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ABSTRACT. The continuous degrees measure the computability-theoretic con-
tent of elements of computable metric spaces. They properly extend the Turing
degrees and naturally embed into the enumeration degrees. Although nontotal
(i-e., non-Turing) continuous degrees exist, they are all very close to total: join-
ing a continuous degree with a total degree that is not below it always results
in a total degree. We call this property almost totality.

We prove that the almost total degrees coincide with the continuous de-
grees. Since the total degrees are definable in the partial order of enumeration
degrees [1], we see that the continuous degrees are also definable. Applying
earlier work on the continuous degrees [10], this shows that the relation “PA
above” on the total degrees is definable in the enumeration degrees.

In order to prove that every almost total degree is continuous, we pass
through another characterization of the continuous degrees that slightly sim-
plifies one of Kihara and Pauly [7]. We prove that the enumeration degree of
A is continuous if and only if A is codable, meaning that A is enumeration
above the complement of an infinite tree, every path of which enumerates A.

1. INTRODUCTION

The continuous degrees were introduced by Miller [10] as a natural measure of
the computability-theoretic content of elements of computable metric spaces. A
computable metric space M is a metric space with a distinguished countable dense
sequence QM = {gM},c.. € M on which the metric is computable, meaning that
there is an effective way to approximate the distance between any two elements in
the sequence with arbitrary precision. Common separable metric spaces can usually
be given a computable structure. As a simple example, the real line R with the
usual metric and Q¥ = Q is a computable metric space. For C[0, 1], the space of
continuous functions on the unit interval under the uniform metric, we can take
QCl%1] to consist of all rational polynomials on the unit interval.

If M is a computable metric space, a name for a point z € M is a function
that takes as input a rational number € and outputs the index of a member of the
sequence QM that is within distance € of x. Note that names are discrete objects;
they fall within the scope of classical computability theory. By naming points in
computable metric spaces, we can compare the computability-theoretic content of
points from different spaces: a point = in one computable metric space has at least
as much computability-theoretic content as a point y in some (possibly different)
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computable metric space if every name for z computes a name for y. Miller [10]
observed that every point in a computable metric space is equivalent to a point
in C[0,1]. For this reason, he called the induced degree structure the continuous
degrees. We write D,. for the structure of the continuous degrees.

The Turing degrees embed into the continuous degrees; they are the continuous
degrees of points in R, or more naturally, Cantor space with an appropriate metric
and computable structure. On the other hand, the continuous degrees embed into
the enumeration degrees. An enumeration reduction determines the positive infor-
mation about one set from the positive information about another. It is closely
connected to the idea of computing with partial oracles. Equivalent forms of this
reducibility have been introduced several times over the years: Kleene [8] and My-
hill [11] in the partial oracles version, Friedberg and Rogers [3] and Selman [13]
in the version we discuss here. For sets of natural numbers A and B, we say that
A is enumeration reducible to B (A <. B) if every function that enumerates A
(uniformly) computes an enumeration of B. The enumeration degrees D, arise
from enumeration reducibility in the standard way. Thus, we have three struc-
tures: Dy < D, — D.. The copy of Dr in the enumeration degrees is the set
of total enumeration degrees and the copy of D,. in the enumeration degrees is the
set of continuous enumeration degrees. Miller [10] proved that each of the embed-
dings is proper: there are nontotal continuous degrees and there are noncontinuous
enumeration degrees.

The continuous degrees are, however, in some sense very close to total enumer-
ation degrees.

Definition 1.1. We say that an enumeration degree a is almost total if whenever
b £ a is total, a v b is also total.

In words, an enumeration degree is almost total if adding any new total information
takes it to a total degree. This is true of total degrees because the join of any two
total degrees is total; it is much harder to see that there is a nontotal enumeration
degree with this property. In 2014, Cai, Lempp, Miller, and Soskova (unpublished)
observed that continuous enumeration degrees are almost total (see Section 3 for a
proof). Together with the fact that there are nontotal continuous degrees, which is
itself nontrivial [10], this proves that there are nontotal almost total enumeration
degrees. Surprisingly, we show that this is the only possible source of examples: an
enumeration degree is almost total if and only if it is continuous.

Remark 1.2. It is worth saying a few words about the known proofs that nontotal
continuous degrees exist. Miller’s [10] proof relies on a generalization of Brouwer’s
fixed point theorem for multivalued functions on [0, 1], the Hilbert cube. Day and
Miller [2] noted that Levin’s [9] neutral measures (informally, measures relative to
which every sequence is Martin-Lof random) must have nontotal continuous degree.
Levin constructed a neutral measure using Sperner’s lemma, which is a combina-
torial version of Brouwer’s fixed point theorem (see Gécs [4] for the construction).
Finally, Kihara and Pauly [7] and, independently, Mathieu Hoyrup (unpublished)
realized that the existence of nontotal continuous degrees follows from the fact
that the Hilbert cube [0, 1]“ is strongly infinite dimensional, hence not a countable
union of zero dimensional subspaces. It is unlikely to be a coincidence that every
known proof that nontotal continuous degrees exist—hence, that nontotal almost
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total degrees exist—has a nontrivial topological component. However, we do not
know how to formalize this observation into a conjecture.

In order to prove that every almost total degree is continuous, we establish a
couple of other characterizations of the continuous degrees. In Section 4, we intro-
duce codable sets. A set A is codable if it is enumeration above the complement
of an infinite tree, every path of which computes an enumeration of A. Kihara
and Pauly [7] introduced a very similar, but slightly more complicated notion and
showed that it is equivalent to having continuous degree. We prove that codability
is equivalent to its uniform version, and that if A has almost total enumeration
degree, then it is uniformly codable. In Section 5, we define holistic sets, which are
subsets of w<* with special combinatorial properties. We prove that the enumera-
tion degrees of holistic sets and the enumeration degrees of uniformly codable sets
coincide. In Section 6, we introduce a topology on the set of holistic sets, giving rise
to the holistic space, a computable second countable Hausdorff space. Schroder [12]
proved an effective version of Urysohn’s metrization theorem.! We show that the
holistic space is computably regular, which allows us to apply Schroder’s theorem
and conclude that the holistic space is a computable metric space. This gives us
the final link in our chain of characterizations: we prove that holistic sets have
continuous enumeration degree.

