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Abstract.Understandingtheimpactofseasprayaerosol
(SSA)ontheclimateandatmosphererequiresquantitative
knowledgeoftheirchemicalcompositionandmixingstates.
Furthermore,single-particlemeasurementsareneededtoac-
curatelyrepresentlargeparticle-to-particlevariability.To
quantifythemixingstate,theorganicvolumefraction(OVF),
definedastherelativeorganicvolumewithrespecttothe
totalparticlevolume,ismeasuredaftergeneratingandcol-
lectingaerosolparticles,oftenusingdepositionimpactors.
Inthisprocess,theaerosolstreamsareeitherdriedorkept
wetpriortoimpactingonsolidsubstrates.However,theat-
mosphericcommunityhasyettoestablishhowdryversus
wetaerosoldepositioninfluencestheimpactedparticlemor-
phologiesandmixingstates.Here,weapplycomplemen-
taryofflinesingle-particleatomicforcemicroscopy(AFM)
andbulkensemblehigh-performanceliquidchromatography
(HPLC)techniquestoassesstheeffectsofdryandwetde-
positionmodesonthesubstrate-depositedaerosolparticles’
mixingstates.GlucoseandNaClbinarymixturesthatform
core–shellparticlemorphologieswerestudiedasmodelsys-
tems,andthemixingstateswerequantifiedbymeasuringthe
OVFofindividualparticlesusingAFMandcomparedtothe
ensemblemeasuredbyHPLC.Dry-depositedsingle-particle
OVFdatapositivelydeviatedfromthebulkHPLCdataby
upto60%,whichwasattributedtosignificantspreadingof
theNaClcoreuponimpactionwiththesolidsubstrate.This
ledtounderestimationofthecorevolume.Thisproblemwas
circumventedby(a)performingwetdepositionandthusby-
passingtheeffectsofthesolidcorespreadinguponimpaction
and(b)performingahydration–dehydrationcycleondry-
depositedparticlestorestructurethedeformedNaClcore.
Bothapproachesproducedsingle-particleOVFvaluesthat

convergewellwiththebulkandexpectedOVFvalues,vali-
datingthemethodology.Thesefindingsillustratetheimpor-
tanceofawarenessinhowconventionalparticledeposition
methodsmaysignificantlyaltertheimpactedparticlemor-
phologiesandtheirmixingstates.

1 Introduction

Thechemicalcompositionoftheoceanandseasurfacemi-
crolayer(SSML)directlyaffectsthemixingstatesofsea
sprayaerosol(SSA),whichisgeneratedbyfilmandjetdrops
(Pratheretal.,2013;Jacobson,2001;Vignatietal.,2010;
deLeeuwetal.,2011;Wangetal.,2017).Typicallyexist-
ingassubmicrometer-sizedaerosolswithinorganiccoreen-
casedbyorganicshell(core–shell),theirheterogeneousmix-
ingstatesderivedirectlyfromthecomplexvarietyoforganic,
inorganic,andbiologicalspeciesintheSSMLandoceanwa-
ter(Cochranetal.,2017;Aultetal.,2013).NascentSSAs
affecttheEarth’sclimateandatmospherethroughradiative
forcing,directlybyscatteringandabsorbingsolarradiation,
andindirectlybyactingascloudcondensationoricenuclei
(Leeetal.,2017b;HaywoodandBoucher,2000;Jacobson,
2001);however,theirchemicalandbiologicalcomplexity
thatcontrolthemixingstatehinderourabilitytoaccurately
predicttheirclimatecoolingabilities(Leeetal.,2017a,b).
Uncertaintyinthemixingstate,evenwiththeknowledgeof
thechemicalcomposition,mayproduceerroneouspredic-
tionsofcloudactivationfromindividualparticles(Aultand
Axson,2017).
Thus,withrelativelyrecentsingle-particlemethodology

