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ABSTRACT: We report the Pd-catalyzed acyl and the Ni-catalyzed biaryl Suzuki-Miyaura cross-coupling of N-acetyl-amides with 
arylboronic acids by selective N–C(O) cleavage. Activation of the amide bond by N-acylation provides electronically-destabilized, 
acyclic, non-planar amide, which readily undergoes cross-coupling with a wide range of boronic acids to produce biaryl ketones or 
biaryls in a highly efficient manner. Most crucially, the presented results introduce N-acetyl-amides as reactive acyclic amides in 
the emerging manifold of transition-metal-catalyzed amide cross-coupling. The scope and origin of high selectivity are discussed. 
Mechanistic studies point to re-modeling of amidic resonance and amide bond twist as selectivity determining features in a unified 
strategy for cross-coupling of acyclic amides. Structural studies, mechanistic investigations as well as beneficial effects of the N-
acyl substitution on cross-coupling of amides are reported.  

Cross-coupling reactions of amides have been established as a 
powerful route to functionalization of the ubiquitous amide 
bond essential in organic synthesis (Figure 1).1,2 Direct inser-
tion of a transition metal into the traditionally-inert amide 
bond generates a versatile acyl-metal intermediate A as an 
enabling platform for chemical synthesis.3,4 Amides are partic-
ularly attractive targets for metal-induced functional-group 
interconversion5 due to their fundamental significance as ver-
satile synthetic intermediates and central role as key building 
blocks in the production of biologically-active compounds.6, 7 
As a result, converting common amides into high value func-
tional groups has a transformative effect on synthetic design.   

In principle, transformations at the C(acyl) amide bond are 
founded on the steric and electronic re-modeling of amidic 
resonance that further benefits from trigonal nitrogen geome-
try enabling controlled variation of sterics and amidicity.8–10 
The development of well-defined amide precursors permits a 
rational approach to cross-coupling reactions of amides and 
sets the stage for methodological advances.11–16 One main ob-
stacle is that the cleavage of the N–X bond (X = Ts, Boc) is a 
major side reaction in Pd(0) and Ni(0)-catalyzed amide N–

C(O) cross-coupling, which limits, in particular, the scope of 
valuable decarbonylative processes of amides to N-cyclic am-
ides.17–22 Thus, the development of new amide precursors that 
are compatible with various reaction pathways is critical to 
fully exploit the potential of amides in cross-coupling.1–4       

Herein, we report the first Pd-catalyzed acyl and Ni-
catalyzed decarbonylative Suzuki-Miyaura cross-coupling of 
N-acetyl-amides with arylboronic acids (Figure 2). Most cru-
cially, the presented results introduce N-acetyl-amides as the 
most reactive acyclic amides developed thus far in the emerg-
ing manifold of transition-metal-catalyzed amide cross-
coupling. Notable features of our findings include: (i) unprec-
edented N–C(O) cleavage reactivity induced by the acyl group 
(ii) exceptionally high stability under the reaction conditions 
that avoids shutting-off N–X scission, (iii) reagent-controlled 
fully chemoselective divergent23 acyl and decarbonylative 
coupling, (iv) the first example of the biaryl Suzuki-Miyaura 
cross-coupling24 of simple acyclic amides, (v) in contrast to 
the recently reported precursors, versatile synthesis from sec-
ondary and primary amides that engenders a broad generality 
of this reactivity platform. As a key design element, structural 
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and mechanistic studies point to re-modeling of amidic reso-
nance9,10 and amide bond twist8 as selectivity determining 
features in a unified strategy for cross-coupling of acyclic 
amides. We expect N-acetyl amides as generic precursors in  

 
Figure 1. Metal-catalyzed activation of amides.  