In Section 3, we also consider a uniform version of almost totality and give a short
proof that uniformly almost total enumeration degrees are continuous. It should
be noted that this uniform version could be avoided in the proof that almost total
degrees are continuous, as could the nonuniform version of codability. We include
both for completeness. Summarizing all of our characterizations:

Theorem 1.3. Let a be an enumeration degree. The following are equivalent:

(1) a is (uniformly) almost total,

(2) The sets in a are (uniformly) codable,
(3) a contains a holistic set,

(4) a is continuous.

The equivalence of the first and last statements has an important consequence
for the structure of the enumeration degrees. In recent years, there has been a se-
quence of advances in understanding which relations are first order definable in D,
(as a partial order). There is a natural jump operator in the enumeration degrees
that agrees with the Turing jump operator under the embedding of Dy into D..
Kalimullin [6] proved that the enumeration jump operator is first order definable
in the enumeration degrees by a very simple structural property. Building on this
work, Cai, Ganchev, Lempp, Miller, and Soskova [1] proved that the total enumer-
ation degrees are first order definable. This, combined with the characterization
of the continuous enumeration degrees as almost total, gives us a new first order
definable class of enumeration degrees.

Theorem 1.4. The property “a is a continuous enumeration degree” is first order
definable in D..

Miller [10] studied the structural relationship between total and nontotal contin-
uous degrees. He proved that nontotal continuous degrees can be used to charac-
terize the relation “PA above” between (pre-images of) total enumeration degrees.

1See [5] for an outline of the proof of Schréder’s theorem.
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For Turing degrees x and y, we say that y is PA above x (x « y) if every infinite
tree computable in x has a path computable in y. We transfer the relation “PA
above” to total enumeration degrees in a natural way: the enumeration degree b is
PA above the enumeration degree a (a « b) if a and b are the images of Turing
degrees x and y such that x « y. Miller showed that a « b if and only if a and
b are total and there is a nontotal continuous enumeration degree c, such that
a < ¢ < b. Thus, we have another definable relation in the enumeration degrees.

Theorem 1.5. The relation “a « b” is first order definable in D,.

This nicely complements a result by Cai et. al [1] that shows that if we transfer
the relation “c.e. in” from pairs of Turing degrees to pairs of total enumeration
degrees, then once again we obtain a first order definable relation. Definable rela-
tions are natural obstacles to nontrivial automorphisms. The question about the
existence of a nontrivial automorphism in the Turing degrees has remained impen-
etrable, in part due to the lack of many examples of definable relations. Neither
“c.e. in”, nor “PA above” are known to be first order definable relations in the Tur-
ing degrees. The total enumeration degrees are a definable automorphism base for
the enumeration degrees. This means that a nontrivial automorphism of D, would
induce a nontrivial automorphism of Dy. We now know that this automorphism
must preserve the jump, the relation “c.e. in”, and the relation “PA above”. Could
such an automorphism be nontrivial?

2. PRELIMINARIES

Enumeration degrees. Enumeration reducibility captures the notion of relative
enumerability between sets of natural numbers. We present it in the form first given
by Friedberg and Rogers [3]. Let {Dy}ve, be a computable listing of all finite sets.

Definition 2.1. A set A € w is enumeration reducible to a set B € w (A <. B) if
there is a c.e. set W such that

A = {z: () {x,vy e W and D, < B}.

A c.e. set W can, in this sense, be treated as an operator mapping sets of
natural numbers to sets of natural numbers. We write A = W(B) and call W an
enumeration operator. The notation A = WE is reserved to mean that A is c.e.
in B via the c.e. operator W. Enumeration reducibility and the relation “c.e. in”
are closely connected. In particular, the relation “c.e. in” can be expressed using
enumeration reducibility.

Proposition 2.2. Let A and B be sets of natural numbers.
(1) A is c.e. in B if and only if A <. B® B.
(2) A<r Bifand only if A@ A<. B®B.
In both cases, there is a uniform way to compute an index for the operator witnessing

one relation from an index witnessing the other.

On the other hand, Selman [13] proved that enumeration reducibility can be
captured in terms of the relation “c.e. in”.

Theorem 2.3 (Selman 1971). If A and B be sets of natural numbers, then A <. B
if and only if (VX)[B is c.e. in X = A is c.e. in X].
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We associate a degree structure to enumeration reducibility in the standard way:
A is enumeration equivalent to B (A=, B) if A <. B and B <. A. The enumer-
ation degree of A is the equivalence class of A under enumeration equivalence; we
write it as d.(A). The enumeration degrees inherit an order from the reduction: we
let do(A) < d.(B) if and only if A <. B. The disjoint union of two sets A® B gives
rise to a least upper bound operation d.(A) v de(B) = d.(A@® B). The resulting
upper semilattice is the structure of the enumeration degrees D..

Part (2) of Proposition 2.2 implies that the map taking dr(A) to d.(A@® A), for
all A € w, is an embedding of the Turing degrees into the enumeration degrees. Its
range is an important class of degrees.

Definition 2.4. A set A C w is total if A <. A. An enumeration degree is total if
it contains a total set.

Examples of total sets include graphs of total functions, sets of the form A® A,
and for every X € 2% the set (X)< = {0 € 2<¥: 0 < X}. It is easy to see that an
enumeration degree is total if and only if it contains a set of the form A@® A, so the
total degrees are an embedded copy of the Turing degrees.

Selman’s theorem tells us that we can view the enumeration degree of a set A
as the collection of Turing degrees that can enumerate A. It turns out that an
enumeration degree is total if and only if this set of degrees has a least element. If
A is total, then every Turing degree that enumerates A also enumerates A, hence
computes A. So dr(A) is the least Turing degree that enumerates A. For the other
direction, if there is a least Turing degree x that enumerates A, then fix X € x. We
know that A is c.e. in X, and so 4 <, X ® X. On the other hand, every Turing
degree that enumerates A computes X, and so enumerates X @ X. By Selman’s
theorem, X @ X <. A, hence A is of total degree.