developments,SSA-relevantaerosolchemicalcompositions
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andensuingphysicochemicalpropertiescanbecharacterized
(Laskinaetal.,2015;Aultetal.,2013;Cochranetal.,2017;
Estilloreetal.,2017;Pratheretal.,2013;Morrisetal.,2015,
2016;Schilletal.,2014;Laskinetal.,2012;Chietal.,2015).
Bulkofflinemeasurementsprovidequantitativeinforma-
tiononelemental,molecular,andorganicfunctionalgroup
composition(O’Dowdetal.,2004;Facchinietal.,2008;Ja-
yarathneetal.,2016;Russelletal.,2010;Quinnetal.,2014).
Quantitativebulkensembletechniquessamplelargeparticle
numbers;however,theycannotprovideindividualparticle
specificity,whichiscrucialwhenstudyingsubmicrometer-
sizedaerosolparticlesthatdisplaylargeparticle-to-particle
variability.Forexample,single-particlelevelstudiesarewell
suitedtostudyicenucleationbecauseonly1outof106par-
ticlesformicecloudsthatcooltheEarth(DeMottetal.,
2016).Therefore,single-particletechniquessuchaselec-
tronmicroscopyoratomicforcemicroscopy(AFM)are
highlyattractivebecausetheyofferimagingcapabilitieswith
nanometer-levelspatialresolutiononsubstrate-depositedin-
dividualparticles.Additionally,AFMmeasurementscanbe
performedundercontrolledrelativehumidity(RH),while
producinghigh-resolution3-Dheightandphaseimages,and
directlymeasuringviscoelasticpropertiesofmaterials(Lee
etal.,2017a,b).Inthisregard,simultaneousacquisitionof
the3-Dheightandphaseimagesoverindividualparticles
canbeusedtoquantifytheirmixingstatesororganicvolume
fraction(OVF).OVFmeasurementsrequirequantificationof
thephase-separatedorganiccomponentandthetotalparticle
volumes,whichcanbedeterminedforindividualparticles
usingEq.(1):

OVFparticle=
Vorg

Vtotal
=
Vtotal−Vinorg

Vtotal
, (1)

whereOVFparticleistheindividualparticleorganicvolume
fraction,andVtotal,Vorg,andVinorgarethevolumesoftheto-
talparticle,organicshell,andinorganiccore,respectively.
Previously,asimilarmethodologywasusedwithoutsys-
tematicvalidation,toreportupper-limitapproximationsof
OVFparticleformixturesofNaCl,glucose,andlaminarin(Es-
tilloreetal.,2017).Inthiswork,thegoalwastoprovidea
quantitativevalidationofthemethodology.
SSAsaretypicallycollectedonsubstratesvialaboratory
generationorduringafieldstudy,thenareeitherdriedtoa
relativelylowRH(ca.20%–35%,drydeposition)orkept
wetatrelativelyhighRH(>75%,wetdeposition)priorto
beingsenttoanimpactorforsubstratedeposition(Ovad-
nevaiteetal.,2017;Facchinietal.,1999;Leeetal.,2017a).
Despitetheextensiveuseofbothmethodsforsingle-particle
analysis,theaerosolcommunityhasyettoquantifytheeffect
ofdryorwetdepositiononexperimentallydeterminedpar-
ticlemorphologiesandensuingphysicochemicalproperties.
Ontheonehand,wetdepositionmaycausesplatteringof
particles,inwhichorganicvolumeislostandthusunderesti-
mated.Ontheotherhand,drydepositionmaycausephysical

deformationofparticlesuponimpactiononahardsubstrate,
possiblyintroducingasourceoferror.
Here,weaddresstwoquestions:whataretheeffectsof
dryandwetsubstratedepositiononatmosphericallyrele-
vant,phase-separatedaerosolparticlemorphologies?And
howdoesthisaffecttheassessmentofmixingstatebysingle-
particleOVFmeasurements?Toanswerthesequestions,we
choseglucoseandsodiumchloride(NaCl)asamodelofa
core–shellparticle,attwomolarratios(ca.1:2and1:8M)
andappliedsingle-particleAFMandbulkensembleliquid
chromatographytechniques.Glucoseisagoodmodelsys-
tembecauseofavailabledataontherelationshipbetweenRH
andviscosityaswellasitsabilitytoaccesssolid,semisolid,
andliquidphasestatesatsubsaturatedRH(Leeetal.,2017b;
Songetal.,2016).NaClandglucosemixturesalsoproduce
core–shellparticles,withsolid–semisolidphaseseparation
evidentinAFMphaseimaging.Unlikeliquid–liquidphase
separation,tothebestofourknowledge,parameterization
topredictasolid–semisolidorsolid–liquidphaseseparation
doesnotyetexist(Bertrametal.,2011;Youetal.,2013,
2014;Kriegeretal.,2012;Songetal.,2012).Bothchemical
systemsarehighlyrelevanttoSSA,withglucosecontribut-
ingupto5.2%and14.4%ofthetotalorganicmassofPM2.5
andPM10–2.5SSA,respectively(Jayarathneetal.,2016).
Further,bothglucoseandNaClaresurface-inactivespecies;
thusOVFisnotexpectedtobesize-dependent(Cochranet
al.,2017).Inthefollowingsections,webeginbyintroducing
theobservedcore–shellmorphologyofphase-separatedbi-
narycomponentparticlesusingAFM.Next,quantifiedOVF
resultsfor1:2(M)and1:8(M)glucose:NaClaredis-
cussedunderdryandwetdepositionconditions.Finally,an
experimentalapproachtorestructurethedry-depositedparti-
clesbyperformingahydrationanddehydrationcycleisin-
troducedandvalidated.

