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Abstract— In RFID-enabled applications, when a tag is put
into use and associated with a specific object, the category-related
information (e.g., the brands of clothes) about this object might
be preloaded into the tag’s memory for the purpose of live query.
Since such information reflects category attributes, all tags in the
same category carry identical category information. To collect
this information, we do not need to repeatedly interrogate each
tag; one tag’s response in a category is sufficient. In this paper,
we investigate the problem of category information collection in a
multi-category RFID system, which is referred to as information
sampling. We propose two time-efficiency protocols. The first is
a two-phase sampling protocol (TPS) that works in the case
of knowing tag IDs. By quickly zooming into a category and
isolating a tag from this category, TPS is able to sample a
category with small overhead. The second protocol, called back-
and-forth sampling protocol (BFS), relaxes a key assumption in
TPS and performs the sampling task efficiently without knowing
any tag IDs or category IDs. By carrying out a step-forward
frame and using the step-backward scheme, BFS is able to
interrogate only 1.45 tags (close to the lower bound of one
tag) on average for each category. We theoretically analyze
the protocol performance of TPS and BFS and discuss the
optimal parameter settings that minimize the overall execu-
tion time. Extensive simulations show that both the protocols
outperform the benchmark, greatly improving the sampling
performance.
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time efficiency.
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I. INTRODUCTION

RADIO frequency identification (RFID) is becoming ubiq-

uitously available in a variety of applications, including

library inventory [1]–[3], warehouse control [4]–[17], sup-

ply chain management [18]–[20], object tracking [21]–[30],

etc. Among these applications, RFID tags are usually attached

to objects that belong to different categories, e.g., sub-

jects of books in a library, types of medicine in a phar-

macy, or brands of clothes in a clothing outlet. When a

tag is associated with a specific object, the category-related

information about this object1 can be preloaded into the

tag’s memory for the purpose of off-line query by RFID

readers. Since this information reflects the category attributes,

each tag in the same category carries identical category-level

information.

To collect such category information in a multi-category

RFID system, we do not need to repeatedly interrogate each

tag. One tag’s response in a category will suffice. For example,

to know the manufacturer of Horizon Organic milk stocked in

a warehouse, we just need to query one milk box instead of

all of them as they are produced by the same manufacturer.

In another example, consider a chilled food storage chamber,

where each food is affixed with a sensor-augmented RFID

tag (e.g., WISP [31]) equipped with a thermal sensor. The

reader periodically samples temperature readings from tags to

check whether any area goes beyond the normal temperature.

Since tagged objects of the same category (i.e., tags with the

same category IDs) are typically packed together or placed

closely, the temperature reports from these nearby tags lead

to high data redundancy. Hence, it is a waste to collect sensor

information from all tags in this case.

In this paper, we study the problem of category information

collection in a multi-category RFID system, which is referred

to as information sampling. The existing data collection pro-

tocols [32]–[34] either collect all tags’ information or take

the entire tag set into account each time when isolating an

interested tag from others, which is time-consuming. These

solutions are not suitable for the problem of information

sampling, which has two unique features: (i) Since tags in

the same category carry identical category-related information,

we do not need to query each individual tag; one tag’s response

from each category is sufficient to report the information.

1In the previous examples, the category-related information is the subject
of a book, the type of a medicine, or the brand of clothes.
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(ii) We do not care which tag in a category responds to the

reader; anyone in the category can be a candidate for reporting.

By considering the above two features, we propose a two-

phase sampling protocol (TPS) that works under the case

of knowing tag IDs. In the first phase, the reader isolates

one category from others, which helps us quickly zoom into

a category from the entire tag set. In the second phase,

the reader selects a single tag from the isolated category by

using geometrically distributed tag indices. When efficiently

done, these two phases make TPS far superior to the existing

solutions. We then relax a key assumption with a new back-

and-forth sampling protocol (BFS) that achieves the sampling

task without any prior knowledge of tag IDs or category IDs.

By carrying out a step-forward frame and using the step-

backward scheme, BFS is able to interrogate only a few tags

in each category and silence others to save communication

overhead. With this protocol, only 1.45 tags (close to the

lower bound of one tag) for each category are interrogated.

We analyze the performance of TPS and BFS, and provide the

optimal parameter settings that minimize the overall execution

time. Extensive simulations demonstrate that both of the

proposed protocols outperform the existing solutions, greatly

improving the sampling efficiency.

The rest of the paper is organized as follows. Section II

formulates the sampling problem. Section III proposes a two-

phase sampling protocol. Section IV presents a back-and-forth

sampling protocol. Section V evaluates the performance of

the proposed protocols. Section VI discusses the related work.

Finally, Section VII concludes this paper.

II. PROBLEM STATEMENT

A. System Model

We consider an RFID system that consists of a reader

and a number of tags. Each tag has a unique ID that is

used to identify the object the tag is attached to. The tag

ID contains two components: category ID indicating which

category the tag belongs to, and member ID identifying a

specific member in this category. Tags with the same category

ID share common information, which may be static category-

related information (such as the brand of the tagged products)

that is preloaded for live query by a reader after the tag is put

into use, or dynamic information (such as sensor data) that is

written to or measured by the tags. We refer to this information

as category information. Besides, we assert that the collection

of dynamic information is built on the assumption that tags

from the same category are packed together or placed close,

for example, in a warehouse. In this case, if we need a real-

time check on their conditions such as temperature, reporting

one from each tag becomes unnecessary because they share

similar condition due to proximity. Instead, any one tag from

a nearby tag set (the same category) is sufficient to return the

information.

B. Problem Definition

Let N be the tag set in the RFID system, where n = |N |.
According to category IDs, N is partitioned into a family of

disjoint sets C = {C1, C2, ..., Cm}, such that
⋃m

i=1Ci = N .

TABLE I

KEY NOTATIONS

For convenience, we use Ci to represent the category ID as

well as the set of tags in this category. There are m = |C|
categories in total; each tag in N belongs to one of them. The

problem of information sampling in a multi-category RFID

system is to select (or sample) one or a subset of tags from each

category to report their data with the objective of minimizing

the overall time for collecting category-level information from

all categories. Since the category-level information carried by

all tags in each category is identical, it is not necessary to

ask all tags to report their data. Ideally, the reader should

single out one tag from each category to report information.

The selection process is however tricky in an RFID system,

particularly when the reader does not even know which cate-

gories are currently in the system and which tags are in each

category.

This paper considers two cases when designing its solutions

for the category-level information sampling problem. The first

case is that the tag set N is known a priori. Consider an

RFID system deployed in a storage facility, where a reader is

installed at the entrance (or exit) to keep track of the IDs of the

tags (thus the associated objects) that are moved in and out.