Continuous degrees. The continuous degrees were introduced by Miller [10]. As
we noted in the introduction, a computable metric space® is a metric space M
together with a countable dense sequence Q™ = {g},,e.. € M on which the metric
is computable, meaning that there is a computable function f: N x N x QT — Q%
such that for all n,m,e e N x N x Q*, |da(¢M, ¢M) — f(n,m,e)| <e.

Definition 2.5. A name for a point z in a computable metric space M is a function
A : QT — N, such that dM(x,q%E)) < ¢ for every e € QV.

If z is a point in a computable metric space M and y is a point in a computable
metric space N, then x is representation reducible to y (z <, y) if every name for
y computes a name for x.

Representation reducibility induces a degree structure in the same way that
enumeration reducibility does. We call this structure the continuous degrees D,..
The continuous degree of a point x in a computable metric space can, in this case
as well, be view as a set of Turing degrees: the Turing degrees of names for x.

Once again, the continuous degrees that correspond to Turing cones form an
isomorphic copy of Dy in D,.. Recall our first example of a computable metric

°In [10], Miller includes the nonstandard requirement that M is a complete metric space.
Since every metric space has a unique completion, this does not limit the collection of continuous
degrees. On the other hand, by requiring completeness, the computable structure determines the
underlying metric space, so there are only countably many computable metric spaces. Under the
standard definition, which we use in this paper, there are 2ZRO computable metric spaces.
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space: R with Q® = Q. We map the Turing degree of a set A to the continuous
degree of real r4 € [0,1] whose binary expansion is given by A. A real number r
can be identified with its left Dedekind cut L, = {q € Q: ¢ < r}. Any name for
r computes L, and the set L, computes a name for r, so the continuous degree of
r corresponds to Turing cone above dr(L,). Of course, for every set A we have
L,, =r A, so the mapping we defined is, in fact, an embedding. We could have
used the right Dedekind cut R, = {q € Q: ¢ > r} instead of the left. The sets L,
and R, are Turing equivalent. In fact, if r is not a rational then L, = R, and if r
is rational then L, = R, ~ {r}.

Another example of a computable metric space is the Hilbert cube [0, 1]* under
the metric given by d(a, 8) = 3, . |a(n)—B(n)|/2". In this case, we can take Q11"
to be a listing of the set of finitely nonzero sequences of rationals in the interval
[0,1]. Miller [10] proved that every continuous degree contains an element of Hilbert
cube. This allowed him to embed the continuous degrees into the enumeration
degrees. Let a € [0,1]¥ and let Cy, = @,,c,, [La(n) S Ru(n)]. Every name for o can
enumerate the set C,, and conversely, any set that can enumerate C,, can compute
a name for a. Therefore, by Selman’s theorem (Theorem 2.3), the mapping that
sends the continuous degree of o to the enumeration degree of C,, is an embedding
of D, into D..

Definition 2.6. An enumeration degree a is continuous if it contains the set Cl,
for some sequence « € [0, 1]%.

We now have two ways to embed the Turing degrees into the enumeration de-
grees: directly, mapping dr(A) to d.(A@® A), or via the continuous degrees. It is
straightforward to see that, for every set A, the continuous degree of r4 is mapped
to the enumeration degree of L,, ® R., =. A® A. Thus the two methods of
embedding the Turing degrees produce the same result.

3. ALMOST TOTALITY

As we have defined above, an enumeration degree a is almost total if whenever
b £ a is total, a v b is also total. In this section, we show that continuous degrees
are almost total. In fact, we will see that the almost totality of continuous degrees
is witnessed uniformly. It turns out to be easy to show that this uniform version
of almost totality is equivalent to being continuous. We provide this proof, even
though we are primarily interested in the nonuniform version.

Definition 3.1. A set A € w is uniformly almost total if there is an enumeration
operator I and a c.e. operator W such that

VXCw)[ XX & A=Y Ccw)[TA®dX®X)=Y DY and W = 4]].

Note first that uniform almost totality is an enumeration degree notion. It is
also not hard to see that it implies almost totality: we could require, without
strengthening the property, that I' preserve X @ X as part of its output, so that
ADXPX=YODY.

Lemma 3.2. Continuous enumeration degrees are uniformly almost total.

Proof. Fix a and let a be a sequence of real numbers such that C, € a. Let X be
the binary expansion of a real number rx € [0,1]. Consider the sequence 3, defined
by B(n) = (a(n) + rx)/2. Addition on real numbers is a computable operation, as
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is division by 2, so from any name for a and any name for rx, we can compute a
name for 8. To be explicit: if ¢1 < a(n) and g2 < rx, then (¢1 + ¢2)/2 < 8(n), and
if ¢ > a(n) and g2 > rx then (¢1 + ¢2)/2 > (n). So from an enumeration of C,
and L,, ® R,,, we can uniformly compute an enumeration of Cg. It follows that
Cp <. Co®X @®X. The choice of X did not matter to our enumeration procedure,
so there is an enumeration operator I' that works for all X.

If 5(n) is a rational number gx, then rx <, a(n). To see this, note that if
d(e, {qn}new) < €/2", then d(a(n), g,) = |a(n) —gq,| < &, and so |rx —(2gx —qn)| =
|(2¢x — a(n)) — (2¢x — gn)| < &. Thus we can compute a name for rx from a name
for a. Soif X ® X £, Ca, then Cjp is a total set: for every n, the real 3(n) is not
rational and hence Rg(,) = Lg(n)-

To complete the proof, we modify the operator I', as described above, so that
I'(C,®X®X) = Y@®Y, where Y®Y is obtained by rearranging the set Csd(X ®X).
This rearrangement is, of course, computable and uniform. Finally, we use the fact
a = 28 — rx to obtain a c.e. operator W such that C, = WY. This shows that
C., and hence a, is uniformly almost total. O

Proposition 3.3. A set A € w is uniformly almost total if and only if it has
continuous degree.

