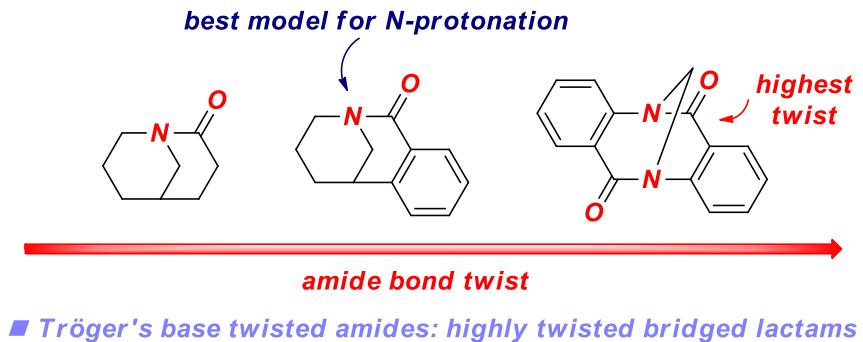


Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude

Roman Szostak[†] and Michal Szostak[†]*

[†]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States


[‡]Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

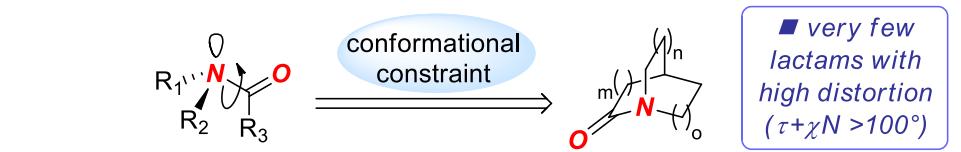
Corresponding author

michal.szostak@rutgers.edu

Abstract

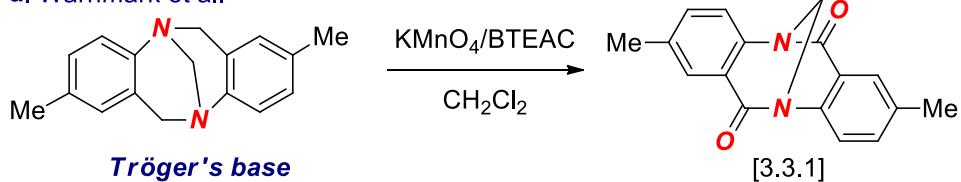
Tröger's base twisted amides have emerged as attractive scaffolds to readily achieve substantial non-planarity of the amide bond in a bicyclic lactam framework. Herein, we report structures and proton affinities of a diverse set of Tröger's base twisted amides and compare them with related non-planar bridged lactams. The data demonstrate that Tröger's base twisted amides embedded in a [3.3.1] scaffold are among the most twisted bridged lactams prepared to date. Intriguingly, while these amides also favor N-protonation, our data show that the best model for probing N-protonation aptitude in the series of non-planar amides are less twisted benzofused 1-azabicyclo[3.3.1]nonan-2-one derivatives. This work (1) provides the understanding for future design of non-planar bridged lactams to directly access N-protonated amide bonds, (2) validates the use of the additive Winkler-Dunitz distortion parameter, and (3) emphasizes the importance of peripheral modification to modulate properties of non-planar amides.

1. Introduction

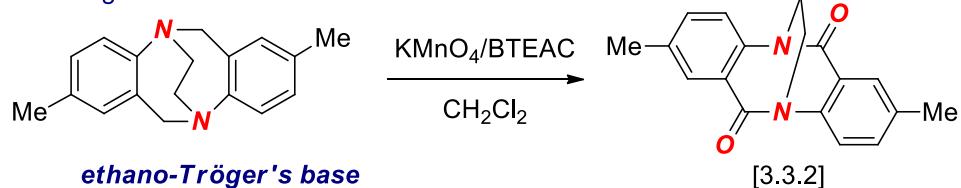

Twisted bridged lactams represent one of the most effective and wide-ranging methods to freeze the otherwise unstable conformations of the non-planar amide bond (Figure 1A).^{1–6} While 2-quinuclidone⁷ and 1-aza-2-adamantanone⁸ ring systems have been impressively applied to achieve full distortion of the amide bond, only very limited scaffolds have been prepared that enforce substantial non-planarity of the amide bond other than these two now classic ring systems.^{9,10}

Stimulated by our interest in the properties of non-planar cyclic¹¹ and acyclic¹² amides, we were attracted by the recently reported examples of Tröger's base twisted amides^{13,14} as models for a substantial twist of the amide bond. In 2012, Wärnmark and co-workers¹³ demonstrated that direct oxidation of the venerable Tröger's base scaffold¹⁵ can be used to afford a twisted bis-amide with a remarkable twist of the amide bond (Figure 1B, $\tau = 41.0^\circ$, $\chi_N = 57.9^\circ$, $N-C(O) = 1.430 \text{ \AA}$, $C=O = 1.210 \text{ \AA}$). In 2017, Cvengroš and co-workers¹⁴ reported the synthesis of an extended Tröger's base twisted amide using one-step oxidation of the ethano-Tröger's base¹⁶ (Figure 1B, $\tau = 29.8^\circ$, $\chi_N = 45.5^\circ$, $N-C(O) = 1.401 \text{ \AA}$, $C=O = 1.215 \text{ \AA}$). Since the Tröger's base twisted amides reported by Wärnmark and Cvengroš (1) represent rare examples of significantly twisted amides with the additive Winkler-Dunitz parameter¹⁷ approaching 100° ($(\tau + \chi_N) = 98.9^\circ$ and 75.3° , respectively), and in addition, (2) are prepared by a more facile and faster approach^{13,14} that related twisted amides,^{3,9,10} a better understanding of the structures and energetics could facilitate the design of novel twisted amides of both theoretical and practical synthetic interest.^{1–6,18–22} In this manuscript, we report a computational investigation into the structures and proton affinities of a diverse set of Tröger's base twisted amides and compare them with related non-planar bridged lactams.

