (sz t+B %)

t 1 1 1 1
, i — Ay )) < All+1
<t+Awl [+ (I//l t+B 1!/'>>_t+)u||t+Aw'“<”t+B : )
1 1
||A||2—,+1
t+A; 2
where in the last step we have used Lemma 3.3. So

fe]<ﬁ‘”’ st f—(lAn%iln)d,

< 7r||A||’—+1n(l +Ai) —InA
)Lf

<
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When A; < 0, exchanging the roles of A, B as above we have

1 o 1 " ‘
t+A T = U ‘

1 t
<m(A +AD Vi, m‘ﬁi>

1 t t
(rrare gt (v s - o)

We have

<t+A “’l’mﬂ

and it follows that
1
<2+ —A <2+]|A °—
<[+A I/fl, Bwl> I Il [1A]l

1

12

|
5/ (3+||A||2—> '
€ t_)"l 12

ll +3(n(l — ;) — In(—=2;)).
A2

1

It follows that

/‘ t v 1 o) ar
c \t+A""t+B"'

1
= m||A][?

Putting these two cases together we have

Tr(De) < Z i Gl AN 1412+ 30n(T+ [2]) — In(l2])).

i

By assumption ), |1; |% < 00, it follows that Tr(D¢) is bounded by a number indepen-
dent of € and the proof is complete. O

To apply Theorem 3.4 to the computation of relative entropy in free QFT, we specialize
A and H as follows. We take H = L2(0,C), O = 01U O, € PO. P is the projection
onto L2(01, C), and A is given by akernel K (x, y) = K (x — y) which is singular when
x = y but smooth when x # y.

Lemma 3.5. (1) Suppose Fi = PF(1 — P) + (1 — P)F P where P is a projection, and

172

] . = . .
|F'|2 is trace class, then |F1|2 is also trace class, and |P F P|'/* is also trace class.

Proof. LetU =2p —1.Then F = %(F — UFU). For acompact operator 7', we shall
denote by 1, (T') its n-th largest singular value among all nonzero eigenvalues. By Fan’s
Theorem (cf. §1 of [27]), we have

Pnim+1 (F = UFU) < pin41 (F) + 1 (UFU) = pnt1 (F) + o1 (F), Vo, m = 0.

Choose n = m > 0 we have w41 (F —UFU) < 2uu+1(F), and choose n = m + 1
with n > 1 we have

o1 (F = UFU) < pps1(F) + o (F).

It follows that (wope1 (F — UFUNY? < 212,00 (F)'Y2, (uon(F — UFU)/? <
Pt (F)'72 4 41, (F)'/2, and s Te(|Fy|'2) = Z Can (V2 2 (V3 4 DTR( R,
The same argument with U F U replaced by —U FU shows that |F + U FU|'/? is trace
class. Note that [PFP| < 2|F + UFU|, the second statement in the Lemma also
follows. 0O
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Proposition 3.6. Suppose H = L2(0, C), O = 01U 0y € PO, P is the projection
onto L2(01, C), and A is given by a kernel K (x, y) = K (x — y) which is singular when
x = y but smooth when x # y. Then |A — B|'/? is trace class.

Proof. By assumption A — B is given by akernel K (x, y) = K (x —y) which is a smooth
function for x € O1, y € O>. Choose a large cube CU of length L centered at origin
whose interior contains the closure of the union of O, 02, O1 — 02, O> — Oq, and let
G(x1, ..., xq) be a smooth function on CU such that G(x — y) = K(x — y) whenever
x € 01,y € 03, G(x) = G(—x) and G is periodic in each of its variables with period
L. The operator T on L>(CU, C) given by kernel G(x — y) can be diagonalized by
Fourier transformation, and its eigenvalues as functions of (n1, ..., ng) where n; are
integers go to zero faster than the inverse of any polynomial in ny, ..., ng. It follows
that |7'|'/2 is trace class. A — Bis PF(1 — P)+ (1 — P)F P, where F is the restriction
of T to subspace L>(0} U O,, C). By Lemma 3.5 the Proposition is proved. O

The split property for general Dirac Quantum Fields in curved space time is proved
in [12]. Since the computation of relative entropy for general Dirac Quantum Fields in
Minkowski spacetime reduces to finite linear combinations of traces of t4 where A is
as in Proposition 3.6, combined with Theorem 3.4 we have proved the following:

Corollary 3.7. The mutual information for general Dirac Quantum Fields in Minkowski
spacetime of any dimension is finite.