Proof. One direction was proved above. So now assume that A € w is uniformly al-
most total as witnessed by I" and W. Furthermore, assume without loss of generality
that A is nonempty. Note that u{X € 2¥: X ® X <. A} = 0, where p is Lebesgue
measure. Thus, for almost all X, we have WY = A, where (A XD X) =Y @Y.

The power of uniform almost totality is that, by combining I' and W, we can
take a total set X @ X <. A and any enumeration of A to a fixed enumeration of
A that only depends on X. To make this more explicit, fix a Turing functional ®
such that ®¥ : w — w has range WY and is total as long as WY # ¢f. We define a
sequence of reals « € [0,1]“ as follows. Let

a(k,n)) = p{X €2¥: ®¥ (k) =n, where (A X DX) =Y QY}.

Note that we can uniformly compute « from any enumeration of A: to approximate
a({k,ny) to within ¢, it is enough to wait for a stage when we see

p{X e 2¥: q)y(k) |, where T(A@X®X)=Y®Y}>1—c¢

Finally, we claim that it is easy to enumerate A from (a name for) «. Note that if
ne A, then ), «a((k,n)) = 1. On the other hand, if n ¢ A, then >, _ a((k,n)) =
0. So n € A if and only if there is a k € w such that a({k,n)) > 0, which proves the
claim. Therefore, A has continuous degree; it has the same degree as «. ([l

In what follows, we will work considerably harder to show that every (not nec-
essarily uniformly) almost total degree is continuous. We do not have a direct
proof that uniform almost totality and almost totality are equivalent. One reason
for our specific interest in almost totality, as opposed to its uniform version, was
mentioned in the introduction: it provides a definition of the continuous degrees in
the partial order of enumeration degrees. This is immediate from the fact that the
total degrees are definable [1].
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4. CODABILITY

In order to prove that almost total degrees are continuous, we pass through
another property that turns out to be a characterization of the continuous degrees.
We start by relativizing the notion of “II{ class” to an enumeration oracle. We
use (A) to signify that we are treating A as an enumeration oracle, rather than a
Turing oracle.

Definition 4.1. Let A € w. Call U < 2% a X9(A) class if there is a set W <. A4,
such that U = [W]< = {X € 2¥: 30 € W) X > o}. A II{A) class is the
complement of a ©9(A) class.

Note that a H?<A ®Z> class is just a II{[A] class in the usual sense.

Definition 4.2. A set A € w is codable if there is a nonempty I19(A4) class P < 2
such that for every X € P, A is c.e. relative to X. If there is a c.e. operator W
such that A = WX for every X € P, then A is uniformly codable.

First note that codable and uniformly codable are enumeration degree properties.
It should also be clear that every total degree is uniformly codable; indeed, {A® A}
is a H?<A ®Z> class.

Remark 4.3. Uniform codability first arose as a potentially interesting property in a
2014 attempt by Mingzhong Cai, Steffen Lempp, Miller, and Soskova to understand
almost totality. They proved that if A has almost total degree and there is a
nonempty I$(A) class Q such that no path in @ is below the enumeration degree
of A, then A is uniformly codable. The proof was never published.

Uniform codability can also be found in a characterization of the continuous
degrees that was recently given by Kihara and Pauly [7, Section 7.1]. In fact,
their result motivated us to revisit almost totality. Translating from their notation,
they prove that A has continuous degree if and only if A is uniformly codable via
the TI9(A) class P and there is a uniform way to compute a path in P from an
enumeration of A. It should be noted that it is not clear that they use the extra
hypothesis in an essential way, and in light of our results, we expect that their proof
can be modified to do without it.

We will prove in Lemma 4.5 that if A has almost total enumeration degree, then
it is uniformly codable. So for the other results in this paper, we could avoid the
nonuniform version of codability altogether. However, it is simple enough to prove
that codability implies uniform codability.

Proposition 4.4. If A € w is codable, then it is uniformly codable.

Proof. We prove the contrapositive. Assume that A is not uniformly codable and
let P < 2% be a nonempty I19(A4) class. We will construct an X € P that does
not enumerate A. Since P is arbitrary, this proves that A is not codable. We
construct X by “forcing with II9(A) classes”. In other words, we let Py = P and
construct a sequence Py 2 P 2 P, 2 - -+ of nonempty I1{{A) classes such that any
X € (e, Pe is sufficient.

Say that we have constructed P.. Let W, be the eth c.e. operator; we want to
ensure that A # WX, Since A is not uniformly codable, there is a Z € P, such that
A # WZ. There are two possibilities.

Case 1. If there is an n € WZ \ A, then let ¢ < Z be long enough that n € W2.
Set P,y = P.n[o]<. Soif X € P.,1, we have n € WX \_ A, hence A # WX.
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Case 2. If there is an n € A~ WZ, then let P,y = {Z € P.: n ¢ WZ}. By
assumption, P, is nonempty. Also, if X € P, 1, we have A # WX. d

As promised, almost total degrees consist of uniformly codable sets.

Lemma 4.5. If A € w has almost total enumeration degree, then it is uniformly
codable.

Proof. Assume that A has almost total enumeration degree. The proof of this
lemma consists of two parts: we first use a failed forcing argument to construct
an enumeration operator I' with specific properties. We then use this operator to
define a I19(A) class, witnessing that A is uniformly codable.

Recall that (X)< = {0 € 2<¥: 0 < X} was one of our examples of a total set. In
this proof, it is convenient to use (X)< instead of the enumeration equivalent set
X@®X. We will also use (7)<, for 7 € 2<%, to denote the set {0 € 2<%: 0 < 7}. We
want to build an enumeration operator I' such that if X € 2% is sufficiently generic,
then I'(A@® (X)<) is the graph of an enumeration of A. In particular, the operator
I" will have the following properties:

(1) If 0 € 2=, then T'(A® (0)<) is the graph of a partial function with range
contained in A.

