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B-Alkyl Suzuki Cross-Coupling of 1° Amides via N-C Activation
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ABSTRACT: A highly chemoselective, palladium-NHC (NHC = N-heterocyclic carbene)-catalyzed, direct cross-coupling between
B-sp3-alkyl reagents and activated amides by N—C(O) cleavage is reported. Palladium-NHC precatalysts promote chemoselective
alkylations of amides that are inaccessible by applying strong organometallic reagents. Various amides, including challenging pri-
mary amides after direct and site-selective N,N-di-Boc activation are compatible with this method. The potential of this mild proto-
col is demonstrated in sequential C(sp?)-C(sp?)/C(sp?)-C(sp®) cross-couplings deploying a di-Boc amide derived from a common
primary amide bond. The method provides a rare example of air- and moisture-stable, well-defined and highly reactive Pd-NHC

precatalysts in B-alkyl-Suzuki cross-couplings.

The cross-coupling of amides represents a powerful route to
carbon—carbon and carbon—heteroatom bond formation by
engaging traditionally inert amide bonds (amidic resonance,
15-20 kcal/mol, ny—m’c—o conjugation).'= Direct functionali-
zation of amides has recently become an important goal in
organic synthesis*® especially due to the potential to unlock
Weinreb amide-type reactivity of amides’ by catalytic metal
insertion with much improved functional group tolerance,
chemoselectivity'® and operational convenience by avoiding
strong organometallic reagents. Furthermore, the direct activa-
tion of amides by N-Boc or N-Ts protection offers significant
advantages to manipulate common primary and secondary
amide bonds,!! providing a new synthetic disconnection for
the construction of functionalized molecules from ubiquitous
amides.'” Despite recent progress in C(acyl)-aryl cross-
couplings of amides®*% 8, alkylation of amide bonds by transi-
tion-metal-catalysis remains a significant challenge due to
competing P-hydride elimination/protodemetallation decom-
posing the organometallic and slower transmetallation.!® In
previous work, Ni-catalyzed alkylation of N-Ts activated am-
ides using alkylzinc reagents and Ni-catalyzed alkylation of N-
Ph/Me activated amides using alkylborane reagents has been
reported.’* Furthermore, a Ni-catalyzed reductive C(acyl)—
alkyl cross-coupling of N-acyl-succinimide amides has been
reported.* We turned our attention to the B-alkyl Suzuki
cross-coupling'® of amides using Pd-catalysis to promote se-
lective formation of acyl-metal from more challenging N-Boc
and N-cyclic amides that are inaccessible by Ni-catalysis.

Herein, we report a highly chemoselective, palladium-NHC
(NHC = N-heterocyclic carbene)-catalyzed, direct cross-
coupling between B-sp*-alkyl reagents and activated amides
by N—C(O) cleavage (Figure 1). Various amides, including
challenging primary amides after direct and site-selective N,N-
di-Boc activation and sensitive N-glutarimide amides,**" are
compatible with this method. The potential of this mild proto-
col is demonstrated in sequential C(sp?)—C(sp?)/C(sp*)—C(sp*)
cross-couplings deploying a common primary amide bond.
Most importantly, the method expands the well-developed
manifold of Pd-catalyzed Suzuki-Miyaura aryl cross-coupling
of amides to the B-alkyl cross-coupling using versatile or-
ganoboron reagents.'® Furthermore, the method provides a rare
example of air- and moisture-stable, well-defined and highly
reactive Pd-NHC precatalysts in B-alkyl-Suzuki cross-
couplings.'®

Table 1 presents key results obtained during the optimiza-
tion of the reaction conditions. To test the B-alky-Suzuki
cross-coupling, we selected N,N-di-Boc activated benzamide.
The site-selective N,N-diacylation of the 1° amide bond allows
a significant decrease in amidic resonance (Er = 7.6 kcal/mol)
and engages common benzamides in general cross-coupling
manifolds.!! However, the major challenge is the propensity of
the N-Boc group to undergo scission, deactivating the acyl
amide bond towards metal insertion. To our delight, we ob-
served the desired B-alkyl Suzuki alkylation product using
[(IPr)Pd(cin)Cl] precatalyst'’ (3 mol%) in a promising 56%
yield at room temperature (Table 1, entry 1) using n-CioH2:-9-



