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Abstract—Rain observations with fine spatio-temporal
granularity are significant for professional researches, decision-
making, and our daily lives. However, the existing rain gauges
can only cover less than 1% of the earth surface, and its amount
is still decreasing. Even with the help of several other limited and
immature supplementary techniques, rain observations today
are still not precise enough. In such context, crowdsourcing
paves the avenues toward a fault-tolerant rain observation
network with unprecedented resolution and coverage, based
on an alternative, nowadays omnipresent source, smartphones,
which are integrated with abundant advanced sensors and are
becoming more and more ubiquitous around us. In this paper,
we propose Chaac, a novel system that exploits opportunistically
crowdsourced audio clips from smartphone users to achieve
precise detection and intensity measurement of rain. The
evaluation results of performing Chaac on 1-s long audio
segments demonstrate that it can detect and measure rain with
92.0% and 93.9% true positive rates, respectively.

Index Terms—Audio clips, crowdsourcing, rain detection
and measurement, signal processing, smartphones, supervised
classification.

I. INTRODUCTION

A. Professional Research and Decision-Making

T
HE DETECTION and intensity measurement of rain are

crucial for many applications, such as weather prediction,

water resources management, and agricultural production.

Rain detection gives a result of whether it is raining cur-

rently and rain measurement reports a result of the current
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Fig. 1. Standard rain gauge and its components.

rain intensity. Rain gauges are essential tools for detecting and

measuring rain, which have many drawbacks but still remain

the de facto information source for hydrologic purpose. In

Fig. 1, we present the standard rain gauge equipped by the

National Oceanic and Atmospheric Administration in the U.S.

on the left, and we detail its components on the right. Assume

that every rain gauge can represent a surrounding region whose

radius is 5 km. The Global Precipitation Climatology Centre

has 67 000 available rain gauges, which still cannot cover

1% of the earth surface [16]. It is worth mentioning that

5 km is unrealistically large in describing the spatial vari-

ability of short-duration rain [33]. Moreover, the situation is

getting worse as the number of rain gauges around the world is

severely decreasing, both in developing and developed coun-

tries [39]. Weather radars are also important means to detect

and measure rain, which, however, face numerous challenges,

including anomalous propagation, amplification, attenuation

or multiple reflection of the radar wave, and non-Rayleigh

(i.e., too large) or nonmeteorological (e.g., mountains, air-

craft, or birds) targets. In fact, a fine-grained and sufficient

rain detecting and measuring method is in demand to serve as

the calibration of weather radars.

B. Applications in Our Daily Lives

Precise rain information plays an essential role in our daily

lives. For example, Miss. A is shopping in the mall. It is rain-

ing outside, but she does not take an umbrella with her. If the

rain stops, she wants to know that immediately and seizes the

opportunity to go home, because the rain may stop for a while

and then restart at any time. In this case, the precise rain infor-

mation can significantly benefit her. In fact, the weather apps
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have become the most common way to acquire rain reports

and forecasts. However, due to the imprecision of raw rain

data that embodied in their coarse granularity of temporal and

spatial resolution, the rain information released by existing

weather apps is not always accurate. The inaccuracy in raw

rain data mostly results from two factors. First, most cities only

place a few rain gauges far away from the urban centers and

record the rain data periodically. Second, the intensity of rain

may changes dramatically with time and space. Therefore, it

is hard to acquire raw observation data and provide accurate

rain information even with the help of several other limited

and immature supplementary methods. Later in Fig. 8, we

will present the inaccuracy of rain information released by the

China Meteorological Administration (CMA) and nine other

favorite weather apps.

For traditional rain gauge-based rain detection and measure-

ment sensor networks, except suffering from those limitations

mentioned above, there is another challenge, that is, it is dif-

ficult to obtain real-time rain intensity data. The reasons are

as follows. Rain intensity is the amount of rain per unit time,

which nowadays is mainly measured by rain gauges. When

we choose 10 or 30 min as time span to calculate the rain

intensity, we find that the accumulated rain in rain gauge is

too little to be precisely measured, especially for light rain.

However, within this period of time, the rain intensity may

have already changed several times.

Intuitively, we solve this problem by taking a different

path, mobile sensing [14]. In recent years, a lot of not

only excellent but also significant mobile sensing researches,

which span a variety of areas, such as interaction [13],

authentication [31], identification [41], recognition [38],

privacy [18], [21], [22], localization [32], positioning [37],

tracking [30], navigation [20], transportation [23], verifica-

tion [34], assignment [36], monitoring [3], and make our lives

more efficient, more intelligent, and more enjoyable. Yet, little

attention has been paid to the field of rain observation. Mobile

sensing will be applied to construct fault-tolerant rain mon-

itoring networks, which will be real-time, fine-grained, and

wide-coverage, based on an omnipresent source, smartphones,

which are equipped with abundant advanced sensors and are

becoming more and more pervasive in our daily lives. We

now demonstrate the application of mobile sensing in real-

time road condition monitoring with smartphone-based map

apps [19]. Drivers open these map apps while driving on the

road and then they are able to continuously receive real-time

road condition information, including traffic congestion and

sudden traffic accidents, ahead of them. Meanwhile, these

map apps also collect and upload the drivers’ locations and

driving status, such as GPS positions, directions and speeds,

using smartphone-equipped accelerometers and GPS. If there

are many participants who use these map apps and share

their own data, these map apps are even able to cover almost

every geographical point and achieve extremely high accu-

racy. Compared to this approach, traditional sensor networks

are sparsely deployed, mostly on main roads in cities, and are

restricted by several limitations, including energy consump-

tion, computing capability, etc. Therefore, these map apps

can attain better performance than traditional sensor networks.