Remark 3.8. For free boson case there is a formula (cf. equation (63) of [10]) for mutual
information, but the corresponding operator C there is unbounded and does not seem
to have a good kernel representations. In the case of chiral massless free bosons there
has been recent computation of mutual information in the case of two intervals with
diagolization of a non-symmetric operator (cf. §3 of [4]). We note that in the later case
the mutual information is finite since it is embedded into free fermions. It is an interesting
question to see if one can have a similar treatment of free bosons in general cases as in
this section.

4. Chiral CFT

We shall refer the reader to §2 of [21] for the definition of conformal net and its properties.

A positive lattice L of rank # is the Z span of abasis «q, . . ., &, in a vector space with
a positive definite inner product (, ) such that {o;, o) € Z,V1 < i, j < n. L is called
even if (o;, o;) € 27Z,VY1 < i < n. To each even positive lattice L one can associate
a rational conformal net A;, (cf. [13]). The free fermion net A, can be considered as
conformal net associated with Z" with its usual Euclidean inner product. A, is not local,
but graded local since Z" is not even.

Lemma 4.1. Let L be a positive lattice with a basis ay, ..., oy, and for k a positive
integer; let kL be the 7. span of a basis kay, . .., ka,. Then Ay C Ay has index n¥.

Proof. By [13] the vacuum representation of .4;, decomposes into finitely many irre-
ducible representations of 4y, which are in one to one correspondence with abelian
group of L/kL, and all such representations have index 1. Note L/ kL is isomorphic to
direct product of n copies of Z/kZ, the Lemma follows. 0O

Proposition 4.2. Let L positive lattice L of rank n with a basis oy, . . ., oy. Then:

(1) There exists a Z linear injective map ¢ : L — Q" for some positive integer r such
that ¢ preserves inner product ;
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(2) There exists a positive integer k such that the image of kL under ¢ lies in Z".

Proof. Ad (1) It is equivalent to show that for some positive integer r there exist vectors
Ai = (A, ..., As) € @r such that

> AkAr = (o)), V1 <i, j <n.

1<k<r
We prove this by induction on n. When n = 1, one can take A; = (1,..., 1) with
r = (o1, @1). Assume that the Proposition is true for n — 1, i.e., for some positive integer
r there exist vectors A; = (Ay;, ..., Ay;) € Q" such that

> AkiAr = (o), V1 <i,j < (n—1).

I<k<r

First, we choose a vector A~,, in the linear spanof Ay, ..., A,—1 such that (A~n, Aj) =
(an, i), V1 <i < n — 1. Suppose that A, = Zl<i<n_1 x; A;, then we have a system
of linear equations

Z Xjlaj, o) = o, ), 1<i<n-—1

1<j<n-—1

Since (o, ;) are integers, it follows that x; € Q. Moreover, we note that «, :=
> <i<n—1 Xi@; is exactly the projection of &, onto the linear space spanned by «;, 1 <
i <n —1, and it follows that

(&m &n> = Z AkllAkn € Q

1<k<r
Since (&, &,) < {(a,, ay,), we have

Y 14
(ap, op) — Z AinAgn = —

I<k<r 4

with both p, g positive integers. Let s = r + pg and A, be a vector in Q° whose first
r entries are that of A,, and the last pg entries are all é, and we embed A; into Q°

by simply adding last pg zeros to the components of A;, 1 <i < n — 1, and we have
proved the Proposition for n. By induction the proof is complete.

Ad (2): The image of each ¢ («;) has components in QQ, we just have to choose an
integer k such that £k multiply each of these components are in Z. 0O

By Proposition 4.2 we immediately have:

Corollary 4.3. Let L be an even positive lattice and Ay, the associated conformal net.
Then there exist positive integers k, r such that Ay, is a subnet of free r fermion net A,.

By Corollary 4.3 and Lemma 4.1 we have proved the following:

Corollary 4.4. Let L be an even positive lattice and Ay, the associated conformal net.
The mutual information for Ay is finite.