2 Experimental

2.1 Particlegeneration

Glucoseandsodiumchloride(NaCl)werepurchasedfrom
TCIandFisherChemical,with98%and99%purity,re-
spectively.Bothweredissolvedwithoutadditionalpurifica-
tioninultrapurewater(>18Mcm),togenerate0.1Mglu-
cosesolutionsformixturesand0.1MNaClsolutionsforpure
NaCl.Fromeachsolution,correspondingparticlesweregen-
eratedusingacustom-madebubblersystemwith1/2in.cor-
rugatedstainlesssteelorTeflontubingandSwageconnec-
tions(Cochranetal.,2016).Fordrydeposition,theparticle
streamwassenttotwodiffusiondryersusedtomaintainap-
proximately20%RH(70cmlength,createdinhouse)and
toamixingchamberwith26Lmin−1cleanairbypass.For
wetdeposition,thediffusiondryerswereremovedandthe
26Lmin−1dryairbypasswassentthroughultrapurewater
toachieve∼80%RHinthemixingchamber.
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2.2 Samplecollection

Particlesweresubstrate-depositedusinga MicroOrifice
UniformDepositImpactor(MOUDI)(MSP,Inc., Model
110)onhydrophobicallytreatedsiliconwafers(TedPella,
Inc.)(Leeetal.,2017a).Thesubstratewascleanedwith
ethanolandhigh-purityN2gas(99.998%)priortouse.High-
performanceliquidchromatography(HPLC)sampleswere
collectedon47mmTeflonfilters(PALLLifeSciences).Prior
tosamplecollection,fieldblankswereobtainedbeforeeach
experiment(atotalofthree).

2.3 AFMimaging

Molecularforceprobe3-DAFM(AsylumResearch,Santa
Barbara,CA)wasusedforparticleimagingatambienttem-
perature(20–25◦C)andpressure.Themicroscopepermits
(sub)nanometer-levelspatialresolutionand1pNforcereso-
lution(Binnigetal.,1986;Santosetal.,2011;Gan,2009;
Gerber,2017).Acustom-madehumiditycellwasusedto
controltheRH(∼3%–97%)(Leeetal.,2017a).Silicon
nitrideAFMtips(MikroMasch,ModelNSC35)withnom-
inalspringconstantrangeof5–16Nm−1wereusedtoim-
ageparticles.Priortoimaging,thehumiditycellRHvalue
of25%–35%wasmaintainedforatleast10min,toallow
theparticlestoreachequilibriumwiththesurroundinghu-
midairinthecell.Thistimeframeisreasonablegiventhe
diffusivenatureofwatertransportwithinaparticle,whichis
dependentontheparticlesize(Graysonetal.,2017;Luet
al.,2014).ACmodewasusedtoimageindividualparticles
andcollectinformationontheir3-Dheightandphase.The
IgorProparticleanalysistoolwasusedtocalculatethecore
andtotalparticlevolume(seeSupplementfordetails).The
single-particledataoforganicvolumefractionandvolume
equivalentdiameterarebothshownwithameanvalueand
errorbar,whichrepresents2standarddeviations.

2.4 Bulkensemblemeasurements

Teflonsubstrateswereextractedby10minmechanicalstir-
ring,30minsonication,andanadditional10minofme-
chanicalstirringinto5.00mLultrapurewater.Extractswere
filteredviaa0.45µmpolypropylene Whatmanfilterand
analyzedviaHPLC(Jayarathneetal.,2016;Rathnayake
etal.,2016).Glucosecontentwasquantifiedusinghigh-
performanceanionexchangechromatography(ICS-5000,
Dionex)withpulsedamperometricdetectionusingaDionex
MA1guardandanalyticalcolumns.Sodiumandchloride
contentwerequantifiedusingHPLCwithconductivityde-
tectionaspreviouslydescribed(Jayarathneetal.,2016).The
bulkorganicvolumefractiondata,whichwereconverted
frommass-basedHPLCmeasurementstovolumeusingthe
densitiesofglucoseandsodiumchloride,areshownwitha
meanvalueanderrorbar,whichrepresentspropagatedana-
lyticaluncertainty(seeSupplement).Wenotethatthemen-

tionofbulkmeasurementsinthetextissolelydedicatedto
describingthemeasurementsperformedusingHPLC.