This setting allows the back-end server (to which the reader

is connected) to maintain an updated list of all tag IDs in the

storage. In the second case, we remove the above assumption

and address the sampling problem without any pre-knowledge

of tag IDs or category IDs. This is also common in practice.

For example, consider an RFID system where products are

packed (say, in boxes) when they are moved into the storage.

The reader at the entrance may not be able to penetrate the

whole packs and therefore may miss some tag IDs. Therefore,

we may have some unknown tag IDs in the storage after the

products are moved in and possibly unpacked and rearranged.

The key notations are given below.

III. TWO-PHASE SAMPLING PROTOCOL

In this section, we consider information sampling with a

known set N of tags. We first explain two possible solutions

to this problem and then detail our design of a two-phase

sampling protocol.
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Fig. 1. An illustration of wave interference. (a) Two waves in phase. (b) Two
waves out of phase.

A. Possible Solutions

1) Basic Polling and ETOP: One solution is to randomly

select m tags (denoted by M ), one from each category,

and have the reader poll these tags for their category-level

information. The basic polling protocol transmits the tag IDs

one after another while all tags listen for their IDs and a

tag will transmit its information right after its ID is heard.

It can be inefficient in a low-rate RFID channel to transmit a

large number of IDs (96 bits each) [34]. A more sophisticated

polling protocol is ETOP [34], in which the reader broadcasts

a partitioned Bloom filter to solicit tag responses in a time

efficient way. However, this approach will not work if the

reader does not know the categories or their tags in the systems

(the case we will consider in the next section). Even if the

reader knows all tags, the design of ETOP requires the reader

to transmit a segmented/partitioned Bloom filter to filter out

tags that are not selected for reporting, which can be costly:

When there are a large number of tags in the system, in order

to filter out most non-selected tags, we need to drive down

the filter’s false positive ratio, which means larger filter size.

Moreover, tags that cause false positives must be handled

through a separate polling process. Our simulations show that

a protocol that is specifically designed for the category-level

information sampling problem will greatly outperform ETOP.

2) Wave Superpose: Because tags in the same category will

report the same information, one idea is to let them transmit

simultaneously, one category at a time, allowing the same

signals from these tags to superpose. If the RF waves emitted

from tags in the same category are superposed with positive

interference, the RFID reader may be able to decode the

category-level data correctly. Unfortunately, this idea does not

work for two reasons. First, two wave superpose is likely to

form a resultant wave of greater, lower, or the same amplitude,

which cannot guarantee a positive interference all the time.

Fig. 1(a) shows perfectly positive interference when the phase

difference between two waves is an even multiple of π.

However, perfectly negative interference will occur when the

phase difference is an odd multiple of π, as shown in Fig. 1(b),

making it impossible to decode data. In general, when the

phases of numerous tags are not aligned well, the resulting

superposed signals can take arbitrary form, making decoding

unpredictable.

The other reason is clock difference. Due to clock rate

differences, the tags’ clocks will differ after some amount of

time due to clock drift. This clock skew may result in the

misalignment of data in bit level. To verify this conclusion,

we conduct an experiment with wireless identification sens-

ing platform (WISP) and universal software radio peripheral

Fig. 2. Signal superpose of three WISP tags with clock difference.

(USRP), where on-off keying modulation at the physical layer

is adopted. Fig. 2 shows the signal level results from one set

of experiments. The fourth plot is the mixed signals from

three WISP tags that transmit the same 20-bit data ‘1001

0100 1010 1100 1100’ to the reader at 40 kbps (which refers

to the reader’s clock). For comparison, we also show their

individual signals in the first three plots. As we can see, it is

hard to decode the mixed signals due to the clock drift caused

by different tags. Taking the negative interference and clock

difference into account, we stress that the scheme of wave

superpose is not a good solution to the sampling problem.

In this section, we take a deeper look at the two features

of the information sampling problem and propose a two-

phase solution: 1) separating a category from others, and

2) singling out one tag from each category to report. The

first step helps us quickly zoom into a single category from

the entire tag set. The second step uses only a 4-bit index

to select a single tag from each category to transmit, free of

collision. In combination, these two steps allow our protocol

to significantly outperform the sophisticated polling protocol

ETOP.

B. Protocol Description

TPS is performed in a number of sampling rounds, each

consisting of two phases: an ordering phase and a polling

phase. The expected number of rounds is about 3.5, as we will

analyze later. In each round, the reader collects information

from a subset of categories, and tags in those categories are

removed from the subsequent rounds. The protocol terminates

after information from all categories is collected.

Our idea is for the reader to use a virtual time frame in

each round to select a subset of categories for information

reporting. The use of a virtual frame (which is not actually

carried out in reader-tag communication) greatly reduces the

overhead for the reader to inform the selected tags of when

to transmit, and also inform other tags to stay silent. This is

achieved in two phases: The order phase will silence all tags

from the categories that are not selected in this round, while

the polling phase will work with one selected category at a

time and the reader transmits an index value to select a single

tag from that category to report information.

More specifically, during the ordering phase, the reader

plays out a frame of time slots virtually by randomly assigning

the categories to the slots and identifying the slots that have
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Fig. 3. Three kinds of slots in the virtual frame.

only one category assigned to — such a category is called

a homogeneous category. For each homogeneous category,

the reader assigns an index value from a geometric distribution

to every tag in the category, and checks whether there exists a

singleton index value that is assigned to one and only one tag;

if so, this tag will be selected to transmit the category-level

information, and the corresponding category will be active in

the polling phase. At the end of the ordering phase, the reader

will inform (by broadcasting an ordering vector to all tags)

about which categories will be active in the polling phase and

in which order they will report their information.

In the polling phase, only the slots in the frame with active

categories will be actually played out. In each of these slots,

only tags in the category assigned to the slot will participate.

The reader starts a slot by transmitting the singleton index

of the category that it finds in the ordering phase. This index

selects one and only one tag from the category to transmit, free

of collision. All other tags in the category will stay silent. The

active categories in the current round, with their information

being reported to the reader, will stay idle in all subsequent

rounds. Below we describe the details of the protocol.

1) Ordering Phase: The reader chooses two parameters,

the number f of time slots in the virtual frame and a random

seed r. We will discuss how to choose the optimal value

of f later. The reader then assigns every category cid that

has not reported its information in the previous rounds to a

slot through hashing H(cid, r) mod f , where H(·) is a hash

function shared by all tags.