If G is a simply connected simply laced compact Lie group, it is known (cf. [26])
that Ag, is conformal net associated with a lattice. When G is not simply laced, G
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is of type B, C, F4, G,. Note that SO2n +1) C SO2n +2),Gy C Fy C Eg, and
Sp(n) C SO(4n). So G can always be embedded into H for some simply laced H.

Hence, the mutual information for Ag, is finite by Corollary 4.4.

Since Ag, is a subnet of k tensor product of Ag,, it follows that the mutual infor-
mation for Ag, is finite by Corollary 4.4. It is also clear that the same is true for all
conformal nets that can be obtained from cosets, orbifolds, simple current extensions or
combinations of these constructions starting with Ag, or Ay, and of course any subnets
of such conformal nets.

4.1. A relation between relative entropy and index. Fix an interval Iy = (a,b) on a
circle. Suppose p is an irreducible representation of a conformal net 4 localized on I}
with finite index given by A~ . Let J, C I {»n > 1be anincreasing sequence of intervals
such that

UJnZI]/, J_nﬂl_lza.

n

Let E, be the conditional expectation from A(ly) vV A(J,) to p(A(11)) v A(Jy).
Clearly E,41 is an extension of E,,.

We note that by Pimsner-Popa inequality we have E,(a) > Aa,V positive a €
A(I) v A(J,). Denote by ¢, = wE,.

Theorem 4.5.

lim S(w, ¢p) =In(x™")
n— o0

where 1~ is the index of representation p.

Proof. By Section 3.6.2 of [21] (We note that there is typo in the formula in Th. 3.24
of [21], there should be a natural log on the righthand side) it is sufficient to prove
the following as in Proposition 3.25 of [21]: Given any € > 0, we need to find e €
A(L) v A(J,), such that

lw(e) — 1| < €, |w(e®) — 1| <€, |w(e*e) — 1] <€, |pp(ee™) —A| <e.

Let e; € A(17) be the Jones projection for p(A(I1)) C A(I1), and v € p(A(I}) be
the isometry such that Av*ejv = 1. Since p is irreducible, p (A(11)) vV A(l]) = B(H).
And since v, A(J,) = A(I{), we can find a sequence of elements e, € p(A(I1)) vV
A(Jp),n > 2 which converges in strong star topology to e;. Now choose x, =
2 1v*eje,v. Then x, — 1in strong star topology, and so w (x,), w(x,;x,) converges to
1. On the other hand by definition

En(x;x,) = v'ereyv

converges to v*ejv = A~ ! strongly. Hence given any € > 0, we can choose n sufficiently
large such that if we set e = x,,, then e € A(I}) V A(J,), and

lw(e) — 1| <€, |w(e®) — 1] <€, |w(e*e) — 1] <€, |pp(ee™) —A| < €.
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One way of interpreting Theorem 4.5 is the following: Let I C I} U J_n_ and denote
by wr, ¢, 1 the restriction of w, ¢, to A(I) respectively. When I C I U J, is disjoint
from I1, by definition w = ¢, and S(wy, ¢n.;) = 0. Then as [ increases, S(wy, ¢n.1)
will increase. When I = I; U J,, increases so that \/,,J, = I/, Theorem 4.5 states that

the limiting value is In(A~"). This picture has some similarity (but not the same) to the
result in [15].

5. Outlook

There are a number of questions which come naturally from our work. Does split prop-
erty imply finiteness of mutual information? Or less strongly does nuclearity (cf. [5,22])
imply finiteness of mutual information? Having established finiteness of mutual infor-
mation in Corollary 3.7 the next step will be to understand the singularity structure when
the distance between regions goes to zero as in §4.2 of [21], and determine the regu-
larized entropy. These may be related to the heuristic computations in §3 of [10], and
may provide rigorous definition of C function (cf. [11]) starting with cut off independent
relative entropy as in §4.2 of [21] for CFT. Finally, it will also be interesting to determine
the asymptotics of the mutual information when the distance between regions goes to
infinity and compare with the heuristic computations in [9]. We plan to address some of
these questions in the future.