BBN (2.0 equiv) in the presence of K,CO; as a base. Im-
provement in the reaction efficiency was realized by increas-
ing the reaction temperature to 65 °C (entry 2); however, the
reaction was less efficient using an excess of base (entry 3),
consistent with facile decomposition of the alkyl-
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Figure 1. Palladium/NHC-catalyzed B-alkyl Suzuki-Miyaura cross-
coupling of amides by selective N—C cleavage (previous and this work).
organometallic.'®* The addition of water had a minor, but posi-
tive effect on the reaction efficiency (entry 4); however, our
attempts to generate the more reactive acylammonium species
in situ by using Lewis bases* did not result in noticeable im-
provements of the reaction efficiency (entry 5). Further opti-
mization revealed that yields could be dramatically improved
by employing 6 mol% of the Pd-NHC precatalyst (entries 6-7),
consistent with the difficulty of the cross-coupling. Tuning of
different bases and solvents demonstrated that a combination
of K,COs and THF is preferred for this coupling (entries 8-
11). An extensive screen of various Pd-NHC precatalysts
(Figure 2) identified [(IPr)Pd(cin)CI] as essential for this cou-
pling (Table 2, entries 12-16). Of note, changes in the throw-
away ligand ([(IPr)Pd(allyl)Cl], [Pd-PEPPSI-IPr]) and in the
NHC scaffold ([(IMes)Pd(cin)Cl], [(SIPr)Pd(cin)CI]) resulted
in significantly diminished yields.'® However, we identified
the [(IPr)Pd(1-#-Bu-ind)CIl] precatalyst as a promising Pd(II)-
NHC precatalyst' for the B-alkyl-Suzuki cross-coupling of
amides. In line with previous studies and the high reactivity of
the preformed Pd(IT)-NHC precatalysts, control experiments in
the absence of the catalyst and using representative Pd-PRj
conditions, ' revealed the requirement for a strong 6-donating
Pd-NHC in this cross-coupling protocol.

With the optimized conditions in hand, we tested the pre-
parative scope of the reaction using N,N-di-Boc amide as a
standard electrophile (Table 2). Pleasingly, this challenging
alkylation reaction tolerates a range of B-alkyl-9-BBN rea-
gents, including those with simple (entries 1-2) and sensitive
functional groups such as ether (entry 3), imide (entry 4), in-
dole (entry 5) and ester (entry 6). While in some cases the
yield is modest, the reaction provides a proof-of-concept and a
simple method for selectively installing functionalized alkyl
groups from amides derived from common primary ben-
zamides in a catalytic manner. Furthermore, we were pleased
to find that a variety of amides is tolerated in this B-alkyl-
Suzuki  cross-coupling.  Most interestingly, = N-acyl-

glutarimides that feature two activated carbonyl groups®® were
selectively cross-

Table 1. Optimization of Palladium-NHC-Catalyzed
Cross-Coupling by N-C Cleavage”
o o
(j/ ff,},,Boc . Me@/s\g cat. [Pd], L ©)%/Z\Me
Boc F conditions
1 2 3

entry catalyst base solvent ¢ (°C) yield (%)

1 (IPr)Pd(cin)Cl1 K,CO; THF 23 56
2 (IPr)Pd(cin)Cl K,CO; THF 65 67
3¢ (IPr)Pd(cin)Cl1 K,CO; THF 65 48
4¢ (IPr)Pd(cin)Cl1 K,CO; THF 23 70
5¢ (IPr)Pd(cin)Cl K,CO; THF 23 53
6 (IPr)Pd(cin)Cl1 K,CO; THF 23 84
(IPr)Pd(cin)Cl K,CO; THF 65 91

8 (IPr)Pd(cin)Cl1 Cs,CO; THF 23 <5
9 (IPr)Pd(cin)Cl K;PO,  THF 23 27
10 (IPr)Pd(cin)Cl K,CO;  toluene 23 28
11 (IPr)Pd(cin)Cl K,CO; Et,O 23 21
12 (IPr)Pd(allyl)Cl K5PO, THF 23 5
13 (IMes)Pd(cin)Cl K,CO;  THF 23 7
14 (SIPr)Pd(cin)Cl K,CO;  THF 23 21
15 Pd-PEPPSI-IPr K,COs THF 23 15
16 (IPr)Pd(1-z-Bu-ind)Cl  K,COs THF 23 57
17 - K,COs THF 23 <5
18¢ Pd(PPhs), Cs,CO;  THF 110 <5