Slots with a single assigned category are called homoge-

neous slots, slots chosen by multiple categories are called

heterogeneous slots, and slots chosen by no category are called

empty slots. Fig. 3 shows an example where there are three

categories and tags in the same category will always hash

to the same slot. The second slot and the seventh slot are

homogeneous because each of them has a single category, C1

to the second slot and C3 to the seventh slot. In contrast,

the fourth slot is heterogeneous because two categories, C2

and C4, are assigned to the slot. The remaining slots are empty.

We are interested in the number of homogeneous slots, which

is affected by the value of f and the number of categories,

not by the number of tags since all tags of each category are

assigned to the same slot.

The categories hashed to homogeneous slots are called

homogeneous categories and their tags are called homoge-

neous tags. The reader knows all category IDs and tag IDs.

It performs the hash to find all homogeneous slots and the

corresponding categories. For each homogeneous category Ci,

the reader further selects a single tag as follows: To each

tag in Ci, it performs another hash to assign an index value,

R(H(id, r) mod 2K), where id is the tag’s ID, r is the hash

TABLE II

AN ILLUSTRATION OF RESOLVABLE CATEGORIES

seed introduced previously, K is the length of the value in

number of bits, and R(·) is a function that returns the index

of the right-most bit of 1 in the binary representation of

the input. For example, R(8110) = R(010100012) = 1 and

R(10410) = R(011010002) = 4. Clearly, H(id, r) mod 2K

is a K-bit binary number, and the range of the index value is

[1, K]. The index value follows a geometrical distribution: The

probability for its value to be 1 is 50% because the chance for

the rightmost bit in H(id, r) mod 2K to be 1 is 50%. The

probability for the index value to be 2 is 25% because the

chance for the rightmost two bits in H(id, r) mod 2K to be

10 is 25%. In general, the probability for the index value to

be j is 1
2j . The number of tags having a certain index value

decreases exponentially as the index value increases.

We call an index value that is assigned to exactly one

tag as a singleton index. Intuitively, the index value around

log2(|Ci|) has a high probability to be a singleton, where |Ci|
is the number of tags in Ci. After assigning indices to the tags

in Ci, if the reader finds that there exists a singleton index,

it will select the corresponding tag to report the category-

level information — in this case, we call Ci a resolvable

category, which will be active in the polling phase. In Table II,

we illustrate how to determine which categories are resolvable,

where K is set to 2. For C1, the indices of tags t1, t2 and

t3 are 2, 1, 1, respectively. Hence, 2 is a singleton index and

C1 is resolvable. Similarly, C2 and C4 are also resolvable.

In contrast, category C3 is not resolvable and thus will not be

active in the polling phase because its only two tags t5 and t6
have the same index 2.

A slot in the virtual frame is useful if and only if it is

a homogeneous slot and the assigned category is resolvable;

otherwise, it is called a useless slot. In above example, since

C1 is resolvable and homogeneous, the 2nd slot is useful.

In contrast, the 7th slot is useless as C3 is irresolvable.

How will a tag know whether it is selected to transmit in

a useful slot? The reader broadcasts the parameters hf ,r, Ki
to all tags so that each tag can compute H(cid, r) mod f

for which slot its category is assigned to, and it can also

compute R(H(id, r) mod 2K) for its assigned index. But it

does not know whether this is a singleton index. The reader

does, and it must inform tags of which slots are useful and

which tags should transmit in these slots. The useless slots

will be removed from execution. For this purpose, following

hf ,ri, the reader broadcasts an f -bit ordering vector V .
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Each bit in V corresponds to a slot in the virtual frame:

‘0’ indicates useless and ‘1’ indicates useful. In the example

of Fig. 3 and Table II, the ordering vector V is ‘01000000’.

If V is too long, the reader can split it into multiple smaller

segments and transmit one after another, allowing each tag to

keep only the segment containing the bit that corresponds to

the slot it is assigned to.

2) Polling Phase: Consider an arbitrary tag in an arbitrary

category Ci. The ordering vector V carries two pieces of

information: (1) The tag can learn whether its category is

active or not by examining the (H(cid, r) mod f)th bit in

V . If the bit is one, the tag will compute the assigned index

R(H(id, r) mod 2K) and participate in the polling phase.

(2) V also tells the order of a useful slot in the actual frame

to be carried out. If a tag finds that there are i ones in V

preceding its bit (which is also 1), the tag knows that it should

participate in the (i + 1)th slot.

In the polling phase, the reader plays out an actual frame

comprised of only useful slots. Consider an arbitrary slot.

Without loss of generality, suppose category Ci is assigned

to this slot and all its tags participate in the slot by listening

to the reader, which begins the slot by transmitting the K-bit

singleton index that it identifies for this category previously

in the order phase. All tags in category Ci will compare

the received index with their assigned indice R(H(id, r)
mod 2K), and only one tag will find a match. This tag

transmits the category-level information to the reader in the

same slot, while other tags in the category keep silent.

Note that a category assigned to a useful slot may have more

than one singleton index. In this case, the reader can randomly

choose one to transmit in the slot; any singleton index will

select a unique tag to respond. Each slot collects information

from one category. Tags in these categories will not participate

further in the protocol execution. The categories that are

assigned to useless slots will participate in the subsequent

rounds until all categories’s information is collected by the

reader. The reader chooses a different random seed in each

round. Hence, the categories that are not resolvable in one

round will become resolvable in other rounds. The overall

workflow of TPS is shown in Fig. 4.

C. Performance Analysis

We derive the expected execution time of the TPS protocol.

Consider an arbitrary sampling round comprised of the order-

ing phase and the polling phase. The execution time t of this

round is:

t =
f

96
×tid + f×p×(tpoll + tinf ), (1)

where f is the length of the ordering vector V , p is the

probability that a slot is useful, tpoll is the time for the reader

to broadcast a log2 K-bit singleton index, and tinf is the length

of a time slot for a tag to transmit the required information.

Note that, the control message transmission for launching each

round is ignored here as this overhead covers only a couple

of bits, which are negligible compared with the following

frame transmission and index broadcasting by the reader. We

define the sampling efficiency, denoted as λ, as the ratio of

Fig. 4. The overall workflow of TPS.

the number of sampled categories to the execution time of

this round. Since a useful slot corresponds to a category to

be sampled, the number of successfully sampled categories in

this round is equal to that of useful slots, i.e., f×p. We then

get the sampling efficiency:

λ =
f×p

t
=

p
tid

96 + p×(tpoll + tinf )
. (2)

Clearly, the bigger the value of λ is, the more categories will

be sampled in each unit of execution time. We thus need

to find the optimal p that maximizes λ. According to (2),

λ monotonically increases as p increases; the objective is

reduced to maximizing p. As aforementioned, a useful slot is

both homogenous and resolvable, which are two independent

events, we have:

p = ph×pr, (3)

where ph is the probability that a slot is homogenous and pr is

the probability that the assigned category in this slot is resolv-

able. To maximize p, the goal further turns to maximizing both

ph and pr, respectively. Consider the probability ph. Since

category ID is taken as the input for hash, the tags belonging

to the same category must reside in the same slot. Hence,

we can treat one category as ‘one tag’ and the homogenous

slots are actually those slots picked by exactly ‘one tag’.