 
Figure 2. (a) Acyl and decarbonylative cross-coupling of acyclic amides. 
(b) Twist-enabled activation of the amide bond (this work). 

amide bond cross-coupling to greatly expand the scope of 
direct functionalization of amides due to the inherent steric 
and electronic advantages that determine the reactivity and 
selectivity of these processes.2,9,10  

Recently, our laboratory introduced N-acyl-glutarimides for 
the cross-coupling reactions by N–C(O) amide cleavage.22 
These cyclic amide precursors have now been established as 
by far the most reactive amide derivatives in the powerful 
amide bond cross-coupling manifold, enabling the develop-
ment of more than 10 previously unknown catalytic modes of 
reactivity of the amide bond.1–4,22 Despite the success of N-
acyl-glutarimides, these precursors lack generality in that they 
cannot be prepared from common and readily available prima-
ry and secondary amides. A critical design feature of N-acyl-
glutarimides is the combination of amide bond twist and reso-
nance destabilization in a rotationally-inverted amide scaf-
fold.9b Drawing from our mechanistic insights,9d we envi-
sioned that glutarimide ring de-construction could retain the 
capacity of amides to undergo facile metal insertion under 
mild conditions (Figure 2B), while enabling a broad range of 
common acyclic amides to be employed as viable precursors 
to acyl-metal intermediates A in the coupling (Figure 1). To 
test this concept, we selected acyl Suzuki-Miyaura cross-
coupling as a representative transformation.  

After extensive optimization, we established than the reac-
tion of N-acetyl amide 1 with 4-Tol-B(OH)2 (2.0 equiv) in the 
presence of Pd(OAc)2 (3 mol%) and PCy3HBF4 (12 mol%) in 
combination with K2CO3 (2.5 equiv) and H3BO3 (2.0 equiv) in 
toluene at 60 °C resulted in a quantitative conversion to the 
biaryl ketone 3 (Table 1, entry 1). Furthermore, the reaction at 

40 °C afforded 3 in 82% yield (Table 1, entry 2), demonstrat-
ing the superior reactivity of N-Ac-amide 1 over other precur-
sors.2 Selected optimization results are summarized in Table 1. 
Exploration of different solvents and bases revealed that a  

Table 1. Optimization of Palladium-Catalyzed Cross-

Coupling of N-Ac Amides by N–C Cleavagea 

 

entry catalyst  ligand base  solvent  
yield 
(%)  

1 Pd(OAc)2 PCy3HBF4 K2CO3 toluene >98 

2b Pd(OAc)2 PCy3HBF4 K2CO3 toluene 82 

3 Pd(OAc)2 PCy3HBF4 Na2CO3 THF 92 

4 Pd(OAc)2 PCy3HBF4 Na2CO3 dioxane 62 

5 Pd(OAc)2 PCy3HBF4 Na2CO3 toluene 70 

6 Pd(OAc)2 PCy3HBF4 K2CO3 THF 91 

7 Pd(OAc)2 PCy3HBF4 K2CO3 dioxane 89 

8 Pd(OAc)2 PCy3HBF4 K3PO4 THF 49 

9 Pd(OAc)2 PCy3HBF4 K3PO4 dioxane 53 

10 Pd(OAc)2 PCy3HBF4 K3PO4 toluene 72 

11c Pd(OAc)2 PCy3HBF4 Na2CO3 THF 82 

12c Pd(OAc)2 PCy3HBF4 K2CO3 THF 27 

13c Pd(OAc)2 PCy3HBF4 K3PO4 THF 35 

14 Pd(OAc)2 PCy2Ph K2CO3 toluene 44 

15 Pd(OAc)2 PCyPh2 K2CO3 toluene <2 

16 Pd(OAc)2 PPh3 K2CO3 toluene <2 

17 Pd(OAc)2 P(o-Tol)3 K2CO3 toluene <2 

18 Pd(OAc)2 P(n-Bu)3 K2CO3 toluene 89 

19 Pd(OAc)2 P(t-Bu)3 K2CO3 toluene <5 

20 Pd(OAc)2 XPhos K2CO3 toluene 79 

21 Pd(OAc)2 XantPhos K2CO3 toluene 10 

22d Pd(OAc)2 PCy3HBF4 K2CO3 toluene 84 

23e Pd(OAc)2 PCy3HBF4 K2CO3 toluene 91 

24f Pd(OAc)2 PCy3HBF4 K2CO3 toluene 76 

25g Pd(OAc)2 PCy3HBF4 K2CO3 toluene 83 
aConditions: amide (0.20 mmol, 1 equiv), Ar-B(OH)2 (0.40 mmol, 2.0 
equiv), catalyst (3 mol%), ligand (12 mol%), base (2.5 equiv), H3BO3 (2.0 
equiv), solvent (0.20 M), 60 °C, 15 h. b40 °C. c Without H3BO3. dligand (3 
mol%). eligand (6 mol%). fAr-B(OH)2 (1.2 equiv). gAr-B(OH)2 (1.5 equiv). 
See SI for details. 