Notable features of our findings include: (1) we demonstrate that Tröger's base twisted amides are significantly more twisted than related 1-azabicyclo[3.3.1]nonan-2-one derivatives; (2) Tröger's base twisted amides favor protonation at the nitrogen atom, however, our study shows that these compounds are less efficient in probing N-protonation aptitude of non-planar amides than related 1-


azabicyclo[3.3.1]nonan-2-one derivatives; (3) the study validates the use of the additive Winkler-Dunitz parameter. Collectively, the data provide the understanding for future design of non-planar bridged lactams to directly access N-protonated amide bonds, and will facilitate experimental efforts in predicting twist of non-planar amides that are energetically close to the N/O-protonation cross-over point.

A. Conformation restriction of the amide bond: non-planar bridged lactams



B. Synthesis of Tröger's base twisted amides

a. Wärnmark et al.

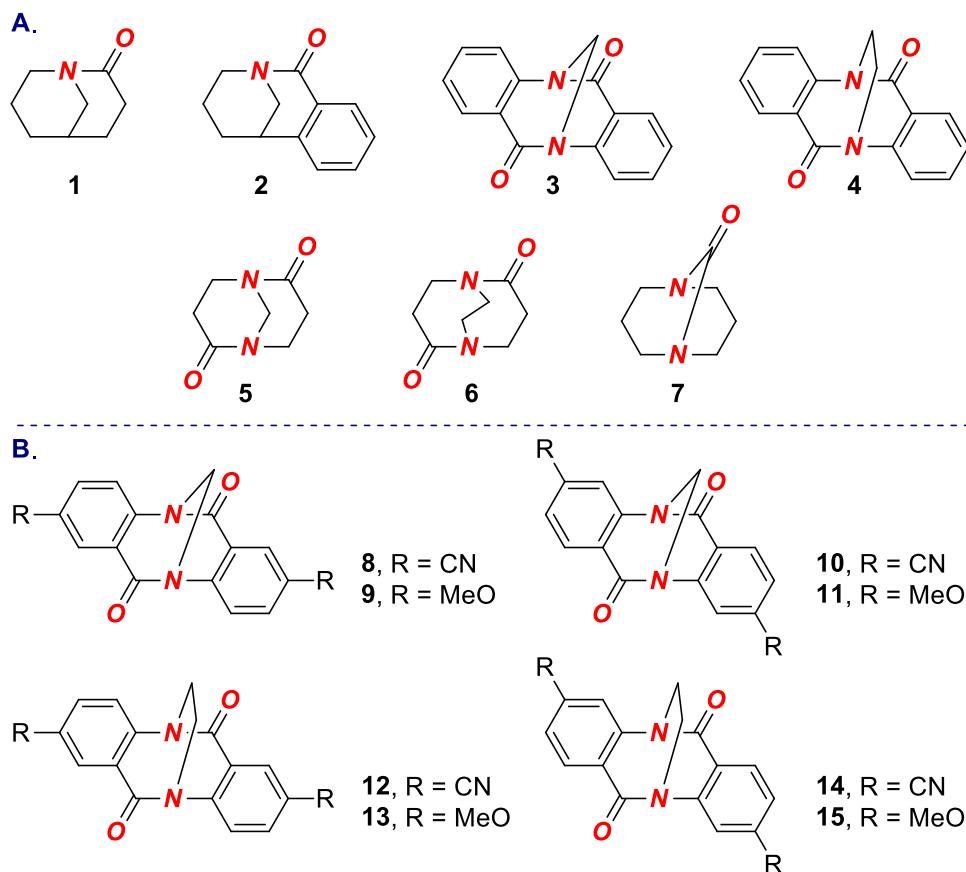
b. Cvengroš et al.

- high twist & distortion
- facile synthetic access
- conformational constraint
- unusual amide bond reactivity

Figure 1. (a) Conformational restriction of the amide bond. (b) Tröger's base twisted amides.

2. Results and Discussion

Twisted amides selected for the study are shown in Figure 2. These amides have been selected on the basis of their synthetic accessibility and distortion range of the amide bond. Structure and energetics of 1-azabicyclo[3.3.1]nonan-2-one (**1**) have been studied in the classic computational studies on bridged lactams by Greenberg and co-workers,^{18,9b} and this amide has been shown to be almost equi-energetic


with respect to N/O-protonation ($\Delta\text{PA} = -1.9$ kcal/mol, 6-31G* level) (Figure 2A). Benzofused 1-azabicyclo[3.3.1]nonan-2-one derivative (**2**) has been used by us to demonstrate N-alkylation and the subsequent σ N–C bond cleavage of bridged lactams.^{11a} Methyl-truncated Tröger's base twisted amides **3** and **4** are analogues of the amides reported by Wärnmark and Cvengroš, respectively.^{13,14} Amides **5** and **6** are Tröger's base analogous of **3** and **4** lacking benzene rings, while twisted urea **7** was selected on the basis of the potential bridgehead oxidation in the course of synthesis of **3**. Note that related bridgehead iminium ions are well-known.^{3a} Our study demonstrates that this compound would be fully twisted, and therefore likely unstable under the reaction conditions employed in the synthesis of **3**.

Furthermore, we selected substituted analogues of Tröger's base twisted amides **3** and **4** as an additional class of amides (Figure 2B). We hypothesized that detailed information about structures and energetics of representative analogues bearing strongly electron-withdrawing and electron-donating groups at the conjugating positions on the aromatic-rings would provide insights into the future design of Tröger's base twisted amide ring systems.

