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Abstract— Radio frequency identification (RFID) technology
has rich applications in cyber-physical systems, such as ware-
house management and supply chain control. Often in practice,
tags are attached to objects belonging to different groups,
which may be different product types/manufacturers in a ware-
house or different book categories in a library. As RFID technol-
ogy evolves from single-group to multiple-group systems, there
arise several interesting problems. One of them is to identify the
popular groups, whose numbers of tags are above a pre-defined
threshold. Another is to estimate arbitrary moments of the group
size distribution, such as sum, variance, and entropy for the sizes
of all groups. In this paper, we consider a new problem which is
to estimate all these statistical metrics simultaneously in a time-
efficient manner without collecting any tag IDs. We solve this
problem by a protocol named generic moment estimator (GME),
which allows the tradeoff between estimation accuracy and time
cost. According to the results of our theoretical analysis and
simulation studies, this GME protocol is several times or even
orders of magnitude more efficient than a baseline protocol that
takes a random sample of tag groups to estimate each group size.

Index Terms— RFID, multi-group tagged system, randomized
algorithm, popular groups, moments of group size distribution.

I. INTRODUCTION

RADIO-FREQUENCY identification (RFID) tags, each
carrying a unique ID, are attached to physical objects

and can be scanned by RFID readers from several meters
away. In future, cheap battery-free tags may be pervasively
embedded in or attached to objects in our daily living or work-
ing environment, to help realize the vision of Internet-of-
Things. In the early period of RFID research, people pay more
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attention to individual tags. Tremendous research efforts have
been devoted to identifying all tag IDs in the interrogation zone
of one or multiple RFID readers as fast as possible, avoiding
the signal collision among tags [1], [17]. The key reason is
that RFID is traditionally a technique applied to the item-
level asset management, for example, book management in a
library [12], inventory management in a warehouse or a large
retailer store. If some supposed-to-exist tags can no longer be
found (may be stolen) or some tags are placed at wrong places,
alerts should be triggered immediately, so that the managers
of these facilities can trace back the stolen products and keep
all products orderly placed.

Motivation: A recent trend is that RFID tags have been
deployed in highly dynamic environments, where the tags are
not owned by a single authority. For example, in a shipping
port, RFID tags are used to identify the products owned by
different exporter/importers. RFID tags may also be attached
to car plates, so that the car registration numbers can be read
by road-side equipment even when the lighting condition is
inadequate. RFID tags may also be attached to cattle ears,
bird wings, implanted under the skins of horses, or carried
by humans, so that some agency can track their migration.
In these scenarios, monitoring each individual tag and peri-
odically collecting all tag IDs is time-consuming, as RFID
systems work in low-rate channels. More importantly, in these
scenarios, in which tag-carrying objects fast move in and
out of a monitoring region (e.g., a tourist park, a metro
station, a city center, or a shipping port), collecting tag IDs
may violate the privacy of the tag owner as the moving
trajectory of the tag can be tracked with fine details. Therefore,
administrators of these places may shift their attention from
item-level individual tags to the aggregated statistics of the
tag set in the monitoring region.

The most well-known aggregated statistics is the number of
tags, or called the size of a tag set, under the radio coverage of
an RFID system. The prior research has explored novel statisti-
cal methods of estimating this metric, without having to collect
any tag ID [4], [5], [7], [16], [25]. However, the total number
of tags alone is coarse-grained and cannot provide abundant
information about the tag population. Fortunately, in many
application scenarios, a tag population can be naturally divided
into different groups (i.e., non-overlapping subsets): Cars have
different manufacturers, prices and mileage, and are registered
in different states; Products belong to different categories,
have different brands, production locations and expiration
dates; Animals have different species, birth dates and genders;
People have different source/destination stops in a subway
system, or have visited different attractions in a theme park.
The group ID of a tag will be embedded/recorded in its tag
ID. We define the size of a group as the number of tags in the
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group. By carefully dividing a tag set into multiple groups and
determining the size of each group, we can better understand
a large tag population.

In a RFID system with a large number of groups, it is
time-consuming and also unnecessary to determine the size
of each group. We can certainly apply the tag set estimation
protocols [4], [5], [7], [16], [25] to determine the size of one
group at a time. However, while they are time-efficient for
large tag groups, these protocols are in fact very inefficient for
small tag groups [15]. Researchers have proposed protocols to
identify popular groups whose sizes are beyond a pre-defined
threshold or the top-k largest [13], [15], [18]. These protocols
leave out potentially numerous non-popular groups in order to
save execution time. Only knowing the group IDs and sizes
of the popular groups may not be sufficient for administrating
a large multi-group RFID system.

Our Problem: Besides the popular groups, we propose to
also measure the moment statistics, which help in charac-
terizing numerous non-popular groups as a whole. The first
moment gives the sum of the sizes of all groups. From the
number of groups, we can determine the mean group size.
The second moment gives the sum of the size squares of
all groups, from which we can derive the variance among
groups. The entropy is a special type of moment (which will
be formally given later). It is commonly used to characterize
the diversity of a distribution and in our case the group distri-
bution. With the knowledge of popular groups, we can easily
remove them from the moment measurements and derive the
mean group size, variance and entropy among non-popular
groups. The moment measurements, together with the popular
groups, provide useful information for management efficiency
improvement, for example, by aligning the warehouse config-
uration and storage allocation according to the overall group-
size distribution and the specifics of popular groups.

Consider a logistic distribution center where products from
numerous vendors and manufacturers are moved in and out
frequently. The center needs a simple, yet efficient way to
monitor each type of products, which may be shoes of different
brands, books from different publishers, construction materials
for different builders, or even boxes of nails from different
sources. Products in each type are naturally categorized into
different groups, based on brands, publishers, builders and
sources as in the above examples. It is useful to identify the
popular groups (whose sizes pass a pre-defined threshold), and
these are the big customers that the distribution center may
want to know and make sure that they will stay in its business.
For the remaining small groups, it may not be necessary to
learn their detailed information, but some overall statistics will
be helpful in storage management: What is the total number
of products in these groups? Together with the number of
groups, we will know the average number of products in each
group. What are the overall characteristics of the group size
distribution? They include the variance of group sizes and
the entropy, which measures the diversity of the group-size
distributions and provides the basis for identifying trend over
time [2], [6].

Moment can be regarded as aggregated statistics for a multi-
group RFID system, which include the sum, variance and
entropy of the size distribution of all groups. Our goal is to
find new ways to measure the different moments of group
sizes, as well as the sizes of popular groups, without having
to estimate the individual sizes of the potential numerous small
groups. Instead of designing a separate protocol for each type

of information as the prior work does, e.g., [13], [15], and [18]
for popular groups and [4], [5], [7], [16], and [25] for the total
number of products, we want to design a single protocol to
simultaneously measure all the aforementioned information,
including the popular groups, the variance and the entropy
of group sizes, which the prior art has not investigated. An
ideal protocol should push most complexity to the RFID
reader while keeping the tasks of tags simple. This one-
protocol-multi-purposes design is appealing in the context of
RFID systems because tags are simple hardware with very
limited resources which prohibit them from implementing
many different protocols simultaneously. We also want to
stress that our problem has other applications beyond the
distribution-center example. For instance, a delivery company
may want to automatically collect information at each of its
local storage facilities to find out the popular sub-divisions
(where more items are delivered) and statistics about the
numerous other sub-divisions not having that many deliveries.
This information will help the company align its delivery
resources accordingly.

Our Solution: In this paper, we propose a protocol named
GME (Generic Moment Estimator), which is time-efficient and
is scalable to a large number of tag groups. This protocol
can perform the moment estimation with accuracy preset to
any desired level, allowing the tradeoff between accuracy
and time cost. Our key technique is that, each time before
performing the moment estimation for a sampled set of groups,
we identify the popular groups among them. Since popular
groups are large enough to occupy a significant portion of
moment, we can use their size information to improve the
accuracy of moment estimation.

We use an example to explain how GME protocol works in
practice. Suppose in a warehouse with tens of thousands of tag
groups, its manager wants to know the mean and variance of
the sizes of all groups. To answer the query, a naive method is
to run a tag cardinality estimation protocol to determine each
group size. Clearly, this method will be very time-consuming,
and to reduce the cost, an often used optimization is the group-
level sampling that selects only a small fraction of groups to
determine their sizes. With the known sizes of sampled groups,
the moments of all groups can be derived. However, such
moment estimations will be highly variant, not only because
of the well-known sampling error, but also due to the existence
of popular groups whose sizes are much larger than the rest.
The random events whether the popular groups are sampled
will cause the moment estimation results to fluctuate a lot.
To tame the sampling error of popular groups, we propose to
firstly identify them and exclude them from the group-level
sampling process, which can appreciably improve estimation
quality.

Although a popular group identification protocol can help
improve the accuracy of moment estimation, we also discover
that its time cost skyrockets exponentially as the threshold
of popular groups reduces. Thus, we can not count on the
setting of a ultra small threshold to attain satisfactory moment
estimation accuracy, which will have prohibitively high time
cost. This motivates us to construct multiple group-sampling
layers with their sampling probabilities reducing exponentially.
Then, the set of sampled groups on a layer is always a subset
of the sampled groups on its previous layer, such that the
moment estimation of a layer is a sub-problem of the moment
estimation of its previous layer. In order to improve moment
estimation accuracy, among the set of sampled groups on each
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layer, we will identify the popular groups whose sizes exceed
a properly configured threshold.

The main contributions of our paper are as follows.

• We design a time-efficient protocol named GME (Generic
Moment Estimator) with multiple sampling layers, to esti-
mate arbitrary moments for a multigroup RFID system.

• We theoretically analyze the estimation accuracy of GME
protocol, and study how to properly configure its protocol
parameters to attain desired accuracy of moment estima-
tion.

• We introduce a protocol named TBC (threshold-based
classification) for identifying popular groups, and analyze
how to configure its parameters to satisfy accuracy con-
straints.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the system
model and research problem. Section IV proposes a moment
estimation protocol named GME, and analyzes the accuracy
of GME protocol for estimating moments. To make our
paper self-contained, Section V introduces a TBC protocol for
identifying popular groups. Section VI evaluates our protocols
by simulations. Section VII concludes the paper.

II. RELATED WORK

For RFID systems, an important application is to use an
RFID reader to remotely collect the IDs of a group of tags in
its radio range, which is called the tag identification problem.
Since the tags communicate with a reader through wireless
medium, inevitably collisions will occur when multiple tags
respond to the same reader simultaneously. Collision arbitra-
tion protocols mainly fall into two categories, i.e., tree-based
protocols [17], and framed slotted ALOHA protocols [1].
EPCglobal C1G2 protocol, as de-facto industrial standard, is a
variant of the slotted ALOHA protocol [1]. Its idea is to con-
struct an ALOHA frame with multiple time slots and distribute
tags uniformly in the frame, in order to reduce the chance for
two tags to pick a same slot and have signal collision.