combination of K2CO3 and toluene was optimal (entries 3-10). 
Interestingly, we found that the addition of boric acid to pre-
sumably induce switchable N-/O-activation of the amide 
bond9b and prevent protodeboronation24 had a positive effect 
on the coupling (entries 11-13). We hypothesize that H3BO3 
promotes the coupling by protonation of the acyl oxygen atom, 
which further decreases amidic resonance and activates the 
amide bond towards the coupling. Most notably, the nature of 
the ligand had a profound impact on the coupling and PCy3 
proved to be the most effective (entries 14-21). This phosphine 
emerges as a privileged ligand in Pd-catalyzed amide bond 
activation, presumably due to highly electron-rich nature and 
well-fitted steric impact on the Pd center (cf. t-Bu3P).3 Exami-
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nation of different Pd/ligand stoichiometry revealed that effi-
cient coupling ensues with a close to 1:1 Pd:ligand ratio, con-
sistent with facile insertion/transmetallation in the catalytic 
cycle (entries 22-23). Finally, even when the amount of bo-
ronic acid was decreased to 1.2-1.5 equiv, the desired ketone 
was obtained in good yields at 60 °C (76-83%), providing an 
entry point for future studies (entries 24-25), and consistent 
with a rate-determining transmetallation. Importantly, under 
the optimized conditions, scission of the alternative N–C  

Scheme 1. Boronic Acid Scope in the Palladium-Catalyzed 

Cross-Coupling of N-Ac Amidesa,b  

 

aConditions: amide (0.20 mmol, 1.0 equiv), Ar-B(OH)2 (0.40 mmol, 2.0 
equiv), Pd(OAc)2 (3 mol%), PCy3HBF4 (12 mol%), K2CO3 (2.5 equiv), 
H3BO3 (2.0 equiv), toluene (0.20 M), 60 °C, 15 h. bIsolated yields. c120 
°C. See SI for details. 

bond shutting-off the reactivity was not observed, indicating 
high propensity of the N-acyl-amide to undergo chemoselec-
tive N–C(O) oxidative addition.   

With optimal reaction conditions in hand, we next turned 
our attention to the scope of boronic acids that can participate 
in this reaction (Scheme 1). As shown, a wide range of bo-
ronic acids bearing electron-neutral (3a), electron-donating 
(3b-c) and electron-withdrawing (3d-g) substituents is com-
patible with this coupling. Particularly noteworthy is that elec-
trophilic-functional groups that would be problematic in the 
classic organometallic additions,25 including esters (3e), ke-
tones (3f) and aldehydes (3g) are well-tolerated. Furthermore, 
steric-hindrance (3h-i), polyaromatics (3i-j) and electrophilic 
nitro (3l) and cyano groups (3m) can be readily employed in 
this coupling. Finally, fluorinated boronic acids (3o) and het-
eroaromatics (3p) important from the medicinal chemistry26 
and functional materials standpoints27 deliver the biaryl ketone 
products in good to excellent yields.  