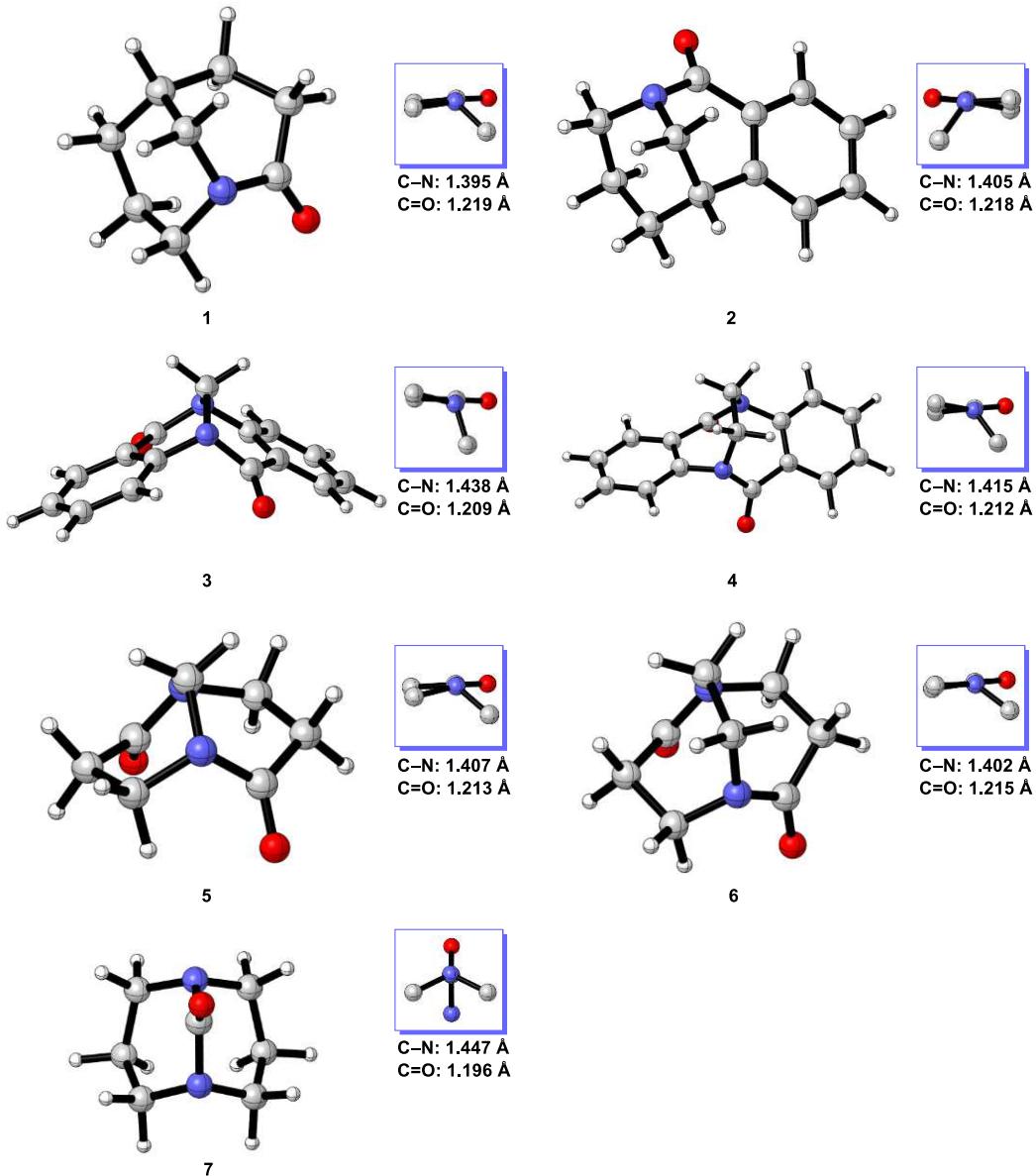
B3LYP/6-311++G(d,p) was selected to conduct geometry optimization as a result of excellent reproducibility of literature data and method practicality.^{12c,22c} Extensive studies have showed that this level is accurate in predicting geometries and energetics of non-planar amides. The method was further verified by obtaining good correlations between the calculated and X-ray structures in the study. Note that structures of the parent Tröger base twisted amides in the series have been reported.^{13,14} Previous studies have shown that the combination of structural and computational approach gives the best estimate of the structural and energetic properties in a series of non-planar amides.^{11,12}

Selected structural parameters relevant to amide bond distortion of amides **1–7** are listed in Table 1. For clarity, structural parameters of amides **8–15** are shown in Table 2. The data in Table 1 clearly demonstrate that in the series **1–3**, Tröger's base twisted amide **3** contains by far the most twisted amide bond (additive Winkler-Dunitz parameter, 70.1°, 87.5°, 97.5°, respectively). To our knowledge, amide **3** represents one of the most twisted bridged lactams isolated to date in its unprotonated form. Furthermore, Tröger's base twisted amide **4** embedded in a more flexible [3.3.2] scaffold features a

larger distortion than more constrained 1-azabicyclo[3.3.1]nonan-2-one **1** (78.0° vs. 70.1°). Comparison of amide bond distortion of **3-4** with Tröger's base twisted amide analogues lacking aromatic rings (**5-6**) (69.5° , 60.6°) demonstrates that the high distortion of **3-4** results from rigidifying effect of aromatic rings on the amide bond. The effect is mirrored in distortion of amide **2**. The increase is substantial, and corresponds to Δ of 17.5° (25% increase) for amide **2**, as well as Δ of 28.0° (40% increase) for amide **3** and Δ of 17.4° (29% increase) for amide **4**. In contrast, twisted urea **7** contains fully twisted amide bond (additive Winkler-Dunitz parameter, 143.1°). As such, this amide would not be expected to be stable under the experimental conditions employed for the synthesis of Tröger's base twisted amides; however, this compound would represent an interesting twisted urea model for future experimental studies. Optimized geometries of ring systems **1-7** together with Newman projections along the N–C(O) axis are presented in Figure 3.

Figure 2. Structures of model twisted lactams calculated in the current study.