Also, the construction of sensor networks incurs high costs,

but these map apps take a different design path to utilize

data shared by drivers for building real-time road condition

monitoring systems at low costs.

In this paper, we develop Chaac which enables the partic-

ipants to take part in the crowdsourcing process and report

whether it is raining (as well as rain intensities) at their

locations with audio clips from smartphones. Chaac can also

cover almost every geographical point and achieve extremely

high accuracy. To the best of our knowledge, this is the first

work that can detect and measure the intensity of rain by

smartphones, in both industrial and academic communities.

We summarize our main contributions as follows.

1) We found that it is a practical and promising approach

for real-time and fine-grained rain detection and

measurement exploiting opportunistically crowdsourced

audio clips from smartphones, among which the idea

of employing the sound released by raindrops hitting on

umbrella to measure the rain, is ingenious. The reason is

that for traditional rain gauge-based rain detection and

measurement sensor networks, it is difficult to obtain

real-time and fine-grained rain information, especially

rain intensity.

2) We implemented dozens of features [25] in frequency

spectrum, time domain and power spectrum, and then

carefully selected several of them, which are efficient in

our application scenarios, according to extensive real-

world experiments. Furthermore, we also created some

very useful and low-cost features, which have never

appeared in the literature before.

3) We put forward a novel method for describing the

distribution of features extracted from different but con-

tinuous frames within a long time interval based on

estimating a Gaussian mixture model (GMM), whose

parameters are employed as new features for recognition.

4) We proposed a new system architecture for identifying

surrounding environments, which is employed to recog-

nize rain-related environments in this paper. If we select

other appropriate features, our proposed system archi-

tecture can also be applied to identify a variety of other

environments, such as thunder, wind, snow, etc. Previous

researches in this area mainly paid attention to the recog-

nition of human voices, and the sounds from surrounding

environments were often treated as noises and processed

at the very beginning. Our system architecture, to the

best of our knowledge, first fuses features extracted from

two different granularities of sounds, frames and seg-

ments. The purpose of this design is to study and depict

the intrinsic characteristics of all kinds of sounds more

subtly, and at the same time take calculation as well as

energy consumption into consideration.

5) We implemented our system and evaluated it over six

months period, during which we conducted extensive

laborious experiments in the rain and collected massive

amounts of valuable data. We will be very happy to share

these data with later researchers for further studies in this

area. The results demonstrated that our system is highly

accurate and robust in detecting and measuring the rain,
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Fig. 2. Spectrograms of 4-s long audio segments which are crowdsourced from nine common scenes in our daily lives, including (a) lawn mower, (b) car
passing, (c) sound of engine inside a car, (d) insects and a frog, (e) clamor of crowd in a restaurant, (f) wind, (g) scrapes of windshield wipers, (h) raindrops
drumming against car window, and (i) raindrops drumming against umbrella.

whose performance is, to the best of our knowledge,

superior to any other relevant existing approach, in both

industrial and academic communities.

A spectrogram is a kind of visual spectrum representing

the signal strength, of an audio segment, over time at various

frequencies. A spectrogram basically consists of three dimen-

sions, namely, the first dimension, the x-axis, which represents

the time, the second dimension, the y-axis, which is on behalf

of the frequency, as well as the third dimension, the color,

which stands for the intensity (i.e., the amplitude of a partic-

ular frequency at a particular time). Specifically, dark colors

correspond to small amplitudes and bright colors correspond

to large amplitudes. Fig. 2 gives the spectrograms of 4-s long

audio segments which are crowdsourced from nine common

scenes in our daily lives.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III proposes the system

overview. Section IV presents the system design and imple-

mentation. Section V describes the evaluation. Section VI

gives the discussion. Finally, Section VII draws the conclusion.

II. RELATED WORK

With regard to the rain detection and measurement, exclud-

ing two traditional techniques, that is, rain gauges and weather

radars, the remaining relevant researches can be grouped into

the following four categories.

A. Images-Based Work

Images are the most widely used method for rain detec-

tion. Allamano et al. [1] proposed a rain detection [29]

presented an image registration and restoration system in

rainy weather conditions, by detecting and eliminating the

raindrops on images. To make intelligent wiper system pos-

sible, Görmer et al. [7] developed a rain detection system

based on automotive in-vehicle cameras and introduced a false

activations avoidance mechanism. Focusing on the driving

safety, Nashashibi et al. [24] conducted another similar

research, namely, the detection of unfocused raindrops on

windscreens using cameras. All of these researches are either

smartphones-based or in-vehicle cameras-based. Compared

with Chaac, the first category requires the participants to take

photographs actively. This will weaken their intentions to par-

ticipate in the crowdsourcing, because they have to accomplish

extra tasks. On the contrary, Chaac can independently collect

the audio clips from smartphones and do not need the help

of the participants. And as for the second category, in-vehicle

cameras, on the one hand, lack the capacity of processing these

images, on the other hand, cannot transmit the images to the

servers. So the rain detection results are not real-time.

B. Wireless Links-Based Work

In some literatures, wireless links are also leveraged for rain

detection. Leijnse et al. [17] investigated the potential of wire-

less links, for instance, employed by commercial companies

for cellular communication, to detect the rain. The experi-

ments using two 38-GHz links of eight rain events during

two months in The Netherlands show that the appearances of

these rain events can be well captured by the wireless links.