We have:

ph =

(

m0

1

)

(
1

f
)(1 −

1

f
)m0−1≈

m0

f
×e−

m0−1

f , (4)

where e is the natural constant and m0 is the number of

unsampled categories before this round. Letting
dλ(f)

df
= 0,

we derive the maximal ph:

p∗h = e−1 when f = m0. (5)
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Fig. 5. Relationship between the probability pr of a resolvable slot and the number of tags in a category Ci. (a) K = 8. (b) K = 16. (c) K = 32.

For the probability pr, let us consider an arbitrary category

Ci in a useful slot. After the R(·) operation, each tag in Ci

picks the index j with the probability of 1
2j . Let qj be the

probability that the index j is a non-singleton index (j is

picked by none or multiple tags). We have:

qj = 1 −

(

|Ci|

1

)

×
1

2j
×(1 −

1

2j
)|Ci|−1, (6)

where |Ci| is the cardinality of Ci, i.e., the number of tags in

Ci. Let q∗j be the probability that the maximal singleton index

is j. We have:

q∗j =

{

1 − qK , if j = K

qj+1,K − qj,K , if j ≤ K,
(7)

where K is the last index and qj,K is the probability that all

indices from j to K are non-singleton.

According to (6) and (7), we have the probability pr[K, |Ci|]
that the assigned category Ci in this slot is resolvable:

pr[K, |Ci|] =

K
∑

j=1

q∗j

=

K−1
∑

j=1

(qj+1,K − qj,K) + (1 − qK) (8)

= 1 − q1,K

≈ 1 −
K
∏

j=1

(1 −
|Ci|

2j
×e−

|Ci|

2j ).

Fig. 5 plots the relationship between pr and the number

|Ci| of tags in Ci. When K = 8, the probability pr decreases

as |Ci| increases. For example, pr ≈ 0.8 when |Ci| = 20,

whereas pr ≈ 0 when |Ci| = 10, 000. That is because, with

the increase of |Ci|, the case of K = 8 hardly provides tags

with sufficient indices to pick, leading to most collisions and

lowering the probability pr of a singleton index. In contrast,

when K = 16, pr sees only a slight decrease from 0.82 to

0.78 when |Ci| varies from 10 to 10,000. The case of K = 32
almost remains stable at 0.81 regardless of |Ci|. The main

reason is that the values of K in these two cases are big enough

such that few tags in Ci can reach up to the last indices. We

have the maximal probability p∗ of a useful slot:

p∗ = p∗h×pr[K, |Ci|] = e−1×(1 −
K
∏

j=1

(1 −
|Ci|

2j
×e−

|Ci|

2j )).

(9)

TABLE III

OPTIMAL K

When this happens, the category Ci will be sampled in a useful

slot and keep silent in the following rounds. In the ordering

phase, the average number of bits for generating a useful slot

is 1
p∗ . In the polling phase, the reader broadcasts log2 K-bit

singleton index to interrogate a tag. Adding the both overhead,

we get the total overhead O(Ci) for singling out a tag in Ci:

O(Ci) =
1

p∗
+ log2 K. (10)

The value of K plays an important role in the overall commu-

nication overhead. Table III depicts the setting of the optimal

K under different |Ci|. As we can see, K = 16 covers the

interval [207, 52892], which can meet most of applications in

practice. In this case, the polling vector is only log2 K = 4 bits

long. Assume |Ci| = 10, 000, we have the maximum of O(Ci)
by letting pr[K, |Ci|] = 0.78, which is equal to e

0.78 +4 ≈ 7.5
bits. Compared with transmitting 96-bit tag ID in basic polling,

it is a great performance boost.

Since an arbitrary category Ci is sampled with the prob-

ability of p∗ in a sampling round, the expected number of

sampling rounds that Ci participates is 1
p∗ . According to (9),

when K = 16 and |Ci| = 10, 000, we have p∗ ≈ 0.29. The

expected number of sampling rounds is 3.5.

IV. BACK-AND-FORTH SAMPLING PROTOCOL

In this section, we consider information sampling without

any prior knowledge of tag IDs or category IDs.

A. Protocol Description

In TPS, a virtual frame is used by the reader to select

a tag from each category for information reporting, which

avoids redundant data transmission. However, if the reader

does not know the IDs of tags in the system, how will it

achieve high sampling efficiency when collecting category-

level information? A naive solution is to use one of the

existing identification protocols, e.g., Frame Slotted ALOHA

(FSA) [35], which is designed to collect the IDs of tags and

resolve the collision as tags transmit their IDs. When any tag
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Fig. 6. Two phases of the BFS protocol.

sends its ID to the reader, it will piggybacks the category

information. This approach causes high data redundancy as

the same category information will be sent repetitively by all

tags in the same category. To address this issue, we propose

a back-and-forth sampling protocol (BFS) that selects a few

tags from each category (without any pre-knowledge of their

IDs) to report category-level information, while silencing other

tags in the category. This is achieved in two phases: a step-

forward phase for tag selection and a step-backward phase for

information collection.

In the step-forward phase, the reader carries out a slotted

frame and assigns a slot index from a geometric distribution

to every tag, such that the number of tags assigned to each

subsequent slot will decrease exponentially. The reader finds

out the last busy slot, which has the highest index among

the slots with at least one tag assigned. Then, it moves to

the step-backward phase, where the busy slots are replayed

in the reverse order for information collection. In each slot,

the reader collects information from the tags assigned to that

slot, including each tag’s category ID and its category-level

information. At the end of the slot, the reader will silence all

other tags in the categories whose information has just been

collected, informing them not to participate in the next slots.

Our numerical results show that only a few tags will participate

in each slot and with the optimal parameter settings, only about

1.45 tags from each category are sampled, very close to the

lower bound of one tag. Below we describe the details.

