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Abstract. We prove several results which, together with prior work,
provide a nearly-complete picture of the relationships among classical
communication complexity classes between P and PSPACE, short of
proving lower bounds against classes for which no explicit lower bounds
were already known. Our article also serves as an up-to-date survey on
the state of structural communication complexity.
Among our new results we show that MA �⊆ ZPPNP[1], that is, Merlin–
Arthur proof systems cannot be simulated by zero-sided error random-
ized protocols with one NP query. Here the class ZPPNP[1] has the
property that generalizing it in the slightest ways would make it contain
AM∩ coAM, for which it is notoriously open to prove any explicit lower
bounds. We also prove that US �⊆ ZPPNP[1], where US is the class whose
canonically complete problem is the variant of set-disjointness where
yes-instances are uniquely intersecting. We also prove that US �⊆ coDP,
where DP is the class of differences of two NP sets. Finally, we explore
an intriguing open issue: Are rank-1 matrices inherently more powerful
than rectangles in communication complexity? We prove a new separa-
tion concerning PP that sheds light on this issue and strengthens some
previously known separations.
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1. Introduction

Complexity classes form the infrastructure of classical complexity
theory. They are used to express the power of models of compu-
tation, characterize the complexities of important computational
problems, and catalyze proofs of other results. A central project
is to ascertain the full, intricate landscape of relationships among
complexity classes.

Beginning with Babai et al. (1986), there has been a lot of re-
search on the analogues of classical (Turing machine) complexity
classes in two-party communication complexity. The analogue of P
(the class of decision problems solvable in polynomial time) is the
class of functions F : {0, 1}n ×{0, 1}n → {0, 1} for which Alice and
Bob, given x and y, respectively, can evaluate F (x, y) with a pro-
tocol that uses polylogarithmically many bits of communication.
For other classical complexity classes representing other models of
computation, one can generally define, in a canonical way, asso-
ciated communication complexity classes representing associated
models of communication. There are many motivations for study-
ing the relationships (inclusions and non-inclusions) between these
communication complexity classes.

� A holy grail of classical complexity is to prove separations of
classes between P and PSPACE. Separations relative to ora-
cles can often be viewed as class separations in the restricted
setting of query complexity ; see Vereshchagin (1999) for an ex-
cellent survey. Communication complexity can be viewed as
a restricted (but generally less restricted than query complex-
ity) setting for which lower bounds are more difficult to obtain.
Such separations in restricted settings are sometimes construed
as evidence for the classical separations, or at least as bar-
riers to refuting the classical separations. A stronger form
of relativization barriers is known as algebrization Aaronson
& Wigderson (2009), which directly employs communication
complexity class separations.

� Proving lower bounds against strong communication complex-
ity classes has applications to other areas of theoretical com-
puter science. One of the most notorious open problems in
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communication complexity is to prove lower bounds against
the analogue of the polynomial hierarchy (PH) for any explicit
two-party function. Proving PH lower bounds is a necessary
step for obtaining strong rank rigidity lower bounds Lokam
(2001, 2009); Razborov (1989); Wunderlich (2012) (as well as
margin complexity rigidity lower bounds Linial & Shraibman
(2009)), which in turn are related to circuit complexity Valiant
(1977). Lower bounds against PH are also related to graph
complexity Jukna (2006); Pudlák et al. (1988). It even re-
mains open to prove communication lower bounds against the
subclass of PH known as AM (Arthur–Merlin games) for any
explicit function (which would be relevant to streaming dele-
gation Chakrabarti et al. (2014a,b, 2015); Gur & Raz (2015);
Klauck & Prakash (2013, 2014)).

� Communication complexity has a menagerie of techniques for
proving lower bounds (among the oldest being discrepancy
and corruption). These techniques often provide lower bounds
against powerful communication complexity classes, and in
some cases turn out to be equivalent to the communication
measures corresponding to those classes (e.g., discrepancy is
equivalent to PP communication Klauck (2007), and
corruption is equivalent to SBP communication Göös & Wat-
son (2016)). See Göös et al. (2016a) for more background on
this. Thus, by studying complexity classes, as a byproduct we
study the relative strength of lower bound techniques.

� The various models of communication corresponding to com-
plexity classes are mathematically interesting because proto-
cols in these models can be viewed as succinct representations
of boolean matrices. The study of classes exposes natural com-
binatorial questions about how succinctly matrices can be rep-
resented.

We contribute to the exploration of the communication com-
plexity landscape by filling in many of the remaining gaps in the
known relationships among (non-quantum) classes, and discover-
ing new techniques and insights along the way. At a glance, the
state of affairs (including our new results) is summarized in Fig-
ure 1.1, which shows a map of known inclusions and non-inclusions
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between pairs of communication classes. In Section 2 we state our
results more precisely and provide some intuition for the proofs.
In Section 3, we provide a comprehensive survey of all the non-
trivial (non-)inclusions among the traditional classes depicted in
Figure 1.1. This updates previous surveys by Babai, Frankl, and
Simon Babai et al. (1986) and Halstenberg and Reischuk Halsten-
berg & Reischuk (1990).

We refer to Jukna (2012); Kushilevitz & Nisan (1997) for back-
ground on communication complexity. In Appendix B we provide
a catalog of communication complexity class definitions; through-
out the text, we provide definitions on a “need-to-know” basis. If
C is the name of a model (e.g., P for deterministic or NP for nonde-
terministic), we follow the convention of using C to denote both a
complexity class and the corresponding complexity measure: C(F )
denotes the minimum cost of a correct protocol for the (possibly
partial) two-party function F in model C, and C denotes the class
of all (families of) partial functions F with C(F ) ≤ poly(log n).
These classes can also be defined for total functions, in which case
the relations between the classes are occasionally different than—
or not known to be the same as—the partial function case. We do
not consider classes of search problems.

2. Our contributions

Several of our results concern two-party composed functions, so
we introduce some general notation for this. A composed function
is of the form f ◦ gm where f : {0, 1}m → {0, 1} is a (possibly
partial) outer function and g : {0, 1}b ×{0, 1}b → {0, 1} is an inner
function also called a gadget. We write F := f ◦ gm : {0, 1}n ×
{0, 1}n → {0, 1} where n := m · b. We view the inputs to Alice
and Bob as x, y ∈ ({0, 1}b)m, which are partitioned into blocks
xi, yi ∈ {0, 1}b for i ∈ [m]. The goal is to compute F (x, y) :=
f(g(x1, y1), . . . , g(xm, ym)).