We next turned out attention to the scope of N-acetyl-
amides that can participate in this coupling (Scheme 2). As 
shown, substrates with electron-donating (3b’-c’) and with-
drawing (3d’-f’, 3q-t) substituents reacted well under our op-
timized conditions. Moreover, an aryl chloride (3r) was toler-
ated under the reaction conditions, providing handle for se-
quential cross-coupling. Of note, this rare selectivity28 in tran-
sition-metal-catalyzed amide activation (amide > Cl) indicates 
high and synthetically-useful N–C(O) coupling reactivity of 
N-acetyl amides. Perhaps most notably this method can be  

Scheme 2. Amide Scope in the Palladium-Catalyzed Cross-

Coupling of N-Ac Amidesa,b 

 

aConditions: amide (0.20 mmol, 1.0 equiv), Ar-B(OH)2 (0.40 mmol, 2.0 
equiv), Pd(OAc)2 (3 mol%), PCy3HBF4 (12 mol%), K2CO3 (2.5 equiv), 
H3BO3 (2.0 equiv), toluene (0.20 M), 60 °C, 15 h. bIsolated yields. 
cPhB(OH)2 (1.2 equiv). dPhB(OH)2 (3.0 equiv), K2CO3 (4.5 equiv), 120 
°C. See SI for details. 

applied to a wide variety of amides bearing electrophilic 
groups, including nitro (3s), cyano (3t), ester (3e’) and ketone 
(3f’) that would be incompatible with the classic Weinreb 
ketone synthesis,25 demonstrating a significant advantage from 
the practical standpoint. Furthermore, ortho-fluoro-substitution 
(3u) poised for derivatization by SNAr is well-tolerated. Final-
ly, polyaromatic amides prone to decarbonylation (3j’)12d as 
well as heterocyclic amides (3v) delivered the desired product 
in good yields. In general, other by-products than the PhN(Ac) 
leaving group have not been observed. At the present stage of 
reaction development aliphatic amides are beyond the scope of 
the reaction. Alkyl boronic acids as well as N-heterocycles, 
such as pyridine, indole and quinoline, have not been tested. 
Future studies will be aimed at expanding the substrate scope 
of amide bond cross-coupling.   

We were pleased to find that the method can also be applied 
to the coupling of challenging N-Ac/alkyl amides (Scheme 3),2 
demonstrating a broad generality of the N-acetyl activation 
platform.   

Furthermore, the coupling using Pd-NHC catalysts is feasi-
ble (Scheme 4).29 The use of well-defined Pd(II)-NHC 
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prectalysts provides significant advantages in cross-coupling 
manifolds.30  

Turnover numbers (TON) of 970, 3100, 3500 were deter-
mined for the cross-coupling of amide 1a (Pd(OAc)2/PCy3, 
0.10 mol%, 60 °C; 0.025 mol%, 60 °C; Pd-PEPPSI-IPr, 
(IPr)Pd(cin)Cl, 0.025 mol%, 60 °C) (Scheme 5). This is the 
highest TON determined for Pd-catalyzed amide N–C activa-
tion reported to date for both Pd-PR3 and Pd-NHC catalysts,29 
clearly demonstrating the high activity and the advantage of 
N-acetyl-amides in the Suzuki-Miyaura cross-coupling.  

To gain insight into the mechanism, preliminary experi-
ments were conducted (Scheme 6). (1) Electron-deficient am-
ides are inherently more reactive (4-CF3:4-MeO = 91:9). (2) 
Electron-rich nucleophiles react preferentially (4-MeO:4-CF3 
= 77:23). (3) The reactivity order with respect to the amide 
activating group is as follows: N-Ac/R >> N-R/Ts, N- 

Scheme 3. Cross-Coupling of N-Ac/Alkyl Amides 

 

Scheme 4. Cross-Coupling using Pd(II)-NHC Catalysts 

 

Scheme 5. Determination of TON in the Cross-Coupling of 

N-Ac Amides 

 
Scheme 6. Competition Experiments 

 

Scheme 7. Synthesis of N-Ac Amides from 1° or 2° Amides  

  

R/Boc, N-Ar/R (anilide). Clearly, the high reactivity of N-
acyl-amides provides the advantage in the amide bond activa-
tion platform.  

To further expand the synthetic utility of N-Ac-amides, we 
demonstrated that N-Ac amides can be readily prepared from 
unactivated secondary amides by chemoselective N-acylation 
(Scheme 7). Since methods for the synthesis of secondary 
amides from primary amides are well-established,31 the N-Ac-
amide reactivity platform provides rapid entry to acyl-metal 
intermediates A (Figure 1) from common unactivated amides. 
Hence, as a pivotal synthetic advantage, the amide bond cross-
coupling could thus benefit from engaging common amides in 
this cross-coupling platform.  