1) Step-Forward Phase: The reader initiates a slotted frame

by broadcasting a request with a random seed r. Upon

receiving this request and r, each tag computes the slot index

that it is assigned to as R(H(id, r)), where id is the tag’s ID,

H(·) is a hash function, and R(·) is a function that returns the

index of the right-most bit of 1 in the binary representation

of the input. After the request, the reader plays out the frame

slot by slot, in ascending order of slot indices. Consider an

arbitrary tag and suppose it is assigned to the jth slot. It will

transmit a short response to the reader in each of the first jth

slots, i.e., the assigned slot and all preceding slots. A slot is

either busy when one or multiple tags transmit or idle when no

tag transmits. This design helps our protocol determine when

to stop in the step-forward phase. The protocol stops when it

observes an idle slot. In this case, all subsequent slots must

be idle (thus no need to continue). The reason is that, had

there be a tag transmitting in a subsequent slot (say the jth

slot), the tag would have transmitted in the current slot (thanks

to the first-j-slots design). The slot right before the idle slot

is the last busy slot, whose index is denoted as L.

Consider an arbitrary category Ci, 1≤i≤m. Its tags are

assigned to the slots with an exponentially decreasing distri-

bution. While all the |Ci| tags will transmit in the first slot,

Fig. 7. The overall workflow of BFS.

the expected number of tags transmitting in the jth slot is
|Ci|
2j−1 , due to the geometric distribution of R(·). Consider the

last slot that any tag in Ci is assigned to. It is likely that this

slot contains only one or a small number of tags from Ci.

We will collect the information of category Ci in this slot,

while silencing all other tags from Ci assigned to other slots.

That is the basic design of the step-backward phase.

2) Step-Backward Phase: This phase replays the busy slots

from the previous phase in the reverse order, from the last

busy slot of index L to the first slot, for a different purpose

— collecting category-level information from tags assigned to

the slots. Consider the jth slot, 1≤j≤L. The reader collects

information from the tags assigned to this slot by using

one of the tag identification protocols, e.g., the widely used

C1G2 protocol [35]. The reader begins the slot by transmitting

the slot index, which informs tags of this assigned index to

participate by executing a tag identification protocol. Since

only category information is needed, the tag will transmit

its category ID together with the category information in the

protocol; when the reader acknowledges the successful receipt

of a tag’s information, it will include the category ID in the

ack, which will be overheard by all other tags — those with

the same category ID will be silenced. The silenced tags

will not participate in the future slots. With this design of

replaying the slots in reverse (with fewest assigned tags first)

and aggressively silencing tags, we ensure that only a small

number of tags will be active in each category for information

collection. Specifically, the information of each category is

collected at the highest-indexed slot to which any tag from that

category is assigned. The overall workflow of BFS is shown

in Fig. 7.

We illustrate BFS with a scale-down RFID system.

As shown in Fig. 8, there are three categories C1 =
{t1, t2, t3}, C2 = {t4, t5, t6}, and C3 = {t7, t8}. In the step-

forward phase, each tag individually picks a slot j and replies

to the reader in the first j slots. For example, the tag t2
will respond in the first three slots. According to Fig. 8(a),

the forth slot is the last busy slot. After that, the reader moves
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Fig. 8. An illustration of the BFS protocol. (a) Step-forward phase.
(b) Step-backward phase.

to the step-backward phase and plays out the frame reversely.

As shown in Fig. 8(b), the reader checks the 4th slot first. The

tag t1 picking this slot replies to the reader and all tags (t1−3)

belonging to C1 keep silent after receiving the category ID of

C1. The reader then moves back to the 3rd slot and the tag t6
is interrogated. The tags t4−6 from C2 are silenced after that.

Similarly, in the 2nd slot, C3 is sampled; no tag responses

in the 1st slot. By the back-and-forth operation, all category

information is successfully collected and only one tag of each

category is interrogated, saving communication overhead.

B. Performance Analysis

The execution time of BFS consists of two parts: the step-

forward phase and the step-backward phase. In the step-

forward phase, the reader needs to play out L busy slots and

one idle slot; the corresponding communication overhead is

(L+1)ts, where ts is the communication delay that a tag gives

a one-bit short response to the reader. In the step-backward

phase, consider an arbitrary category Ci, 1≤i≤m. It will be

sampled in the slot when it appears at the first time. Let vi

be the number of tags belonging to Ci in this slot. To isolate

these vi tags from others, the ALOHA-based approach in the

C1G2 protocol [35] needs to carry out e sub-frames including

e × vi slots in total [36], where e is the natural constant.

Amongst these slots, there are vi singleton slots (exactly one

tag picks) and about vi empty slots (no tag picks); the left

are collision slots (more than one tag pick). The reader in the

first singleton will collect the category ID together with the

category information of Ci from the tag, and later silence Ci

by broadcasting its category ID. The communication overhead

is tcid + tinf + trcid, where tcid and tinf are the delay for the

tag to transmit the category ID and category-level information

respectively, trcid is the delay for the reader to broadcast a

category ID. The other vi − 1 singletons will become empty

slots and there are 2vi − 1 empty slots with the length of ts
now. The left (e − 2)vi would-be collision slots are likely to

become singleton or empty after the reader silences some tags.

For simplicity, we still treat them as collisions and get a upper

bound of the execution time:

t = (L + 1)ts +

m
∑

i=1

(

(e − 2)vitc + (2vi − 1)ts + µ
)

+ eLtf ,

(11)

where µ = tcid + tinf + trcid, tc is the delay of a collision

slot, tf is the time interval between neighbor sub-frames in

ALOHA-based protocols [8]. Since e sub-frames are required

for sampling in each slot, the total overhead of inter-frame is

e×L×tf . In (11), all terms are constants except for L and vi.

We derive their expected values with the two lemmas below.

Lemma 1: The expect value E(L) of L is:

E(L) =

∞
∑

j=1

j ×
(

(1 −
1

2j
)n − (1 −

1

2j−1
)n

)

,

where n is the number of tags in N .

Proof: Consider a tag that picks the slot Q, Q ≥ 1. The

probability that Q is the jth slot is:

p(Q = j) =
1

2j
. (12)

According to (12), the probability that the tag chooses one of

the first j slots is:

p(Q ≤ j) =

j
∑

k=1

1

2k
= 1 −

1

2j
. (13)

Given n tags in the tag set N , we have the probability that

all of them pick the first j slots:

pn(Q ≤ j) = (1 −
1

2j
)n. (14)

According to (14), we have the probability that the biggest

slot index L picked by the tag set N is equal to j:

p(L = j) = pn(Q ≤ j) − pn(Q ≤ j − 1)

= (1 −
1

2j
)n − (1 −

1

2j−1
)n. (15)

Hence, the expected value E(L) of L is:

E(L) =

∞
∑

j=1

j × p(L = j)

=
∞
∑

j=1

j ×
(

(1 −
1

2j
)n − (1 −

1

2j−1
)n

)

. (16)

Lemma 2: Consider an arbitrary category Ci, 1 ≤ i ≤ m.