In certain application scenarios, collecting tag IDs is not
required, and it is also very time consuming to collect all tag
IDs in a large-scale RFID system. Hence, another branch of
RFID research considers the cardinality estimation problem,
which is to efficiently estimate the total number of tags without
ID collection. A plethora of protocols have been developed,
such as UPE [7], LoF [16], FNEB [5], PET [25], and SRC [4].

Recent RFID research began to consider the extended
scenario of multiple readers distributed at different locations,
which is commonly seen in warehouses or logistic supply
chains. Some researchers study the multi-reader scheduling
protocols, in order to mitigate the radio collision among
readers [20]. Several other works focus on the joint cardinality
estimation problem, which is to count the number of tags
moved from the coverage area of one reader to another [22].
Some other works study the multiset joint estimation, which
counts the number of tags in an arbitrary set expression
that connects multiple tag sets at different places by the
operators of set union, intersection and complement [9], [21].
Researchers also investigate the time-efficient monitoring of
missing tags by comparing the tag sets at two different time
points [8], [19].

Recently, researchers also consider a complex RFID system
deployed in a large warehouse with multiple groups of tags. A
recent paper studies the histogram collection problem, which is

to efficiently estimate the size of each group without any piori
knowledge of group IDs [24]. Another interesting problem
is popular group identification — among a large number of
groups with known IDs, identify the popular groups whose
sizes are above a predefined threshold [15], [18]. Another work
studies the top-k group identification problem, which identifies
both the k-largest groups and the k-smallest groups [13].

Although a lot of previous work exists solving the problem
of popular group identification [13], [15], [18], this problem
is totally different from our moment estimation problem. Its
objective is to determine the IDs and sizes of the popu-
lar groups (whose sizes pass a pre-defined threshold). The
individual sizes of the potential numerous small groups are
left unknown. With only the sizes of popular groups, it is
impossible to quickly calculate the aggregated information of
group size distribution, such as sum, entropy and variances.

As far as we know, this paper is probably the first to
investigate the problem of moment estimation in RFID domain,
which estimates an arbitrary moment for a multigroup RFID
system at low time cost. The moment can be regarded as
statistical aggregated information of the group size distrib-
ution, and can be used to detect the abnormal change in a
RFID system or perform trend analysis. This paper points out
that we do not need to determine the size of each group in
order to estimate the moment, and we can exploit the result
of popular group identification to improve the accuracy of
moment estimation.

III. PROBLEM AND SYSTEM MODEL

In this section, we introduce the RFID system model with
multiple groups of tags, and then formulate the two problems
of moment estimation and popular group identification.

A. System Model

To be compliant with EPC C1G2 [1], we assume the com-
munication between a reader and its nearby tags adopts slotted
ALOHA protocol: A reader broadcasts a query command to
start an ALOHA frame with a number of time slots. When
receiving the command, each tag randomly picks a time slot
to send its response. In a time slot of the frame, the reader
may receive multiple tag replies, which is called tag collision.

In this paper, we assume that each tag makes only a
short response in a time slot (for example, using the 16-bit
RN16 command as specified in EPC C1G2 [1]). The reader
can detect whether the time slot is busy, by sensing whether
it is occupied by any tag responses. Then, from the reader’s
perspective, the state of a time slot can be represented by a
bit, i.e., using a ‘1’ bit to record a busy slot and a ‘0’ bit to
record an empty slot. Thus, an ALOHA frame with multiple
time slots can be represented as a bit vector.

Due to the limited range of RFID reader (typically less than
ten meters when scanning commercial battery-less tags), it is
impossible to use a single reader to cover a large region,
like a warehouse. Multiple readers are often deployed to
attain the proper coverage. In the scenario of dense reader
deployment, these readers may take turns to transmit request
to avoid interference, or a more sophisticated scheduling
algorithm may be used to allow readers that do not interfere
to transmit simultaneously [20]. Thanks to reader scheduling,
each reader can work independently without interferences. The
scanning result of each reader about its surrounding tags can
be represented by a bit vector. By bitwise ORing the scanning
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results of all readers, we can construct a snapshot of the tags
in the entire warehouse. From this perspective, the multiple
readers can be treated as one big ‘virtual’ reader that monitors
the warehouse.

Consider a warehouse with tens of thousands of product
items. An RFID tag is attached to each item, for communica-
tion with an RFID reader (can be either physical or virtual)
deployed in the warehouse. The tags are divided into different
groups based on certain properties, e.g., product type, brand,
manufacturer and production date/place. To support grouping,
each tag ID has two components: a group identifier (gid) and
an item identifier (iid). By concatenating the two identifiers,
a tag’s complete ID can be obtained (id = gid|iid). Clearly,
all tags in a group must carry the same group ID, while tags
in different groups will carry different group IDs.

We assume the RFID reader knows all the group IDs in the
system. When such knowledge is unavailable, we can collect
the group ID information by running a group identification
protocol [10], [11]. The protocol [10] is time efficient because
it exploits the fact that all tags in a same group have the
same group ID embedded in their tag IDs. It does not need
to interrogate each tag. One tag’s response in a group will
suffice. After the collection of all group IDs, the knowledge
will not become outdated unless sufficiently long time passes.

We formalize the multi-group RFID system model. Suppose
there are m groups. Without loss of generality, we assume the
group IDs are sorted and relabelled from 1 to m. We define the
size of a group as the number of tags in the group. Let ni be the
size of the ith group. From the reader’s perspective, a product
inventory with multiple groups of tags can be specified by a
group size distribution vector N = 〈n1, n2, . . . , nm〉. Let n be
the total number of tags. Clearly, we have n =

∑

1≤i≤m ni.
Note that in our paper, the distribution vector N has not been
normalized for the simplicity of presentation. When used in
practice, the vector will be divided by the number of tags n.

B. Metric Definition

For a product inventory, we consider to measure two types
of aggregate statistical information — moments and popular
groups, which can assist the management of the inventory.

Moment: The xth-order moment is defined as

Lx =
∑

1≤i≤m
ni

x. (1)

Three typical kinds of xth-order moments are as follows.

• L0 is the zero-order moment when x = 0. It is equal to
the number of groups in the RFID system, and L0 = m.

• L1 is the first-order moment, which is equal to the total
number of tags for all m groups combined. Thus, L1 = n.

• L2 is the second-order moment. It is also called surprise
number, which can help calculate the variance and mea-
sure how uneven the group size distribution vector N is.

The notion of moment can be extended to the sum of vector N ,
after each of its entry has been applied with a function g:

Fg =
∑

1≤i≤m
g(ni), (2)

where g could be any monotonic function bounded by O(ni
2).

For example, if g is g(ni) = ni log ni, then Fg is the entropy
of group size distribution N ; if g(ni) = ni log2 ni, then Fg is
the Shannon entropy of group size distribution N , which has
been used to measure the diversity of an inventory [2], [6].

The aim of moment metrics is to quantify different attributes
of a group size distribution N = 〈n1, n2, . . . , nm〉. It can be
regarded as an aggregated statistics which is more generic
than the total number of tags n. The first-order moment
is the sum of sizes of all groups, which equals n. The
second-order moment is used to quantify the variance of
vector N . The entropy moment is to model the diversity of
distribution vector N . There exist previous works that seek to
determine the entire distribution vector N , called histogram
collection problem [24], which however incurs much higher
communication cost between tags and readers. Our paper only
estimates the aggregate statistics of the vector N to save
protocol running time.

We illustrate the meanings of moments by an example.
Imagine a warehouse with m + 1 tag groups whose size
distribution is a vector 〈m, 1, 1, . . . , 1〉. It tells that the first
group is a popular group whose size is m, and the sizes of
other groups are all 1s. Then, using the function g(ni) = ni,
the entropy is calculated as m logm + m, and using the
function g(ni) = ni

2, the second-order moment is calculated
as m2 + m.

Tags’ moving in/out of a monitoring region will change the
group size distribution vector N , which in turn will affect
the moment metrics. From the spatial perspective, different
types of moment metrics reflect how the missing/newly-arrived
tags distribute among different groups. If the group size
changes are concentrated in the popular groups, the second-
order moment can better reflect the change, since it greatly
amplifies the contribution of popular groups. If the group size
changes are dispersed to many different groups, the entropy
is a better metric to reflect the change, since it is commonly
used to measure the diversity of a multi-group population. For
example, suppose m new tags move into a warehouse whose
group size vector is 〈m, 1, 1, . . . , 1〉. If the m new tags are all
in the first popular group, the relative change of the entropy

is
2m log(2m)−m log m

m log m+m
= log m+2 log 2

log m+1 . The relative change of

second-order moment is 3 m2

m2+m
= 3m

m+1 , which is much larger
than the entropy. If the m new tags are evenly spread over the
m non-popular groups, doubling the size of each non-popular

group, the entropy grows by
(2 log 2−1)m
m log m+m

= 2 log 2−1
log m+1 , and the

second-order moment grows by 3m
m2+m

= 3
m+1 . In this case,

entropy can better reflect the change.
From the temporal perspective, a warehouse administrator

can accumulate the moment statistical data over time, which
is useful for analyzing the short-term or long-term change
of the warehouse inventory. The change rate of a group size
distribution vector N can be quantified by the relative growth

rate (RGR) of a moment metric (i.e.,
relative change of a moment

time passed
).

If N changes quickly in short term, then the RGR will exceeds
a threshold for some type of moment, which triggers an alert
to report the change. If the distribution vector N evolves
very slowly, the moment metrics can form time series, which
provide the basis for identifying the long-term trend [2], [6].

Popular Groups: Generally speaking, a group i is a popular
group with respect to function g, if the fluctuation of its size
ni strongly affects the moment Fg . More formally, the popular
group is defined as any group ID i whose size ni satisfies

g(ni) ≥ αFg, (3)

where α is a pre-defined ratio which is between zero and one.
The information about popular groups is quite useful, since
when we detect a rapid change of moment values, we may find



XIAO et al.: PROTOCOL FOR SIMULTANEOUSLY ESTIMATING MOMENTS AND POPULAR GROUPS 147

its root cause to be the size change of one or several popular
groups. Let Hg be the set of all popular groups. Then,

Hg = {i|g(ni) ≥ αFg}. (4)

Typically, the number of popular groups |Hg| is a small value
as compared with the number of groups m, i.e., |Hg| � m.