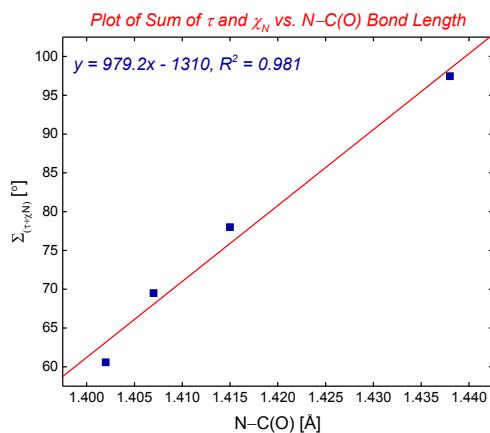
Table 1. Selected Geometric Parameters of Amides 1-7^a

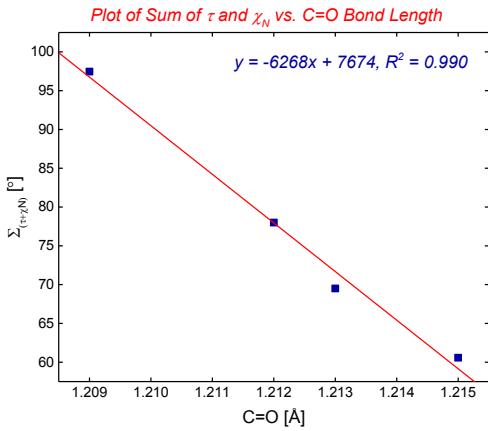

entry	amide	N-C(O) [Å]	C=O [Å]	τ [deg]	χ _N [deg]	τ+χ _N [deg]
1	1	1.395	1.219	20.91	49.18	70.09
2	2	1.405	1.218	36.56	50.93	87.49
3	3	1.438	1.209	41.92	55.54	97.46
4	4	1.415	1.212	37.16	40.84	78.00
5	5	1.407	1.213	15.89	53.62	69.51
6	6	1.402	1.215	24.14	36.44	60.58
7	7	1.447	1.196	90.00	53.05	143.05

^aThis study. Computed using B3LYP/6-311++G(d,p) level. Representative data on acyclic twisted amides: ref. 12a,b. Representative data on bridged lactams: ref. 11b,18a,b.

Table 2. Selected Geometric Parameters of Amides 8-15^a

entry	amide	N-C(O) [Å]	C=O [Å]	τ [deg]	χ _N [deg]	τ+χ _N [deg]
1	8	1.439	1.206	42.48	54.97	97.45
2	9	1.436	1.210	41.81	56.05	97.86
3	10	1.436	1.206	41.19	55.31	96.50
4	11	1.442	1.210	42.87	55.75	98.62
5	12	1.414	1.210	36.52	40.71	77.23
6	13	1.413	1.213	37.95	40.56	78.51
7	14	1.413	1.210	36.38	40.81	77.19
8	15	1.420	1.213	39.64	40.57	80.21


^aThis study. Computed using B3LYP/6-311++G(d,p) level. Representative data on acyclic twisted amides: ref. 12a,b. Representative data on bridged lactams: ref. 11b,18a,b.


Figure 3. Optimized geometries of bridged lactams **1-7** (B3LYP/6-311++G(d,p)). Insets show Newman projections along N–C(O) bonds. Bond lengths are given in Å. For optimized geometries of bridged lactams **8-15** (B3LYP/6-311++G(d,p)) see SI.

The study further validates the use of additive Winkler-Dunitz parameter ($\Sigma\tau+\chi_N$)^{17,12} to predict distortion of non-planar amides. Several features should be noted: (1) There is an excellent positive linear correlation between the sum of twist angles and nitrogen pyramidalization ($\Sigma\tau+\chi_N$) and the length of the N–C(O) bond for lactams embedded in the same scaffold (**3-6**, $R^2 = 0.98$) (Chart 1), while the plots of twist angle vs. N–C(O) bond length ($R^2 = 0.66$) or nitrogen pyramidalization vs. N–C(O) bond

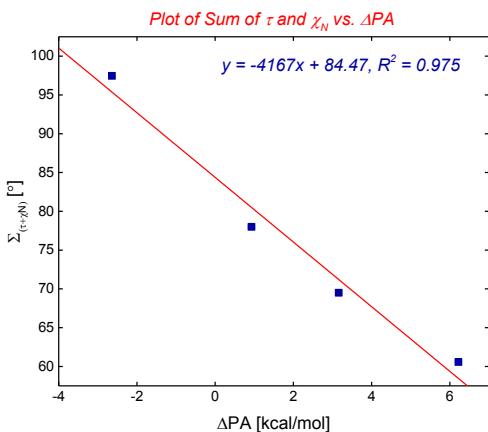

length ($R^2 = 0.39$) give scattered results. (2) Likewise, a plot of the sum of twist angles and nitrogen pyramidalization ($\Sigma\tau + \chi_N$) versus the length of C=O bond gives excellent negative linear correlation (3-6, $R^2 = 0.99$) (Chart 2), while the use of either twist ($R^2 = 0.57$) or nitrogen pyramidalization alone ($R^2 = 0.51$) gives inaccurate results. (3) The observed correlations clearly indicate that twisting of the amide bond from planarity in Tröger's base twisted amides leads to disruption of the $n_N \rightarrow \pi^*_{C=O}$ conjugation, which is reflected in a significant N–C(O) bond lengthening, while the C=O bond shortens. While one should be cautious in addressing a correlation based on four data points, (1) the data clearly show that there is a relationship between the additive Winkler-Dunitz parameter and energetic and structural properties of the amide bond in the studied scaffold, (2) the relationship is more accurate as compared to either twist or pyramidalization alone.

Chart 1. Correlation of the sum of twist and pyramidalization at nitrogen angles ($\Sigma\tau + \chi_N$, additive Winkler-Dunitz distortion parameter) to N–C(O) bond length for amides 3-6 (B3LYP/6-311++G(d,p) data).

Chart 2. Correlation of the sum of twist and pyramidalization at nitrogen angles ($\Sigma\tau+\chi_N$, additive Winkler-Dunitz distortion parameter) to C=O bond length for amides **3-6** (B3LYP/6-311++G(d,p) data).

Chart 3. Correlation of the sum of twist and pyramidalization at nitrogen angles ($\Sigma\tau+\chi_N$, additive Winkler-Dunitz distortion parameter) to ΔPA for amides **3-6** (B3LYP/6-311++G(d,p) data).

Since the additive Winkler-Dunitz parameter gives a much more accurate depiction of the structural features of the non-planar amide bond, it is critical that studies addressing properties of distorted amides report the sum of twist angles and nitrogen pyramidalization ($\Sigma\tau+\chi_N$) rather than focus on either twist or pyramidalization alone.