Rayitsfeld et al. [26] explored the long term rain detection and

measurement, leveraging the data from wireless links, interpo-

lated at the locations of rain gauges nearby. Zinevich et al. [42]

put forward the concept of recovering the rain dynamics

employing the correlations of wireless links and made the

observations assimilated into a stochastic temporal and spa-

tial rain model. Compared with Chaac, wireless links-based

rain detection systems are not fine-grained and cannot detect.

C. Satellites-Based Work

In recent years, researchers exploited satellites for rain

detection in a larger area. Bellerby et al. [2] designed a



1000 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

rain detection system using the combination of rain radars

and satellites by training an artificial neural network detec-

tor. Grimes and Diop [8] improved the satellites-based rain

detection system by incorporating other weather information

via a multiple regression. Wardah et al. [35] exploited the

images from satellites and developed a rain detection system

for flash flood warning. Compared with Chaac, these systems

apparently, need the help of the satellites, which are expensive

devices. And they will also spend enormous resources, such

as energy and computing capability, to process these images.

Moreover, the rain detection results of these systems are not

fine-grained.

D. Wipers-Based Work

There is another novel research, which is related to the rain

detection. Haberlandt and Sester [10] studied the relationship

between the speeds of vehicle wipers and the rain observa-

tions. They considered the vehicles as moving rain gauges

and the wipers, to some extent, as sensors for rain detection.

Compared with Chaac, due to the limited activity ranges of

the vehicles, this kind of system can only detect the rain on

the roads, so the results are not fine-grained. Different from

these researches, Chaac avoided all of their disadvantages

and achieved real-time and fine-grained rain detection and

measurement leveraging the audio clips crowdsourced from

smartphones. Meanwhile it is efficient, easy to be deployed,

tasks-free for participants and does not require expensive

devices.

III. SYSTEM OVERVIEW

The goal of our system is to achieve an ability to detect

rain and measure rain intensity (if the rain detection result in

the previous step shows that currently the sky is raining), both

in real time (i.e., accurate to every point in time) and in fine

granularity (i.e., accurate to every point in geography), using

smartphones. The basic ideas behind our approach are as fol-

lows. When it rains, the rain will introduce special signatures

in audio clips that our system collects from users’ surroundings

utilizing powerful sensors in smartphones. In Fig. 2, we give

nine audio clips to visually show the clues of these signatures.

Among all kinds of audio clips that are collected by our system

in rainy days, those audio clips generated by raindrops hit-

ting on umbrellas will have their own subtle but unique audio

fingerprints. Moreover, focusing on this specific category of

audio clips, rain with different intensities will produce differ-

ent properties in these audio clips. Therefore, we can analyze

the collected audio clips. First, we will detect whether these

special rain-introduced signatures exist in the audio clips. Once

these signatures are found in audio clips from a user’s smart-

phone, we will know it is raining in this user’s location at this

moment. Then, we will recognize whether these subtle but

unique raindrops hitting on umbrellas-generated audio finger-

prints exist and try to extract them. Finally, we will distinguish

those different properties produced by different intensities of

the rain, among those collected audio clips. Once these audio

fingerprints are captured and those properties are differenti-

ated, we will be able to measure the rain intensity in this user’s

Fig. 3. System overview of Chaac.

location in real time. The challenges are as follows. On the

one hand, in real life, the surroundings could be complicated,

which will introduce interferences. These interferences make

it difficult to detect the audio clips collected in rainy days and

to ulteriorly recognize the audio clips generated by raindrops

hitting on umbrellas, in all kinds of audio clips produced by

other events in the surroundings. On the other hand, the differ-

ences among the properties produced by different intensities of

the rain are small, which makes it difficult to precisely depict,

mathematically model, quantitatively measure and eventually

distinguish rain with different intensities. To address these

challenges, we explore, propose, design, implement, and eval-

uate a brand new rain detection and measurement processing

pipeline. The accuracy of our system is confirmed through a

series of real-world experiments. Moreover, our solution for

rain detection and measurement in this paper can be extended

to many other application scenarios, such as the detection and

measurement of snow, wind, thunder, and road sweeper.

In what follows, we provide the system overview of

Chaac. To begin with, Chaac recognizes outdoor by using the

IODetector proposed in [40], which is a smartphone-based

system, synthetically leveraging light sensor, cellular sensor

and magnetometer, for indoor and outdoor environment recog-

nition. As shown in Fig. 3, Chaac contains three parts. The

first part is the detection of rain. The details of this part will

be given in Section IV-A. If it is raining, Chaac will try to

ulteriorly judge whether the current audio clip is generated

by raindrops hitting on umbrella. The details of this part will

be presented in Section IV-B. If so, based on this type of

audio clips, Chaac will measure current rain intensity in real

time. The details of this part will be reported in Section IV-C.
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(a) (b) (d)(c)

Fig. 4. In detection of rain. Box plots about RMSE-L, SS, and histograms about SD, AC-OF of 1000 rainy, and 1000 clear day segments. (a) Root mean
squared error-low. (b) Spectral similarity. (c) Spectral decrease. (d) Amplitude of cut-off frequency.

Our proposed system can only detect and measure the falling

(already existed) rain. It cannot forecast the rain or its intensity

in advance.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Detection of Rain

In this section, we describe the four steps of detecting the

rain. First, we collect raw audio clips from the smartphones.

Second, the proposed system divides the raw clips into seg-

ments. Then our system conducts the feature extraction on the

power spectrums of segments. At last, we construct a detec-

tor that makes judgments about whether a given segment is

generated in a rainy day or sunny day.