(2) For every n € N and every o € 2<%, there is an extension 7 > ¢ such that
the domain of I'(A@® (7)<) contains n.

(3) For every a € A and every o € 2<%, there is an extension 7 > o such that
the range of T'(A @ (7)<) contains a.

To find such an enumeration operator, we consider the following attempt to con-
struct an element X € 2“ that witnesses that A is not almost total.

Construction. We build X by initial segments as ( J,.,, 0s. Let 09 = &J. We use
even stages to ensure that (X)<« €. A. At stage s = 2e, we diagonalize against
Te(A). If 070€ T (A), then let o541 = 0, 1. Otherwise, o541 = 05°0. Since only
one of 0,70 or 051 is in (X), this ensures that I'.(A4) # (X)<.

At the odd stage s = 2e + 1, we want to ensure that I'.(A @ (X)<) is not an
enumeration of A. There are several ways in which this could be achieved. It might
be possible to extend o, appropriately so that T'.(A @ (0s41)<) is not the graph
of a function: for some n we have two different elements a # b such that (n,a)
and (n, by are both in I'.(A® (0s+1)<). It might be that we can extend o, so that
Fe(A® (0s+1)<) does not have range contained in A: for some b ¢ A and some
natural number n we have that (n,b) € T.(A @ (0s+1)<). If these two attempts
at achieving our goal fail, then there is still the possibility that we could find an
extension 041 of o that forces I'.(A@® (X)<) to not be a total function or to only
enumerate a proper subset of A. In the first case, there would be an n for which
there is no extension 7 > o441 such that n is in the domain of T'.(A® (7)<). In the
second, there would be an element a € A for which there is no extension 7 > o541
such that a is in the range of I'.(A @ (7)<). If none of these options are possible,
we say that the construction fails at stage s. —

The proposed construction must fail at some finite stage. Otherwise, we would
build an X € 2¢ such that X ® X =, (X)< €. 4 and such that no enumeration
of A is enumeration reducible to A ® (X)< =. A® X ® X. This contradicts the
assumption that A has almost total degree. Even stages cannot cause any problems,
so the failure must be at an odd stage, say s = 2e + 1, giving us an e-operator I,
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that works as requested for every 7 > o5. To get I', we hardcode o, i.e., I' consists
of the axioms (n,D4 @ Dx) in T'. such that Dx only contains strings that are
comparable with o.

Next, using the operator I' we define a I1(A) class P such that every path in
P uniformly enumerates A. If B is a superset of A and X is sufficiently generic,
then T(B® (X)<) € T(A® (X)<), which is the graph of an enumeration of A. Of
course, I'(B @ (X)<) may fail to be a function: there may be some n for which
there are two numbers a # b such that (n,a) and {(n,b) are both in I'(B® (X)<).
We will let P € 2% be the set of all B such that A € B and B is small enough so
that there is no X € 2¢ that causes I'(B@® (X)<) to be a proper multifunction. The
set P is a I19(A) class because it is the complement of the X(A) class generated
by all 8 € 2<% such that

(In)[B(n) = 0 and n € A], or
(o € 2=¥)(3In)(Fa)(3) [a # b and {{(n,a),{n,b)} S T({z: B(z) =1} D (0)<)].

Note that P is nonempty because it contains A.

Finally, to prove that A is uniformly codable, we must explain how to enumerate
A from any B € P. This is simple, because A is exactly the set of elements that
appear in the range of T'(B@® (0)<), as o ranges over 2<%, O

5. HOLISTIC SETS

We have show that every almost total degree is uniformly codable. The next
step in our proof that these degrees are continuous is to introduce a concrete com-
binatorial property that guarantees that a set is uniformly codable. Then we will
prove that every uniformly codable degree contains such a set.

Definition 5.1. Say S € w=<¥ is holistic if for every o € w<%,
(1) (¥n) 0™ (2n) and 0~ (2n + 1) are not both in S,
(2) If o ¢ S, then (Vn) 0™ (2n) € S,
(3) If 0 € S, then (In) o™ (2n+ 1) € S.

Proposition 5.2. If S € w=<¥ is holistic, then it is uniformly codable.

Proof. We build a tree T' € 2<“. Every level of this tree corresponds to a specific
pair (67 (2n),07(2n + 1)), where 0 € w<¥. If 7 € T and 7 is of a level that
corresponds to (07 (2n),07(2n + 1)) then 770 € T' if and only if 07 (2n) ¢ S and
771 €T if and only if 0™ (2n + 1) ¢ S. Clearly T <. S, and so T defines a I1{(S)
class P. As 07 (2n) and 07 (2n + 1) cannot both be S by the first property of
holistic sets, it follows that 7" has no dead ends and so P # ¢J. Every X € P can
enumerate S using the following procedure:

If X (k) = 0 and level k corresponds to (07 (2n),0~(2n+ 1)), then

enumerate o.
We claim that this procedure works. If X (k) = 0, then by definition of T" we have
o7 (2n) ¢ S, and hence o € S by the second property of holistic sets. On the other
hand, if 0 € S, then by the third property of holistic sets there is an n such that
o™ (2n + 1) € S (and hence 0™ (2n) ¢ S). If level k of T corresponds to the pair
(67(2n),07(2n + 1)), then X (k) must be 0, and hence X will enumerate c. O

Holistic sets are not hard to construct. Consider the following easy examples of
computable holistic sets, S,,; and S;,. The first, Sy, does not contain the empty
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string and is defined inductively as follows: for every o € w<“ and every n € w, if
0 ¢ Sout, then 07 (2n) € Syt and 07 (2n+1) ¢ Sout; if 0 € Spur, then o™ (2n) ¢ Sy
and 07 (2n+1) € Sput. The set S;,, contains the empty string, but otherwise follows
the same inductive definition. With a little more work, we can define an infinite
family of computable holistic sets, with all possible finite restrictions. This will be
useful in Section 6.

Lemma 5.3. The set of finite sets D € w=* such that D can be extended to a
holistic set is computable. If D € w<% is such a finite set, then there is computable
holistic set Sp such that D < Sp.