3 Resultsanddiscussion

3.1 Morphologyofphase-separatedbinarycomponent
particles

AftergenerationofglucoseandNaClmixtureparticlesusing
thedryandwetdepositionmethodsoutlinedabove,AFM
imagingwasusedtoobtainthe3-Dheightandphaseim-
agesandvalidatea“core–shell”morphologyfortwodiffer-
entmolarfractions(Fig.1).Imagesdonotshowchangesof
morphologyfromthecore–shell,butinsteadthecoreismore
evidentunderwetdeposition.Here,RHwasmaintainedat
aconstantrangeof25%–35%throughouttheimagingex-
periment,tominimize“phasebleeding”andwateruptake
(Fig.S1intheSupplement).Inthiswork,phasebleedingde-
scribesaninstanceinwhichtheviscosityofthetwophase-
separatedmaterialsistoosimilaratagivenRH,andthere-
forethephasecontrastbetweenorganicandinorganiccom-
ponentsisrelativelyweakintheAFMimages.Ahighphase
contrastimageaidsincorrectlydifferentiatingthecoreand
shellphaseboundaries.Forthisparticularsystem,adramatic
increaseinphasebleedingisevidentbelow25%RH,due
toasignificantincreaseintheglucoseviscosityasitbe-
comesmoresolid-like,whichcloselyresemblestheNaCl
viscosityatthisRHvalue(Fig.S1)(Songetal.,2016).Since
phaseimaginginherentlyreliesonmeasuringdifferencesin
tip–sampleinteractionsoriginatingfromdifferentviscoelas-
ticproperties,loweringtheRHwillfurtherconvergethetwo
differentviscositiesoforganicandinorganiccomponentsto-
gether,lesseningtheaccuracyofthecoreandshellphase
boundarydetermination.AlthoughhigherRHvalueswould
producelessphasebleeding,significantparticlewateruptake
willalsointroduceerroneousOVFvalues,duetoanincrease
inparticlevolumefromwateruptake.Forchemicalsystems
withadiscretedeliquescencepoint,suchas∼75%RHfor
NaCl,theupperlimitRHvalueisclear.However,forchem-
icalsystemsthatcontinuallyuptakewater,suchasglucose,
thelackofdiscretedeliquescencepointcomplicatesthemat-
ter(Leeetal.,2017a).Thevalueof25%RHwasthusused
forthemeasurementsofOVFbecausegrowthinsizefrom
wateruptakewasmeasuredtobelessthan1.03ormerely
3%growthwhileshowingexcellentphasecontrast(Leeet
al.,2017a).Otherchemicalsystemsmayalsohaveoptimum
RHrangesthatminimizewateruptakewhileallowingfor
cleardistinctionofthecoreandshell.Furtherdiscussionof
theenvironmentalconditionsforphaseimagingisprovided
intheSupplement.

3.2 OVFmeasurementson1:8(M)glucose:NaCl

FromFig.1,aphaseimagingmaskoftheareawasusedto
identifytheboundaryoftheinorganiccoreandtheorganic
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Figure1.AFMphaseimagesofglucose:NaClparticlesat25%–
35%RH.Thegreenandviolet/redcolorsrepresenttheorganicand
inorganiccomponentsoftheparticles,respectively.

shell,whichwasusedtoquantifytheinorganiccoreandthe
totalparticlevolumes,thedifferenceofwhichisorganicvol-
ume(masksshowninFig.S2).Theareamaskisthentrans-
ferredontothe3-Dimage,andtheOVFisquantifiedusing
Eq.(1).Wenotethatthismethodologyassumesthat(a)the
areasofthetopandbottomofthecorearenearlyidentical
andthat(b)noorganicmaterialispresentbelowthecore.
Below,wewillshowthatthefirstassumptionfails,underdry
depositionconditions.
Figure2ashowsOVFversusvolume-equivalentdiameter
dataonindividual1:8(M)glucose:NaClmixtureparticles
fromdryandwetdepositionmodes.Thedottedblackline
istheexpectedOVFvalue.Volume-equivalentdiameterwas
quantifiedbyrelatingthevolumeofthespheretothediame-
ter(Morrisetal.,2016).BulkOVF(OVFbulk)wascalculated
fromthemassesofglucoseandNaCl,determinedbytheir
respectivedensities(Eq.S1intheSupplement).Moreinfor-
mationontheexpectedOVF,calculatedfromthemeasured
organicandinorganicmolefractionsfromthebulksolution
measurements,canbefoundintheSupplement(Eq.S5).
Thegreyshadedarearepresents±10%deviationfromthe
meanasareference.Inagreementwithourexpectations,the
bulkOVFdatadonotshowanysizedependenceandinstead
showgoodoverlapwiththeexpectedvalues.Also,thebulk
datashownherewerewet-deposited,butnosignificantdif-
ferencesbetweendryandwetdepositionwereobservedin
OVFbulk(Fig.S3).Forthismixture,thesingle-particleAFM
OVFofdry-depositedparticlesshowsasignificant,positive
deviationawayfromtheexpectedandbulkOVFvalues.In
fact,thedeviationisnearly60%higherthantheexpected
value.But,thereisnoclearlyevidentsizedependenceon
measuredOVF.Similarly,wet-depositedparticlesalsodo
notshowsizedependencebutinsteadshowexcellentoverlap
withtheexpectedandbulkOVFvalues.Moreover,contrary