1) Acquisition of Raw Audio Segments: We employ two

popular segmentation methods, which are end-points detec-

tion and sliding windows, to divide audio clips into raw audio

segments and set the length of every segment to 1 s.

2) Segment-Level Feature Extraction: The raw audio seg-

ments are not directly used in the recognition procedure.

Instead, we consider the power spectrum of every segment, run

feature extraction on the segments, and conduct the rain detec-

tion on the new features. In the following, we will introduce

the extracted segment-level features (the details of extracted

features can be referred in [9]).

a) Min., med., and avg. amplitude: These features focus

on the basic shape of power spectrum curve.

b) Root mean squared error-low: This feature measures

the smooth degree of power spectrum curve in low frequency

part (i.e., less than 7500 Hz). The RMSE-L of segment Si is

calculated as1

RMSE-Li =

√√√√√ 1

nl
p
i

nl
p
i∑

j=1

(
a

p
ij − ã

p
ij

)2
.

Fig. 4(a) presents the box plot with respect to RMSE-L of

1000 rainy day and 1000 clear day segments, respectively.

c) Spectral similarity: This feature describes the similar-

ity between power spectrum curves in low and high frequency

parts. The SS of segment Si is calculated as

SSi =
1

nl
p
i

nl
p
i∑

j=1

|â
p
ij − â

p

i(nli+j)|.

1In this paper, we use three superscripts p, t, and f to represent that
a variable is calculated in power spectrum, time domain, and frequency
spectrum.

Fig. 4(b) presents the box plot with respect to SS.

d) Spectral decrease: This feature weighs the decreasing

degree of power spectrum curve. The SD of segment Si is

calculated as

SDi =
1

n
p
i∑

j=2

a
p
ij

n
p
i∑

j=2

a
p
ij − a

p

i1

j − 1

where n
p
i indicates the total number of frequency compo-

nents in the power spectrum of segment Si. Fig. 4(c) plots

the histogram with respect to SD.

e) Amplitude of middle frequency: This feature stands

for the amplitude of 7500 Hz.

f) Amplitude of cut-off frequency: This feature denotes

the amplitude of 15 000 Hz. Fig. 4(d) plots the histogram with

respect to AC-OF.

3) Construction of detector: Finally, Chaac constructs a

detector, which outputs whether current audio segment is gen-

erated in rainy or sunny days. The details of this step will be

given in Section V-A.

4) Transmission of refined audio clips: After the rain detec-

tion process, our system discards those audio clips which are

identified as sunny days, and passes those audio clips which

are marked as rainy days to the next computational process to

ulteriorly recognize whether they are generated by raindrops

hitting on umbrella.

B. Recognition of Raindrops Hitting on Umbrella

As shown in Fig. 5, the proposed method takes seven steps

to recognize raindrops hitting on the umbrella. Similar to

Section IV-A, the proposed method first acquires audio clips

from smartphones, then divide raw clips into segments. After

that, we divide segments into frames and further conduct fea-

ture extraction for every frame. Given the extracted features

of the frames with a segment, we construct the segment-level

features by first accumulates the frame-level features and then

perform the dimensional reduction on the accumulated fea-

tures. At last, the proposed method builds a recognizer to judge

whether the current audio segment is generated by raindrops

hitting on the umbrella.

1) Segmentation of Segments Into Frames: In step three,

in order to study and depict the characteristics of all kinds of

sounds in rainy days more subtly, Chaac divides every segment



1002 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

Fig. 5. In recognition of raindrops hitting on umbrella. Computational
process.

into frames of equal length (0.032 s) and employ the Hanning

window to overcome the frequency distortion problem.

2) Frame-Level Feature Extraction: Given the time domain

and the frequency spectrum of the frames, we can perform

frame-level feature extraction and further perform the recog-

nition procedure on the extracted features. We now introduce

some features used in classifying the sound of raindrops hitting

on the umbrella.

a) Avg. absolute amplitude: This feature describes the

energy magnitude of audio signal in time domain. The AAA

of frame Fi is calculated as

AAAi =
1

nt
i

nt
i∑

j=1

|st
ij|.

We also utilized some features described in [9] to identify

the sound of raindrops. They are avg. zero-crossing rate, mel

frequency cepstral coefficients, and spectral centroid.

b) Avg. zero-crossing rate: This feature counts the aver-

age number of occurrences that the sampling points of audio

signal pass through the zero axis in time domain within a

particular frame. The AZ-CR of frame Fi is calculated as

AZ-CRi =
1

nt
i − 1

nt
i∑

j=2

[
st

ijs
t
i(j−1) < 0

]
.

c) Mel frequency cepstral coefficients: These features

collectively represent the shape of the spectrum.

d) Spectral centroid: This feature characterizes the

barycenter of the frequency spectrum, which is correlated with

the perceptual attribute of timbre, i.e., brightness. The SC of

frame Fi is calculated as

SCi =

n
f
i∑

j=2

a
f
ij log2

f
f
ij

1000

n
f
i∑

j=2

a
f
ij

.

3) Multiple Frames Accumulation: As mentioned before, in

order to lucubrate the inherent properties of different sounds

in rainy days, from smaller units. Chaac ulteriorly divides

every segment into frames. However, during our experimental

process, we find that frames are too transitory and fea-

tures extracted from them cannot yield sufficient distinction

degrees among different sounds. Thus, we first divide audio

clips into segments which are the combinations of continuous

frames. Then we conduct feature extraction for every seg-

ment by employing a GMM [27], [28], [43]. As described

in Algorithm 1, we propose an EM-based algorithm to learn

the parameters of GMM. The learned parameters are further

regarded as the inputs of recognition procedure. There are two

other benefits of our approach. First, it significantly reduces

the scale of features for the first time, before feature dimen-

sion reduction, among all processing procedures. Second, it

effectively avoids the influence of burst noises.