Note that, for Hg in equation (4), the number of popular
groups |Hg| is not a fixed value but a variable that may change
with Fg . Hence, our popular group definition in (4) is different
from the top-k group identification problem [13], which finds
exactly k largest groups. Our popular group definition is also
different from [15] and [18], which considers only the L1-
popular groups satisfying ni ≥ αn. What we study is the
identification of Fg-popular groups satisfying g(ni) ≥ αFg ,
for an arbitrary monotonic function g bounded by O(ni

2).

C. Metric Estimation

For a warehouse inventory with a large number of tag
groups, it is time-consuming and also unnecessary to deter-
mine the exact values for moment Fg and size of each popular
group ni, i ∈ Hg . In many applications, we only need to col-
lect their approximated values. Hence, in following, we define
the approximation models for popular groups and moments.

Popular Group Identification Problem: For the set of popu-

lar groups Hg defined in (4), let Ĥg be its estimation, or call it

the set of reported popular groups. The probability for Ĥg to
include all the actual popular groups Hg must be at least 1−δ.

Pr{Hg ⊆ Ĥg} ≥ 1 − δ (5)

For each reported popular group i in Ĥg, we need to obtain an
estimation n̂i of its group size ni, and its relative estimation

error
g(n̂i)−g(ni)

g(ni)
must be bounded by ±ε at a probability 1−δ.

∀i ∈ Ĥg, P r
{

|g(n̂i) − g(ni)| ≤ εg(ni)
}

≥ 1 − δ (6)

Moment Estimation Problem: For the moment Fg defined

in (2), let F̂g be its estimated value, and its estimation error
F̂g−Fg

Fg
must be bounded by ±γ at a probability of at least 1−η.

Pr
{

|F̂g − Fg| ≤ γFg} ≥ 1 − η (7)

Our objective is to design a protocol to address these two
problems, and meanwhile minimize the communication time
cost. Also, we require that the protocol for popular group
identification and the protocol for moment estimation are not
totally separated. Otherwise, due to the separation, the overall
time cost will be increased by multiple folds, for exam-
ple, using one protocol for entropy estimation, two different
protocols for estimating L1/L2 moments, and another two
protocols for identifying L1/L2 popular groups. It would be
the best if we could address all these problems simultaneously,
by a generic protocol that can run once and later answer
an arbitrary query for moments or popular groups with any
defined function g.

IV. MOMENT ESTIMATION PROTOCOL

This section presents a protocol named GME (generic
moment estimator) to estimate the moment Fg for any
monotonic function g bounded by O(ni

2). This protocol relies
on the assumption that there is a popular group identifica-
tion protocol to report the groups whose sizes are above
a threshold, and its estimation accuracy must satisfy the

constraints (5) and (6). In the next section, we will describe
such a protocol named TBC (threshold-based classification)
for our paper’s completeness.

A. Basic Idea

Clearly, when the number of groups in a warehouse is small,
their moment can be estimated at low time cost, by running
a cardinality estimation protocol [4], [5], [7], [16], [25] to
determine the size of each group. In this paper, we use the SRC
protocol [4] by default for estimating the size of a single group.

However, this method will become time-consuming when
the number of groups in a product inventory is very large.
Especially, according to EPC C1G2 standard [1], there is a
considerable inter-cycle overhead between any two cycles that
query different tag groups. The inter-cycle overhead consists
of the time between cycles when the reader is powered down,
and the continuous RF wave transmission time used to power
up the tags before beginning real data communication. These
times are typically 40ms and 3ms, by the empirical results
in [3], while the average time interval per slot is about 1∼2ms.
So after the transmission of each query cycle, there is a 40ms
reader power-down interval. If the powered-down interval is
not long enough, it is possible that some tags will maintain
their former state with local residual power, which may cause
them to behave unpredictably in the upcoming query cycle.
In a word, a protocol that estimates the size of each group will
be very time-consuming, as each tag group needs a separate
query cycle and 43ms inter-cycle overhead.

To reduce the high time cost of determining the size of each
group, a straightforward optimization is group-level sampling
in order to significantly reduce the number of groups that need
to be scanned. However, this random sampling method will
have poor accuracy when the sampling probability is config-
ured too small (which regretfully has to be small since there
are often a large number of product groups in a warehouse).
The situation will grow even worse if the popular groups
participate the sampling process. Since the sizes of popular
groups occupy a significant fraction of moment, whether they
are sampled will strongly affect the moment estimation result,
making it fluctuate a lot. Later, in Fig. 5 of Sec. VI-C, we will
use simulation results to better illustrate such a phenomenon.

We will mitigate the random sampling error by two meth-
ods: configure sampling probability p larger than a threshold
(e.g., 30%), and intentionally keep popular groups away from
random sampling process. In particular, we divide all groups
into popular groups and non-popular ones, by running a TBC
protocol, which will be introduced in Section V. The TBC
protocol is very time-efficient for two reasons: it uses only
one query cycle to scan tags in all groups, which can amortize
the 43ms inter-cycle overhead, and it sacrifices the estimation
accuracy of non-popular groups to preserve the accuracy of
popular groups. Hence, the popular groups, whose sizes have
been estimated at low cost, can directly participate the moment
calculation, while the non-popular groups will be randomly
sampled at probability p to take part in moment estimation.

However, there is another problem since the time cost of
TBC protocol increases rapidly as the pre-defined threshold
of popular groups decreases (later check Figure 11(b) for
experimental verification). Thus, the threshold can not be too
small, causing the problem that it is impossible to locate a
very large number of popular groups and keep them away from
the sampling process. The remaining non-popular groups will
be numerous, even after the group sampling. We address this
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Fig. 1. Architecture of moment estimation protocol named GME.

problem by a recursive sampling technique: We construct mul-
tiple layers labeled by 0, 1, 2, . . . , �, as shown in Figure 1. The
sampling probabilities of these layers reduce exponentially as
1, p, p2, . . . , p�, such that the sampled groups on each layer is
a subset of the sampled groups on its immediate higher layer.

On the lowest (i.e., �th) layer, the number of sampled groups
becomes small enough that it is time-permitting to estimate the
size of each group by a tag cardinality estimation protocol,
e.g., SRC [4]. Hence, the moment of sampled groups on the
�th layer can be calculated directly. With such information,
we can further derive the moment of (� − 1)th layer, and
its estimation accuracy can be greatly improved if we also
leverage the popular groups on the (�−1)th layer. By applying
the similar technique recursively, we can estimate the moment
of each layer from the �th layer up to the 0th layer.

B. Detailed Protocol Design

Our moment estimation protocol is composed of two phases,
as shown in Figure 1. In the online phase, our protocol scans
the sampled groups on each layer and encodes them into a
set of popular groups whose IDs and sizes are known. In the
offline phase, we use the encoded information to estimate the
g-moment of each layer, from the lowest to the highest layers.

Online Phase: Suppose there are �+1 layers whose indexes
range from 0 to �. For these layers, their group-level sampling
probabilities reduce exponentially: on the 0th layer, sampling
probability is 1; on the jth layer, sampling probability is pj .

To attain this effect, on each jth layer (except the 0th layer),
the RFID reader broadcasts a SELECT command (see the EPC
C1G2 standard [1]) to let each tag invoke a boolean hash
function ρj(gid), which maps its group ID to one/zero with
probability p and 1−p, respectively. A tag group is sampled on
the jth layer, when its boolean hash function outputs one not
only on the current jth layer but also on all the previous layers.
It can be expressed formally as

∏

1≤i≤j ρi(gid) = 1, and may
be implemented by issuing j successive SELECT commands,
each of which triggers a hash function call ρi(gid).

A more simplified implementation of group sampling exists
if the sampling probability p equals 0.5. When the protocol
starts on each jth layer with 0 < j ≤ �, the reader broadcasts
only one SELECT command. When receiving the command,
each RFID tag uses its group ID as a parameter to generate a
hash value ρ(gid). A tag is sampled on the jth layer, 0 ≤ j ≤
�, if the initial j bits of its generated hash value are all ones.

An example of running our protocol is given in Fig. 2
assuming � = 2. On the 0th layer, there is no sampling.
Thus, all the four groups G1, G2, G3, G4 respond on this
layer. On the 1st layer, two groups are sampled, i.e., G1, G4,

Fig. 2. An example of GME’s online phase when � = 2 and p = 0.5.

whose generated hash value h(gid) has at least a leading
one-bit. On the 2nd layer, one group is sampled, i.e., G4,
whose generated hash value h(gid) has at least two leading
one-bits. On each jth layer, 0 ≤ j < �, after the group-
level sampling, we divide the sampled groups into popular
groups and non-popular ones, by a TBC protocol. As shown
in Fig. 2, TBC attains this goal using just one ALOHA frame,
which will be elaborated in the next section. On the last layer,
the number of sampled groups becomes sufficiently small that
it is time-permitting to determine the size of each group. Note
that, since the set of group IDs is prior knowledge and the
group-sampling hash function is pre-installed, we know in
advance which groups are sampled on the �th layer. We can
use the SELECT command to activate them one by one, and
then estimate the size of each group by running the SRC
protocol [4] per group.

We introduce the notations used by this online phase. Let
Sj be the sampled groups on the jth layer. Then, we have

S0 = {1, 2, . . . , m}, Sj = {i|i∈Sj−1 ∧ ρj(i) = 1}. (8)

On each jth layer, we run the TBC protocol to identify the
popular groups among the sampled groups Sj . Let Hj be the
set of actual popular groups on the jth layer:

Hj = {i|i ∈ Sj ∧ g(ni) ≥ αFj}, (9)

where Fj is the moment of sampled groups on the jth layer:

Fj =
∑

i∈Sj

g(ni). (10)

Let Ĥj be the set of identified popular groups on the jth layer.
When the online phase completes, on a jth layer with 0 ≤

j < �, by running the TBC protocol, we obtain a set of popular

groups Ĥj . Let n̂i
j be the estimated size of the ith popular

group with i ∈ Ĥj . On the �th layer, the set of sampled groups
is S�, and we know the size of each group by running SRC

per group. Let n̂i
� be the estimated size of ith group, i ∈ S�.