Figure2.AFMsingle-particleOVFvalues(drydeposition:darkor-
angecrosses,wetdeposition:bluedots)versusvolume-equivalent
diameterfor1:8(M)glucose:NaCl(a).ThebulkOVFdata(green
squares)areshownwithx-axisandy-axiserrorbars,obtainedfrom
theMOUDIsizecutoffrangeandtotalexperimentalpropagateder-
ror,respectively.ExpectedOVFvalue(blackdottedline)ismea-
suredandcalculatedfrombulksolutionmixingratioswithknown
densitiesofsolutes,assuming±10%error(greyshadedregion).
AFMOVFhistograms(samecolorlegendschemesretainedfrom
above)arecollectedoverindividualparticles(b).Gaussianfunc-
tionfitsareshownbythecoloredlines,yieldingthemostprobable
OVFvaluesandcorrespondingstandarddeviations.

toourconcernsoutlinedinthebeginning,thewet-deposited
particleswereindividualwithwell-resolvedcore–shellmor-
phologywithoutanyevidenceofspattering.
TobetterillustratethedifferencesinmeasuredOVFmeans

andvariancefromdry-andwet-depositedparticles,statis-
ticalcomparisonsofsamplemeanswereperformedfrom
constructedhistograms(Fig.2b). Wenotethehistograms
wereobtainedbycombiningindividualparticledatafrom
allsizerangesasnoclearsizedependencewasobserved.
Theprobabilitydistributionfunctionsareshownasthecol-
oredsolidlines.ThedistributionofOVFdatafromdry-
depositedparticlesshowedmeanandstandarddeviationval-
uesof0.53±0.05(n=222).Wet-depositedparticlesyielded
meanandstandarddeviationvaluesof0.34±0.04(n=134).
Asareference,theexpectedOVFandstandarddeviationis
0.37±0.04,constructedassuming10%deviationfromthe
mean.Overall,thehistogramsshowthatwet-depositedparti-
cledataoverlappedwellwiththeexpectedandbulkvalues,in
sharpcontrasttodry-depositedparticlesthatyieldednearly
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60%deviation.ThedeviationofOVFislikelyduetosig-
nificantspreadingofthecorebutalsocontributedtobythe
3%contributionofwaterintheorganicvolumecalculation
andpotentialorganiclayerthatishiddenunderneaththecore.
Thus,OVFsmeasuredfromdry-depositedparticlesandwet-
depositedparticleswerecomparedwithatwo-tailedttest,
whichdemonstratedthatthesetwodatasetsaresignificantly
different(p<0.0001;seeSupplement).
Tobrieflyrecap, OVFdatafromdry-deposited1:8
(M)glucoseandNaClparticlesshowedstrongdeviations,
whereasthewet-depositedparticlesshowedexcellentover-
lapwiththepredictedOVFvalues.Inthebeginning,we
introducedthedrawbacksofperformingdryandwetde-
positionmethods.Fordrydeposition,theparticlemorphol-
ogymaydeformduetoaviolentimpactionwiththesub-
strate,whichmayintroduceerrorswhenperformingOVF
measurementsthatrelyonassumptionsontheshapeofthe
core.Ifso,theOVFoverestimation,oranalogouslycorevol-
umeunderestimationfromsingle-particleanalysis,canbe
explainedbythecorespreadinguponimpaction.Underdry
depositionconditions,thesolidNaClcoreencasedbyglu-
cosecanspreadunderneaththeglucoseshellfromtheim-
paction,whichisnotdetectedinAFMphaseimagingthat
probestheverysurfaceoftheparticle.Thiseffectisexpected
toproduceanartificiallyhigherOVF.Below,weinvestigate
thisphenomenonfurther.