The expected value E(vi) of vi is:

E(vi) = |Ci|
∞
∑

j=1

(
1

2j
)(1 −

1

2j
)|Ci|−1, (17)

where |Ci| is cardinality of Ci, i.e., the number of tags in Ci.

Proof: Let Ek,j represent the event that k tags in Ci pick

the jth slot and j is the last busy slot for Ci. Hence, we have

the probability of Ek,j :

p(Ek,j) =

(

|Ci|

k

)

(
1

2j
)k(1 −

1

2j−1
)|Ci|−k, (18)
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Fig. 9. The expected value of L with respect to the number n of tags.

where the term ( 1
2j )k denotes the probability that k tags pick

the jth slot, and the term (1 − 1
2j−1 )|Ci|−k indicates that the

left (|Ci| − k) tags choose the slots preceding the jth slot.

According to (18), we have the expected value of vi:

E(vi) =
∞
∑

j=1

|Ci|
∑

k=1

k × p(Ek,j)

=

∞
∑

j=1

|Ci|
∑

k=1

k

(

|Ci|

k

)

(
1

2j
)k(1 −

1

2j−1
)|Ci|−k

=

∞
∑

j=1

|Ci|
∑

k=0

k

(

|Ci|

k

)

(
1

2j
)k(1 −

1

2j−1
)|Ci|−k

=

∞
∑

j=1

|Ci|
1

2j

|Ci|−1
∑

k=0

(

|Ci|−1

k

)

(
1

2j
)k(1−

1

2j−1
)|Ci|−1−k

= |Ci|
∞
∑

j=1

(
1

2j
)(1 −

1

2j
)|Ci|−1.

Substituting E(L) and E(vi) for L and vi in (11) respec-

tively, we can derive the overall execution time t of BFS.

According to Lemma 1, we show the expected value of L

with respect to the number n of tags in Fig. 9. In this figure,

the number n of tags ranges from 1 to 100,000. As we can

see, the expected value of L experiences a logarithmic growth

over n. For example, L is equal to 17.9 when the number

of tags is 100,000. That means the reader under this case

needs to carry out only (L+1) ≈ 19 slots in the step-forward

phase for making tags in each category be distributed unevenly.

According to Lemma 2, Fig. 10 shows the expected value of

vi with respect to the number |Ci| of tags in the category Ci.

The results show that no more than 1.45 tags for each category

are sampled by the reader, which is very close to the lower

bound of one tag.

C. Multiple Readers

So far, we have discussed the sampling problem in a single

reader case. In some real scenarios, multiple readers can be

deployed to manage a large number of tags. Our protocols

can be easily generalized to the multi-reader case when the

collision-free transmission schedule (e.g., [37]) among the

readers is established. More specifically, for TPS, we assume

that each reader has the knowledge of the subset of tags

under its coverage. With this information, each reader executes

Fig. 10. The expected value of vi with respect to the number of tags in the
category Ci.

TPS as-is when it is the reader¡¯s turn to run information

sampling according to the scheduling algorithm. Note that,

the reader in this case just needs to hold the information

about the subset of tags in its field-of-view; the global tag

information is unnecessary. For BFS, since it is able to do

sampling without any assumption about the tag information,

no any modifications to BFS are required for running the

information sampling. Therefore, we assert that, our protocols

can be easily generalized to the multi-reader RFID system.

V. EVALUATION

A. Simulation Setting

Our simulation settings follow the specification of the

C1G2 standard [35]. Any two consecutive communications,

from the reader to tags or vice versa, are separated by a time

interval. For one, after the reader transmits a command, all tags

have to wait the transmit-to-receive turn-around time T1 before

replying to the reader. For another, upon receiving the reply

from tags, the reader needs to wait the receive-to-transmit

turn-around time T2 before talking to tags. According to the

specification, T1 is max(RTcal, 20Tpri) and T2 ranges from

3Tpri to 20Tpri, where RTcal is the reader-to-tag calibration

symbol that equals the length of the data-0 symbol plus the

length of the data-1 symbol, and Tpri is the backscatter-

link pulse-repetition interval. In our simulation, we set

T1 = T2 = T = 200 µs that complies with the C1G2 standard.

Depending on the physical implementation and the real

environment, the transmission rates between the reader and

tags are not necessarily symmetric. The tag-to-reader transmis-

sion rate varies with the data coding: 40 kbps to 640 kbps for

FM0 and 5 kbps to 320 kbps for Miller-modulated subcarrier.

We get the intersection set 40 kbps to 320 kbps and adopt

the lower bound 40 kbps as the data rate. In other words,

it takes 25 µs to transmit one bit by the tag. The data rate

from the reader to tags ranges from 26.7 kbps to 128 kbps.

Similarly, we set the data rate to the lower bound 26.7 kbps,

which takes 37.45 µs to transmit one bit by the reader. Besides,

the length of the category ID is set to 32 bits throughout the

simulations. Note that other parameter settings may change the

absolute metric, but the simulation conclusions can be drawn

in a similar way.

According to the above parameter settings, the duration ts of

the 1-bit short response from tags is equal to 25+T = 225 µs;

the duration tcid of transmitting a category ID by a tag is

25 × 12 + T = 500 µs; the duration trcid of broadcasting a



168 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 11. Confirmation of theoretical results through simulations for (a) the
execution-time formulas of TPS, (b) the execution-time formulas of BFS.

category ID by the reader is 37.45 × 32 + T = 1398.4 µs;

the duration trid of broadcasting a tag ID by the reader is

37.45× 96 + T = 3795.2 µs; For transmitting w-bit category

information by a tag, the duration tinf is equal to 25w + T

µs. All results are the average outcome of 100 simulation runs

using MATLAB.

B. Verification of Execution Time

In Fig. 11(a) and Fig. 11(b), we conduct simulations to

verify the correctness of the derived execution-time formulas

for TPS and BFS respectively. For TPS, we compare the

theoretical derivations with the simulation results under two

scenarios. In the first scenario, the value of K in the polling

phase is set to 16, the number of categories is 100 and each

category consists of 100 tags. In the second scenario, we keep

the same value of K , but change the number of categories

to 1000 and the number of tags in each category to 50. We

perform 100 independent simulation runs in each scenario and

plot the CDF of relative error. The relative error is computed as
|t1−t2|

t1
, where t1 is the simulation time and t2 is the theoretical

time. In 11(a), we observe that the relative error of TPS is less

than 0.03. Its 90 percentile is about 0.02. With the increase of

the number of categories (scenario2), the relative error further

decreases, which is no more than 0.01. The tightness between

the simulation value and the theoretical one demonstrates that

the derived execution time can well depict the real situation.