2.1. MA �⊆ ZPPNP[1]. A Merlin–Arthur (MA) communication
protocol is a proof system in which a nondeterministic party called
Merlin sends a proof string (depending on the input) to Alice and
Bob (collectively constituting Arthur), who then execute a ran-
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Figure 1.1: C1 → C2 denotes C1 ⊆ C2, and C1 ��� C2 denotes C1 �⊆
C2. Bold red arrows indicate new results. Bold blue indicates
classes for which no explicit lower bounds are known (color figure
online).



6 Göös, Pitassi & Watson cc (2018)

domized protocol to verify the proof. Merlin–Arthur communica-
tion protocols have been studied many times Aaronson & Wigder-
son (2009); Gavinsky & Sherstov (2010); Gur & Raz (2015); Gur
& Rothblum (2015); Klauck (2003, 2011); Raz & Shpilka (2004),
starting with the work of Klauck Klauck (2003), who gave a Ω(

√
n)

lower bound on the MA communication complexity of set-disjoint-
ness. In contrast, for the related (and stronger) model of Arthur–
Merlin (AM) communication protocols, in which Merlin’s proof
string may depend on Alice’s and Bob’s randomness, no nontriv-
ial lower bound is known for any explicit function, and such lower
bounds have become very sought-after in the recent literature
Chakrabarti et al. (2015); Klauck & Prakash (2014); Linial & Shraib-
man (2009); Papakonstantinou et al. (2014).

Our first result concerns the relationship between MA and an-
other class, ZPPNP[1], which is a slightly obscure but intriguing
character with many curious properties. A ZPP-type protocol is
randomized and may output the correct answer or ⊥ (representing
“don’t know”), and must output the correct answer with high prob-
ability on every input; granting the protocol access to one query
to an NP oracle yields ZPPNP[1]. It is not a priori clear that the
model is robust with respect to the choice of threshold for the suc-
cess probability, since standard amplification by repetition would
increase the number of NP oracle queries. However, it was shown
in Chang & Purini (2008) that ZPPNP[1] does indeed admit efficient
amplification as long as the success probability is > 1/2 (the proof
for time-bounded complexity also works for communication com-
plexity); hence we define the model with success probability some
constant > 1/2, say 3/4.

If we allowed ZPPNP[1] to have success probability < 1/2, the
class would change drastically: it would contain AM ∩ coAM (see
Section 3), and hence proving explicit lower bounds for the com-
munication version would yield breakthrough AM communication
lower bounds. Granting the model access to two nonadaptive NP
queries (and requiring success probability > 1/2) would also en-
compass AM∩coAM. Thus, in a sense, ZPPNP[1] represents a bound-
ary beyond which AM lower bounds would be the next step. The
class ZPPNP[1] is also sandwiched between BPP and S2P Cai &
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Chakaravarthy (2006); S2P is a subclass of the polynomial hierar-
chy that has not been studied before in communication complexity
(the definition appears in Appendix B), and no nontrivial lower
bounds against it are known for any explicit function. This is an-
other sense in which ZPPNP[1] constitutes a new frontier toward the
elusive goal of proving explicit PH communication lower bounds.
We also mention that ZPPNP[1] shows up frequently in the litera-
ture on the “two queries problem” (e.g., if P

NP[2]
‖ ⊆ ZPPNP[1] then

PH = S2P Tripathi (2010)).
We prove that MA �⊆ ZPPNP[1] in the setting of communication

complexity. This can be interpreted as saying that one-round non-
interactive1 proof systems cannot be made to have zero-sided error,
even if the proof is generalized to an NP oracle query that depends
on the randomness.

Before officially stating the theorem, we give the relevant formal
definitions. An MA communication protocol computing F : {0, 1}n×
{0, 1}n → {0, 1} consists of a randomized two-party protocol which
takes as input, in addition to the usual inputs x and y, a proof
string (witness) w ∈ {0, 1}k that is visible to both Alice and Bob.
The completeness criterion is that for every (x, y) ∈ F−1(1) there
exists a w such that the protocol accepts with probability at least
3/4, and the soundness criterion is that for every (x, y) ∈ F−1(0)
and every w, the protocol rejects with probability at least 3/4.
The cost is the witness length k plus the length of the subsequent
transcript between Alice and Bob.

A ZPPNP[1] protocol Π computing F is a distribution over PNP[1]-
type protocols, each of which is of the following form: There is a
deterministic protocol where for each leaf v having associated rect-
angle Rv, there is also an associated collection of “witness rect-
angles”

{
Sv,w ⊆ Rv : w ∈ {0, 1}k

}
and an associated “output

function” ov : {0, 1} → {0, 1,⊥}. The output of the PNP[1]-type
protocol on input (x, y) is obtained by running the determinis-
tic part to reach a leaf v, then applying ov to the indicator of
whether (x, y) ∈ ⋃

w Sv,w. The correctness criterion is that for ev-
ery (x, y) ∈ F−1 (where we use F−1 to denote the domain of F ),

1 Here, the term non-interactive means that Alice and Bob cannot interact
with Merlin other than receiving the proof string.
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P
[
Π(x, y) ∈ {F (x, y),⊥}]

= 1 and P
[
Π(x, y) = F (x, y)

] ≥ 3/4
(where P denotes probability). The cost is the witness length k
plus the maximum communication cost of the deterministic part
of any of the constituent PNP[1]-type protocols. The result of Chang
& Purini (2008) shows that changing the success probability from
3/4 to any other constant strictly between 1/2 and 1 would only
change the measure ZPPNP[1](F ) by a constant factor.

We prove a lower bound for the block-equality2 function
Block-Eq := Or ◦ Eq

m where the input to Or is m :=
√

n
bits, and each input to Eq is b :=

√
n bits. In other words, writing

x := x1 · · ·x√
n ∈ ({0, 1}√

n)
√

n and y := y1 · · · y√
n ∈ ({0, 1}√

n)
√

n,
we have Block-Eq(x, y) = 1 iff xi = yi for some i. Note that
Block-Eq ∈ MA since i can be nondeterministically guessed by
Merlin, and then xi = yi can be verified using a randomized pro-
tocol for Eq. (It was first noticed in Lam & Ruzzo (1992) that
Block-Eq ∈ Σ2P ∩ Π2P, which is a superset of MA.)

Theorem 2.1. ZPPNP[1](Block-Eq) = Θ(
√

n), and hence MA �⊆
ZPPNP[1].

To prove Theorem 2.1 (Section 4), we apply a new lower bound
technique that combines the corruption bound with the 1-mono-
chromatic rectangle size bound and asserts that they hold simulta-
neously (under the same distribution over inputs). We prove that,
perhaps surprisingly, this combined technique gives a lower bound
for ZPPNP[1] (though neither of the individual bounds suffices).