Proof. Fix a finite set D and let k be an even number such that D < k*. We search
for a finite set F such that D € F' < k* which satisfies the restrictions of a holistic
set:

(1) (Vn)if 2n+ 1 < k, then 0™ (2n) and 0™ (2n + 1) are not both in F,
(2) If o € k<% and o ¢ F, then (Vn) if 2n < k then 07 (2n) € F.

If there is no such F', then D cannot be extended to a holistic set. If there is, then
let F' be the least one. We complete it to a holistic set by using essentially the same
procedure as we used to define S;,, and S,,¢. Start with F' < Sp and proceed by
induction for every o € w<% and every n € w:

(1) If o ¢ Sp, then 07 (2n) € Sp and 0~ (2n + 1) ¢ Sp,

(2) If 0 € Sp and if 0 (2n) ¢ k¥ (ie., it is not determined by F'), then

0~ (2n) ¢ Sp and 0™ (2n+ 1) € Sp.

It is easy to see that the constructed set Sp is holistic. Fix o and n. By our choice
of k as even, either 2n + 1 < k or 2n > k. In the first case, the fact that ™ (2n)
and 07 (2n+ 1) are not both in Sp follows from our choice of F; in the second case,
it follows from our inductive definition. If o ¢ Sp and 2n < k, then 0™ (2n) € Sp
follows from F < D; if 2n = k, then 07 (2n) € Sp follows from our inductive
definition. Finally, if ¢ € Sp, then for all n such that 2n + 1 > k& we will have
07 (2n 4+ 1) € Sp. Therefore, all three properties of holistic sets are satisfied. O

The reason that the holistic sets are important for us is that they occupy every
uniformly codable degree.

Lemma 5.4. If A € w is uniformly codable, then there is a holistic set S =, A.

Proof. Fix a uniformly codable set A. Without loss of generality, we may assume
that A is not c.e. We will build a holistic set S so that A =, S. For o € w<“ and
Y € w=¥, we use the notation c™Y to denote the set of all strings in w<“ obtained
by concatenating ¢ with some member of Y. We start with ¢J € S. For every n, we
use (2n)7 Syt to define S n (2n) 7 (w<*). We put the string (2n + 1) into S if and
only if n € A, which ensures that A <. S. Since A is not empty, as least one string
of the form (2n + 1) will be in S, so the holistic set conditions are satisfied for .
The main difficulty is what we do with strings extending (2n + 1). In particular,
we need to be careful when n ¢ A and hence (2n + 1) ¢ S. We need to find a
way to transform this negative fact about A into a positive fact that will force us
to enumerate into S every string (2n 4+ 1) (2k), in order to make S a holistic set
enumeration reducible to A. The following observation will facilitate this.

Let P and W be the II9(A) class and uniform c.e. procedure witnessing that A is
uniformly codable. Let I' be an enumeration operator witnessing that P is a I1J{A)
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class, i.e., such that P = {X € 2¢: (30 € I'(4)) ¢ < X}. Fix a finite set D (for
instance, D = {2n+ 1}). If D € A, then by compactness there is some n such that
for every X € 2¢, either X extends a member of I'(A4) of length less than n or D is
enumerated by WX in no more than n steps. Let C' = {r € 2": 7 € T(A)}. Then
the finite set C' generates a clopen set [C]~ such that D € W7 for every 7 € C (in
|7| many steps), and such that P < [C]<. If, on the other hand, D &€ A and C
is a finite set of strings such that D € W7 for every 7 € C, then it must be that
[C]* n P = &. Otherwise, for some X € P, we will have that D € WX, contrary
to our assumption that A = WX. Now, if C is finite and [C]< n P = &, then by
compactness, there is a finite set Do € A such that [C]~ < [I'(D¢)]~, and this is
seen in finite time. Thus, we have witnessed the negative fact D & A by a positive
fact Do € A. We will use this idea to define an inductive procedure that decides,
for every o > (2n + 1), whether or not o € S.

To every o > (2n + 1), for n € w, we will assign a statement p, so that o € S
if and only if ¢, is true. Further, this statement will come with a uniformly c.e.
sequence of finite sets {DY };e such that ¢, is true if and only if (37) Dy < A.
Since A is not c.e., there is a @ ¢ A and a string 7 such that ¢ € W7. We will always
set DJ = {7}. We need to handle three kinds of statements:

(1) The statement “n € A” is assigned to the string (2n + 1). The sequence of
finite sets {DY };e,, is defined simply by setting DY = {n} for every i > 0.

(2) Statements of the form “[C]< n P = &, where C' is a finite set of binary
strings, are assigned to strings o > (2n + 1) that end in an even number.
As discussed above, this statement is true if and only if there is a finite set
D < A such that [C]= < [I'(D)]~. In this case, we will let {D7};~o be
the sequence that lists, possibly with repetition, all finite sets D such that
[C]= < [I'(D)]~. It can happen that there are no such finite sets at all. To
deal with this situation, we will pad by letting DY = {a}.

(3) Statements of the form “P < [C]~”, where C is a finite set of binary strings,
are assigned to strings o > (2n + 1) that end in an odd number. Such a
statement is true if and only if (2¥ N [C]<) n P = ¢J. Let O be a finite
set of strings such that [O]~ = 2¥ \ [C]~; this can be found computably.
Now, just like in the previous case, we let {D{ },e,, be a sequence of finite
sets that would witness “[O]< n P = ¢J”, were any of them subsets of A
(along with the finite set {a}).

The assignment is defined inductively: fix ¢ and suppose that we have assigned
to it the statement ¢, along with the sequence of finite sets {D{ }iew. Let {Ch}new
be a c.e. listing, allowing repetition, of all finite sets of strings such that for some i
and every 7 € C,, we have DY € W7. Note that this list is not empty because {7}
will always appear. Next, for every n, we associate the statement “[C,, |~ n P = &
tooc™(2n)e Sand “P < [C,]"" to 0~ (2n+1) € S.