Furthermore, our findings further confirm that the additive Winkler-Dunitz parameter is the guideline of choice for predicting the protonation aptitude of non-planar amides.¹⁷ A plot of the sum of twist angle

and nitrogen pyramidalization versus N-/O-protonation affinity difference for amides in the same series gives an excellent linear correlation (**3-6**, ΔPA , $R^2 = 0.98$) (Chart 3). This can be compared with a plot of twist angle vs. ΔPA ($R^2 = 0.61$) or nitrogen pyramidalization vs. ΔPA ($R^2 = 0.44$) in the same series. Note that in Tröger's base twisted amides the O- to N- cross-over point is located close to the $(\Sigma\tau + \chi_N)$ value of 80° , which can be compared with approximately 50 - 60° cross-over point for one-carbon bridged twisted lactams (*vide infra*).¹⁷ Future studies will shed considerable light into the relationship between amide bond distortion and structure as well as protonation aptitude of various classes of non-planar amides.^{3b,11,12}

Structural parameters of amides **8-15** are listed in Table 2. As anticipated from the positioning of substituents on the aromatic rings, the amide bonds in **8-15** feature similar distortion to **3-4** (*vide infra*, *N.B.* N-/O-protonation aptitude).

Key information is gained from proton affinities (PA) and differences between N- and O-protonation affinities (ΔPA). The values for amides **1-7** are listed in Table 3; see also Chart 3. Extensive attention is focused on the site-selectivity of amide protonation.²³ N-Protonation of the amide bond is a process of high interest in biology and medicinal chemistry as a potential mechanism of amide bond proteolysis and cis-trans-isomerization,^{4,5} while in organic chemistry N-protonation has been widely utilized to activate the N–C(O) bond by disrupting amidic resonance.⁶ Previous theoretical studies established that the N-/O-protonation switch occurs around the $(\tau + \chi_N) = 50$ - 60° geometry in one-carbon bridged twisted lactams.^{17,18} As such, Tröger's base twisted amide **3** would be expected to vastly favor N-protonation. However, this is not the case. Examination of the data in Table 3, clearly indicates that the best model for N-protonation is the benzofused 1-azabicyclo[3.3.1]nonan-2-one derivative **2** ($\Delta\text{PA} = -6.1$ kcal/mol). While amide **3** still favors N-protonation ($\Delta\text{PA} = -2.4$ kcal/mol), this is close to being equinertic with respect to N-/O-protonation. Moreover, the more twisted **4** ($\Delta\text{PA} = 1.2$ kcal/mol) is now in the same range as amide **1** ($\Delta\text{PA} = 1.1$ kcal/mol). Evaluation of proton affinities at the nitrogen and oxygen atoms in **3-4** together with PA and ΔPA in Tröger's base analogous of **5** and **6** lacking the benzene rings (**5**:

$\Delta PA = 3.1$ kcal/mol, **6**: $\Delta PA = 6.3$ kcal/mol) reveals that Tröger's base twisted amides are not ideal models for N-protonation as a result of Nlp conjugation onto the aromatic rings.

As expected on the basis of amide bond distortion, twisted urea **7** vastly favors N-protonation ($\Delta PA = -20.7$ kcal/mol), which would substantially decrease stability of this and analogous compounds under standard handling conditions.

Equally revealing is comparison of proton affinities and differences between N- and O-protonation affinities in ring-substituted Tröger's base twisted amides **8-15** (Table 4).

Table 3. Proton Affinities (PA) and Differences in Proton Affinities (ΔPA) for Amides 1-7 Calculated using B3LYP/6-311++G(d,p)^a

entry	amide	uncorrected			corrected		
		N_{PA}	O_{PA}	ΔPA	N_{PA}	O_{PA}	ΔPA
1	1	224.2	225.1	1.0	215.5	216.6	1.1
2	2	233.6	227.0	-6.6	224.6	218.5	-6.1
3	3	220.4	217.7	-2.6	212.1	209.7	-2.4
4	4	222.7	223.6	0.9	214.0	215.3	1.2
5	5	210.7	213.8	3.2	202.6	205.7	3.1
6	6	213.7	220.0	6.2	205.2	211.5	6.3
7	7	234.9	213.4	-21.5	225.7	205.0	-20.7

^aValues (kcal/mol) are uncorrected and corrected for zero-point energy and thermal corrections. Representative data on bridged lactams: ref. 11b,18a,b.

Table 4. Proton Affinities (PA) and Differences in Proton Affinities (ΔPA) for Amides 8-15 Calculated using B3LYP/6-311++G(d,p)^a

entry	amide	uncorrected			corrected		
		N_{PA}	O_{PA}	ΔPA	N_{PA}	O_{PA}	ΔPA
1	8	204.4	202.2	-2.2	196.3	194.3	-2.0
2	9	224.8	221.5	-3.3	216.5	213.5	-3.1
3	10	205.5	203.4	-2.1	197.4	195.6	-1.9
4	11	228.6	227.2	-1.4	220.2	219.0	-1.2

5	12	207.3	208.9	1.7	198.9	200.8	2.0
6	13	226.5	226.8	0.2	217.9	218.6	0.7
7	14	207.6	209.1	1.5	199.2	201.0	1.8
8	15	228.6	229.7	1.0	219.9	221.3	1.4

^aValues (kcal/mol) are uncorrected and corrected for zero-point energy and thermal corrections. Representative data on bridged lactams: ref. 11b,18a,b.

Here, the most beneficial in terms of favoring N-protonation is substitution with the methoxy group at 2,8-positions (**9**: $\Delta\text{PA} = -3.1$ kcal/mol, **13**: $\Delta\text{PA} = 0.7$ kcal/mol), however, the gain from disfavoring Nlp to Ar conjugation is counterbalanced by an increased O-protonation affinity. In contrast, the unnatural 3,9-substitution¹⁵ leads to a net decrease of ΔPA for amides **10-11** (**10**: $\Delta\text{PA} = -1.9$ kcal/mol, **11**: $\Delta\text{PA} = -1.2$ kcal/mol) as a result of decrease and increase of N- and O-protonation affinities by electron-withdrawing and donating substituents, respectively. As expected, this trend is mirrored in the [3.2.2] series.