To apply our technique to Block-Eq, we first note that it
is straightforward to achieve the two bounds separately: the 1-
monochromatic rectangle size bound follows by simple counting,
and the corruption bound follows by using Razborov’s corruption
lemma for the set-intersection function Inter Razborov (1992) to-
gether with a simple reduction from Inter to Block-Eq. How-
ever, the latter does not result in a distribution satisfying the
1-monochromatic rectangle size bound for Block-Eq. To fix
this problem, we argue that if we average Razborov’s distribution
over all ways of implementing the reduction (of which there are

2 The complement of block-equality is often known as list-non-equality.
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many), then the corruption bound is still satisfied, and now the
1-monochromatic rectangle size bound is also satisfied.

2.2. US �⊆ ZPPNP[1]. For the set-intersection function Inter,
Alice and Bob are each given a subset of [n] (and we identify the
subset with its characteristic vector, a length-n bit string), and
the goal is to output 1 when the sets are intersecting and 0 when
they are disjoint.3 Phrased as a composed function, Inter :=
Or◦And

n (for single-bit And). This is the canonical NP-complete
problem in communication complexity, holding a comparable sta-
tus to satisfiability, the canonical NP-complete problem in time-
bounded complexity.

In the literature, “unique-set-intersection” commonly refers to
the partial function version of Inter where the intersection is
promised to have size 0 or 1. We propose a change in terminology,
in order to be consistent with the following corresponding termi-
nology from time-bounded complexity (see, e.g., Blass & Gurevich
(1982); Chang et al. (1995); Valiant & Vazirani (1986)): Unique-
satisfiability is the problem of determining whether the number of
satisfying assignments of a formula is exactly 1, and is complete for
the complexity class called US. Unambiguous-satisfiability is the
problem of determining whether the number of satisfying assign-
ments of a formula is 0 or 1 under the promise that one of these
cases holds, and is complete for the complexity class called UP.

Therefore, we make the following definitions: Unique-set-inter-
section is the total function Unique-Inter : {0, 1}n × {0, 1}n →
{0, 1} that maps (x, y) to 1 iff |x ∩ y| = 1, i.e., Unique-Inter :=
Unique-Or ◦ And

n where Unique-Or(z) = 1 iff the Hamming
weight of z is 1. Unambiguous-set-intersection is the partial func-
tion Unambig-Inter : {0, 1}n ×{0, 1}n → {0, 1} that maps (x, y)
to |x ∩ y| if the latter is in {0, 1}, i.e., Unambig-Inter :=
Unambig-Or ◦ And

n where Unambig-Or(z) equals the Ham-
ming weight of z if the latter is in {0, 1}.

Note that Unique-Inter is US-complete, where a cost-k US
communication protocol is defined as a collection of rectangles

3 We let “set-disjointness” refer to the complementary function where 1-
inputs are disjoint.
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{
Rw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on input (x, y) the

output of the protocol is 1 iff (x, y) is in Rw for exactly one w.

Theorem 2.2. ZPPNP[1](Unique-Inter) = Θ(n), and hence US
�⊆ ZPPNP[1].

We give two proofs of Theorem 2.2. Both proofs show that
Theorem 2.2 holds even under the promise that the input sets
intersect in at most two coordinates. Also, in both proofs, handling
ZPPNP[1] instead of PNP[1] incurs almost no extra complication.

The first proof (Section 4) employs the same lower bound tech-
nique as in Theorem 2.1, but where we use Razborov’s corruption
lemma Razborov (1992) directly (and we must do a little anal-
ysis to verify the 1-monochromatic rectangle size bound). The
optional second proof (relegated to Appendix A) uses information
complexity tools (including an adaptation of the “partial infor-
mation cost” approach from Jayram et al. (2003)) and, although
longer to write, has some minor advantages over the first proof: It
is more self-contained, as it does not rely on the corruption lemma
(only on some basic facts that are standard in information com-
plexity). Also, it directly handles success probability 1/2 + ε (for
any constant ε > 0) without relying on the amplification result of
Chang & Purini (2008) (whereas the first proof assumes success
probability 0.999).

2.3. US �⊆ coDP. The class DP was introduced in Papadim-
itriou & Yannakakis (1984) to capture the complexity of certain
exact versions of optimization problems. A set (of all 1-inputs of a
function) is in DP iff it is the difference between two NP sets. The
classes P, NP, and DP are the 0th, 1st, and 2nd (respectively) levels
of the so-called boolean hierarchy.

We have US ⊆ DP since to check that there is exactly one
witness, we can use an NP computation to check that there is at
least one witness, and another to check that there are at least two
witnesses, and require that the first computation returns 1 and
the second returns 0. However, it is unlikely that US ⊆ coDP:
Chang et al. (1995) showed that this inclusion cannot hold in the
classical time-bounded setting unless the polynomial hierarchy col-
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lapses. This result does not yield an unconditional communication
separation, since it is unknown whether the polynomial hierarchy
collapses. Nevertheless, we show that indeed US �⊆ coDP in com-
munication complexity.

Formally, a cost-k coDP communication protocol is defined as
a pair of collections of rectangles,

{
Sw ⊆ {0, 1}n × {0, 1}n : w ∈

{0, 1}k
}

and
{
Tw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on

input (x, y) the output is 0 iff (x, y) ∈ ⋃
w Sw �

⋃
w Tw.

Theorem 2.3. coDP(Unique-Inter) = Θ(n), and hence US �⊆
coDP.

To prove Theorem 2.3 (Section 4), we show that the same
lower bound technique we introduced for ZPPNP[1] (the combina-
tion of the corruption bound and the 1-monochromatic rectangle
size bound) also lower bounds coDP complexity. Thus we can
simply reuse the application of the technique to Unique-Inter

from Theorem 2.2. (Reusing the application to Block-Eq from
Theorem 2.1 would show that Block-Eq �∈ coDP, but this al-
ready follows from the facts that Block-Eq �∈ PNP Impagliazzo
& Williams (2010) and coDP ⊆ PNP.)

2.4. ZPPNP[1] ⊆ PostBPP. Consider bounded-error random-
ized computations (like in BPP) but with postselection: the output
may come from {0, 1,⊥} and must be correct with high probabil-
ity conditioned on not outputting ⊥ (and the probability of this
conditioning event must be positive). The complexity class cor-
responding to this model was originally called BPPpath Han et al.
(1997), but the name PostBPP (inspired by Aaronson (2005)) has
gained popularity in the recent literature (Göös et al. (2016a) is
one example) and seems more appropriate, so we use it instead.