Offline Phase: In this phase, we will estimate the moment
Fj of sampled groups on each jth layer with 0 ≤ j ≤ �: The
moment F� of the �th layer can be directly calculated as

F̂� =
∑

i∈S�

g(n̂i
�). (11)

Assume the moment Fj+1 of (j+1)th layer has been estimated

as F̂j+1. Combining it with the identified popular groups Ĥj

on the jth layer, we can estimate the moment of jth layer as

F̂j =
∑

i∈Ĥj

g(n̂i
j) +

1

p

(

F̂j+1 −
∑

i∈Ĥj

ρj+1(i)g(n̂i
j)

)

=
1

p
F̂j+1 +

∑

i∈Ĥj

(

1 − 1

p
ρj+1(i)

)

g(n̂i
j), (12)
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where n̂i
j is the estimated size of ith popular group by running

TBC protocol on jth layer. By applying (12) recursively,

we can obtain F̂0, as an estimation of the moment of the
0th layer. Since the sampling probability of this layer is one,

we use F̂0 as an estimation of the moment of all groups.
In following, we briefly explain the basic idea of (12). The

actual moment of jth layer defined in (10) can be rewritten as

Fj =
∑

i∈Ĥj

g(ni) +
∑

i∈Sj\Ĥj

g(ni).

Hence, the moment Fj is out of the contributions of both

popular groups Ĥj and non-popular groups Sj \ Ĥj . Clearly,
the contribution of popular groups can be estimated by the
first term

∑

i∈Ĥj
g(n̂i

j) in (12). To estimate the contribution

of non-popular groups Sj \ Ĥj , we must leverage the moment

estimation F̂j+1 of (j + 1)th layer, where the sampled groups
Sj are recursively sampled with probability p. We may use
1
p
F̂j+1 to estimate the contribution of non-popular groups.

However, such an estimation is biased, since F̂j+1 not only

include the contribution of non-popular groups Sj\Ĥj (further
sampled on (j + 1)th layer with probability p), but may also

include the contribution of popular groups Ĥj . Equation (12)
can compensate the effect of these sampled popular groups by

deducting
∑

i∈Ĥj
ρj+1(i)g(n̂i

j) from F̂j+1, since a popular

group i ∈ Ĥj is sampled on (j+1)th layer when ρj+1(i) = 1.1

C. Protocol Analysis and Parameter Setting

To satisfy the constraint in (7) for moment estimation
accuracy, we must properly configure the protocol parameters,
including the sampling probability p, the number of layers �,
and the (ε, δ)-accuracy constraint of TBC protocol, which is
used to identify the α-fraction popular groups on each layer.
Hence, GME protocol has five parameters p, �, ε, δ and α.

There is a large design space for optimizing the parameter
settings. Firstly, we present the following theorem.

Theorem 1 (Moment Estimation Accuracy): For any given
threshold of moment estimation error γ = 2θ�ε, GME protocol

ensures that the probability for relative estimation error F̂0−F0

F0

of moment F0 to exceed the threshold ±γ is upper bounded:

Pr{|F̂0 − F0| ≥ 2θ�εF0} ≤ 1 − p

p
�α/ε2 + (2� + 1)δ +

1

θ
,

(13)

where θ is a tunable constant, � is the number of recursive
sampling layers configured for GME protocol, α is the popular
group threshold in (4) configured for underlying popular group
identification protocol, and (ε, δ) is the accuracy provided by
popular group identification protocol as shown in (5) and (6).

Proof: See Appendix A for detailed proof.
Secondly, we discuss the settings of protocol parameters.

The parameter α is an important parameter for a popular
group identification protocol named TBC: If the popular group
threshold α has been configured to a too small value, then the
time cost of TBC will skyrocket. We assume a proper value
of α is known a priori for a particular group size distribution,

1The probability for an identified popular group i ∈ Ĥj to be sampled on
the next layer (i.e., ρj+1(i) = 1) can be minimized by carefully choosing
the random seed used by hash function ρj+1. By our simulation results, such
an optimization can reduce L2-moment estimation error by about 20%.

so that the time cost of TBC is smaller than a preset threshold.
Later in Section VI-E, we will evaluate the impact of α.

Choosing the number of layers � is not difficult. The time
cost of GME is the sum of the cost of running SRC protocol
per group on �th layer and the cost of running TBC protocol
for each jth layer, 0 ≤ j < �. As � grows, the time cost of
running TBC protocol on extra layers will gradually neutralize
the accuracy gain by increasing �. Later in Section VI-E,
we will provide simulation result on the impact of �. Here,
we assume that an appropriate value of � is already known.

Next, we study the setting of the accuracy parameters ε and
δ of TBC protocol (and also SRC protocol) used by GME,
which strongly affect the accuracy of moment estimation. Note
that ε and δ jointly controls one parameter, i.e., expected stan-
dard deviation ε/Φ−1(1− δ

2 ) of TBC, where Φ is cumulative
distribution function (CDF) of standard normal distribution.
By default, we set δ to 0.05, which makes Φ−1(1 − δ

2 ) = 2.
We discover that error bound ε and sampling probability

p are the two most important parameters for our GME
protocol. According to Theorem 1, we know that, for any
small bound γ of moment estimation error, we can theoret-
ically guarantee

Pr{|F̂0 − F0| ≥ γF0} ≤ (2� + 1)δ +
2

θ
,

by choosing the following parameters:

ε =
γ

2θ�
, p = 1/(1 +

γ2

α4θ3�3
),

where θ is a predefined constant. However, since our analysis
result of moment estimation accuracy in Theorem 1 is quite
conservative, the above configurations of ε should be treated
as a lower bound of ε, and the above configuration of p should
be treated as an upper bound of p. For a particular group size
distribution in practice, ε and p could be configured with more
economic values to satisfy the (γ, η) accuracy constraint in (7).
We provide simulation result of their impact in Section VI-E.

V. POPULAR GROUP IDENTIFICATION

In this section, we introduce TBC (Threshold-Based Clas-
sification) protocol to identify popular groups in a multigroup
RFID system, and meanwhile it can satisfy the accuracy
constraints in (5) and (6) at low time cost.

There exist several previous papers that have solved the pop-
ular group identification problem, such as TCS [18], TBC [15]
and TKQ [13]. The reason for us to choose TBC is as
follows. TBC outperforms TCS, particularly when the number
of popular groups increases [15]. TBC is more scalable to
a large number of popular groups than TCS, because TCS
measures the size of one group at a time, while TBC adopts a
different protocol design that measures the sizes of all groups
together in one common ALOHA frame. The problem solved
by TKQ [13] is different from the previous two protocols. It is
to identify both the top-k largest groups and the top-k smallest
groups. It has to add extra complexity and overhead to protocol
design for identifying top-k smallest groups, which is not
needed by us.

Although the TBC protocol has been proposed by
Luo et al. [15], it is designed for identifying popular groups
whose sizes pass a fixed threshold v, i.e., ni ≥ v. We need
to adapt this protocol to fit our definition of popular groups
in (4), i.e., g(ni) ≥ αFg , so that it can be used by our GME
protocol to identify the needed popular groups on each layer.
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Fig. 3. Popular group identification protocol named TBC.

A. Basic Idea

We introduce the design rationale behind TBC protocol.
Let us consider a simple RFID system with only one tag
group. The state-of-the-art work to efficiently estimate its
group size is SRC protocol [4], which has two phases. In the
first phase, it generates a rough estimation of group size by
LoF [16] or PET [25]. Thanks to such coarse knowledge, when
RFID reader rescans the tag group by slotted ALOHA [7] in
the second phase, it can control the length of the ALOHA
frame to be proportional to the group size. Then, by listening
to RF channel, the reader converts the slotted frame into a bit
array (or called a bitmap) [7]. From the fraction of zero bits
in the bitmap, the reader can accurately estimate the group
size.

As the RFID system evolves from a single group of tags
to multiple groups, there arises a need to identify popular
groups. As stated before, when there are a large number of
groups, it is time-consuming to determine the size of each
group, even using SRC protocol. So instead of encoding
each group into a separate bitmap, Luo et al. [15] proposed
a TBC protocol to encode all groups into a shared bitmap.
To greatly reduce the length of this shared bitmap (which
is the time cost of TBC protocol), the estimation accu-
racy of the sizes of small tag groups is sacrificed. Mean-
while, the estimation accuracy of the popular groups is still
satisfactory.

To implement the above effect, the TBC protocol [15] maps
each group ID pseudo-randomly to s time slots in the shared
time frame. For a particular group ID, as shown in Fig. 3,
the bits interpreted from its mapped slots form a logical
bitmap. Each tag in the group will randomly pick one of the
slots (or bits) in the logical bitmap to transmit, which sets
the bit to one. In Fig. 3, since a popular group has a larger
number of tags, its logical bitmap has a greater proportion of
bits assigned to ones than the logical bitmap of a non-popular
group. Hence, intuitively from the number of bits in a logical
bitmap that remain zeros, we may estimate the number of tags
in a group.

However, such an estimation will be positively biased, since
the logical bitmap of a group is not exclusively owned by the
group. As in Fig. 3, there is a lower layer of hash mapping
which projects the bits in the logical bitmap of a group to
the shared bitmap. Thus, a bit in the shared bitmap (e.g.,
the gray-colored bit in Fig. 3) may be used by more than
one groups. This sharing introduce noise: The logical bitmap
of a group may carry some bits that are set to ‘1’ not by
transmission of tags in this group, but by transmission of
tags from other groups that happen to be hashed to the same
time slots. Fortunately, from a bird’s eye view, all slots are
shared by all groups uniformly at random, which means the
noise uniformly distributes in the entire time frame. Therefore,
we can easily measure the noise, and then subtract the noise
from a group’s size estimation.

B. Detailed Protocol Design and Notations

The TBC protocol is composed of two phases: an online
phase for encoding all tag groups into a shared bitmap, and
an offline estimation phase for recovering the size information
of a group from its logical bitmap and reporting the group as a
popular one if its estimated size exceeds the threshold in (18).
For simplicity, our description of TBC protocol below is in
the context that all groups participate for the identification of
popular groups. It can be easily modified to fit the scenario
that only a subset of groups are sampled to participate.

Online Encoding Phase: Similar to EPC C1G2 standard [1],
the reader broadcasts a QUERY command to start an ALOHA
frame that is shared by all the tag groups. This command
has three parameters: the number of time slots f in the
frame, the number of time slots s in logical frame, and the
random seed r.

Consider an arbitrary tag iid in an arbitrary group gid.
When receiving the reader’s QUERY command, the tag com-
putes a hash value h(gid⊕F (r, h(iid) mod s)) mod f , as the
index of the time slot it chooses for giving reply, where h
is a hash function, ⊕ is concatenation operator, F (x, y) is a
pseudo-random number function taking two input parameters
x and y. The transmission from all groups of tags forms an
ALOHA frame. From the reader’s perspective, this frame can
be encoded as a bitmap B.