Having established the high reactivity of N-Ac-amides, we 
next sought to demonstrate the generality of these amide pre-
cursors. Considering the tremendous importance of biaryl Su-
zuki-Miyaura cross-coupling in the field of organic synthe-
sis,24 we selected decarbonylative Suzuki-Miyaura coupling as 
a representative transformation. Since thus far only one exam-
ple of decarbonylative Suzuki-Miyaura cross-coupling of am-
ides has been reported, we were attracted to this challenge.12b 
The use of acyclic amides in biaryl Suzuki cross-coupling 
would represent a significant advance for implementing the 
biaryl transform in cross-coupling reactions.  

After extensive optimization (see SI for optimization de-
tails), we identified conditions to effect decarbonylative 
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Scheme 8. Nickel-Catalyzed Suzuki-Miyaura Biaryl Synthesis through Cross-Coupling of N-Ac Amidesa,b  

 

aConditions: amide (1.0 equiv), Ar-B(OH)2 (1.5 equiv), Ni(PCy3)2Cl2 (5 mol%), base (4.5 equiv), dioxane (0.25 M), 150 °C, 15 h. bIsolated yields. cAr-
B(OH)2 (3.0 equiv). See SI for details. 

Suzuki-Miyaura cross-coupling of N-Ac-amides with exquisite 
decarbonylation selectivity (Scheme 8). We found that a cata-
lytic system based on inexpensive, 3d transition metal, Ni, 
[Ni(PCy3)2Cl2, 5 mol%] in the presence of Na2CO3 as a base in 
dioxane at 150 °C provided optimum results. Other Ni(II) 
precatalysts, bases and solvents were screened (see SI), and 
provided inferior results. The high reactivity of the developed 
catalyst system is highlighted in the Suzuki biaryl coupling of 
24 unique substrate combinations to produce biaryls bearing 
electronically-differentiated substitution on both the boronic 
acid and the amide coupling component (Scheme 8, 4a-q). 
Importantly, electron-neutral (4a, 4d, 4f, 4c’, 4h), electron-
rich (4e’, 4j, 4k) and even electron-deficient nucleophiles (4b, 
4c, 4e, 4g, 4i, 4l) that are typically less reactive in transmetal-
lation32 are well-tolerated in this coupling. Furthermore, the 
reaction is compatible with the synthesis of highly electron-
deficient poly-fluorinated biaryls (4l, 4g, 4i’, 4o-p) that have 
widespread application in academic and industrial research.26 
Importantly, ketone-containing substrates that are problematic 
in the related Suzuki-Miyaura cross-coupling of esters18b are 
well-tolerated (4c, 4c’, 4g, 4g’). The reaction is also compati-
ble with steric hindrance as demonstrated by the synthesis of 
ortho-substituted biaryls from either the boronic acid (4m) or 
amide component (4m’). Overall, the high efficiency and se-
lectivity of this reaction compares very well with the known 
examples of the Suzuki biaryl coupling of amides and esters. 
The superb selectivity for decarbonylation (>20:1 in all exam-
ples examined) bodes well for the general use of N-Ac-amides 

in decarbonylative reactions of amides in lieu of aryl halides 
and pseudohalides.3,24  

Studies were conducted to gain insight into the mechanism 
of the biaryl coupling and compare the reactivity with N-
glutarimides, thus far the only other type of amides to undergo 
decarbonylative Suzuki coupling (Scheme 9). (1) Intermolecu-
lar competition experiments revealed that electron-deficient 
arenes are inherently more reactive (4-CO2Me:4-Me = 86:14, 
cf. glutarimide, 4-CO2Me:4-Me = 87:13), consistent with oxi-
dative insertion. (2) Furthermore, intermolecular competition 
experiments revealed that the electronic nature of boronic acid 
does not significantly affect the reactivity11b (4-t-Bu:4-CO2Me 
= 56:44, cf. glutarimide, 4-4-t-Bu:4-CO2Me = 49:51). (3) 
Moreover, sterically-demanding amides are less reactive than 
their non-hindered counterparts (4-Me:2-Me = 78:22, cf. glu-
tarimide, 4-Me:2-Me = 21:79), while the steric hindrance on 
boronic acid does not significantly affect the reactivity (4-
Me:2-Me = 54:46, cf. glutarimide, 4-Me:2-Me = 40:60). Col-
lectively, the studies provide strong support for amide bond 
activation by oxidative insertion of Ni(0) into the N–C(O) 
bond to afford acyl-Ni(II) intermediate. The high chemoselec-
tivity for the N–C(O) activation results from ground state de-
stabilization of the amide bond.9b The high selectivity for de-
carbonylative vs. acyl coupling suggests facile decarbonyla-
tion under the reaction conditions. 