According to modern conventions, the standard way to define
the cost of a PostBPP communication protocol for F would be as
the communication cost plus log(1/α), where α is the minimum
over all (x, y) ∈ F−1 of the probability of not outputting ⊥. (Al-
lowing public randomness and not charging for α would enable
PostBPP protocols to compute every function with constant cost.)
Similarly, the cost of a PP (i.e., unbounded-error randomized) pro-
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tocol would be the communication cost plus log(1/ε) where 1/2+ ε
is the minimum over all (x, y) ∈ F−1 of the probability of out-
putting the correct answer.

However, for reasons that will become clear in Section 2.5, we
choose to revert to the original convention of Babai et al. (1986) and
define PostBPP and PP in a slightly different but equivalent way:
we do not charge for α or ε but we require the public randomness
to be uniformly distributed over {0, 1}k and we charge for k. For
both PostBPP and PP, this cost measure is equivalent to the above
“modern” definition within a constant factor and additive O(log n)
term, by standard sparsification of the public randomness Newman
(1991).

Formally, we define a PostBPP communication protocol Π for
F in the following succinct way: For each outcome of the public
randomness (which is uniformly distributed over {0, 1}k) there is
a deterministic protocol outputting values in {0, 1,⊥}. For each
(x, y) ∈ F−1 we must have P

[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) =

1 − F (x, y)
]
. The cost is the randomness length k plus the max-

imum communication cost of any of the constituent deterministic
protocols.

A priori it is not clear that any explicit lower bounds for ZPPNP[1]

follow from prior work. The following result shows that in fact they
do, since many explicit lower bounds for PostBPP were known (see
Section 3).

Theorem 2.4. PostBPP(F ) ≤ O
(
ZPPNP[1](F ) + log n

)
for all F ,

and hence ZPPNP[1] ⊆ PostBPP.

It turns out that Theorem 2.4 can be derived from the lower
bound technique we develop for ZPPNP[1] in Section 4; however,
that approach is more complicated than necessary and, more im-
portantly, is specific to communication complexity. We give a proof
of Theorem 2.4 (Section 5) using a black-box simulation that also
works for time-bounded complexity, without exploiting any special
properties of communication.

Intuitively, the worst case for simulating a ZPPNP[1] protocol
is the following situation: Whenever the NP oracle responds “0”
the protocol outputs the right answer, and whenever the NP oracle
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responds “1” the protocol outputs ⊥ but would have output the
wrong answer if the response were “0.” In this situation, pretend-
ing the oracle always responds “0” would yield a BPP protocol (this
is where we crucially need the success probability to be > 1/2). To
handle more general situations, we must also randomly guess and
verify a witness for the NP query, outputting ⊥ if the witness is
invalid.

2.5. Open issue: Rank-1 vs. rectangles The classes PostBPP
and PP can be further generalized by allowing the use of private
randomness, which does not count toward the cost. This gives
rise to the so-called unrestricted probabilities classes UPostBPP
(which was defined, but not extensively studied, in Göös et al.
(2016a)) and UPP (which is well-studied Forster (2002); Paturi
& Simon (1986); Razborov & Sherstov (2010); Sherstov (2011b)).
In UPostBPP and UPP we can dispense with public randomness
altogether as the public coins could be tossed privately by Alice
and then sent to Bob.

Combinatorially, PostBPP and PP protocols of cost c induce a
distribution over 2c labeled rectangles (rank-1 matrices with 0-1 en-
tries) each occurring with a “restricted” probability of at least 2−c

(Observation B.21 and Observation B.26). In the case of UPostBPP
and UPP there is a similar characterization with rectangles replaced
by nonnegative rank-1 matrices (Observation B.22 and Observa-
tion B.27). A natural question arises:

Informal question: Are rank-1 matrices inherently
more powerful than rectangles in communication com-
plexity?

While it has been shown that, e.g., PP �= UPP Buhrman et al.
(2007); Sherstov (2008), the known examples of functions F ∈
UPP � PP can actually be computed without exploiting the full
power of private randomness (their rank-1 property): we can use
a UPP protocol whose associated rank-1 matrices are still rectan-
gles, but occurring with unrestricted, possibly tiny, probability. We
conclude that “PP vs. UPP” is not the right way to formalize our
informal question (and the existing proofs for PP �= UPP do not
incidentally answer our question).
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A better formalization is as follows. We define new communi-
cation classes, UPostBPP� ⊆ UPostBPP and UPP� ⊆ UPP, in the
same way as PostBPP and PP, except allowing the public random-
ness to be arbitrarily distributed over {0, 1}k (still charging for k
and not for α or ε). Combinatorially, we have a distribution over 2k

labeled rectangles, but with no restrictions on their probabilities.
(The “rectangle” subscript � refers to the fact that these classes
can be characterized similarly to UPostBPP and UPP but with rect-
angles playing the role of rank-1 matrices; see Appendix B.3.) Our
informal question can now be formalized as follows:

Formal question: Do we have UPostBPP = UPostBPP�?
How about UPP = UPP�?

The seemingly minor syntactic generalization introduced in the def-
initions of the �-classes makes a huge difference: We observe (Sec-
tion 7) that PNP ⊆ UPostBPP�,4 whereas it is known that PostBPP
and PNP are incomparable (see Section 3). Hence UPostBPP� is a
strict superset of both PostBPP and PNP. This leaves us with no
known examples of functions to witness a separation for our “rank-
1 vs. rectangle” question; currently the best gap is UPostBPP(F ) ≤
O(1) vs. UPostBPP�(F ) ≥ Ω(log n) where F is the usual
Greater-Than function defined by F (x, y) = 1 iff x > y when
x, y ∈ [2n] are viewed as numbers. There is also no clear analogue
of the “rank-1 vs. rectangle” distinction in query complexity, so a
separation of the two notions in communication complexity might
require interesting techniques. In fact, in the context of SBP (sub-
class of PostBPP), it can be shown that rank-1 matrices do not add
any power over mere rectangles Göös et al. (2016a).

2.6. PP �⊆ UPostBPP�. Our final result is to develop and apply
a useful lower bound method for the class UPostBPP� introduced
above. PostBPP already has a tight rectangle-based lower bound
technique, which was dubbed “extended discrepancy” in Gavinsky

4 This inclusion also holds for time-bounded complexity. In defining the
time-bounded version of UPostBPP�, we would allow the distribution of the
random string to depend nonuniformly on the input length n, though for the
inclusion of PNP, the distribution is computable in exponential time given the
string 1n.
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& Lovett (2014) but was used earlier in Klauck (2003) to show
that PP �⊆ PostBPP. We strengthen the latter result to show that
PP �⊆ UPostBPP�. (Showing PP �⊆ UPostBPP remains open.) In
our proof, we make use of the main theorem from Göös et al.
(2016a), which applies to composed functions where the gadget is
as follows.