Clearly, for the tags in a group gid, the indices of
their selected slots in the shared ALOHA frame can
only be h(gid⊕F (r, 0)), h(gid⊕F (r, 1)), . . . , h(gid⊕F (r, s−
1)), where modf has been omitted for simplicity. These
slots or more precisely, the bits converted from these slots,
form the logical bitmap of group gid, which is denoted
by LB(gid).

For the above ALOHA protocol, a single execution round
may not attain the predefined estimation accuracy. So it can
be executed for w rounds for accuracy boosting. All these
rounds have the same frame length f and the same logical
frame length s. But each ith round is given a different random
seed ri, 1 ≤ i ≤ w. Let Bi be the bitmap collected in ith
round. Let LBi(gid) be the logical bitmap of group gid in
ith round.

Offline Estimation Phase: After transmitting the w bitmaps
B1, B2, . . . , Bw, the reader can estimate the popular groups
Hg. Firstly, the total number of tags n is estimated as

n̂ =
1

w

∑

1≤i≤w

(

− f log(
zi

f
)
)

, (14)

where zi is the number of zero bits in the shared bitmap Bi.
Secondly, for an arbitrary group gid, the number of tags in

its logical bitmap is estimated as

n̂s =
1

w

∑

1≤i≤w

(

− s log(
zi(gid)

s
)
)

, (15)

where zi(gid) is the number of zero bits in the logical
bitmap LBi(gid) of ith round. Of course, n̂s, which con-
tains noise, cannot be used as an estimation of the size of
group gid.

Thirdly, removing the noise by the following equation,
we generate an unbiased estimation n̂gid of the size of group
gid.

n̂gid =
f

f − s

(

n̂s −
s

f
n̂
)

(16)



XIAO et al.: PROTOCOL FOR SIMULTANEOUSLY ESTIMATING MOMENTS AND POPULAR GROUPS 151

For this group size estimation n̂gid, we can prove, if f and s
are large enough, its probabilistic distribution approximates a
Gaussian distribution, whose expected value and variance are

E(n̂gid) ≈ f

f − s
(
f − s

f
ngid +

s

f
n − s

f
n) = ngid,

V ar(n̂gid) ≈ 1

w
s(e

ngid
s

+ n
f − ngid

s
− 1)

+
1

w

s2

f
(e

n
f − n

f
− 1). (17)

Please check [23, Appendix B] for detailed proof.
Finally, with the estimation n̂gid of the size of each group

gid in hand, we can report the set of popular groups as

Ĥg = {gid|1 ≤ gid ≤ m ∧ g(n̂gid) ≥ α∗F̂g}, (18)

where F̂g is an estimation of g-moment, which is generated
by GME protocol, and α∗ is the reporting threshold of popular
groups. The value of α∗ is given in (23), which is smaller than
the actual threshold α in (4) to satisfy the constraint in (5).

C. Protocol Analysis and Parameter Setting

We analyze how to configure protocol parameters to satisfy
the accuracy constraints in (5) and (6). A major difficult is the
offline-vs-online problem: Only in the offline phase, can we
know which function g is queried. Thus, our settings of online-
phase parameters must make V ar(n̂gid) sufficiently small that
later in offline phase we can guarantee the accurate estimation
of Fg-popular groups for an arbitrary function g. Fortunately,
it can be shown that any Fg-popular group with g(ngid) ≥
αFg is definitely a L2-popular group satisfying ngid

2 ≥ αL2,
since g is a monotonic function bounded by O(n2

i ) [14].
Based on the above reasoning, we will focus on the accurate

identification of L2-popular groups. The accuracy constraint

in (6) can be interpreted as ∀i ∈ Ĥg, P r
{

|n̂i
2 − ni

2| ≤
εni

2
}

≥ 1 − δ. Since ε is small,
√

1 ± ε ≈ 1 ± 1
2ε, and the

constraint is approximately ∀i ∈ Ĥg, P r
{

|n̂i−ni| ≤ 1
2εni

}

≥
1 − δ. Since n̂gid follows a Gaussian distribution, it can be
translated to

∀gid ∈ Ĥg, V ar(n̂gid)/ngid
2 ≤ 1

4
ε2/

(

Φ−1(1 − δ

2
)
)2

,

(19)

where Φ is the CDF of standard normal distribution N (0, 1).
Next, we describe how to properly configure the protocol
parameters s, w, f and α∗ to make the constraint (19) satisfied.

Logical Bitmap Length s: According to (17), there are two
methods to reduce V ar(n̂gid), when the number of execution
rounds w is fixed. One is to increase the length f of shared
frame. Even if f tends to infinity, V ar(n̂gid) in (17) is still

greater than 1
w

s(e
ngid

s − ngid

s
− 1). Thus, we need the other

method — increase the length s of logical frame. We often set

s =
1

c

nmax
gid

n
f, (20)

where c is a constant typically assigned between 1 and 4, and
nmax

gid is the size of a typical largest popular group. We will
explain the equation (20) by details in [23, Appendix B].

Bitmap Number w and Bitmap Length f : The configuration
of parameters w and f is important, since they determine the
protocol execution time as w× f . For L2-popular groups, the

lower bound of popular group size is
√

αL2. Even in this
pessimistic situation, we will keep the inequality (19) satisfied.

V ar(n̂gid|ngid =
√

αL2)/(αL2) ≤
1

4
ε2/

(

Φ−1(1 − δ

2
)
)2

(21)

Applying the expression V ar(n̂gid) in (17) to (21), we have

minimize w × f,

subject to s(e

√
αL2

s
+ n

f −
√

αL2

s
− 1) +

s2

f
(e

n
f − n

f
− 1)

≤ wαL2ε
2/4

(Φ−1(1 − δ
2 ))2

, (22)

where the total number of tags n and the second-order moment
L2 can be substituted by their coarse estimations generated by

GME. Since s = 1
c

nmax
gid

n
f as in (20), the above constraint only

has two unknown variables w and f . We will find an optimal
combination of w and f that minimize the protocol execution
time w × f , subjective to the accuracy constraint in (22).

Reporting Threshold α∗: We must properly configure the
popular group reporting threshold α∗ in (18), so that Pr{Hg ∈
Ĥg}, the probability for all the popular groups Hg to be
identified, is at least 1 − δ. Based on the analysis in [23,
Appendix B],

α∗ =
1

1 + γ∗
σ∗2

L2
f−1

χ2
1
(

αL2

σ∗2 )
(1 − k

√
1 − δ), (23)

where σ∗2 denotes V ar(n̂gid) in (17) when ngid =
√

αL2,

χ2
1(

αL2

σ∗2 ) is a noncentral chi-squared distribution with only one

degree of freedom and noncentrality parameter αL2

σ∗2 , f
χ2

1
(

αL2

σ∗2 )

is its CDF, k is the number of popular groups with sizes close
to

√
αL2, and k is often set between 1 and 4, depending on the

size distribution of groups. Eq. (23) needs coarse knowledge
of L2, and γ∗ is the accuracy bound of the prior knowledge.

VI. SIMULATION

In this section, we evaluate the performance of our proposed
GME protocol by simulations. To our best knowledge, there is
no prior work for estimating generic moments in a multigroup
RFID system. Hence, we have to compare the performance of
GME with a straightforward solution that estimates the size
of each sampled group by SRC [4]. In this section, we also
evaluate the performance of TBC protocol [15] to validate our
parameter settings in Section V-C, so that this protocol can be
used by GME to identify L2-popular groups on each layer.

A. Simulation Settings

Accuracy Model: We evaluate the performance of a proto-
col, by measuring its average estimation error when given a
certain amount of running time. As in Section III-C, the esti-
mation accuracy is specified by (ε, δ) for group size estimation,
and by (γ, η) for moment estimation. We obtain each accuracy
result by calculating the averaged value of 1000 indepen-
dent trials.

Models for Group Size Distribution: The performance of
our protocols heavily depend on the distribution of the sizes of
all groups. The following distribution models are considered
in our simulation studies. By default, we set the number of
tags n to 120,000, and the number of groups m to 10,000.
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Fig. 4. Estimation accuracy of TBC protocol when α = 2.7% and δ = 5%.
(a) Group size estimation. (b) Popular group reporting.

We will also investigate other settings for a smaller-scale tag
population (e.g., 1,000 groups and thousands of tags). It is
impossible to take a snapshot of such a large number of
tags using one RFID reader in a single scan. In practice,
multiple readers are needed to cover a large place, like
a warehouse.

We mainly consider the Zipf distribution, which is com-
monly found in many real-world random processes. This
distribution is denoted by ZD(m, β), where m is the number
of groups, and β is the exponent characterizing the Zipf
distribution. We configure the parameter β between 1 and
2 (by default, 1.8) to produce a long and heavy-tailed dis-
tribution, and adjust the parameter m to fit the settings of
the number of tags n. We may also consider the Log-normal
distribution, or consider the Gaussian distribution of non-
popular groups mixed with tens of popular groups. However,
due to page limit, we mainly show the simulation result of
Zipf distribution.

B. Popular Group Identification Accuracy

In this subsection, we evaluate the accuracy of TBC protocol
for identifying popular groups, when given a particular amount
of execution time. We consider the normalized protocol run-
ning time quantified by BPT (Bits Per Tag), which is calculated
as the number of time slots (or bits) w×f divided by the total
number of tags n in all groups. We plot the simulation result
in Figure 4a. It shows that, as BPT grows, relative estimation

error
|n̂i−ni|

ni
will reduce. In particular, when BPT is set to 0.6,

1.8 or 7.3, average estimation error is about 8%, 4% or 2%,
respectively. However, such good accuracy only works for
popular groups whose sizes are above 2000 (that is because
we set α = 2.7% and thus

√
αL2 ≈

√
2.7% × 15 · 107 ≈

2000). For the groups below the threshold, the estimation error
degrades dramatically as the group size reduces. In Figure 4a,
we have plotted both the simulation result and the theoretical
result calculated by the formula

√

V ar(n̂gid)/ngid in (17).
The plot shows that the two results are quite consistent.

By contrast, to implement the same 8%, 4% or 2% estima-
tion error for each group size, the SRC protocol [4] needs the
time cost of 25, 27 or 38 bits per tag (BPT), respectively,
as shown in Table I. This is because our simulated RFID
system has a large number of small groups. SRC protocol has
a significant overhead which is hard to amortize when scan-
ning a small tag group, including both inter-cycle overhead
(roughly equivalent to the time cost of transmitting 30 bits
information as stated in Section IV-A) and the cost of running
LoF protocol [16] to obtain coarse knowledge of the group
size. Moreover, TBC has the optimization that sacrifices the
accuracy of non-popular groups to preserve the accuracy of
popular groups.