Property (1) of holistic sets is clearly true at o. Furthermore, by our earlier
analysis we have:

(2) o ¢ 5= (Vi)[D] & A] = (Vn)[[Cu]™ 0 P = ] = (Vn)[o™(2n) € 5],
(3) oeS= (D cAl= (In)[Pc[C.]]= En)oc™(2n+1) e S].
So S is a holistic set. Finally, we note that S <. A because ¢ € S if and only if

o=, or 0 € (2n)" S,y for some n, or if o is assigned the statement ¢, with
sequence {D7?},e, and (3i) DY < A. O
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6. THE HOLISTIC SPACE

In the previous section, we showed that every uniformly codable degree—hence
every almost total enumeration degree—contains a holistic set. Our next step is
to form a topological space from the holistic sets. It turns out to be a very well-
behaved topological space: it is Hausdorff, second countable (by definition), and
regular, so it satisfies the hypotheses of Urysohn’s metrization theorem. In fact, it
can be turned into a computable metric space, which is how we complete the chain
of implications and prove that every almost total degree is continuous.

Definition 6.1. Let

H={S cw=¥: S is holistic}.
For each 0 € w=¥, let O, = {S € H: o € S}. These sets form a subbasis for the
desired topology, i.e., their finite intersections form a basis. We call the resulting
topological space the holistic space.

We extend the subbasis to an explicit basis as follows. By Lemma 5.3, there is a
computable listing {D,, }new of all finite subsets of w<* that extend to holistic sets.
Define { B, }new by Bn = ﬂoeDn O,. Note that for every n, the open set B, is not
empty; in particlar, it contains the computable holistic set extending D,, that was
constructed in Lemma 5.3.

For computability on topological spaces, we essentially follow the definitions used
by Grubba, Schroder, and Weihrauch [5].

Definition 6.2. A second countable Ty space X is computable if it has a countable
basis {By, }ne. of nonempty open sets on which intersection is a computable oper-
ation, meaning that there is a total computable function i such that B, n B,, =

UkEWi(n,m,) Bk
Lemma 6.3. The holistic space is a computable second countable Hausdorff space.

Proof. The holistic space is clearly second countable. The basis defined above
makes it computable: if D,, u D,, extends to a holistic set, then B, n B,, = By
for Dy, = D, v D,,, otherwise B, n B,, is empty. To see that H is Hausdorff,
fix two different points S; # So € H. Without loss of generality, fix o € S7 . Ss.
As o € 51, by the third property of holistic sets there is a number n such that
o7 (2n+1) € S1. On the other hand, since o ¢ S, by the second property we have
that 07 (2n) € S5. So S1 € Og~(2n11), S2 € Oy~ (21, and by the first property of
holistic sets, Oy~ (2541) N Og~(20n) = - O

Definition 6.4. Let X be a computable topological space with basis {By }new. A
name for a point x € X is any enumeration of the set {n: z € B,}. A name for an
open set O € X is any enumeration of the set {n: B, < O}. A name for a closed
set F' < X is just a name for X \ F.

It is easy to see that from an enumeration of a holistic set .S, we can compute a
name for S as an element of H, i.e., we can enumerate {n: S € B,} = {n: D,, < S}.
Conversely, from a name for S we can enumerate S itself. This means that the
degree of S as a point in H, in the sense of Kihara and Pauly [7], is just the
enumeration degree of S.

Recall that a topological space X is regular if whenever F' € X is closed and
x € X\ F, there are disjoint open sets U, V such that t e U and FF < V. If X has a
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countable base { B, }new, then one way to ensure that X is regular is to require that
for every basic open set B,, and x € B, there is a basic open set B,, and a closed
set C such that x € B,,, € C < B,,. Indeed, if X has that property and = ¢ F' are
given, then we can find a basic open set B, such that z € B, < X \\ F, and then
x € B,, and F < X ~ C witness that X is regular. If we have a computable space
X, then it is computably reqular if this version of regularity is effective.

Definition 6.5. A computable topological space X with base {B,}ne, is com-
putably reqular if there is a c.e. set R and a computable function ¢ such that:

(1) For all n, we have B, = Uy, ;nyer Bms
(2) If {n,m) € R, then c¢(n,m) is the index of a c.e. set C,, ,, describing a closed
set Fiym = X N (UkeCn_m By,) such that B, € F, ., € B,.

Lemma 6.6. The holistic space s computably regular.

Proof. If S is holistic and 0™ (2k + 1) € S, then o € S. In terms of our topology,
this means that O,~ 1) S Oy If 07 (2k + 1) € S, then we also know that
07 (2k) ¢ S and s0 Oy~ (2511) N Og—(2r) = . Finally, 07 (2k) ¢ S implies o € S,
SO

Oo~2k+1) E H N Og~(21) € Oo.

Let R be the set of all pairs {n,m) such that if D, = {og,01,...,0;}, then
D, = {65 (2ko + 1),07(2k1 + 1),...,07(2k; + 1)} for some ko, k1,..., ki € w.
Clearly, B, = U<n,m>€R B,,: if Se B, = ﬂaeDn Oy then D, < S, and so by
the third property of holistic sets, there are numbers kg, k1, ..., k; such that D =
{00 (2ko +1),07 (2k1 +1),...,0; (2k; + 1)} = S. Tt follows that D extends to a
holistic set, hence D = D, for some m.

Fix (n,m) € R. Let C be the finite set of indices (in the listing {D;, }ne,) of
sets of the form {07 (2k)}, where 07 (2k + 1) € Dy,. Let F, ; = H ~ (Upec Br)-
It is straightforward to check that B,, < F, ., < B,. Of course, the process of
converting (n,m) to a c.e. index of the (finite) set C' is computable, thus we have
established that H is computably regular. |

The previous lemmas are important in light of Urysohn’s metrization theo-
rem [15], which states that every regular second countable Hausdorff space is metriz-
able.® Schréder [12] proved an effective version of Urysohn’s theorem that holds
in our case: there is a computable metric d on H that induces the given topology.
This metric is actually computable in the sense we need, i.e., if S,T € H, then
from enumerations of S and T we can compute d(S,T). Moreover, we will pro-
duce a computable dense sequence of points in H, making it a computable metric
space. We will outline the steps in Schréder’s proof following the exposition given
in Grubba, Schréder, and Weihrauch [5].