Definition 2.5. The confounding gadget g is defined by g(xi, yi)
:= 〈xi, yi〉 mod 2, where xi, yi ∈ {0, 1}b and the block length b is
b(m) := 100 log m.

We introduce the confounded-majority function, defined as
Conf-Maj := f ◦ gm where f is the majority function and g
is the confounding gadget. Note that Conf-Maj has input length
n := m ·b = m ·100 log m and is in PP since Alice and Bob can pick
i ∈ [m] uniformly at random and then exchange b + 1 ≤ O(log n)
bits to evaluate g(xi, yi).

Theorem 2.6. UPostBPP�(Conf-Maj) = Θ(n), and hence PP �⊆
UPostBPP�.

To prove Theorem 2.6 (Section 6) we introduce a lower bound
technique for UPostBPP� that strengthens the extended discrep-
ancy bound (for PostBPP) by requiring it to hold under a prod-
uct distribution over inputs (analogously to how Papakonstantinou
et al. (2014) showed that the “monochromatic rectangle size bound
under product distributions” gives a lower bound for PNP). How-
ever, only a Ω(

√
n log n) lower bound for Conf-Maj follows using

this technique, so to get the Ω(n) lower bound in Theorem 2.6, we
generalize the technique further by allowing a rectangle’s size to be
measured with respect to some product distribution while its error
is measured with respect to some other (arbitrary) distribution.
(This is very analogous to the idea of relative discrepancy Fontes
et al. (2016); Ganor et al. (2016).) To apply our general lower
bound technique to Conf-Maj, we employ the communication-
to-query machinery from Göös et al. (2016a) in a new, somewhat
indirect way.

Finally, we mention another intriguing property of UPostBPP�:
By our lower bound technique and the results of Gavinsky & Lovett
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(2014) it follows immediately that to prove the Log Rank Con-
jecture, i.e., that P(F ) ≤ poly(log rank(F )) for all total boolean
matrices F , it suffices to prove the same with UPostBPP� instead
of P. See Section 6 for more details.

3. Cartography

In this section we explore in detail the known (non-)inclusions
shown on the map in Figure 1.1. We have not drawn any re-
dundant arrows in the map: other relationships can be inferred
from those shown; e.g., if C1 �⊆ C2 and C1 ⊆ C3 and C4 ⊆ C2, then
C3 �⊆ C4.

Inclusions. The following inclusions also hold for time-bounded
(Turing machine) complexity, as they do not exploit any special
properties of communication. Also recall that all our classes consist
of partial functions (promise problems); in particular, none of these
inclusions exploit special properties of total functions.

BPP ⊆ ZPPNP[1]: This was first shown implicitly in Goldre-
ich & Zuckerman (2011); Nisan & Wigder-
son (1994). A particularly clean and ele-
gant argument was given in Cai & Chakar-
avarthy (2006).

ZPPNP[1] ⊆ PostBPP: This is our Theorem 2.4.

PNP
‖ ⊆ PostBPP: This was shown in Han et al. (1997). In

fact, this was strengthened to PSBP
‖ =

PostBPP in O’Donnell & Say (2016).

PNP ⊆ UPostBPP�: We sketch the proof of this in Section 7
(Observation 7.1).

SBP ⊆ AM: This was shown in Goldwasser & Sipser
(1986) (despite the fact that the class SBP
was not defined and named until later
Böhler et al. (2006)).

AM ∩ coAM ⊆ ZPP
NP[2]
‖ : This follows from the well-known facts

that AM = coR · NP and that ZPP =
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RP ∩ coRP relativizes. (We do not know

whether ZPP
NP[2]
‖ admits efficient ampli-

fication, but for concreteness we define it
with success probability 3/4.) The same
argument shows that AM ∩ coAM would
be in ZPPNP[1] if we allowed the latter to
have success probability a constant less
than 1/2.

PNP ⊆ S2P: This was shown in Canetti (1996); Rus-
sell & Sundaram (1998).

MA ⊆ S2P: This was shown in Russell & Sundaram
(1998). (It was shown in Canetti (1996)
that BPP ⊆ S2P.)

ZPPNP[1] ⊆ S2P: This was shown in Cai & Chakaravarthy
(2006).

S2P ⊆ ZPPNP: This was shown in Cai (2007). See also
Fortnow et al. (2008).

Non-inclusions. For a non-inclusion C1 �⊆ C2, the result is strength-
ened if we show that some total function is in C1 but not in C2. All
the following non-inclusions are known to hold for a total function,
except in cases where we say otherwise.

MA �⊆ ZPPNP[1]: This is our Theorem 2.1.

US �⊆ ZPPNP[1]: This is our Theorem 2.2.

US �⊆ coDP: This is our Theorem 2.3.

RP �⊆ US: This is fairly simple to show, but was not
recorded in the literature before, so we take
the opportunity to do so in Section 7 (Ob-
servation 7.2).

NP ∩ coNP �⊆ BPP: This was shown in Klauck (2003). Of course,
it is known that NP ∩ coNP = P for total
functions, so the function witnessing this is
necessarily partial.

coNP �⊆ SBP: This was shown in Göös & Watson (2016)
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using the corruption lemma of
Razborov (1992).

P
NP[q+1]
‖ �⊆ P

NP[q]
‖ : This holds for all constants q ≥ 0 Halsten-

berg & Reischuk (1990). It is also known

that PNP[q] = P
NP[2q−1]
‖ for all constants q ≥

0 Beigel (1991), and hence PNP[q+1] �⊆ PNP[q].

BPP �⊆ PNP: This was implicitly shown in Papakonstanti-
nou et al. (2014), though only for a par-
tial function (the variant of gap-Hamming-
distance with a constant relative gap).
Progress toward witnessing BPP �⊆ PNP by
a total function can be made in two direc-
tions: finding a total function not in PNP

that is in a small superclass of BPP, and
finding a total function in BPP that is not
in a large subclass of PNP. For the former,
MA �⊆ PNP is witnessed by Block-Eq Im-
pagliazzo & Williams (2010). For the latter,
BPP �⊆ PNP

‖ is witnessed by Greater-Than

Halstenberg & Reischuk (1990).5

SBP �⊆ MA: This was shown in Göös et al. (2016a),
though only for a partial function.

PNP �⊆ PP: This was shown in Buhrman et al. (2007);
there it was only stated that UPP �⊆ PP,
but the function witnessing this is, in fact,
in PNP.