For BFS, since the formulas derive a upper bound of the

execution time, we verify the gap between the upper bound

and the real case. In this simulation, we set the number of tag

in each category to 100 and vary the total number of tags from

10,000 to 100,000. As shown in 11(b), the theoretical value

is slightly larger than the simulation one. That is because,

some collision slots are likely to become singleton or empty

after the reader silences some tags and we still treat them as

collisions, which increases the communication overhead. Even

so, we assert that the given upper bound is close to the real

execution time.

C. Evaluation With Tag IDs

In this subsection, we evaluate the execution time of our

sampling protocol TPS in the case of knowing tag IDs. As

aforementioned in Section III, Basic Polling (BP) and ETOP

can be modified for the purpose of information sampling.

To achieve this goal, the reader first randomly picks a tag

from each category and these tags constitute a tag set S.

Fig. 12. Execution time with respect to the number n of tags. (a) w = 10.
(b) w = 20.

After that, for BP, the reader in turn broadcasts each tag’s ID

in S and then waits for their replies after each broadcasting.

All tags keep listening and only the exactly matched tag

transmits the required category information to the reader. The

sampling process terminates until all tags in S are interrogated.

For another, ETOP is specifically designed for collecting tag

information from a tag subset in an efficient way. In our

problem, we can treat S as the wanted subset of N and execute

ETOP as-is to collect the category information as required. In

the simulations, we keep the same parameter settings of ETOP

as that in [34], i.e., the frame size is 24× |S|, the segment is

80 bits long, and each segment consists of 4 partitions.

Fig. 12 compares the execution time of BP, ETOP, and TPS

under different numbers of tags. In the simulations, we fix the

number of tags in each category at 10 and vary the number of

tags from 10,000 to 100,000 (the number of categories ranges

from 1000 to 10,000). Two kinds of category information

with different lengths (w = 10, 20) are sampled under varied

parameter settings, as shown in Fig. 12(a) and Fig. 12(b).

Among these figures, we observe that TPS outperforms the

other two protocols as it isolates a tag of each category from

others by broadcasting only about 7.5-bit polling vector on

average. For example, to sample 10-bit category information

from 50,000 tags (shown in Fig. 12(a)), BP takes the longest

time 21.2s as it needs to transmit tedious tag IDs. ETOP

reduces the execution time by 56.1% to 9.3s since it uses

segmented Bloom filters to isolate and order tags belonging to

S, avoiding most ID transmissions. TPS performs the best and

consumes only 3.7s, producing 5.7× and 2.5× performance

gains, compared with BP and ETOP respectively. The similar

conclusion can also be drawn on other parameter settings in the

other figure: TPS is the best, ETOP follows, and BP performs

the worst.

In Fig. 13, we compare the execution time of BP, ETOP,

and TPS under different numbers of tags in each category.

In the simulation, we fix the number of tags at 100,000 and

vary the number of tags in each category from 5 to 50. Once

given the length w of the category information, we observe

that the execution time of these three protocols decreases as

the number of tags in each category increases. That is because

the number of categories decreases with the increase of the

number of tags in each category, thereby reducing the number

of samples and saving the communication overhead. Similar

to Fig. 12, the same conclusion can also be drawn here: TPS

is the most time-efficient, ETOP is worse, and BP is the most

time-consuming. For instance, when the length of category
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Fig. 13. Execution time with respect to the category size. (a) w = 10.
(b) w = 20.

information is 20 bits long and each category has 25 tags (as

shown in Fig. 13(b)), the execution time of BP is 17.0s, which

is the longest amongst the three protocols. By contrast, TPS

spends the minimal execution time. It takes less than 3.0s to

achieve the same sampling task, producing an about 6× per-

formance gain. Although ETOP is far superior to BP, it takes

longer time than TPS, i.e., 7.4s. Note that, the execution time

of the three protocols increases as w increases. This is intuitive

as the tag needs to transmit more category-related data when w

is bigger. Based on above simulation results, we conclude that,

by transmitting a few bits to pick a tag in each category, TPS

outperforms BP and ETOP when tag IDs are known a priori,

greatly improving sampling efficiency.

In Fig. 14, we study the variances of the execution time

of TPS. The number of tags and the category size are set to

50,000 and 10, respectively. Two kinds of category information

are collected, with different lengths (w = 10, w = 20). Each

CDF curve in the figure is the results of 100 simulation runs

for a fixed length of information. When w = 10, the mean

of the execution time is 3.6s, and each deviation between the

result of a run and the mean value is computed. As we can see,

the 95th percentile of the execution-time deviations is bounded

within 0.03s, which is less than 1% of the mean execution time

by TPS. Similarly, when w = 20, the mean execution time is

4.9s and the 95th percentile of the deviations is also less than

0.03s, which is about 0.6% of the mean.

D. Evaluation Without Tag IDs or Category IDs

In the following simulations, we relax the assumption in

TPS and evaluate the sampling performance of BFS without

any knowledge of tag IDs or category IDs. Before the eval-

uation, we first give two modified solutions to the sampling

problem that serve as the baseline protocols for comparison.

The first solution is built on the widely used ID collection

protocol: Framed Slotted ALOHA (FSA) [36]. Unlike basic

FSA, this FSA-based sampling (FSAS) solution just collects

each tag’s category ID instead of the long tag ID to save

communication overhead. More specifically, FSAS consists of

multiple execution rounds. In each round, the reader carries

out a slotted frame and each tag in N randomly picks one slot

in the frame. Once a slot is picked by only one tag, the tag

reports its category ID together with the category information

to reader. In this way, the reader achieves the sampling task of

this category and then broadcasts the category ID to silence

left tags belonging to the category. The protocol terminates

until all categories are sampled.

Fig. 14. Variances of the execution time of TPS.

Although we make some efforts in FSAS to avoid the

waste of querying multiple tags in a category, the number

of slots played by the reader is proportioned to the number

n of tags, which is time-consuming when n � m, e.g.,

m = 0.01n, where m is the number of categories. The main

reason is that, when a category is sampled in the previous slot,

the following slots picked by only the tags (which are silent)

belonging to this category become empty (no tag replies) and

the reader still needs to spend time to check each of them. To

avoid this waste, we come up with the second solution called

enhanced FSAS (EFSAS). EFSAS generally consists of about

m execution rounds, where m is the number of categories.

Unlike FSAS, in each round, the reader in EFSAS samples

only one category using FSAS. Specifically, after collecting

the category information from a tag and silencing others in

the category, the reader terminates the current frame, instead

of advancing to the next slot in the frame. Another category

will be sampled in the next frame in the same way. By this

means the reader does not need to take extra time to check

empty slots picked by silenced tags, greatly reducing the delay.