3.3 Evidenceofdry-depositedNaClspreading

TodeterminetheextentofNaClspreadinguponimpaction,
pureNaClwasdry-depositedunderthesameconditionsas
thepreviousglucoseandNaClmixture.Figure3ashowsan
AFM3-Dheightimageofdry-depositedNaCl.Thetran-
sitionfrompurpleandredtogreenindicatesagradientof
height.Themorphology-deformingeffectsofthedrydepo-
sitionandimpactionareevident,wherethetopoftheparticle
showsround,notsharpedges.Also,thebottomoftheparti-
clehasasignificantlygreaterareathanthetopoftheparticle.
ThisismoreevidentinFig.3b,inwhichacrosssectionof
theparticleisshown(denotedbydashedredline).Forillus-
trativepurposes,theexpectedcross-sectionalareaofNaCl,
assumingnospreading,isshownbyastripedgreenarea.In
comparisontowhenthereisnospreading,whichshouldpro-
ducetopandbottomareasthatareidenticalindistance,the
axisshowsdirection-dependentspreadingofnearly300nm
thatwouldnotbeconsideredwhenitisencasedinorganic
matter,andOVFisquantified.Tovalidatethattheobserved
dataareattributedlargelyduetotheNaClparticlespread-
ing,Eq.(S9)wasderived,whichshowsthatatleast120nm
ofthe300nmobservedspreadingisdirectlydue,nottothe
tip-shapeconvolution,buttotheparticlespreading(seeSup-
plement).Here,wenotethattheextentofspreadingmaybe
inpartduetoarelativelyhighflowrateof30Lmin−1forthe
MOUDIsystem,whichgivesrisetohighinertialforceon
theparticleuponimpactionontothehardsubstrate,resulting

Figure3.AFM3-Dheightimageofadry-depositedNaClpar-
ticle(a).TheNaClparticlecrosssection(b)thatwasmeasured
(dashedredline)comparedtotheestimated,whenassumingacubic
particleshapewithnospreading(stripedgreenregion).Thediffer-
encebetweentheredandgreenlinescorrespondstoanunderesti-
mationoftheNaClcorevolumewhensignificantspreadingoccurs.

inparticledeformation.Thus,itisexpectedthatotherpar-
ticledepositionmethodswithlowerflowratemayresultin
lesserextentofspreadingfortheimpactedparticle.Afterthe
spreadingwasconfirmed,theeffectivenessofwetdeposition
wastestedonadifferentmixtureratioofglucoseandNaCl.

3.4 OVFmeasurementson1:2(M)glucose:NaCl

Figure4ashowsOVFversusvolume-equivalentdiameter
dataonindividual1:2(M)glucose:NaClmixtureparticles
depositeddryandwet.Incomparisontothebulkresults,
AFMOVFdatafromdry-depositedparticlesshowsizede-
pendenceatapproximately300nminvolume-equivalentdi-
ameter.Tobetterillustratethis,werepresentthesamplesetof
dry-depositedparticlesbelowthisarbitrarysizebyalighter
shadeoforange.Also,positivedeviationawayfromtheex-
pectedandbulkOVFvaluesisobservedwithincreasingpar-
ticlesize.SincebulkOVFresultsdonotdisplayanysizede-
pendence,theapparentsizedependenceofAFMOVFvalues
fordry-depositedparticlesunderscoresthecomplexnature
ofhowthemorphologyofsolidparticleschangesasare-
sultofimpaction,thusintroducingartificialdependencethat
preventsaccuratereflectionofmixingstatesofair-suspended
particles.Contrarytodry-depositedparticles,however,AFM
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Figure4.AFMsingle-particleOVFvalues(drydeposition:light
anddarkorangecrosses,wetdeposition:bluedots)versusvolume-
equivalentdiameterfor1:2(M)glucose:NaCl(a).Thedryde-
positionisshownintwocolorstodistinguishthedatasetthatex-
hibitsapparentsizedependence.ThebulkOVFdata(greensquares)
areshownwithx-axisandy-axiserrorbars,obtainedfromthe
MOUDIsizecutoffrangeandpropagatedanalyticaluncertainty,
respectively.ExpectedOVFvalue(blackdottedline)ismeasured
andcalculatedwithbulksolutionmixingratioswithknowndensi-
tiesofsolutes,assuming±10%error(greyshadedregion).AFM
OVFhistograms(samecolorlegendschemesretainedfromabove)
arecollectedoverindividualparticles(b).Gaussianfunctionfitsare
shownbythecoloredlines,yieldingthemostprobableOVFvalues
andcorrespondingstandarddeviations.