It is interesting to note that excellent linear correlations were observed between ΔPA and Hammett σ^* values for Tröger's base twisted amides substituted para to the nitrogen atom for both [3.3.1] ($Y = 0.823X - 2.674$, $R^2 = 0.997$) and [3.3.2] series ($Y = 0.991X + 0.986$, $R^2 = 0.995$) (not shown). This indicates that the N/O-protonation aptitude in this series is governed by both amide bond distortion and electronic effects of the aromatic ring. In contrast, only poor correlations were observed with Tröger's base twisted amides substituted para to the carbonyl group.

3. Conclusions

In conclusion, this paper provides extensive insights into the structures and energetics of Tröger's base twisted amides. As discussed above, these scaffolds provide some of the most twisted non-planar amide bonds isolated to date in bicyclic lactams. A key feature of the investigated system is the finding that Tröger's base twisted amides are significantly more twisted than related 1-azabicyclo[3.3.1]nonan-2-one derivatives, which is rendered possible by a rigidifying effect of the aromatic rings. In contrast, while Tröger's base twisted amides still favor protonation at the nitrogen atom, these compounds are

less efficient in probing N-protonation aptitude of non-planar amides than related 1-azabicyclo[3.3.1]nonan-2-one derivatives as a consequence on N-conjugation with the aromatic ring. Furthermore, our study demonstrated a significant effect of ring-substitution on proton affinities of the amide bond in Tröger's base twisted amides. Equally important is the validation of the additive Winkler-Dunitz distortion parameter as the vastly preferred descriptor of the properties of non-planar amide bonds. The results of this study provide the understanding for future design of non-planar bridged lactams to directly access N-protonated amide bonds. Future studies will address a statistical analysis of the structural and energetic description of the non-planar amide bond in an expanded range of analogues as well as the synthesis and evaluation of the experimental properties of Tröger base twisted amides.

More broadly, our ongoing studies are focused on further investigations of non-planar amides. Specifically, our results suggest that peripheral modification can be used as powerful tool in re-evaluating structural and energetic properties of twisted amides.

Acknowledgements. We gratefully acknowledge Rutgers University and the NSF (CAREER CHE-1650766) for support. We thank the Wroclaw Center for Networking and Supercomputing (grant number WCSS159).

Supporting Information. Cartesian coordinates and energies. Detailed description of computational methods used. This material is available free of charge via the Internet at <http://pubs.acs.org>.

Author Information. Corresponding author: michal.szostak@rutgers.edu

References

- (1) Greenberg, A.; Breneman, C. M.; Liebman, J. F., Eds. *The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science*; Wiley: New York, 2000.
- (2) Pauling, L. *The Nature of the Chemical Bond*; Oxford University Press: London, 1940.

(3) (a) Szostak, M.; Aubé, J. Chemistry of Bridged Lactams and Related Heterocycles. *Chem. Rev.* **2013**, *113*, 5701-5765. (b) Liu, C.; Szostak, M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal Catalyzed Reactions by N–C Amide Bond Activation. *Chem. Eur. J.* **2017**, *23*, 7157-7173.

(4) For selected pertinent examples of amide bond non-planarity in biochemical processes, see: (a) Poland, B. W.; Xu, M. Q; Quiocho, F. A. Structural Insights into the Protein Splicing Mechanism of PI-SceI. *J. Biol. Chem.* **2000**, *275*, 16408-16413. (b) Romanelli, A; Shekhtman, A.; Cowburn, D.; Muir, T. W. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein–intein junction. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 6397-6402. (c) Shemella, P.; Pereira, B.; Zhang, Y. M.; Van Roey, P; Belfort, G.; Garde, S.; Nayak, S. K. Mechanism for Intein C-Terminal Cleavage: A Proposal from Quantum Mechanical Calculations. *Biophys. J.* **2007**, *92*, 847-853. (d) Lizak, C.; Gerber, S.; Numao, S.; Aebi, M.; Locher, K. P. X-ray structure of a bacterial oligosaccharyltransferase. *Nature* **2011**, *474*, 350-355. (e) Lizak, C.; Gerber, S.; Michaud, G.; Schubert, M.; Fan, Y. Y.; Bucher, M.; Darbare, T.; Aebi, M.; Reymond, J. L.; Locher, K. P. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. *Nat. Commun.* **2013**, *4*, no. 2627.

(5) For selected pertinent examples in amide bond proteolysis: (a) Brown, R. S.; Bennet, A. J; Slebocka-Tilk, H. Recent perspectives concerning the mechanism of H_3O^+ and hydroxide-promoted amide hydrolysis. *Acc. Chem. Res.* **1992**, *25*, 481-488. (b) Mujika, J. I.; Mercero, J. M.; Lopez, X. Water-Promoted Hydrolysis of a Highly Twisted Amide: Rate Acceleration Caused by the Twist of the Amide Bond. *J. Am. Chem. Soc.* **2005**, *127*, 4445-4453. (c) Wang, B.; Cao, Z. Acid-Catalyzed Reactions of Twisted Amides in Water Solution: Competition between Hydration and Hydrolysis. *Chem. Eur. J.* **2011**, *17*, 11919-11929. For selected studies on amide cleavage, see: (d) Roy, O.; Caumes, C.; Esvan, Y.; Didierjean, C.; Faure, S.; Taillefumier, C. The *tert*-Butyl Side Chain: A Powerful Means to Lock Peptoid Amide Bonds in the Cis Conformation. *Org. Lett.* **2013**, *15*, 2246-

2249. (e) Elashai, H. E.; Raj, M. Site-selective chemical cleavage of peptide bonds. *Chem. Commun.* **2016**, *52*, 6304-6307. (f) Elashal, H. E.; Cohen, R. D.; Elashal, H. E.; Raj, M. Oxazolidinone-Mediated Sequence Determination of One-Bead One-Compound Cyclic Peptide Libraries. *Org. Lett.* **2018**, *20*, 2374-2377.