The GMM is able to approximate density distributions of

arbitrary shapes smoothly. So we assume that the probabil-

ity density function (PDF) of features extracted from frames

within the ith segment can be represented as

PDFi(f |µ,�) =

ngau∑

j=1

αjg
(
f |µj, �j

)

where f indicates a d-dimensional feature vector, which is

extracted from a frame within the ith segment. ngau indicates

the total number of Gaussian PDFs (GPDFs) in every GMM.

αj indicates the weight, namely, the magnitude, of the jth

GPDF and the sum of all weights equals to 1. The jth GPDF

is calculated as

g
(
f |µj, �j

)
=

1√
(2π)d|�j|

e
−(f −µj)

T
�−1

j (f −µj)/2

where µj and �j indicate the mean vector and covariance

matrix, namely, the location and width, of the jth GPDF,

respectively. In order to obtain the optimal parameter val-

ues of the GMM to describe these observed feature vectors,

we employ maximum likelihood estimation and maximize the

following log-likelihood function (LLF):

LLFi = log

[
nfra∏

k=1

PDFi(fik|µ,�)

]

where nfra indicates the total number of frames in every seg-

ment. fik indicates features extracted from the kth frame within

the ith segment. Generally, we assume that the covariance

matrix of the jth GPDF can be represented as

�j = σ 2
j I
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where σ 2
j indicates the variance vector of the jth GPDF. I indi-

cates the identity matrix. Nevertheless, the LLF is nonlinear

for GMM parameters (i.e., µj, σ 2
j , and αj), so the closed form

solution to the problem of maximizing the aforesaid function

does not exist. Consequently, we calculate the partial deriva-

tives of the LLF with respect to µj and σ 2
j , and then set their

values equal to 0, respectively. The results are as follows:

µ̃j =

nfra∑
k=1

βj(fik)fik

nfra∑
k=1

βj(fik)

and

σ̃ 2
j =

1

d

nfra∑
k=1

βj(fik)
(
fik − µ̃j

)T(
fik − µ̃j

)

nfra∑
k=1

βj(fik)

where µ̃j and σ̃ 2
j indicate the re-estimation formulas of the

mean and variance vectors, which will be utilized in iterative

steps of our expectation maximization algorithm. βj(fik) is the

posterior probability, which is calculated as

βj(fik) =
αjg

(
fik|µj, σ

2
j

)

PDFi

(
fik|µ, σ 2

) .

Furthermore, we also calculate the partial derivative of the

LLF with respect to αj, and then make its value equal to 0,

under the constraint that the sum of all weights equals to 1

simultaneously. Therefore, we employ the Lagrange multiplier

when solving these equations and the result is as follows:

α̃j =
1

nfra

nfra∑

k=1

βj(fik)

where α̃j indicates the re-estimation formula of the weight.

4) Dimension Reduction: The features output by GMM

have 75 dimensions. In this paper, we integrate the linear dis-

criminant analysis (LDA) into Chaac to reduce the dimension

of features.

5) Construction of Recognizer: Finally, Chaac constructs a

recognizer, which outputs whether current audio segment is

generated by raindrops hitting on umbrella or other sources.

The details of this step will be presented in Section V-B.

6) Transmission of Refined Audio Clips: After the raindrops

hitting on umbrella recognition process, our system passes

those audio clips which are marked as raindrops hitting on

umbrella to the next computational process to eventually mea-

sure the intensity of the rain, and discards those audio clips

which are identified as other sources.

C. Measurement of Rain

In this section, we provide the computational process of

measuring the rain, which is similar to the rain detection.

The first and second steps are acquiring audio clips from

the previous computational process and then dividing them

into segments. In the third step, our system extracts several

Algorithm 1 Expectation Maximization

1: Input:
2: fi: nfra d-dimensional feature vectors, and each is extracted from

a frame within the i-th segment.
3: ngau: the total number of GPDFs employed in the GMM, whose

value is 3.
4: T: the threshold parameter indicating the termination tolerance,

whose value is 1e-6.
5: niter: the maximum number of iterations allowed, whose value

is 1e3.
6: Output:

7: µ, σ 2 and α: the parameters of the GMM.
8: Initialization:
9: conduct the k-Nearest Neighbors clustering on fi and divide them

into ngau clusters;
10: for j from 1 to ngau do
11: µj = the mean vector of features within the j-th cluster;

12: σ 2
j = the covariance vector of features within the j-th cluster;

13: αj = the proportion of features within the j-th cluster in all
features;

14: end for
15: µ = [µ1, ..., µngau ]; σ 2 = [σ 2

1
, ..., σ 2

ngau
]; α = [α1, ..., αngau ];

16: θ = [µ, σ 2, α]; θ̃ = [0, ..., 0]; t = 0;
17: while t < niter do
18: for j from 1 to ngau do
19: Expectation Step:
20: calculate βj;
21: Maximization Step:

22: calculate µ̃j, σ̃ 2
j , α̃j;

23: end for
24: µ̃ = [µ̃1, ..., µ̃ngau ]; σ̃ 2 = [̃σ 2

1
, ..., σ̃ 2

ngau
]; α̃ = [̃α1, ..., α̃ngau ];

25: θ̃ = [µ̃, σ̃ 2, α̃];
26: if ‖ θ - θ̃ ‖ < T then
27: break;
28: end if
29: θ = θ̃ ; t = t + 1;
30: end while

segment-level features in power spectrum, which will be elab-

orated later in this section. Finally, our system constructs a

measurer, which outputs the measurement results, namely, the

rain intensity.