OVFdatafromwet-depositedparticlesdonotshowsizede-
pendence,withexcellentoverlapwiththeexpectedandbulk
OVFvalues.Moreover,similartothe1:8(M)mixture,the
particleswerealsoindividualanddidnotshowanyevidence
ofspattering.
TobetterillustratethedifferencesinmeasuredAFMOVF
samplemeansandvariancefromdry-andwet-depositedpar-
ticles,histogramswereconstructed(Fig.4b).TheOVFdata
distributionfromdry-depositedparticlesshowedmeanand
standarddeviationvaluesof0.64±0.08(n=138)forpar-
ticleslessthan300nminsizeand0.82±0.04(n=89)for
particlesgreaterthan300nminsize.Wet-depositedparticles
showedmeanandstandarddeviationvaluesof0.71±0.07
(n=146).Asareference,theexpectedOVFandstandard
deviationis0.71±0.07,againconstructedassuming10%
deviationfromthemean.Overall,thehistogramsshowthat
wet-depositedparticledataoverlappednearlyperfectlywith

theexpectedandbulkvalues,incomparisontodry-deposited
particles.Toconfirmthisstatistically,thesameStudent’s
ttestmethodologywasemployed,whichdemonstratedthat
thesetwodatasetsaresignificantlydifferent(p<0.0001;see
Supplement).

3.5 Restructuringdry-depositedparticlesby
hydration–dehydrationcycleandpotential
implicationsonhygroscopicity

Incertainsituations,wetdepositionmaynotbefeasible.
Therefore,anexperimentalapproachwasdevelopedtore-
structurethepreviouslydry-depositedparticlesthroughwa-
teruptake(Fig.5).Figure5ashowstwophaseimagesof
thesamedry-depositedparticle.Theimagesweretakenat
25%RH,priortothehydration–dehydrationcycle(hyd–
dehcycle)ontheleftandafterthecycleontheright.The
colorschemesofagreenorganicshellandviolet/redinor-
ganiccoreremainthesameasFig.1.Afterdrydeposition,
theparticleswereinitiallykeptatnear3%RH,untilimag-
ingat25%RH.Then,thehumiditywasincreasedto>80%
RHwhichresultedindeliquescenceoftheparticleandphase
transitiontoliquidphase,confirmedbyobservingthedrastic
dropletsizeincrease(Morrisetal.,2016).TheRHwasthen
slowlydecreasedbackto25%RHoverca.10min,resulting
inthedehydrationoftheparticle.Datashowthatafterthe
hyd–dehcycle,moreoftheinorganiccoreisclearlyevident
inAFMphaseimaging,whichcannowbetakenintoaccount
involumecalculations.
FromthequantifiedOVFbeforeandafterthehyd–deh

cycle,histogramswereconstructed(Fig.5b).Thedistribu-
tionofOVFdatabeforethecycleshowedmeanandstan-
darddeviationvaluesof0.51±0.02(n=28).Particlesaf-
terthecycleshowedmeanandstandarddeviationvaluesof
0.38±0.07(n=40).TheexpectedOVFandstandardde-
viationis0.37±0.04.Thus,thehyd–dehcycleeffectively
loweredtheOVFvalueofthesameparticletobecloserto
thatoftheexpectedvalue.Toconfirmthisstatistically,the
sameStudent’sttestmethodologywasemployed(seeSup-
plement).Analysisshowedthattheparticlesafterthecycle
werewithinthe99.9%confidenceintervaloftheexpected
value,whereastheparticlesbeforethecyclewereoutsideof
therange.Furthermore,thisexperimentconfirmstheorigi-
nalhypothesisthatthecorespreadingupondryimpaction
produceserroneousOVFvalues,whichcanberemediedei-
therbyperformingwetdepositionordrydepositionwith
thesubsequenthyd–dehcycle.However,wenotethatthis
methodologyreliesonwateruptakeandthephasetransition
fromasolidintoaliquidandthenbacktoasolidstate.At
themoment,thisapproachcannotbereadilyusedonsys-
temsthatdonotundergosolidtoliquidphasetransitions.
Moreover,theparticlemusthavecore–shellmorphology,but
giventhislimitation,itcouldstillbeusedtoprobemulticom-
ponentcore–shellparticles,suchasnascentSSAwithmore
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Figure5.AFMphaseimagesofthesameparticleat25%RH,
beforeandafterhydration–dehydrationcycle(a).AFMOVFhis-
togramsfor1:8(M)glucose:NaClcollectedoverindividualpar-
ticles(b).Theredbarsindicateparticlesbeforethecycle.Theblue
barsindicatethesameparticlesafterthecycle.Gaussianfunction
fitsareshownbythecoloredlines,yieldingthemostprobableOVF
valuesandcorrespondingstandarddeviations.Theexpectedvalue
isshownasthedashedblackline.