(6) For selected examples in organic synthesis, see: (a) Meng, G.; Szostak, M. N-Acyl-Glutarimides: Privileged Scaffolds in Amide N-C Bond Cross-Coupling. *Eur. J. Org. Chem.* **2018**, *20-21*, 2352-2365.

(b) Dander, J. E.; Garg, N. K. Breaking Amides using Nickel Catalysis. *ACS Catal.* **2017**, *7*, 1413-1423.

(7) (a) Tani, K.; Stoltz, B. M. Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. *Nature* **2006**, *441*, 731-734. (b) Liniger, M.; VanderVelde, D. G.; Takase, M. K.; Shahgholi, M.; Stoltz, B. M. Total Synthesis and Characterization of 7-Hypoquinuclidonium Tetrafluoroborate and 7-Hypoquinuclidone BF_3 Complex. *J. Am. Chem. Soc.* **2016**, *138*, 969-974.

(8) (a) Kirby, A. J.; Komarov, I. V.; Wothers, P. D.; Feeder, N. The Most Twisted Amide: Structure and Reactions. *Angew. Chem., Int. Ed.* **1998**, *37*, 785-786. (b) Komarov, I. V.; Yanik, S.; Ishchenko, A. Y.; Davies, J. E.; Goodman, J. M.; Kirby, A. J. The Most Reactive Amide As a Transition-State Mimic For cis-trans Interconversion. *J. Am. Chem. Soc.* **2015**, *137*, 926-930.

(9) For selected examples of non-planar bridged lactams, see: (a) Golden, J.; Aubé, J. A. Combined Intramolecular Diels–Alder/Intramolecular Schmidt Reaction: Formal Synthesis of (\pm) -Stenine. *Angew. Chem. Int. Ed.* **2002**, *41*, 4316-4318. (b) Sliter, B.; Morgan, J.; Greenberg, A. 1-Azabicyclo[3.3.1]nonan-2-one: Nitrogen Versus Oxygen Protonation. *J. Org. Chem.* **2011**, *76*, 2770-2781. (c) Williams, R. M.; Lee, B. H.; Miller, M. M.; Anderson, O. P. Synthesis and x-ray crystal structure determination of 1,3-bridged beta-lactams: novel, anti-Bredt beta-lactams. *J. Am. Chem. Soc.* **1989**, *111*, 1073-1081. (d) Bennet, A. J.; Wang, Q. P.; Slebocka-Tilk, H.; Somayaji, V.; Brown, R. S.; Santarsiero, B. D. Relationship between amidic distortion and ease of hydrolysis in base. If amidic resonance does not exist, then what accounts for the accelerated hydrolysis of distorted amides? *J. Am.*

Chem. Soc. **1990**, *112*, 6383-6385. (e) Lease, T. G.; Shea, K. J. The type 2 intramolecular imino Diels-Alder reaction. Synthesis and structural characterization of bicyclo[n.3.1] bridgehead olefin/bridgehead lactams. *J. Am. Chem. Soc.* **1993**, *115*, 2248-2260. (f) Bashore, C. G.; Samardjiev, I. J.; Bordner, J.; Coe, J. W. Twisted Amide Reduction under Wolff-Kishner Conditions: Synthesis of a Benzo-1-Aza-Adamantane Derivative. *J. Am. Chem. Soc.* **2003**, *125*, 3268-3272.

(10) (a) To our knowledge, the most twisted bridged lactams except for 2-quinuclidone⁶ and 1-aza-2-adamantanone⁷ derivatives are tricyclic lactams prepared by the intramolecular Schmidt reaction,^{9a} $\tau = 51.5^\circ$, $\chi_N = 36.1^\circ$, N-C(O) = 1.387 Å, C=O = 1.218 Å. However, despite relatively high twist, these lactams are less N-pyramidalized. Lei, Y.; Wroblewski, A.; Golden, J. E.; Powell, D. R., Aubé, J. A. Facile C–N Cleavage in a Series of Bridged Lactams. *J. Am. Chem. Soc.* **2005**, *127*, 4552-4553. (b) Winkler, F. K.; Dunitz, J. D. *J. Mol. Biol.* **1971**, *59*, 169. Winkler-Dunitz distortion parameters: τ (twist angle), χ_N (pyramidalization at N) and χ_C (pyramidalization at C) describe the magnitude of rotation around the N-C(O) bond, pyramidalization at nitrogen and pyramidalization at carbon; τ is 0° for planar amide bonds and 90° for fully orthogonal bonds; χ_N and χ_C are 0° for planar bonds, and 60° for fully pyramidalized bonds.

(11) (a) Hu, F.; Lalancette, R.; Szostak, M. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N–C Cleavage. *Angew. Chem. Int. Ed.* **2016**, *55*, 5062-5066. (b) Szostak, R.; Aubé, J.; Szostak, M. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon Bridged Twisted Amides using ab Initio Molecular Orbital Methods. Implications for Amidic Resonance along the C–N Rotational Pathway. *J. Org. Chem.* **2015**, *80*, 7905-7927.

(12) (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N–C Cross-Coupling. *J. Org. Chem.* **2016**, *81*, 8091-8094. (b) Meng, G.; Shi, S.; Lalancette, R.;

Szostak, R.; Szostak, M. Reversible Twisting of Primary Amides via Ground State N–C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. *J. Am. Chem. Soc.* **2018**, *140*, 727-734. (c) Szostak, R.; Szostak, M. N-Acyl-Glutarimides: Resonance and Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to N–C(O) Cross-Coupling. *Org. Lett.* **2018**, *20*, 1342-1345. (d) Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. *ACS Catal.* **2018**, *8*, 9131-9139.