PP �⊆ UPostBPP�: This is our Theorem 2.6. Previously, PP �⊆
PostBPP was shown in Klauck (2003), and
PP �⊆ PNP was known since the negation
would imply ⊕P ⊆ PNP by binary search,
and a fairly simple proof that ⊕P �⊆ PNP

was given in Papakonstantinou et al. (2014).

5 It was only claimed in Halstenberg & Reischuk (1990) that
Greater-Than �∈ P

NP[q]
‖ for any constant q, but in fact their proof shows

that Greater-Than �∈ PNP
‖ .
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ZPP �⊆ ⊕P: This is fairly simple to show, but was not
recorded in the literature before, so we take
the opportunity to do so in Section 7 (Ob-
servation 7.3). Of course, it is known that
ZPP = P for total functions, so the function
witnessing this is necessarily partial. The
non-equality total function Neq witnesses
RP �⊆ ⊕P.

⊕P �⊆ UPP: This was shown in Forster (2002).

AM ∩ coAM �⊆ UPP: This was shown in Bouland et al. (2017), in
fact for a certain subclass NISZK ⊆ AM ∩
coAM (non-interactive statistical zero-
knowledge), though only for a partial func-
tion. Previously, AM ∩ coAM �⊆ PP was
shown for a partial function in Klauck (2011)
(by combining the results of Sherstov (2011a);
Vereshchagin (1995)). Also, Π2P �⊆ UPP
was shown for a total function in Razborov
& Sherstov (2010).

S2P �⊆ UPP: This was shown in Chattopadhyay & Mande
(2017), in fact for the subclass PMA ⊆ S2P.

Open issues. In summary, everything is now known about the
relations between pairs of classes in Figure 1.1, except for the fol-
lowing conjectured non-inclusions:

� PP �⊆ UPostBPP (or even UPP �⊆ UPostBPP),

� UPostBPP �⊆ UPP� (or even UPP �⊆ UPP� or UPostBPP �⊆
UPostBPP�),

and except for conjectured non-inclusions that would entail explicit
AM lower bounds6 or explicit S2P lower bounds:

� coNP �⊆ AM (or even PSPACE �⊆ AM ∩ coAM or UPP �⊆
AM ∩ coAM),

6 Note that if we had an AM ∩ coAM lower bound for an explicit function
F , then we would also have an AM lower bound for the explicit function that
maps ((b, x), y) �→ F (x, y) ⊕ b where b ∈ {0, 1}.



20 Göös, Pitassi & Watson cc (2018)

� SBP �⊆ Σ2P (or even PSPACE �⊆ S2P or UPP �⊆ S2P),

� ⊕P �⊆ Π2P,

� MA �⊆ ZPP
NP[2]
‖ ,

� PNP
‖ �⊆ ZPP

NP[2]
‖ ,

� AM ∩ coAM �⊆ S2P,

� UPostBPP� �⊆ PSPACE,

and except for showing the following non-inclusions for total func-
tions:

� BPP �⊆ PNP (or even ZPP
NP[2]
‖ �⊆ PNP),

� SBP �⊆ MA (or even AM �⊆ MA),

� AM ∩ coAM �⊆ UPP (or even ZPP
NP[2]
‖ �⊆ PostBPP).

4. Lower bounds for block-equality and
unique-set-intersection

We now describe a technique for lower bounding both ZPPNP[1] and
coDP communication.

Lemma 4.1. Suppose μ0 is a distribution over F−1(0), μ1 is a dis-
tribution over F−1(1), and C is a constant such that for every
rectangle R ⊆ {0, 1}n × {0, 1}n, μ0(R) ≤ C · μ1(R) + δ, and if R
is 1-monochromatic (i.e., contains no 0-inputs) then μ1(R) ≤ δ.
Then

(i) ZPPNP[1](F ) ≥ Ω(log(1/δ)),

(ii) coDP(F ) ≥ Ω(log(1/δ)).

The first half of the technique (μ0(R) ≤ C · μ1(R) + δ) is the
corruption bound (which is a tight lower bound technique for so-
called coSBP Göös & Watson (2016)), and the other half is the 1-
monochromatic rectangle size bound (which is a tight lower bound
technique for NP (Kushilevitz & Nisan 1997, §2.4)). The combined
technique gives a lower bound for both ZPPNP[1] and coDP, even
though neither of these classes appears to be a “combination” of
coSBP and NP.
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We prove parts (i) and (ii) of Lemma 4.1 in Section 4.1 and Sec-
tion 4.2. Then we apply the technique to Block-Eq in Section 4.3
(thus proving Theorem 2.1), and finally we apply the technique to
Unique-Inter in Section 4.4 (thus proving Theorem 2.2 and The-
orem 2.3).

4.1. Proof of Lemma 4.1.(i) Suppose for contradiction there
is a cost-o(log(1/δ)) ZPPNP[1] protocol Π computing F . Then in
particular we have δ ≤ o(1). By the amplification result of Chang
& Purini (2008), we may assume P

[
Π(x, y) = ⊥] ≤ 1/10C for

all (x, y) ∈ F−1. By Markov’s inequality and a union bound, we
may fix a PNP[1]-type protocol Π∗ in the support of Π such that
P(x,y)∼μ0

[
Π∗(x, y) = ⊥] ≤ 1/5C and P(x,y)∼μ1

[
Π∗(x, y) = ⊥] ≤

1/5C. Let the notation k,Rv, Sv,w, ov be with respect to Π∗ (see

the definition of ZPPNP[1] in Section 2.1), and note that without loss
of generality, each ov is non-constant (otherwise we could redefine
Sv,w = ∅ for all w and redefine ov(1) arbitrarily).

For b ∈ {0, 1,⊥}, define Wb :=
⋃

v,w : ov(1)=b Sv,w as the set of

“witnessed” inputs (the NP oracle responds “1”) on which Π∗ out-
puts b, and define Nb :=

⋃
v : ov(0)=b

(
Rv �

⋃
w Sv,w

)
as the set of

“non-witnessed” inputs (the NP oracle responds “0”) on which Π∗

outputs b. Note that {W0, N0,W1, N1,W⊥, N⊥} partitions {0, 1}n×
{0, 1}n. By assumption, μ0(W⊥ ∪ N⊥) ≤ 1/5C and μ1(W⊥ ∪
N⊥) ≤ 1/5C. By the correctness of Π, for b ∈ {0, 1} we have
(Wb ∪ Nb) ∩ F−1(1 − b) = ∅.

Claim 4.2. μ0(W0) ≤ 1/4.