TABLE I

COMPARE THE PROTOCOL RUNNING TIME TO ATTAIN THE SAME AVER-
AGE ESTIMATION ERROR OF SIZES OF POPULAR GROUPS

Next, in Figure 4b, we illustrate the probability for TBC
to report a group as popular. The plot shows that, for real
popular groups whose sizes exceed

√
αL2 =2000, their

probability of being reported is nearly 100%. Meanwhile, for
non-popular groups below 2000, their reporting probability
reduces rapidly as group size decreases. Thus, the probability
for TBC to report all the L2 popular groups is close to 100%
in simulation. This is because our parameter setting for TBC is
conservative. When the failure probability δ = 5%, using (19),
we have ε = 32%, 16% or 8% corresponding to the expected
relative error 8%, 4% or 2%. With the known ε and δ, we can
compute the parameter settings: s by (20), w and f by (22),
α∗ by (23).

C. Compare Moment Estimation Accuracy

In this subsection, we compare the moment estimation accu-
racy of GME protocol with a baseline protocol that estimates
the size of each sampled group by SRC [4]. To demonstrate
the power of performing popular group identification before
group-level sampling, we configure our GME protocol with
only two layers (i.e., � = 1). As shown in Fig. 1, the layer
0 runs TBC protocol to identify L2-popular groups, and the
layer 1 runs SRC protocol per sampled group. We config-
ure the TBC protocol with parameters α = 2.7%, δ = 5%
and ε = 16% as the curve BPT = 1.8 in Fig. 4a. This setting
needs TBC to run for 260s under simulated group distribution.

We compare the estimation accuracy of GME and SRC
in Figure 5, when they are under the same time constraint,
which is adjusted between 300s to 5000s. Figure 5a compares
the entropy estimation accuracy, and Figure 5b compares
L2-moment estimation accuracy. Generally, the plots show
that the accuracy of GME is much better than baseline. The
accuracy advantage is much more prominent in Figure 5b
for estimating L2-moment than in Figure 5a for estimat-
ing entropy.

We use an example to better illustrate the advantage of GME
protocol. Assume a warehouse manager prefers the time cost
of performing moment estimation function to be within 600s,
while scanning all groups by SRC needs as long as 4860s.
With the constraint, the baseline protocol can only estimate the
sizes of 600s

4860s
≈ 12% groups, and use the partial information

to estimate moments. Due to low sampling probability, its L2

estimation error is 130% in Fig. 5b. By contrast, GME’s error
for estimating L2 drops to 12%, only one tenth of baseline
protocol’s error. This is because our GME can effectively
mitigate the random sampling error of popular groups.

The comparison result shows that popular groups do have
a significant impact on moment estimation accuracy. If we
can identify them before sampling process, moment esti-
mation accuracy will be dramatically improved. Otherwise,
the baseline protocol, without such a step, needs 4700s (i.e.,
4700s
4860s

≈ 97% sampling probability) to attain 10% estimation
error as shown in Fig. 5b, which is seven times more expensive
than GME.
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Fig. 5. Compare moment estimation accuracy of SRC and GME protocols
(with � = 1, α = 2.7%, ε = 16%, δ = 5%), by giving the same time cost.
(a) Entropy estimation. (b) L2-moment estimation.

Fig. 6. Impact of the number of group m on the moment estimation accuracy
of GME protocols (with � = 1, α = 2.7%, ε = 16%, δ = 5%). (a) Entropy
estimation. (b) L2-moment estimation.

D. Impact of Group Size Distribution

In this subsection, we evaluate how the group size distribu-
tion influences the moment estimation accuracy. In simulation,
a Zipf distribution ZD(m, β) is used to generate m groups
with random sizes. The exponent β determines the decay
speed of the long tail of Zipf distribution. When β is fixed,
by varying the number of groups m, we can control the
number of tags n in the system. We will evaluate the impact
of m and β.

We reduce the number of groups m from its default value
10,000 to 1,000, and re-conduct our previous experiment in
Fig. 5. Our purpose is to evaluate whether the advantage of
our GME protocol over the baseline (i.e., running SRC [4]
per group) will disappear for a smaller tag population. Our
evaluation result is shown in Fig. 6. By comparing it with
Fig. 5, the advantage of our GME over the baseline still exists
if setting m ten times smaller. The reason is that, as long
as the exponent β of the Zipf distribution is unchanged,
the probability distribution of its long tail remains the same.
Then, we can use the TBC protocol to capture the popular
groups in the long tail, whose sizes exceed the threshold αFg .
Knowledge about the popular groups can greatly benefit the
estimation of moment statistics, as we mentioned before.

Next, we configure the exponent β of the Zipf distribution to
either of the two values 1.6 or 2, and evaluate its impact. Fig. 7
shows that the advantage of our GME over the baseline is more
prominent when β = 2 than β = 1.6. This is because when β
is larger, the tail decay rate of the Zipf distribution is faster, and
therefore the popular groups become more outstanding from
other non-popular groups, making them easier to recognize
by a popular group identification protocol. This can help the
moment estimation protocol to achieve better performance.

Finally, we change the group size distribution from Zipf
to a Gaussian distribution N (µ, σ) of non-popular groups
mixed with k popular groups whose sizes are more than three
thousands. We configure µ = 30 and σ = 60 for the Gaussian
distribution to randomize the size of each non-popular group.

Fig. 7. Impact of the exponent β on the moment estimation accuracy of
GME protocols (with m = 10, 000, � = 1, α = 2.7%, ε = 16%, δ = 5%).
(a) L2-moment estimation, β = 1.6. (b) L2-moment estimation, β = 2.

Fig. 8. Moment estimation accuracy of GME protocols (with � = 1, α =
3.2%, ε = 16%, δ = 5%) for Gaussian distribution of small groups mixed
with popular groups. (a) Entropy estimation. (b) L2-moment estimation.

We evaluate GME’s moment estimation accuracy in Fig. 8.
It shows that GME can accurately and efficiently estimate
moments, as long as a certain number of popular groups Hg

exist, each of which occupies an at least α share of the moment
Fg as in (4). In this experiment, α = 3.2%, and g(ni) = ni

2.
Of course, in a warehouse inventory, it is possible for all

groups to have similar quantities of tags. There may not exist
any popular groups occupying an above-threshold share of the
moment. In this case, we do not need to run any protocol to
extract the information about popular groups. The good design
of our moment estimation protocol named GME is that it will
naturally degrade to a protocol that determines the size of each
group. We can achieve it by configuring our GME protocol
with only one layer by setting � = 0. Then, as shown in Fig. 1,
the bottommost layer that runs the SRC protocol [4] per group
will become the only layer.

E. Parameter Settings of GME Protocol

In Subsection VI-C, we have already verified the accuracy
advantage of GME protocol over baseline protocol, when it is
configured with two layers (by � = 1). Meanwhile, the popular
group threshold α is fixed to 2.7%, the L2-popular group error
bound ε is set to 16%, and the failure probability δ is set to
5%. We will evaluate the performance of our GME protocol
when it is configured with different parameter settings.

Popular Group Threshold α: The lower bound ratio α for
popular groups is defined in (3), and we evaluate its impact
as follows. We reconfigure α from 2.7% to 1.0% (or 0.7%),
which moves the threshold of popular group size

√
αL2 from

2000 to 1250 (or 1000). In Figure 9b, we compare the L2-
moment estimation accuracy of GME protocol when α is set
to 2.7%, 1.0% or 0.7%. The plot shows that smaller α ratio,
which means the identification of more popular groups, can
bring better accuracy for L2 estimation. However, the price of
smaller α is the higher time cost on 0th layer for popular group
identification and therefore less remaining time on the 1st layer
to estimate the sizes of sampled groups. More specifically,
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Fig. 9. Impact of the popular group threshold α on the moment estimation
accuracy of GME protocol with � = 1, ε = 16% and δ = 5%. (a) Entropy
estimation. (b) L2-moment estimation.

Fig. 10. Impact of the number of TBC layers � on the moment estimation
accuracy of GME protocol with ε = 16% and δ = 5%. (a) Entropy
estimation. (b) L2-moment estimation.

the time cost of running TBC protocol on 0th layer grow to
about 260s, 470s and 650s, when α is assigned to 2.7%, 1.0%
and 0.7%, respectively. Hence, in Figure 9b, when the protocol
running time approaches the needed time cost of running TBC,
the moment estimation accuracy degrades rapidly. Choosing a
proper value for α depends on the predefined time constraint.

Similar phenomenon can be witnessed in Figure 9a, which
illustrates the accuracy of entropy estimation. But the accuracy
gain by reducing α from 2.7% to 1.0% (or 0.7%) is much
more modest for entropy estimation than for L2 moment
estimation.

Number of TBC Layers �: We evaluate the impact of
parameter �, which controls the number of layers running
TBC protocol for popular group identification. We illustrate
the simulation result in Figure 10, which varies the � value
while keeping the popular group ratio α fixed. It shows that
there exists obvious accuracy gain by increasing � from 1 to 2,
but the accuracy gain is no longer obvious if further increasing
� from 2 to 3. Our explanation is that, as the number of TBC
layers � grows, more popular groups will be identified, which
can better mitigate the sampling error. However, larger � value
also means higher time cost of running TBC protocol on extra
layers, which will neutralize the accuracy gain.

We can identify more popular groups either by increasing
the number of sampling layers � or by decreasing the popular
group threshold α. Then, people may have the concerns
— how to compare these two methods. In Figure 11a,
we configure GME with different combinations of � and α
parameters, and evaluate its L2-moment estimation accuracy.
The figure shows that, as compared with the combination of
α = 2.7% and � = 1, the moment estimation accuracy can be
improved either by increasing � from 1 to 2 (see the second
curve in the chart legend) or by decreasing α from 2.7% to
1.0% (see the third curve). The two methods of increasing
� and decreasing α can be combined to render even better
result, as shown by the fourth curve α = 2.2% and � = 2,
as compared with the third curve that only reduces α.

Fig. 11. Combination of the two methods of increasing � and reducing α to
improve the moment estimation accuracy of GME protocol. (a) L2 estimation
with ε = 16%, δ = 5%. (b) Impact of α on TBC time cost.

Fig. 12. Impact of the error bound ε of underlying TBC and SRC on the
moment estimation of GME protocol with α = 2.7%, � = 2 and δ = 5%.
(a) Entropy estimation. (b) L2-moment estimation.