“Conditions: 1 (1.0 equiv), n-C;oH2;-9-BBN (2.0 equiv), catalyst (3-6 mol
%), base (3.0 equiv), solvent (0.25 M), 23-110 °C, 15 h. Entries 1-5: [Pd]
(3 mol %), entries 6-17: [Pd] (6 mol %). "K,COs (4.5 equiv). < H,O (10
equiv). “Et:N (30 mol %). [Pd] (5 mol %). See SI for experimental de-
tails.
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Figure 2. Structures of palladium-NHC precatalysts.

coupled at the exo-cyclic N-acyl bond, attesting that this cata-
lytic system is selective for cleavage of N—C(O) bonds (entries
7-12). Furthermore, N-Ph/Boc and atom-economical N-Ph/Ms
amides that can be prepared directly from common secondary
amides readily participated in this coupling (entries 13-14).3°
Finally, we found that even sensitive N-benzoyl-saccharin that
typically undergoes CO addition to the saccharine ring and
SO, cleavage with strong organometallics,*® delivered the

2



desired coupling product, albeit in a modest yield (entry 15).
At present, ortho-methyl benzoic acid derived amides have not

Table 2. Palladium-NHC-Catalyzed Alkylation of Amides by N-C Cleavage®*?
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73

48
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46

32

71
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34

aConditions: A: 1 (1.0 equiv), 2 (2.0 equiv), (IPr)Pd(cin)Cl (6 mol %), K»CO; (3.0 equiv), THF (0.25 M), 23 °C, 15 h. B: 65 °C. C: (IPr)Pd(1-t-Bu-ind)CI (6

mol %), 65 °C. See SI for experimental details. *Isolated yields.



been tested. At this stage, a-branched alkyl boron reagents are
not tolerated. The reaction can be routinely set up under open
air conditions. Future studies will be focused on further opti-
mization of reaction conditions and application to multicom-
ponent reactions.

We speculated that the potential of this mild alkylation pro-
tocol could be demonstrated in sequential C(sp?)—
C(sp?)/C(sp?)~C(sp®) cross-couplings employing amides de-
rived from common primary amide bonds. To this end, site-
selective N,N-di-Boc activation of 4-iodobenzamide, followed
by aryl Suzuki cross-coupling and C(acyl)-B-alkyl Suzuki
cross-coupling have been accomplished with a high degree of
efficiency and excellent chemoselectivity (Scheme 1). Of note,
aryl Suzuki cross-coupling could be readily performed in the
presence of the electrophilic N,N-di-Boc amide, which togeth-
er with the B-alkyl regime allows for a strategically valuable
disconnection typical to Weinreb amides, but in a catalytic
manner.

Scheme 1. Sequential Cross-Coupling of 1° Amides

site-selective Pd-catalyzed

fo) N-activation o Suzuki coupling
Boc,0, Et;N Pd(OAc), (1 mol %)
NH, 2 3 ’Y,Boc
| CH,Cl,, 23 °C |5 Boc PhB(OH),, Na,CO3

[88% yield] EtOH:H,0, 23 °C

98% yield
Pd-catalyzed alkylation [ ;yle 1
(IPr)Pd(cin)CI (6 mol %)

o
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In conclusion, we have reported a new method for highly
chemoselective, palladium-NHC-catalyzed, direct cross-
coupling between B-sp*-alkyl reagents and activated amides
by N-C acyl cleavage. This protocol is compatible with vari-
ous amides, including challenging primary amides after direct
and site-selective N,N-di-Boc activation and sensitive N-
cyclic amides. The method delivers chemoselective alkylation
products of amides that are inaccessible by applying strong
organometallic reagents. We have further demonstrated the
utility of the method in sequential C(sp?)—~C(sp?)/C(sp?)—C(sp?)
cross-couplings employing amides derived from common pri-
mary amide bonds. Further studies will focus on optimization
of the catalyst system and reaction parameters to expand the
substrate scope and mechanistic investigations to facilitate
further reaction development.
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