To gain insight into the structural factors that control the 
high reactivity of N-Ac-amides, the X-ray structure of 1a was 
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determined (Figure 3). Remarkably, the amide shows approx-
imately half-twisted amide bond ( = 43.0°, N = 10.9°, C = 
3.4°). The N–C(O) and C=O bond lengths are 1.422 Å  and 
1.213 Å. In contrast, the N-Ac bond is virtually planar;  

 

Figure 3. (a) Crystal structure of 1a. (b) Newman projection along the N–
C(O) bond (PhCO–, top; Ac–, bottom). Bond lengths (Å) and angles 
(deg): N1–C1, 1.422(2); C1–O1, 1.213(2); C9–C1, 1.479(2); N1–C2, 
1.395(2); C2–O2, 1.209(2), C15–C2, 1.509(2); C9–C1–N1–C2, –140.8(2); 
O1–C1–N1–C3, –133.3(2); O1–C1–N1–C2, 35.8(2); C9–C1–N1–C3, 
50.1(2); C15–C2–N1–C3, –179.3(1); O2–C2–N1–C1, –170.6(1); O2–C2–
N1–C3, –1.5(2); C15–C2–N1–C1, 11.6(2). Note much weaker N1–C1(O) 
than N1–C2(O) bond.  

Scheme 9. Competition Experiments 

 

( = 5.1°, N = 10.9°, C = 2.2°). The N–C(O) and C=O bond 
lengths of 1.395 Å  and 1.209 Å in the N-Ac moiety further 
indicate a more pronounced resonance stabilization of the N-
Ac amide bond. The N-Ac C=O bond in 1a is antiperiplanar to 
the N–C(O) bond (170.6°), while the C–Me bond is antiperi-
planar to the N–Ar bond (179.3°). While compared with the 
amide bond distortion in N-benzoyl-glutarimide9b ( = 87.5°, 
N = 5.6°, C = 1.3°; N–C(O) = 1.475 Å, C=O = 1.200 Å), 
these values indicate less pronounced destabilization in 1a, the 
significant twist of the amide bond provides strong support for 
high chemoselectivity of the N–C(O) cleavage as a result of 

ground state destabilization by rotation. Cleavage of the alter-
native N-Ac bond is disfavored due to nN→*

C=O conjugation, 
as expected for a typical planar amide.10 The unique activity of 
N-Ac amides can thus be explained by classical amidic reso-
nance, whereby the diminution of the resonance is achieved by 
resonance and steric effects.   

Next, we conducted computational studies to determine the 
effect of N-Ac substitution on amide bond destabilization 
(Scheme 10 and SI). (1) Resonance energy (RE) determined 
by the COSNAR method8b show that (i) amidic resonance in 
1a (RE = 8.4 kcal/mol) is lower than in the planar amides, and 
this value is within the range for metal insertion under mild, 
chemoselective conditions;29a (ii) RE of the N-Ac group (RE = 
10.7 kcal/mol) confirms the energetic preference for activation 
of the twisted amide bond. (2) Rotational profile of 1a was 
determined by systematic rotation along the O–C–N–C(Ar) 
dihedral angle (Figure 4), and it identified the energy mini-
mum at ca. 40° O–C–N–C angle ( = 33.15°; N = 14.92°) in a 
syn O–C–N–C(Me) conformation (ca. 25.1° O–C–N–C(Me) dihe-
dral angle). The energy maximum is located at ca.180° O–C– 
N–C dihedral angle ( = 12.62°; N = 15.96°) in an antiperi-
planar O–C–N–C(Me) destabilizing conformation (ca. 164.0°  