Our explanation is that, when increasing the number of TBC
layers �, the time cost of GME will increase only linearly.
By contrast, when the threshold α of popular groups reduces,
the time cost for TBC to identify them will skyrocket at
nearly exponentially speed, as shown by Figure 11b. The
plot is drawn using equation (22) to theoretically evaluate the
relation between α and TBC’s time cost w × f . Thus, when
reducing α becomes no longer cost-effective (e.g., when α is
smaller than 3% as in Figure 11b), increasing � will be a good
choice.

Accuracy Parameters ε and δ of Underlying Protocols:
We fix the number of TBC layers � to 2, and the popular
group threshold α to 2.7%. Then, we evaluate the impact
of accuracy parameters ε and δ of the underlying TBC
and SRC protocols. Essentially, ε and δ jointly controls one
parameter, i.e., the expected standard deviation ε/Φ−1(1− δ

2 ).
Hence, we fix the failure probability δ to 5%, and vary
ε to evaluate its impact. We show the simulation result
in Figure 12.

Figure 12a presents a surprising result: The time efficiency
of GME protocol for entropy estimation improves, when the
error ε of underlying protocols grows. This is because, when
estimating L1-moment or entropy, the size estimation errors of
different groups have a good chance to counteract each other,
no matter whether ε is configured with a small or large value.
Thus, the key factor that decides the accuracy of L1 or entropy
estimation is not ε, but the number of groups (either popu-
lar or non-popular) whose sizes have been estimated. As ε
grows, the constraint over estimation error gets loosened,
and the time cost of running TBC and SRC protocols will
decrease (see Figure 11b). Therefore, when ε grows, using
the same time cost, a higher percentage of groups can have
known sizes, which can improve the accuracy of entropy
estimation.

For L2-moment estimation, the situation is totally differ-
ent. It becomes difficult for the size estimation errors of
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different groups to counteract each other. A higher percentage
of groups with known sizes does not necessarily mean the
better accuracy of moment estimation. Figure 12b shows
that reducing error bound ε can help improve accuracy of
L2-moment estimation if protocol time is sufficient, and we
must carefully adjust the combination of error bound ε and
sampling probability p, in order to achieve the best time
efficiency.

VII. CONCLUSION

For an RFID system with multiple groups of tags, this paper
investigates a new problem that simultaneously identifies pop-
ular groups and estimates moments. A naive solution is to take
a random sample of groups, and sequentially determine the
size of each sampled group. We demonstrate that this solution
is quite inefficient, and we propose a GME protocol, to render
much better moment estimation accuracy under the same time
constraint. The accuracy advantage of GME is due to our
optimization that, each time before performing group-level
sampling, we execute a popular group identification protocol to
avoid the sampling error of popular groups. We also discover
that we can further improve moment estimation accuracy, if we
perform the group-level sampling recursively with multiple
layers. The accuracy gain of our GME protocol has been
verified by both theoretical analysis and simulation studies.
We have also presented the formal analysis of our protocol’s
estimation accuracy, and studied the method for computing the
optimized protocol parameters.

APPENDIX A

ANALYSIS OF MOMENT ESTIMATION ACCURACY

We have presented the GME protocol in Section IV-B for
generic moment estimation, and have presented the analysis
result about its estimation accuracy in Theorem 1. In follow-
ing, we formally prove the analysis result in Theorem 1.

Assuming Perfect Popular Group Identification: Firstly,
we focus on the impact of recursive sampling on the moment
estimation accuracy. Thus, we assume that a perfect protocol
is available for identifying the popular groups Hj on the

jth layer without mistakes, i.e., Ĥj ≡ Hj , and also assume
the size of each popular group group is precisely known,

i.e., ∀i ∈ Ĥj , n̂i
j ≡ ni. We will relax these two assumptions

later.
Since n̂i

j ≡ ni, by (11), we have F̂� ≡ F�. Consider
the following recursive definition similar to (12), but with

n̂i
j replaced by its true value ni and with Ĥj replaced

by Hj :

X̂� = F�, X̂j =
1

p
X̂j+1 +

∑

i∈Hj

(1 − 1

p
�j+1(i))vi, (24)

where the symbol vi is used to abbreviate g(ni), throughout

this section. Suppose on the (j + 1)th layer, X̂j+1 is an
unbiased estimation of the moment Fj+1 of this layer, i.e.,

E(X̂j+1) = Fj+1. Then, based on this assumption, we further

analyze the attribute of the moment estimation X̂j on jth
layer. The relation between the neighboring jth and (j + 1)th
layers is that a group i on the jth layer is sampled on
the (j + 1)th layer exactly when the boolean hash function
�j+1(i) is equal to one, and therefore Fj+1 =

∑

i∈Sj+1
vi =

∑

i∈Sj
�j+1(i)vi. Then, applying this equation to (24) and

using E(�j+1(i)) = p,

E(X̂j) = E
(1

p

∑

i∈Sj

�j+1(i)vi −
1

p

∑

i∈Hj

�j+1(i)vi +
∑

i∈Hj

vi

)

= E
(1

p

∑

i∈Sj\Hj

�j+1(i)vi +
∑

i∈Hj

vi

)

= Fj ,

(25)

Thus, X̂j is also an unbiased estimation of the moment Fj .

We further analyze the estimation error of X̂j . The difficulty

is that Eq. (24) has a recursive form with X̂j depending on

X̂j+1. So we define the symbol Ŷj , similar to X̂j in (24), but

with X̂j+1 replaced by its expected value Fj+1.

Ŷ� = F�, Ŷj =
1

p
Fj+1 +

∑

i∈Hj

(1 − 1

p
�j+1(i))vi (26)

Thus, Ŷj is an estimation of moment Fj , in an ideal situation
that the moment Fj+1 of immediately higher layer is known.
Equation (26) has no recursive form and is easier to analyze.

Similar to (25), we can prove that Ŷj is an unbiased estimation

of Fj , i.e., E(Ŷj) = Fj . Equation (26) can be rewritten as

Ŷj =
∑

i∈Sj

1

p
�j+1(i)vi +

∑

i∈Hj

(1 − 1

p
�j+1(i))vi

=
∑

i∈Hj

vi +
1

p

∑

i∈Sj\Hj

�j+1(i)vi. (27)

Clearly, when generating moment estimating Ŷj , the popular
groups in Hj always participate, while the non-popular groups
in Sj\Hj participate only when the boolean hash function
�j+1(i) for sampling is equal to one. So the popular groups Hj

are kept away from the group-level random sampling, which
can improve moment estimation accuracy.

From (27), by the properties of variance, and by the pairwise
independence of �, we have

V ar(Ŷj) =
1

p2

∑

i∈Sj\Hj

V ar(�j+1(i))v
2
i

Using V ar(�j+1(i)) = p(1 − p), and by the definition of
popular groups,

V ar(Ŷj) =
1 − p

p

∑

i∈Sj\Hj

v2
i ≤ 1 − p

p
αFj

2. (28)

By ChebyShev inequality Pr{|Ŷ −E(Ŷ )| ≤ k

√

V ar(Ŷ )} ≥
1 − 1

k2 , we have

Pr{|Ŷj − Fj | ≤ εFj} ≥ 1 − 1 − p

p
α/ε2,

where ε is used to bound the relative error of Ŷj for estimating
moment Fj due to group sampling error, and the probability of

successful bounding is at least 1− 1−p
p

α/ε2, which increases

as the sampling probability p grows or as the popular group
threshold α grows. Note that the symbol ε is also used to
bound the size estimation errors of popular groups in (6).

By (27), the moment estimations Ŷj depends on the boolean
hash functions �j+1. Due to the independence of �j+1 on

different layers, the moment estimations Ŷj with 0 ≤ j < � are
mutually independent. Thus, the probability for any jth layer’s

moment estimation error |Ŷj −Fj | to exceed the bound εFj is

Pr{
∨

0≤j<�
|Ŷj − Fj | ≥ εFj} ≤ 1 −

(

1 − 1 − p

p
α/ε2

)�
.
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By the Taylor expansion (1 − x)� ≈ 1 − �x + O(x2),

Pr{
∨

0≤j<�
|Ŷj − Fj | ≥ εFj} ≤ 1 − p

p
�α/ε2. (29)

Combining (26) and (24), X̂j − Ŷj = 1
p
(X̂j+1 − Fj+1).

Then, X̂j − Fj = 1
p
(X̂j+1 − Fj+1) + (Ŷj − Fj). Hence,

X̂0 − F0 =
1

p
(X̂1 − F1) + (Ŷ0 − F0) = . . . =

1

p�
(X̂� − F�)

+
∑

0≤j<�

1

pj
(Ŷj − Fj)

=
∑

0≤j<�

1

pj
(Ŷj − Fj). (30)

It implies that the moment estimation error of X̂0 is a linear

combination of errors of Ŷj on all layers with 0 ≤ j < �. Then,

|X̂0 − F0| ≤
∑

0≤j<�

1

pj
|Ŷj − Fj |,

and

Pr{|X̂0−F0| ≥ γF0} ≤ Pr{
∑

0≤j<�

1

pj
|Ŷj − Fj | ≥ γF0}.

Further, using Pr{A} ≤ Pr{A ∧ B} + P{¬B}, we have

Pr{|X̂0 − F0| ≥ γF0}
≤ Pr

{

∑

0≤j<�

1

pj
|Ŷj − Fj | ≥ γF0

∧
∧

0≤j<�
|Ŷj − Fj | ≤ εFj

}

+ Pr
{

∨

0≤j<�
|Ŷj − Fj | ≥ εFj

}

.

Applying (29) to the second term of the above equation,

Pr{|X̂0 − F0| ≥ γF0}
≤ Pr

{

∑

0≤j<�

1

pj
εFj ≥ γF0

}

+
1 − p

p

�α

ε2
. (31)

Note that Fj =
∑

i∈Sj
vi =

∑

i∈S0
vi

∏

1≤t≤j �t(i), since a

category i is sampled on the jth layer exactly when its boolean
hash functions �t(i) outputs one for all t-th layers, 1 ≤ t ≤
j. Considering that hash functions �j for group sampling on
different layers are mutually independent,

E(
∑

0≤j<�

1

pj
Fj) = E

(

∑

0≤j<�

1

pj

∑

i∈S0

vi

∏

1≤t≤j
�t(i)

)

=
∑

0≤j<�

1

pj

∑

i∈S0

vi

∏

1≤t≤j
E(�t(i))

=
∑

0≤j<�

1

pj

∑

i∈S0

vip
j = �F0.