The first step is to show that every computably regular space is computably
normal. Recall that a space X is normal if every two disjoint closed subsets of
X have disjoint open neighborhoods. There is a natural effective version of this
definition:

Definition 6.7. A computable space X is computably normal if given names of
two disjoint closed sets F; and Fy there is a uniform way to compute names for
disjoint open sets O; and O so that F; € O and Fy € Os.

3Actually, Urysohn assumed normality instead of regularity; following up on Urysohn’s work,
Tychonoff [14] showed that every regular second countable Hausdorff space is normal.
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It is a classical theorem that every second countable regular space is normal.
Grubba et al. [5] prove the effective version of this theorem: every computably
regular space is computably normal. Therefore:

Corollary 6.8. H is computably normal.

An equivalent way to express that a space X is normal is to say that whenever
F) € O, are a closed and an open set, we can find an open set Os and a closed
set Fy so that F} € Oy € Fy < O;. Indeed, X ~ O; is closed and disjoint from
F1, so there are disjoint open neighborhoods X ~\ Fy and Oy of X \ O; and Fj.
Note, that we use the same set as a name for an open set and its complement,
so in a computably normal space there is uniform way to obtain a description of
the second pair of sets from the first. Grubba et al. [5] use this idea to prove the
following: if A and B are disjoint closed sets, then given names for A and B there
is a uniform way to compute a name for a continuous function fap : X — [0,1]
so that fap[A] = 0 and fap[B] = 1. Using normality, they build a sequence of
closed sets F;; and open sets O, < Fj, where ¢ ranges over all rational numbers in
the unit interval. This sequence has the property that if ¢ < p then F, < O,, that
A < Oy, and that F; € X ~ B. Then if S is a holistic set,

fap(S) = sup({q: S ¢ Fo} v {0}) = inf({g: S € Oy} U {1}).

The distance function d on H can now be defined as follows: fix a listing {(n;, m;)}icw
of the c.e. set R witnessing that H is computably regular. For every i, let f; = fap
for the sets A = F,,, ,, (the closed set that sits between B,,, < B,,) and B =
‘H ~ B,,. Finally if S and T are two holistic sets, then define

d(S,T) = Z 27| £:(S) — fi(T)].
€W
Grubba et al. [5] prove that d is a metric on H that induces the original topology.
They note two important properties of d (see [5, Lemma 4.7]):

(1) The metric is computable in the sense that from any name for S and any
name for T, we can compute d(S,T),

(2) For every pair {n;, m;), if d(S, By,,) < 27%, then S € B,,.
We have that H is a metrizable space with a computable metric d. In order to show
that it is a computable metric space, we need to define a dense set @™ on which the
metric remains computable. We use Lemma 5.3: let S = Sp, be the computable
holistic set that contains the finite set Dy and let Q7 = {S)}rew. The metric d is
computable on Q™ because names for the points S, are uniformly computable in
k. We have shown:

Corollary 6.9. (H,d) is a computable metric space.

The final thing we need to check is that if S € H, then the continuous degree of
S as a point in the computable metric space (H,d) is the same as its enumeration
degree. Recall that a name for S from the point of view of a computable metric
space is a function that takes as input a rational number ¢ and outputs the index
of a member of Q™ that is within distance ¢ of S. Let us call such names for S
metric names.

Lemma 6.10. Let S be a point in H.
(1) Every enumeration of S computes a metric name for S.
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(2) Ewvery metric name for S computes an enumeration of S.

Proof. The first statement of the lemma follows easily from the fact that we have a
computable metric. If we have an enumeration of .S, then we can compute a name
for S as a point in the computable topological space H, so we can compute (a name
for) the distance between S and any of the computable points S. This means that
we can search through the list Q™ until we find an appropriate point that is at
distance less than any fixed rational . Since the topology induced by the metric
is the same as the original, we know that there are computable points arbitrarily
close to S, i.e., in any open ball B, = {T": d(S,T) < ¢}. This lets us compute a
metric name for S.

For the second statement, we will use property (2) above to construct an enu-
meration of S given access to a metric name for S. We start enumerating elements
S, from the sequence Q™ that are closer and closer to S using the metric name
for S. Recall, that {(n;, m;)}ic. is the listing of R that we used to define the met-
ric d. If we enumerate a point Sy such that d(S,Sk) < 27 and Sk € Byy,, then
d(S,Bm,;) < 27% and so S must be in B,,. This means that D,,, = S, so we can
safely enumerate the finite set D,,,. We must show that this procedure will not
miss any element of S. If o € S, then for some k we have that o7 (2k + 1) € S.
Let ¢ be such that B,,, = {o} and B,,,, = {c7(2k + 1)}. Then S € B,,,,. Now using
the fact that the metric d induces the original topology on H, for some rational
we will have that the open ball B, = {T': d(S,T) < €} € By,,- When we use the
metric name for S to produce a point in Q™ at distance no more than min(27¢, ¢)
it must give us a point in B,,,, and hence our procedure will enumerate o. (I

By the lemma, the continuous degree of a holistic set S as a point in (H,d)
coincides with its enumeration degree.

Corollary 6.11. Holistic sets have continuous enumeration degree.

This was the last step in the proof of our main result. We conclude with a
summary of what we have shown.

Theorem 1.3. Let a be an enumeration degree. The following are equivalent

(1) a is (uniformly) almost total,

(2) The sets in a are (uniformly) codable,
(3) a contains a holistic set,

(4) a is continuous.

Proof. In Lemma 4.5, we proved that the nonuniform version of (1) implies the uni-
form version of (2). Proposition 4.4 established the equivalence of the two versions
of (2). Lemma 5.4 showed that (2) implies (3), and we just finished proving that
(3) implies (4) in Corollary 6.11. Finally, in Lemma 3.2 we proved that (4) implies
the uniform version of (1). O
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