thanfivedifferentorganiccomponentsresidingwithinthe
particle(Cochranetal.,2017).
Theimportanceofaccurateorganicvolumefractionmea-
surementsonasingle-particlebasiscanbeunderstoodfrom
theperspectiveofhygroscopicity,orabilityofparticlesto
uptakewaterandactascloudcondensationnuclei.The
hygroscopicpropertiesofparticlesarestronglylinkedto
theirchemicalcomposition,wheresurface-inactiveinorganic
speciessuchasNaCltypicallyuptakesignificantlymorewa-
terthanorganicspeciessuchasfattyacids(Estilloreetal.,
2017;Ruehland Wilson,2014;PettersandKreidenweis,
2007).Hygroscopicityisquantifiedthroughaparameterκ,
whereNaClhasahighκofca.1.3andlipopolysaccharide
hasalowκofca.0.038(Schilletal.,2015;Ruehletal.,
2010).Theκvaluesarethenusedtopredictthecriticalsu-
persaturationofaerosolsthatpotentiallygrowintoclouds,in
modelssuchasκ-Köhlertheory(Ovadnevaiteetal.,2017;
Ruehletal.,2016;Seinfeldetal.,2016;Schilletal.,2015;
Morrisetal.,2015;Ruehland Wilson,2014;Pettersand
Kreidenweis,2007).
Importantly,recentworkshaveidentifiedtheroleofparti-
clemixingstatesinthehygroscopicityparameterκ(Schillet
al.,2015).Forabinaryinternalmixture,theκwaspredicted
fromvolumemixing,withκmix= εiκi=εglucoseκglucose+
εNaClκNaCl,whereεiisthevolumefractionforeachchem-
icalcomponent,εglucose=OVF,andεNaCl=1−OVF.Thus,
usingaκof1.3forNaCland0.15forglucose,weevalu-

atedhowthepreviouslyobserved60%deviationseenfrom
organicvolumefractionmeasurements(OVFof0.53and
0.37fordry-andwet-depositedparticles)on1:8(M)glu-
cose:NaClwouldpropagatetothepredictedκmix(Petters
andKreidenweis,2007;Ruehletal.,2010).Ourdatashow
thatresultingκmix,drywas0.69andκmix,wetwas0.87,which
ismorethan20%underestimationofκmixthatcouldcon-
tributeasignificantsourceoferrorwhenusingtheerroneous
κvalueinclimatemodels.Therefore,thisillustratesthene-
cessityforaccurateOVFmeasurementsonasingle-particle
basis,topreventintroducingerrorsintheoreticalmodels
thatrelyonaccurateinformationonthehygroscopicityof
aerosols.

4 Conclusions

Insummary,offlinesingle-particleAFMandbulkensemble
HPLCtechniqueswereusedtoassessdryandwetdeposition
effectsonthegeneratedandimpactedaerosolparticles’mix-
ingstatesthatdisplaycore–shellmorphology.Itwastested
byquantifyingtheorganicvolumefractionofmodelbinary
componentmixtureparticlescomposedofglucoseandNaCl
attwodifferentmolarratios.Forboth1:2(M)and1:8(M)
glucose:NaClmixturesstudiedhere,themeasuredsingle-
particleOVFfromdrydepositionshowedpositivedevia-
tionsawayfromtheexpectedvalues.Inthecaseof1:2
(M)glucose:NaClparticles,evenanartificialOVFsizede-
pendencewasobserved.Thepositivedeviationwasfound
tooriginatefromtheinorganiccorespreading,resultingin
overestimationthevolumeofthecore.However,performing
wetdepositiononthesamemixturesproducedsingle-particle
OVFvaluesthatconvergedwellwiththeexpectedvalues,
withextremelystrongstatisticalsignificance.Furthermore,
datashowedthatperformingahydration–dehydrationcy-
cleonpreviouslydry-depositedparticleseffectivelyforced
corerestructuringthroughsolidtoliquidtosolidphasetran-
sitions,alsoreproducingaccuratesingle-particleOVFmea-
surements.Thisparticularapproachisusefulforstudiesthat
cannotperformwetdepositionbutforwhichtheaccurate
particlemorphologyisstillrequired.Inthefuture,ananalyt-
icalstudytofurthertestthedryversuswetdepositionmeth-
odswillbeperformedonincreasinglycomplexmixtures
oforganicandinorganicsystems,includingsurface-active
species.Overall,ourfindingsprovideimplicationsofaerosol
generationonaccuratelyidentifyingthemixingstateofindi-
vidual,phase-separatedparticles.Specifically,the60%de-
viationinOVFwaspropagatedtothebemorethan20%de-
viationinthepredictedhygroscopicityparameter,whichis
criticalfortheatmosphericcommunityandclimatepredict-
ingmodelsthatheavilyrelyonaccurateinformationonthe
hygroscopicityofaerosols.
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