1) Segment-Level Feature Extraction: Here, we elaborate

features which are selected to measure the rain. These features

are all calculated in power spectrum of every segment.

a) Max. amplitude: This feature focuses on the basic

shape of every power spectrum curve. Fig. 6(a) presents the

box plot with respect to MA of 700 light rain, 700 moderate

rain, and 700 heavy rain segments in total.

b) Energy-low: This feature pays attention to the sig-

nal energy in low frequency part. The E-L of segment Si is

calculated as

E-Li =

nl
p
i∑

j=1

a
p
ij.

Fig. 6(b) presents the box plot with respect to E-L.

c) Spectral roll-off: This feature captures the frequency

below which 75% of the signal energy is contained. The SR-O

of segment Si is calculated as

SR-Oi = min j′
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(a) (b) (c) (d)

Fig. 6. In measurement of rain. Box plots about MA, E-L, and histograms about SR-O, SS of 700 light, 700 moderate, and 700 heavy rain segments.
(a) Max. Amplitude. (b) Energy-low. (c) SpectralRoll-off. (d) SpectralSlope-measurement.

subject to

j′∑

j=1

a
p
ij ≥ 0.75

n
p
i∑

j=1

a
p
ij.

Fig. 6(c) plots the histogram with respect to SR-O.

d) Spectral slope: This feature denotes the energy dis-

tribution at various frequencies. The SS of segment Si is

calculated as

SSi =
1

n
p
i∑

j=1

a
p
ij

n
p
i

n
p
i∑

j=1

a
p
ijf

p
ij −

n
p
i∑

j=1

a
p
ij

n
p
i∑

j=1

f
p
ij

n
p
i

n
p
i∑

j=1

(
f

p
ij

)2
−

(
n

p
i∑

j=1

f
p
ij

)2
.

Fig. 6(d) plots the histogram with respect to SS.

2) Construction of Measurer: Finally, Chaac constructs a

measurer, which outputs the rain intensity. The details of the

last step will be reported in Section V-C.

V. EVALUATION

In this section, we present the results of our experiments.

This section consists of four sections. In the first section, we

demonstrate the experimental results of detecting the rain. In

the following section, we study the experimental results of

recognizing raindrops hitting on umbrella. Then we show the

experimental results of measuring the rain, in the third sec-

tion. Finally, we evaluate how well our system can detect and

measure the rain in real world.

A. Detection of Rain

In this section, we evaluate how well Chaac can detect the

rain with the help of random forest (RF), which is an ensemble

algorithm in machine learning and can be used for classifi-

cation, regression, and other tasks. Our experimental dataset

contains 7200 rainy day and 7200 clear day segments, respec-

tively. RF is efficient on large-scale data, which can handle

a large number of features, and does not over-fit. So in this

paper, we choose RF to construct the rain-detector.

1) Experimental Results: We construct the detector based

on RF. Then we conduct a series of tenfold cross-validation

experiments on our dataset. Fig. 7 shows the confusion matrix,

true positive rate (TPR) and false positive rate (FPR) of RF.

Fig. 7. In detection of rain. Confusion matrix, TPR, and FPR of RF.

The TPR is calculated as

TPR =
ntp

ntp + nfn

where ntp indicates the total number of segments, whose

classes are positive, and are correctly recognized by our

proposed and trained system. nfn indicates the total number

of segments, whose classes are positive, but are wrongly rec-

ognized as negative by our proposed and trained system. The

FPR is calculated as

FPR =
nfp

ntn + nfp

where nfp indicates the total number of segments, whose

classes are negative, but ntn indicates the total number of

segments, whose classes are negative. And are correctly

recognized by our proposed and trained system.

We can observe that the RF achieves 92.0% TPR, 8.0%

FPR, and 1154 misdetection segments.

2) Comparison With Existing Rain Detection Methods:

Here, we demonstrate how well Chaac can detect the rain in

real world. Chaac leverages the detection model constructed

in the previous part, which is derived from 14 400 segments,

and makes every decision based on ten consecutive segments.

Fig. 8 illustrates the comparison among the rain detection

results output by Chaac, the rain information released by the

CMA and nine other popular weather apps. We mark the

true detection results or information using cyan, and false

employing red.

We can make three main observations here. First, the CMA

misreports 12 times in a total of 21 sampling tests during three

days and achieves 42.9% TPR. Second, with respect to all nine

remaining weather apps, the average number of misreports and

the average TPR released by every weather app are 10.1 times



GUO et al.: CHAAC 1005

Fig. 8. In detection of rain. Comparison among the rain detection results output by Chaac, the rain information released by the CMA, and nine other popular
weather apps, to show that Chaac works in real time.

and 51.9%, respectively. The Weather Channel yields the most

accurate rain information, which only misreports seven times

and achieves 66.7% TPR and the WeatherBug produces the

most inaccurate rain information, which misreports 15 times

and only achieves 28.6% TPR. Third, Chaac, our proposed

system, can detect the rain with 100% TPR when deciding

with ten consecutive segments, that is to say, Chaac will out-

put rainy day as detection result, if the number of rainy day

segments is greater than clear day segments among the detec-

tion results of these ten consecutive segments, and vice versa.

Additionally, in row m of Fig. 8, we present the specific num-

ber of true and false detection results among ten consecutive

segments output by Chaac in every sampling test.