Claim 4.3. μ0(N0) ≤ 1/4.

This provides the contradiction since then μ0

({0, 1}n×{0, 1}n
)

=
μ0(W0) + μ0(N0) + μ0(W1 ∪ N1) + μ0(W⊥ ∪ N⊥) ≤ 1/4 + 1/4 + 0 +
1/5C < 1.

Proof (Proof of Claim 4.2). For each v, w such that ov(1) = 0,
we have μ1(Sv,w) = 0 and hence μ0(Sv,w) ≤ δ. Thus by a union
bound, μ0(W0) ≤ ∑

v,w : ov(1)=0 μ0(Sv,w) ≤ 2o(log(1/δ)) · δ ≤ δ1−o(1) ≤
1/4. �
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Proof (Proof of Claim 4.3). If v is such that ov(0) = 0, then we
have

μ0

(
Rv�

⋃
w Sv,w

) ≤ μ0(Rv) ≤ C ·μ1(Rv)+δ = C ·μ1

(⋃
w Sv,w

)
+δ

by the fact that
(
Rv �

⋃
w Sv,w

) ∩ F−1(1) = ∅. Also, since each ov

is non-constant, we have

∑
v : ov(0)=0 μ1

(⋃
w Sv,w

)
=

∑
v : ov(0)=0, ov(1)=⊥ μ1

(⋃
w Sv,w

)

+
∑

v : ov(0)=0, ov(1)=1 μ1

(⋃
w Sv,w

)

≤ μ1(W⊥) +
∑

v,w : ov(1)=1 μ1(Sv,w)

≤ μ1(W⊥ ∪ N⊥) + 2o(log(1/δ)) · δ

≤ 1/5C + δ1−o(1)

where the third line follows since Sv,w is 1-monochromatic if ov(1) =
1. Combining these, we have

μ0(N0) =
∑

v : ov(0)=0 μ0

(
Rv �

⋃
w Sv,w

)

≤ ∑
v : ov(0)=0

(
C · μ1

(⋃
w Sv,w

)
+ δ

)

≤ C ·
(∑

v : ov(0)=0 μ1

(⋃
w Sv,w

))
+ 2o(log(1/δ)) · δ

≤ C · (
1/5C + δ1−o(1)

)
+ δ1−o(1)

≤ 1/4.

�

4.2. Proof of Lemma 4.1.(ii) Suppose for contradiction there
is a cost-k coDP protocol Π computing F where k ≤ o(log(1/δ)).
Then in particular we have δ ≤ o(1). We have a pair of collections
of rectangles,

{
Sw : w ∈ {0, 1}k

}
and

{
Tw : w ∈ {0, 1}k

}
,

such that if F (x, y) = 0 then (x, y) ∈ ⋃
w Sw and (x, y) �∈ ⋃

w Tw,
and if F (x, y) = 1 then (x, y) �∈ ⋃

w Sw or (x, y) ∈ ⋃
w Tw. Since

μ0

(⋃
w Sw

)
= 1, there exists a w∗ such that μ0(Sw∗) ≥ 2−k ≥ δ1/3

and hence μ1(Sw∗) ≥ 1
C

· (δ1/3 − δ) ≥ δ1/2. Since Sw∗ ∩ F−1(1) ⊆⋃
w Tw, there exists a w′ such that μ1(Tw′) ≥ μ1

(
Sw∗ ∩ F−1(1)

) ·
2−k > δ1/2 · δ1/2 = δ. But Tw′ is 1-monochromatic since F−1(0) ∩⋃

w Tw = ∅, so this is a contradiction.
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4.3. Proof of Theorem 2.1. Let μ0 be the uniform distribution
over Block-Eq

−1(0), and let μ1 be the uniform distribution over
the subset of Block-Eq

−1(1) consisting of all (x, y) for which
xi = yi for a unique i.

Lemma 4.4. μ0(R) ≤ 45·μ1(R)+2−Ω(
√

n) holds for every rectangle
R ⊆ {0, 1}n × {0, 1}n.

Lemma 4.5. μ1(R) ≤ 2−Ω(
√

n) holds for every 1-monochromatic
rectangle R of Block-Eq.

Together, Lemma 4.4 and Lemma 4.5 show that the hypoth-
esis of Lemma 4.1 holds with F := Block-Eq, C := 45, and
δ := 2−Ω(

√
n). The lower bound in Theorem 2.1 follows. For the

upper bound, in fact ZPP(Block-Eq) ≤ O(
√

n) holds (Kushile-
vitz & Nisan 1997, §4.1.1) (though it is slightly quicker to see that
NP(Block-Eq) ≤ O(

√
n) holds by guessing i and deterministi-

cally verifying that xi = yi).
For the proofs of the lemmas, we define m :=

√
n and b :=

√
n

(as in the notation for the decomposition Block-Eq := Or◦Eqm

where Eq takes b-bit inputs).

Proof (Proof of Lemma 4.4). For x0, x1, y0, y1 ∈ {0, 1}b, we say
the tuple (x0, x1, y0, y1) is valid iff x0 �= y0, x0 �= y1, x1 �= y0, and
x1 = y1. We say

Ξ :=
(
(x0

1, x
1
1, y

0
1, y

1
1), . . . , (x

0
m, x1

m, y0
m, y1

m)
)

is valid iff it is a tuple of valid tuples. If Ξ is valid then the injection
ΦΞ : {0, 1}m × {0, 1}m → {0, 1}n × {0, 1}n defined by

ΦΞ(u, v) :=
(
xu1

1 · · ·xum
m , yv1

1 · · · yvm
m

)

is a reduction from Inter := Or ◦ And
m (for single-bit And) to

Block-Eq:

Inter(u, v) = Block-Eq

(
ΦΞ(u, v)

)
.

(In other words, the image of ΦΞ, as a submatrix of the Block-Eq

matrix, is a copy of the Inter matrix.)
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Define Unambig-Inter := Unambig-Or ◦ And
m where the

partial function Unambig-Or is Or restricted to the domain of
strings of Hamming weight 0 or 1. That is, Unambig-Inter

−1(0)
consists of all pairs of disjoint sets, and Unambig-Inter

−1(1) con-
sists of all pairs of uniquely intersecting sets.

Lemma 4.6 (Razborov 1992). There exist a distribution ν0 over
Unambig-Inter

−1(0) and a distribution ν1 over
Unambig-Inter

−1(1) such that ν0(R) ≤ 45 ·ν1(R)+2−Ω(m) holds
for every rectangle R ⊆ {0, 1}m × {0, 1}m. Moreover, the uniquely
intersecting coordinate in ν1 is uniformly distributed.