Scheme 10. A) Effect of Acyl Group; B) Graphical Repre-

sentation of Acyl-Twisting Destabilization Mechanisma  

 
aNote a gradual increase of RE by changing a single N-substituent at the 
nitrogen atom. RE of MeCONMe2 = 18.3 kcal/mol.11  

-150 -100 -50 0 50 100 150

0

1

2

3

4

5

6

7
 PhCO

 Ac

 

 


E

 [
k
c
a
l/
m

o
l]

O−C−N−C []

Plot of Energy vs. O−C−N−C Dihedral Angle (1a)

Figure 4. Rotational profile (1a, E, kcal/mol, vs. O–C–N–C [°]). PhCO 
(red) indicates rotation along the PhCO–N axis; Ac (blue) indicates rota-
tion along the Ac–N axis. Rotational profile including planar DMAc 
(N,N-dimethylacetamide, E = 19.51 kcal/mol) is shown in the Support-
ing Information.   

O–C–N–C(Me) dihedral angle). In contrast, systematic rotation 
along the O–C–N–C(Ar) dihedral angle for the Ac group (Fig-
ure 4) reveals the energy minimum at ca. 0° O–C–N–C angle 
( = 9.35°; N = 15.07°), while the energy maximum is located 
at ca. 80° O–C–N–C dihedral angle ( = 85.93°; N = 12.91°), 
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as expected for planar amides.10 Thus, rotational profiles pro-
vide further evidence for the chemoselective N–C(O) cross-
coupling in N-Ac amides. (3) Determination of N-/O-
protonation affinities (PA) in 1a indicates that this amide 
strongly favors protonation at the amide oxygen atom (PA = 
15.8 kcal/mol, the planar N-Ac amide bond). Interestingly, 
protonation at the oxygen of the N-Ac group is strongly fa-
vored over the O-protonation of the twisted amide bond (PA 
= 10.9 kcal/mol, the twisted amide). Thus, O-protonation of 
the N-Ac group is an additional factor activating the N–C(O) 
twisted amide bond33 towards selective scission due to en-
hanced Nlp conjugation.  

Collectively, the structural and energetic parameters deter-
mined for the amide bond in 1a indicate amide twist and elec-
tronic destabilization imposed by the amide framework as 
empowering features for N–C(O) activation, thus providing 
the basis for chemoselective utilization of N-Ac amides in a 
wide range of cross-coupling protocols by acyl- and decar-
bonylative pathways.   

In conclusion, we have reported the first Pd-catalyzed acyl 
and Ni-catalyzed decarbonylative Suzuki-Miyaura cross-
coupling of N-acetyl-amides with arylboronic acids. The 
methods developed here represent divergent approaches to the 
widespread utilization of common acyclic amides in organic 
chemistry. Most crucially, this report introduces N-acetyl-
amides as the most reactive acyclic amides developed thus far 
in the burgeoning manifold of transition-metal-catalyzed am-
ide cross-coupling. The methods allow for a rapid access to a 
variety of biaryl ketones and biaryls from easily accessible 
acyclic amides with exceptional coupling selectivity. The high 
reactivity of N-Ac-amides allowed for the first example of the 
biaryl Suzuki-Miyaura cross-coupling of simple acyclic am-
ides.34 These biaryl products represent some of the most im-
portant building blocks in organic chemistry. Mechanistic and 
structural interrogations provided evidence for re-modeling of 
amidic resonance and amide bond twist as selectivity deter-
mining features in the cross-coupling of amides. We fully ex-
pect that knowledge gained in this study will inspire the de-
velopment of new synthetic methods. We anticipate N-Ac-
amides to be exploited as generic precursors in amide bond 
cross-coupling enabling previously inaccessible reactivity of 
the amide bond. Future studies will be aimed at investigating 
new amide electrophiles for cross-coupling.  
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