B. Recognition of Raindrops Hitting on Umbrella

In this section, we present how well Chaac can recognize the

segments generated by raindrops hitting on umbrella employ-

ing decision tree (DT), along with two different dimension

reduction algorithms. Our experimental dataset contains 3600

segments generated by raindrops hitting on umbrella and 3600

other segments crowdsourced by the participants in rainy days,

which are generated by all kinds of activities.

1) Time Consumption of Every Computational Step: In

Table I, we show the average time consumption of our algo-

rithm. The step-level time consumption is obtained by running

the recognition experiments ten times and further computing

the average time of every step. Apparently, the most time-

consuming steps are segmentation of segments into frames

and frame-level feature extraction. We also observe that the

overall time of the recognition process for each segment is

88.51 ms.

2) Experimental Results: We construct the recognizer based

on DT. In addition, we employ tenfold cross-validation to

evaluate the performance of the recognizers when employ-

ing different dimensional reduction algorithms, respectively,

TABLE I
IN RECOGNITION OF RAINDROPS HITTING ON UMBRELLA.

TIME CONSUMPTION (AVG.±STD.DEV.) OF EVERY

STEP FOR EVERY SEGMENT

(a) (b) (c)

Fig. 9. In recognition of raindrops hitting on umbrella. Confusion matrices,
TPR, and FPR of different recognition algorithms. (a) DT. (b) PCA + DT.
(c) LDA + DT.

principal component analysis (PCA) and LDA. Fig. 9 presents

the confusion matrices, TPR and FPR of these recognizers.

When comparing the performance of combining PCA and

LDA with DT, we find out that LDA shows better performance.

More detailed, LDA reduces the features to one dimension

and only misrecognize 501 segments, while PCA reduces the



1006 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2019

(a) (b) (c) (d) (e) (f)

Fig. 10. In measurement of rain. Confusion matrices of different classifiers.

features to three dimensions (account for 98% of the eigenval-

ues) and misrecognize 1441 segments. In addition, the TPR of

the combination of LDA and DT is 93.0%, which outperforms

the original DT algorithm by 1.9%. However, the combination

of PCA and DT shows worse performance than the original

DT and only achieves 80.0% TPR.

C. Measurement of Rain

In this section, we examine how well Chaac can measure the

coarse rain intensity, namely, light, moderate and heavy rain,

based on segments generated by raindrops hitting on umbrella

utilizing six different classification algorithms. Our experimen-

tal dataset contains 1200 light rain, 1200 moderate rain and

1200 heavy rain segments in total.

1) Acquisition of Labeled Data: The rain intensity is quan-

tified by the amount of rain per unit time. On the one hand, all

of our experimental data are opportunistically crowdsourced

by the participants in their daily lives. It is not only unrea-

sonable but also unrealistic to ask every participant to carry

a rain gauge with her all the time, which is cumbersome, as

well as fragile. On the other hand, in order to save energy con-

sumption, which can be negligible finally, every data collection

process only lasts for 10 s. Obviously, it is impossible to mea-

sure the accurate amount of rain within such a short period of

time. Then how about prolonging every data collection process

to 10 or 30 min? Unfortunately, even during the time span of

such order of magnitude, the accumulated rain is still too little

to be measured, especially for light rain, while the rain inten-

sity may have already changed several times. Actually, the

amount of rain released to the public by professional meteo-

rological department usually is a cumulative value within at

least a day, a month or even a year. So the accurate short-time

rain intensity is extremely hard to obtain, not only for us, but

also for professional meteorological department. Due to the

above two reasons, we only require every participant to label

current rain intensity as light, moderate or heavy rain accord-

ing to his or her observation. In order to improve the accuracy,

we have uniformly trained all participants in advance, to unify

the standard as far as possible.

2) Experimental Results: We build six recognizers based

on different classification algorithms, respectively, DT, RF,

naive Bayes (NB), multilayer perceptron, k-nearest neigh-

bors (k-NNs), and support vector machine (SVM), and run

tenfold cross-validation to evaluate their performance. In

Fig. 10, we present the confusion matrices of the recogniz-

ers. We also illustrate the TPR and FPR of the recognizers in

Fig. 11. In measurement of rain. TPR of different classifiers.

Fig. 12. In measurement of rain. FPR of different classifiers.

Figs. 11 and 12. At last, we compare the time consumption

of six recognizers in Fig. 13.

We can make two main observations here. First, as

presented in Figs. 10–12, RF outputs the best classifica-

tion performance, namely, 93.9% TPR, 3.0% FPR, and 218

misclassification segments, k-NN achieves the second best

classification performance and NB yields the worst classifi-

cation performance, that is, 85.7% TPR, 7.2% FPR, and 515

misclassification segments. Second, we show the training time,

test time and total time when running each classifier in Fig. 13.

However, we only pay attention to the time consumption of

the test process since the training process is accomplished

before deploying the applications to the smartphones. Then

we find out that k-NN is the most time-consuming algorithm

which spends 0.86 s on testing 3600 labeled rain segments in

our experimental dataset. In addition, SVM spends 0.44 s and

other four algorithms can all be completed within 0.03 s.



GUO et al.: CHAAC 1007

Fig. 13. In measurement of rain. Total time consumed of different classifiers.