Acknowledgements. Part of this work was done when I participated in Pitp 2018 at Institute for Advanced
Study. I would like to thank E. Witten for making my visit possible and stimulating discussions, and R. Longo
for helpful comments.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

1. Araki, H.: Relative entropy of states of von Neumann algebras, I. Publ. RIMS Kyoto Univ. 11, 809—
833 (1976)
2. Araki, H.: Relative entropy of states of von Neumann algebras, II. Publ. RIMS Kyoto Univ. 13, 173—
192 (1977)
3. Araki, H.: On quasifree states of the CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto
Univ. 6, 385-442 (1970)
4. Arias, R.E., Casini, H., Huerta, M., Pontello, D.: Entropy and modular Hamiltonian for a free chiral scalar
in two intervals. arXiv:1809.00026 [hep-th]
5. Buchholz, D., D’ Antoni, C., Longo, R.: Nuclearity and thermal states in conformal field theory. Commun.
Math. Phys. 270, 267-293 (2007)
6. Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36(4), 287C304 (1974)
7. Calabrese, P, Cardy, J: Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009)
8. Carlenl, E.A.: Trace inequalities and entropy: An introductory course. In: Entropy and the quantum, vol.
529. Contemp. Math., Amer. Math. Soc., Providence, RI, (2010)
9. Cardy, J.: Some results on mutual information of disjoint regions in higher dimensions. J. Phys. A Math.
Theor. 46, 285402 arXiv:1304.7985 (2013)
10. Casini, H., Huerta, M.: Entanglement entropy in free quantum field theory. J. Phys.
A. 42, 504007 arXiv:0905.2562 (2009)
11. Casini, H., Huerta, M.: A finite entanglement entropy and the c-theorem. Phys. Lett. B. 600, 142—
150 arXiv:hep-th/0405111 (2004)
12. D’Antoni, C., Hollands, S.: Nuclearity, local quasiequivalence and split property for dirac quantum fields
in curved spacetime. Commun. Math. Phys. 261(1), 133C159 (2006)
13. Dong, C., Xu, F.: Conformal nets associated with lattices and their orbifolds. Adv. Math. 206, 279—
306 (2006)



14.
15.

16.
17.

25.
. Pressley, A., Segal, G.: Loop Groups. Oxford University Press, Oxford (1986)
27.
28.

29.

F. Xu

Haag, R.: Local quantum physics: fields, particles, algebras. Springer, Berlin (1992)

He, S., Numasawa, T., Takayanagi, T., Watanabe, K.: Quantum dimension as entanglement entropy in
2D CFTs. arXiv:1403.0702. https://doi.org/10.1103/PhysRevD.90.041701

Hollands, S.: Relative entropy close to the edge. arXiv:1805.10006 [hep-th]

Hollands, S., Sanders, K.: Entanglement measures and their properties in quantum field theory.
arXiv:1702.04924

. Longo, R.: On Landauer principle and bound for infinite systems. Commun. Math. Phys. 363, 531—

560 (2018)

. Longo, R.: Entropy distribution of localised states. Commun. Math. Phys. arXiv:1809.03358 (in press)
. Longo, R., Xu, F.: Comment on the Bekenstein bound. J. Geom. Phys. 130, 113-120 (2018)

. Longo, R., Xu, E:: Relative entropy in CFT. Adv. Math. 337, 139-170 (2018)

. Narnhofer, H.: Entanglement, split, and nuclearity in quantum field theory. Rep. Math. Phys. 50, 307-

347 (2002)

. Ohya, M., Petz, D.: Quantum entropy and its use, theoretical and mathematical physics. Springer,

Berlin (1993)

. Otani, Y., Tanimoto, Y.: Towards entanglement entropy with UV cutoff in conformal nets.

arXiv:1701.01186
Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Sup. 19, 57106 (1986)

Simon, B.: Trace Ideals and their Applications, London Mathematical Society Lecture Note Series (1979).
ISBN: 9780521222860

Summers, S.J.: Normal product states for fermions and twisted duality for CCR and CAR type algebras
with application to the Yukawa quantum field model. Commun. Math. Phys. 86, 111-141 (1982)
Witten, E.: Notes on some entanglement properties of Quantum Field Theory. arXiv:1803.04993

Communicated by Y. Kawahigashi



	Some Results On Relative Entropy in Quantum Field Theory
	Abstract:
	1 Introduction
	2 Preliminaries
	2.1 Entropy and relative entropy

	3 Estimation of Relative Entropy
	4 Chiral CFT
	4.1 A relation between relative entropy and index

	5 Outlook
	Acknowledgements.
	References