Notice that, in the simulation of EFSAS, we are supposed to

consider the inter-frame duration as EFSAS needs to execute

many sampling rounds when m is large. The inter-frame

duration is the time interval between two neighbor frames,

which includes the duration of powering down the reader and

the duration of transmitting carrier waves to power tags before

communication [8]. We refer to the inter-frame duration as tf ,

which is usually larger than tid, as shown in the experimental

results in [8]. Let tf = λtid. In the simulation, we set λ = 2.

Besides, since the reader detects a collision via RN16 in the

C1G2 standard, we get the duration tc of collision slots (picked

by more than one tag): 25 × 16 + T = 600 µs. For fairness,

we also count the inter-frame duration when executing the

protocols FSAS and BFS.

In Fig. 15 and Fig. 16, we study the execution time of

FSAS, EFSAS, and BFS when sampling two different lengths

of category information, i.e., w = 10, and w = 20. Fig. 15

compares the execution time of the three protocols under

different numbers of tags. In each simulation, we fix the

number of tags in each category at 100 and vary the number

n of tags from 10,000 to 100,000 (the number of categories

ranges from 100 to 1000, which differs from the setting of

TPS). Among the two subfigures, we observe that BFS is faster

than the other two protocols. That is because, by carrying out

the back-and-forth frame, BFS is able to query only 1.45 tags

on average for each category, close to the lower bound. FSAS

performs the worst as it has to check a great number of slots



170 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 15. Execution time with respect to the number n of tags. (a) w = 10.
(b) w = 20.

Fig. 16. Execution time with respect to the category size. (a) w = 10.
(b) w = 20.

which is proportional to n instead of m. EFSAS is better

than FSAS since it avoids the waste of checking most empty

slots. However, it is still worse than BFS. We examine the

performance gap under an arbitrary parameter setting, such as

w = 10 and n = 105. As shown in Fig. 15(a), FSAS spends

the longest sampling time 25.3s. EFSAS reduces the execution

time to 11.2s, 44.3% of FSAS. TPS further decreases the

execution time to 4.1s, just 16.3% of FSAS.

In Fig. 16, we also study the relationship between the

execution time of the three protocols and the number of tags

in each category. In the simulations, we fix the number of

tags at 100,000 and vary the number of tags in each category

from 20 to 200. Clearly, under various settings, TPS always

performs the most efficiently. The performance comparison of

FSAS and EFSAS depends on the number of tags in each

category. If this number is smaller than 40 in our simulations,

FSAS is better than EFSAS. Otherwise, EFSAS is better. The

main reason is that, although EFSAS is able to avoid the waste

of empty slots and make the sampling duration proportional

to the number m of category (rather than n in FSAS), EFSAS

needs to issue about m frames and the inter-frame overhead

tf between neighbor frames is much bigger than duration ts
of empty slots (tf ≈ 38 ts). Hence, when each category has a

small number of tags, it is not worthwhile frequently issuing

new frames for sampling each category.

In Fig. 17, we study the variances of the execution time of

BFS. The number of categories and the category size are set to

1000 and 100, respectively. Two kinds of category information

are collected, with different lengths (w = 10, w = 20). Each

CDF curve in the figure is the results of 100 simulation runs

for a fixed length of information. When w = 10, the mean

of the execution time is 4.1s, and each deviation between the

result of a run and the mean value is computed. As we can see,

the 90th percentile of the execution-time deviations is bounded

within 0.2s, which is less than 5% of the mean. Similarly,

when w = 20, the mean execution time is 4.4s and the 95th

Fig. 17. Variances of the execution time of BFS.

percentile of the deviations is also less than 0.2s, which well

indicates the good stability of our protocol.

According to above simulation results, we say that, by car-

rying out the back-and-forth frame, the proposed protocol

BFS is superior to the baseline protocols FSAS and EFSAS,

greatly improving the sampling efficiency under the case of

unknowing tag IDs or category IDs.

VI. RELATED WORK

A great number of research has been conducted on various

issues in RFID systems. Much prior work focuses on the

fundamental ID-collection problems. The key ideas are to

avoid tag-to-tag collisions in the open wireless channel, which

generally fall into two categories: the ALOHA-based [35],

[36], [38] and the tree-based [11], [14], [39]. The former

collects a tag’s ID by carrying out a slotted frame and isolating

the tag in a singleton slot (picked by exactly one tag) in the

frame. The tree-based solutions iteratively split a tag set into

smaller ones by dynamically adjusting and broadcasting an

ID prefix. This process repeats until only one tag is left and

queried by the reader. In recent years, the research interests in

RFID systems have been shifted to some application-oriented

functions. For example, cardinality estimation [6], [13], [40]

is to count the number of tags; missing tag identification

[9], [10] is to identify whether and which tags are absent;

searching problems [7], [41] try to find a group of interested

tags from the existing tag set.

Information collection [32]–[34], [42], as another branch

of these new functional research, has attracted wide attentions

due to its practical importance. Chen et al. [32] first formulate

this problem and propose a time-efficient multihash informa-

tion collection protocol (MIC) to collect sensor information

from all tags. By using multiple hash functions, MIC is able

to resolve most hash collisions in a slotted frame, greatly

improving the protocol performance. In the follow-up work,

Yue et al. [33] propose a Bloom filter based Information

Collection protocol (BIC) that is tailored to the information

collection under the case of multiple RFID readers. By dis-

tributively constructing and transmitting a Bloom filter, each

reader can quickly identify which tags are under its coverage,

speeding up the overall information collection. Liu et al. [42]

propose a tree-based polling protocol (TPP) that improves the

time efficiency of information collection by shortening the

length of the polling vector. Qiao et al. [34] design an efficient

polling-based protocol that collects tag information from only

a wanted tag subset. Although these work achieve high per-

formance, they need to collect all tags’ information or take
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the entire tag set into account each time, which is time-

consuming for the task of category information collection in

multi-category RFID systems.

VII. CONCLUSION

In this paper, we study the problem of category information

collection in a multi-category RFID system. We propose two

time-efficient sampling protocols, two-phase sampling (TPS)

and back-and-forth sampling (BFS), that solve the sampling

problem under two different cases. In the first case of knowing

tag IDs, TPS shortens the length of the polling vector to only

7.5 bits for each category with two-phase hash technology.

In the second case of unknowing any tag information, by car-

rying out the step-forward frame and using the step-backward

scheme, BFS just needs to query about 1.45 tags for sampling

each category. Extensive results show that our protocols TPS

and BFS outperform the baseline protocols, greatly improving

the sampling efficiency.
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