D. Real World Evaluation

Finally, we evaluate how well Chaac can detect and mea-

sure the rain in real world. We choose the data at 6 P.M.,

on August 22, 2015, from our database and visualize them

in Fig. 14, according to their real location information. This

area is 11-km long and 3-km wide. We can observe that, cur-

rently, there are 21 participants in this area. A list of icons and

their meanings is presented in Fig. 14(top). Each smartphone

stands for a participant. We provide the ground truth of cur-

rent point in geography on each smartphone, which is colored

in black. From left to right, the first icon means whether it

is clear or rainy at this point right now. The second icon, if

any, denotes whether current audio clip is generated by rain-

drops hitting on umbrella or other sources, such as vehicles

passing by. The third icon, if there is, indicates the current

rain intensity right here. We present the recognition results,

output by Chaac, of current position on the right side of each

smartphone, which are based on ten consecutive 1-s long audio

segments. The right results are colored in cyan and wrong in

magenta. Among all the smartphones of our 21 participants,

only two output the wrong results, which did not detect the

rain. There are another two smartphones whose audio clips are

generated by the moving vehicles, rather than the raindrops

hitting on umbrella. Chaac has correctly recognized that, but

cannot further measure the rain intensities of these two loca-

tions. The current rain information released by the CMA and

nine other popular weather apps mentioned above are given

in Fig. 14(bottom). On the one hand, there are as many as

six apps even claim that it is a clear day in this area. This is

because the rain comes very suddenly and these apps do not

have time to update the data in time. By contrast, Chaac can

detect and measure the rain in real time, which is accurate

to each point in time dimension. On the other hand, as for

the CMA as well as all of these nine weather apps mentioned

above, some of them can at most be accurate to district-level,

while the others can achieve up to city-level.2 However, the

experimental area in Fig. 14 is smaller than a district, but we

can observe that the rain intensities differ greatly from west to

east. It is raining heavily in the west, moderately and lightly in

the middle, but it is totally clear in the east. So these weather

apps can only provide the rain information of a very large area,

which is not precise and practical enough. By contrast, Chaac

2A city usually consists of several districts.

can detect and measure the rain in fine granularity, which is

accurate to each point in geography. In conclusion, Chaac is,

to some extent, superior to other existing rain detection and

measurement methods.

VI. DISCUSSION

A. Privacy Issues

The users’ privacy, which we believe is the matter with

the highest priority, should be strictly protected at any time

and without conditions. There are four aspects we want to

specify about the privacy issues related to Chaac. First, the

application scenarios of Chaac are mainly outdoors, which are

essentially open environments and thus much less sensitive in

comparison with the scenes explored in some other previous

acoustics-based related researches (e.g., in bedroom [11] and

bathroom [6]). Second, in Chaac, human voices are not our

concern at all and interestingly, exactly on the contrary, human

voices interfere with the acoustical signals we really focus

on and want to recognize. As for Chaac, human voices are,

to some extent, noises. Third, Chaac does not store or trans-

mit any raw audio data, which are all buffered and processed

locally and offline on smartphones in real time and erased

immediately after feature extraction. Chaac only reports the

recognition results, namely, clear or rainy day as well as light,

moderate or heavy rain, to achieve crowdsourcing. Fourth,

Chaac empowers users to completely control all raw audio

data collected, that is to say, users are allowed to delete any

or even purge all of their data and pause the raw audio data

acquisition process for any upcoming time intervals or at any

certain locations through the user interfaces of Chaac.

B. Motivation Issues

Recently, the surge in popularity of crowdsourcing attracts a

large number of researchers, who have conducted massive, sys-

tematic and thorough studies of its fundamental mechanisms,

including the motivation, that is to say, how to encourage peo-

ple to share their high-quality data. Researches in this area

include [4], [5], [12], [15], and so on. These previous research

achievements can be directly applied to our scenario toward

rain detection and measurement. To say the least, even with-

out these existing work mentioned above, the motivation of

people in this paper is still obvious. People take part in the

rain monitoring process, only then can they use the rain infor-

mation shared by other people, which is a win-win situation.

Thus, the motivation of people is not an important problem

for us, so it is beyond the scope of this paper.

In what follows, we look ahead to some future research

directions.

C. Remaining Meteorological Phenomena

The detection and measurement of snow, thunder and other

less common meteorological phenomena, such as hail, hurri-

cane and sandstorm, are beyond the scope of this paper. In

future, we will endeavor to add these functions to Chaac to

make it more practical. The methodologies are similar, for

example, as for snow and hail scenarios, we find that there

are also a variety of obvious acoustic clues (e.g., “creak”
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Fig. 14. Comparison among the rain detection and measurement results output by Chaac in real world, the rain information released by the CMA and nine
other popular weather apps, to show that Chaac is real-time and fine-grained.

emitted when pedestrians walk and vehicles move on accu-

mulated snow and “rat-a-tat” generated when hailstones hit

against windows, ground, and roofs of vehicles correspond-

ingly). Consequently, exploiting these acoustic hints ulteriorly

will be considered as our further work.

VII. CONCLUSION

In this paper, we present a rain detection and measure-

ment system, namely Chaac, which exploits opportunistically

crowdsourced audio clips from smartphones. In the imple-

mentation of Chaac, three dedicated processing parts are

performed. In the beginning, Chaac detects whether it is rain-

ing. If it is raining, Chaac will try to ulteriorly judge whether

the current audio clip is generated by raindrops hitting on

the umbrella. Finally, Chaac measures current rain intensity

in real time. To achieve these three parts above, we cannily

extract and refine a series of features and then construct sev-

eral supervised classifiers. The experiments results show that

Chaac can detect and measure the rain accurately, which brings

rain observations with high temporal and spatial resolution

technologically and economically within reach.
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