(13) (a) Artacho, J.; Ascic, E.; Rantanen, T.; Karlsson, J.; Wallentin, C. J.; Wang, R.; Wendt, O. F.; Harmata, M.; Snieckus, V.; Wärnmark, K. Twisted Amide Analogues of Tröger's Base. *Chem. Eur. J.* **2012**, *18*, 1038-1042. (b) Artacho, J.; Ascic, E.; Rantanen, T.; Wallentin, C. J.; Dawaigher, S.; Bergquist, K. E.; Harmata, M.; Snieckus, V.; Wärnmark, K. Tröger's Base Twisted Amides: Endo Functionalization and Synthesis of an Inverted Crown Ether. *Org. Lett.* **2012**, *14*, 4706-4709. (c) Rúnarsson, O. V.; Benkhäuser, C.; Christensen, N. J.; Ruiz, J. A.; Ascic, E.; Harmata, M.; Snieckus, V.; Rissanen, K.; Fistrup, P.; Lünzen, A.; Wärnmark, K. Resolution and Determination of the Absolute Configuration of a Twisted Bis-Lactam Analogue of Tröger's Base: A Comparative Spectroscopic and Computational Study. *J. Org. Chem.* **2015**, *80*, 8142-8149.

(14) Pereira, R.; Pfeifer, L.; Fournier, J.; Gouverneur, V.; Cvengroš, J. Twisting the ethano-Tröger's base: the bisamide. *Org. Biomol. Chem.* **2017**, *15*, 628-633.

(15) (a) Runarsson, O. V.; Artacho, J.; Wärnmark, K. The 125th Anniversary of the Tröger's Base Molecule: Synthesis and Applications of Tröger's Base Analogues. *Eur. J. Org. Chem.* **2012**, 7105-7041. (B) Sergeyev, S. Recent Developments in Synthetic Chemistry, Chiral Separations, and Applications of Tröger's Base Analogues. *Helv. Chim. Acta* **2009**, *92*, 415-444. (c) Valik, M.; Strongin, R. M.; Kral, V. Tröger's Base Derivatives-New Life for Old Compounds. *Supramol. Chem.* **2005**, *17*, 347-367.

(16) Hamada, Y.; Mukai, S. Synthesis of Ethano-Tröger's Base, Configurationally Stable Substitute of Tröger's Base. *Tetrahedron Asymmetry* **1996**, *7*, 2671-2764.

(17) Additive Winkler-Dunitz parameter describes the sum of twist angles and nitrogen pyramidalization ($\Sigma\tau+\chi_N$). Szostak, R.; Aubé, J.; Szostak, M. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway. *Chem. Commun.* **2015**, *51*, 6395-6398.

(18) (a) Greenberg, A.; Venanzi, C. A. Structures and energetics of two bridgehead lactams and their N- and O-protonated forms: an ab initio molecular orbital study. *J. Am. Chem. Soc.* **1993**, *115*, 6951-6957. (b) Greenberg, A.; Moore, D. T.; DuBois, T. D. Small and Medium-Sized Bridgehead Bicyclic Lactams: A Systematic ab Initio Molecular Orbital Study. *J. Am. Chem. Soc.* **1996**, *118*, 8658-8668. See, also: (c) Morgan, J.; Greenberg, A. Novel bridgehead bicyclic lactams: Molecules predicted to have O-protonated and N-protonated tautomers of comparable stability; hyperstable lactams and their O-protonated tautomers. *J. Chem. Thermodynamics* **2014**, *73*, 206-212.

(19) For recent examples of amide distortion by peripheral metal coordination, see: (a) Adachi, S.; Kumagai, N.; Shibasaki, M. Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination. *Chem. Sci.* **2017**, *8*, 85-90. (b) Adachi, S.; Kumagai, N.; Shibasaki, M. Bis(2-pyridyl)amides as Readily Cleavable Amides Under Catalytic, Neutral, and Room-Temperature Conditions. *Synlett* **2017**, *29*, 301-305.

(20) For classic Yamada's amides, see: (a) Yamada, S. Structure and Reactivity of a Highly Twisted Amide. *Angew. Chem., Int. Ed.* **1993**, *32*, 1083-1085. (b) Yamada, S. Relationship between C(O)-N Twist Angles and ^{17}O NMR Chemical Shifts in a Series of Twisted Amides. *Angew. Chem. Int. Ed.* **1995**, *34*, 1113-1115.

(21) For anomeric amides, see: (a) Glover, S. A. Anomeric amides - Structure, properties and reactivity. *Tetrahedron* **1998**, *54*, 7229-7271. (b) Glover, S. A.; Mo, G.; Rauk, A.; Tucker, D. J.; Turner,

P. Structure, conformation, anomeric effects and rotational barriers in the HERON amides, N,N'-diacyl-N,N'-dialkoxyhydrazines. *J. Chem. Soc., Perkin Trans. 2* **1999**, 2053-2058. (c) Glover, S. A.; Rosser, A. A. Heteroatom Substitution at Amide Nitrogen-Resonance Reduction and HERON Reactions of Anomeric Amides. *Molecules* **2018**, 23, no. 2834.

(22) For selected theoretical studies on amide bonds, see: (a) Kemnitz, C. R.; Loewen, M. J. “Amide Resonance” Correlates with a Breadth of C–N Rotation Barriers. *J. Am. Chem. Soc.* **2007**, 129, 2521-2528. (b) Mujika, J. I.; Mercero, J. M.; Lopez, X. Water-Promoted Hydrolysis of a Highly Twisted Amide: Rate Acceleration Caused by the Twist of the Amide Bond. *J. Am. Chem. Soc.* **2005**, 127, 4445-4453. (c) Glover, S. A.; Rosser, A. A. Reliable Determination of Amidicity in Acyclic Amides and Lactams. *J. Org. Chem.* **2012**, 77, 5492-5502. (d) Morgan, J.; Greenberg, A.; Liebman, J. F. Paradigms and Paradoxes: O- and N-Protonated Amides, Stabilization Energy and Resonance Energy. *Struct. Chem.* **2012**, 23, 197-199. (e) Morgan, J. P.; Weaver-Guevara, H. M.; Fitzgerald, R. W.; Dunlap-Smith, A.; Greenberg, A. Ab initio computational study of 1-methyl-4-silatranone and attempts at its conventional synthesis. *Struct. Chem.* **2017**, 28, 327-331.

(23) (a) Wiberg, K. B. The Interaction of Carbonyl Groups with Substituents. *Acc. Chem. Res.* **1999**, 32, 922-929. (b) Cox, C.; Lectka, T. Synthetic Catalysis of Amide Isomerization. *Acc. Chem. Res.* **2000**, 33, 849-858.