Thus, and by Markov’s inequality Pr{X ≥ a} ≤ E(X)/a,

Pr{
∑

0≤j<�

1

pj
Fj ≥ θ�F0} ≤ �F0/(θ�F0) = 1/θ, (32)

where θ is a tunable ratio. By choosing γ = θ�ε in (31),

Pr{|X̂0 − F0| ≥ θ�εF0}
≤ Pr

{

∑

0≤j<�

1

pj
Fj ≥ θ�F0

}

+
1 − p

p

�α

ε2

≤ 1

θ
+

1 − p

p
�α/ε2.

It characterizes the moment estimation accuracy of X̂0, with
the presence of �-layer recursive sampling, and with the
precise knowledge of α-fraction popular groups on each layer.
By carefully choosing values for protocol parameters �, p and
α, we can attain arbitrary moment estimation accuracy. For
example, if choosing � = 2 and p = 0.5, then we have

Pr{|X̂0 − F0| ≥ 2θεF0} ≤ 2α/ε2 +
1

θ
.

Assuming Probabilistic Identification of Popular Groups:
We analyze the accuracy of our moment estimation protocol,
while relaxing the two assumptions about perfect popular

group identification (i.e., Ĥj ≡ Hj and n̂i
j ≡ ni). For the

ease of understanding, we will divide our analysis into two
parts, in which we relax these two assumptions one by one.

We relax the assumption Ĥj ≡ Hj , and assume probabilistic

identification with Pr{Hj ⊆ Ĥj} ≥ 1 − δ on each jth
layer. Since we firstly narrow our focus on the impact of
Hj’s identification error, we still assume that the estimation

of popular group size n̂i
j is equal to its actual value ni.

We define the following variable Ŷ ′
j , which is similar to (26)

but has H replaced by its estimation Ĥ:

Ŷ ′
j =

1

p
Fj+1 +

∑

i∈Ĥj

(1 − 1

p
�j+1(i))vi

=
∑

i∈Sj

1

p
�j+1(i)vi +

∑

i∈Ĥj

(1 − 1

p
�j+1(i))vi

=
∑

i∈Ĥj

vi +
1

p

∑

i∈Sj\Ĥj

�j+1(i)vi, (33)

where vi is an abbreviation of g(ni). Clearly, Ŷ ′
j is an unbiased

estimation of Fj , since E(�j+1(i)) = p. By the properties of
variance, by the pairwise independence of �, by the definition
of popular groups, and using V ar(�j+1(i)) = p(1 − p),

V ar(Ŷ ′
j |Hj ⊆ Ĥj) =

1

p2

∑

i∈Sj\Ĥj

V ar(�j+1(i))v
2
i

=
1 − p

p

∑

i∈Sj\Ĥj

v2
i ≤ 1 − p

p
αFj

2.

According to the Chebyshev’s inequality,

Pr{|Ŷ ′
j − Fj | ≥ εFj |Hj ⊆ Ĥj} ≤ 1 − p

p
α/ε2.

Applying the property Pr{A|B} = Pr{A∧B}
Pr{B} ≤ Pr{A ∧ B},

Pr{|Ŷ ′
j − Fj | ≥ εFj ∧ Hj ⊆ Ĥj} ≤ 1 − p

p
α/ε2

Using the property Pr{A} = Pr{A ∧ B} + Pr{A ∧ ¬B} ≤
Pr{A ∧ B} + Pr{¬B}, and due to Pr{Hj �⊆ Ĥj} ≤ δ,

Pr{|Ŷ ′
j − Fj | ≥ εFj}

≤ Pr{|Ŷ ′
j − Fj | ≥ εFj ∧ Hj ⊆ Ĥj}

+ Pr{Hj �⊆ Ĥj} ≤ 1 − p

p
α/ε2 + δ. (34)

Due to the mutual independence of boolean hash function
�j and error of identifying popular groups Hj on all layers,

the probability that the error |Ŷ ′
j − Fj | exceeds the threshold
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εFj on any jth (0 ≤ j < �) layer is

Pr{
∨

0≤j<�
|Ŷ ′

j − Fj | ≥ εFj} ≤ 1 − (1 − 1 − p

p
α/ε2 − δ)�

≈ �(
1 − p

p
α/ε2 + δ). (35)

We further define the following symbol X̂ ′
j with a recursive

form, which is similar to (24) but has H replaced by Ĥ:

X̂ ′
� = F�, X̂ ′

j =
1

p
X̂ ′

j+1 +
∑

i∈Ĥj

(1 − 1

p
�j+1(i))vi. (36)

By combining (36) and (33), we have X̂ ′
j − Ŷ ′

j = 1
p
(X̂ ′

j+1 −
Fj+1), which can be rewritten as follows.

X̂ ′
j − Fj =

1

p
(X̂ ′

j+1 − Fj+1) + (Ŷ ′
j − Fj)

Applying this equation recursively and using X̂ ′
� = F�,

X̂ ′
0 − F0 =

1

p
(X̂ ′

1 − F1) + (Ŷ ′
0 − F0) =

1

p2
(X̂ ′

2 − F2)

+
1

p
(Ŷ ′

1 − F1) + (Ŷ ′
0 − F0)

= . . . =
∑

0≤j<�

1

pj
(Ŷ ′

j − Fj).

Hence, the moment estimation error X̂ ′
0 − F0 is a linear

combination of the errors Ŷ ′
j − Fj on different layers with

0 ≤ j < �. Clearly, we have |X̂ ′
0−F0| ≤

∑

0≤j<�
1
pj |Ŷ ′

j −Fj|.
Further using (34), (35), and by a similar procedure as before,

Pr{|X̂ ′
0 − F0| ≥ γF0}

≤ Pr{
∑

0≤j<�

1

pj
|Ŷ ′

j − Fj | ≥ γF0 ∧
∧

0≤j<�
|Ŷ ′

j −Fj| ≤ εFj}+Pr{
∨

0≤j<�
|Ŷ ′

j −Fj| ≥ εFj}

≤ Pr{
∑

0≤j<�

1

pj
εFj ≥ γF0} + �(

1 − p

p
α/ε2 + δ).

By choosing γ = θ�ε, where θ is a tunable ratio, and using
Pr{∑0≤j<�

1
pj Fj ≥ θ�F0} ≤ 1

θ
in (32), we have

Pr{|X̂ ′
0 − F0| ≥ θ�εF0} ≤ �(

1 − p

p
α/ε2 + δ) +

1

θ
.

Assuming Noisy Group Size Knowledge: Instead of n̂i
j ≡

ni, we adopt a more realistic assumption that only noisy
knowledge of popular group sizes is available. In this situation,

we will analyze the moment estimation accuracy of F̂0,
which is generated by the recursive formula in (12). More
specifically, we suppose TBC protocol has been run on each
jth sampling layer, 0 ≤ j < �, to estimate the sizes of popular
groups. Let n̂i

j be the estimated size of popular group i on
the jth layer. Let v̂i

j = g(n̂i
j). From (5), we can suppose

Pr{|
∑

i∈Ĥj

v̂i
j −

∑

i∈Ĥj

vi| ≤
∑

i∈Ĥj

εvi} ≥ 1 − δ.

(37)

We also assume the size of each sampled group on �th layer
has been estimated by some protocol, e.g., SRC [4], so that

Pr{|F̂� − F�| ≤ εF�} = Pr{|
∑

i∈C�

v̂i
� −

∑

i∈C�

vi|
∑

i∈C�

εvi} ≥ 1 − δ, (38)

where F̂� =
∑

i∈S�
v̂i

�. Based on the knowledge in (37)
and (38), we analyze the accuracy of our moment estimator
in (12).

By subtracting (33) from (12), we obtain

F̂j − Ŷ ′
j =

1

p
(F̂j+1 − Fj+1) + Errj ,

where

Errj =
∑

i∈Ĥj

(1 − 1

p
�j+1(i))(v̂i

j − vi). (39)

From (39), F̂j − Fj = 1
p
(F̂j+1 − Fj+1) + (Ŷ ′

j − Fj) + Errj .

By applying this equation recursively, we have

F̂0 − F0 =
1

p�
(F̂� − F�)+

∑

0≤j<�

1

pj

(

(Ŷ ′
j − Fj) + Errj

)

.

Clearly, the following inequality holds.

|F̂0 − F0| ≤
1

p�
|F̂� − F�|+

∑

0≤j<�

1

pj
(|Ŷ ′

j − Fj | + |Errj |)

Let Z0 be the right side of the above inequality. Then,

Pr
{

|F̂0 − F0| ≥ γF0

}

≤ Pr{Z0 ≥ γF0} ≤ Pr
{

Z0 ≥ γF0

∧(
∧

j
|Ŷ ′

j − Fj | < εFj) ∧ (
∧

j
|Errj | < εFj)

∧(|F̂� − F�| < εF�)
}

+ Pr{
∨

j
|Ŷ ′

j − Fj | ≥ εFj} + Pr{
∨

j
|Errj | ≥ εFj}

+Pr{|F̂� − F�| ≥ εF�},

where
∨

j and
∧

j stand for
∨

0≤j<� and
∧

0≤j<�, respectively.
Further applying (35) and (38), we have

Pr
{

|F̂0 − F0| ≥ γF0

}

≤ Pr{ 1

p�
εF� +

∑

0≤j<�

1

pj
(εFj + εFj)

≥ γF0} + �(
1 − p

p
α/ε2 + δ) + Pr{

∨

j
|Errj | ≥ εFj} + δ

≤ Pr{
∑

0≤j≤�

2

pj
εFj ≥ γF0} + (� + 1)δ

+
1 − p

p
�α/ε2 + Pr{

∨

j
|Errj | ≥ εFj}.

By choosing γ = 2θ�ε, and using (32),

Pr
{

|F̂0 − F0| ≥ 2θ�εF0

}

≤ 1

θ
+ (� + 1)δ +

1 − p

p
�α/ε2

+Pr{
∨

j
|Errj | ≥ εFj}. (40)

We study the property of popular group estimation error
Errj . Due to mutual independence of Errj on all layers,
and by (37),

Pr{
∨

0≤j<�
|Errj | ≥

∑

i∈Ĥj

εvi
j}

≤ Pr{
∨

0≤j<�
|
∑

i∈Ĥj

(v̂i
j − vi)| ≥

∑

i∈Ĥj

εvi
j} ≤ �δ.
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Clearly,
∑

i∈Ĥj
vi

j ≤ Fj , for any group size distribution.

Then, Pr{∨0≤j<� |Errj | ≥ εFj} ≤ �δ. Applying it to (40),

Pr
{

|F̂0 − F0| ≥ 2θ�εF0

}

≤ 1 − p

p
�α/ε2 +

1

θ
+ (2� + 1)δ.
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