Letting E denote expectation, we claim that for a ∈ {0, 1}
we have μa = EΞ ΦΞ(νa) where a valid Ξ is chosen uniformly at
random independently of νa. In other words, μa equals the dis-
tribution obtained by choosing Ξ, then independently taking a
sample from νa, then applying ΦΞ to the sample (i.e., the uni-
form mixture of the distributions ΦΞ(νa)). We only argue that
μ1 = EΞ ΦΞ(ν1) (the argument for μ0 = EΞ ΦΞ(ν0) is essentially
the same). In fact, we make the stronger claim that for every
(u, v) ∈ Unambig-Inter

−1(1), say with ui = vi = 1, the distri-
bution EΞ ΦΞ(u, v) is uniform over the subset of Block-Eq

−1(1)
consisting of all (x, y) for which xi = yi and xj �= yj for all j �= i.
The original claim follows from this since the uniquely intersecting
coordinate i is uniformly distributed. The stronger claim follows
immediately from the facts that the coordinates of Ξ are indepen-
dent, that (x1

i , y
1
i ) is uniformly distributed over Eq−1(1), and that

for j �= i, (x0
j , y

0
j ), (x0

j , y
1
j ), and (x1

j , y
0
j ) are all marginally uniformly

distributed over Eq
−1(0). The claim is established.

Now for every rectangle R ⊆ {0, 1}n ×{0, 1}n, if we let Φ−1
Ξ (R)

denote the rectangle of all points in {0, 1}m × {0, 1}m that map
into R under ΦΞ, then we have

μ0(R) = EΞ

(
ΦΞ(ν0)(R)

)

= EΞ ν0

(
Φ−1

Ξ (R)
)

≤ EΞ

(
45 · ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)
)

= 45 · EΞ ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)
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= 45 · EΞ

(
ΦΞ(ν1)(R)

)
+ 2−Ω(m)

= 45 · μ1(R) + 2−Ω(
√

n).

�

Proof (Proof of Lemma 4.5). Note that μ1 is uniform over a set
of size

m·2b·(22b−2b)m−1 = m·2b·22b(m−1)·(1−2−b)m−1 ≥ Ω(m·2b·22b(m−1)).

If R := A × B is 1-monochromatic, then |A| ≤ m · 2b(m−1) (since
for any y ∈ B there are at most m · (2b)m−1 many x’s for which
Block-Eq(x, y) = 1), and similarly |B| ≤ m · 2b(m−1), and hence
|R| ≤ m2 · 22b(m−1). It follows that

μ1(R) ≤ m2 · 22b(m−1)

Ω(m · 2b · 22b(m−1))
≤ O(m · 2−b) ≤ 2−Ω(

√
n).

�

4.4. Proof of Theorem 2.2 and Theorem 2.3. We again use
the corruption lemma from Razborov (1992), but now we need
to take a closer look at the distribution over 1-inputs. Let n =
4� − 1. Let μ0 be the distribution over Unique-Inter

−1(0) that
samples uniformly random disjoint sets of size �, and let μ1 be
the distribution over Unique-Inter

−1(1) that samples uniformly
random uniquely intersecting sets of size �.

Lemma 4.7 (Razborov 1992). μ0(R) ≤ 45 · μ1(R) + 2−Ω(n) holds
for every rectangle R ⊆ {0, 1}n × {0, 1}n.

Lemma 4.8. μ1(R) ≤ 2−Ω(n) holds for every 1-monochromatic
rectangle R of Unique-Inter.

Together, Lemma 4.7 and Lemma 4.8 show that the hypothesis
of Lemma 4.1 holds with F := Unique-Inter, C := 45, and
δ := 2−Ω(n). Theorem 2.2 and Theorem 2.3 follow.
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Proof (Proof of Lemma 4.8). For each i ∈ [n] let us define the
rectangle Ri :=

{
(x, y) ∈ R : xi = yi = 1

}
, and note that the Ri’s

partition R. For each i we have |Ri| ≤ 2n−1 since every (x, y) ∈ Ri

is disjoint on the coordinates [n] � {i}.7 Hence |R| ≤ n2n−1 ≤
2(1+o(1))n.

Note that μ1 can be sampled by the following process.

1. Pick a uniformly random i ∈ [n].
2. Pick a uniformly random H ⊆ [n] � {i} of size 2� − 2. There

are
(

n−1
2�−2

)
= Θ(2n/

√
n) choices.

3. Pick a uniformly random partition H = H1 ∪ H2 into sets of
size � − 1. There are

(
2�−2
�−1

)
= Θ(20.5n/

√
n) choices.

4. Let x := {i} ∪ H1 and y := {i} ∪ H2.

Hence μ1 is uniform over its support of size

n · Θ(2n/
√

n) · Θ(20.5n/
√

n) = Θ(21.5n) ≥ 2(1.5−o(1))n.

It follows that μ1(R) ≤ 2(1+o(1))n/2(1.5−o(1))n ≤ 2−Ω(n). �

5. Proof of Theorem 2.4

Consider an optimal ZPPNP[1] protocol Π for F with determin-
istic communication cost c and witness length k. By standard
sparsification, we may assume the public randomness is uniformly
distributed over {0, 1}O(log n). We let Πr denote the PNP[1]-type
protocol induced by an outcome r ∈ {0, 1}O(log n), and we let the
notation Rr

v, S
r
v,w, or

v be with respect to Πr (see the definition of

ZPPNP[1] in Section 2.1). We claim that the following protocol

Π̃ is a PostBPP protocol for F of cost O
(
ZPPNP[1](F ) + log n

)
.

7 By Kaibel & Weltge (2015), the bound |Ri| ≤ 2n−1 also holds assuming
every input in R has intersection size either 1 or ≥ 3. Using this, it follows
that Theorem 2.2 and Theorem 2.3 hold under the promise that at most two
coordinates intersect.
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Input: (x, y)
Output: ∈ {0, 1,⊥}

1 pick r uniformly at random
2 run the deterministic part of Πr(x, y) to a leaf vr

3 pick a ∈ {0, 1} uniformly at random
4 if a = 1 then
5 pick w ∈ {0, 1}k uniformly at random
6 if (x, y) ∈ Sr

vr,w then output or
vr(1) else output ⊥

7 else if a = 0 then
8 output or

vr(0) with probability 2−(k+2)

9 output ⊥ with the remaining probability

10 end

Π̃ has communication cost c+O(1) and randomness cost O(log n)
+ k + O(1) and hence cost O(c + k + log n). We now argue the

correctness. Let Π̃r denote Π̃ with a particular r chosen on line 1.
Fix an input (x, y), and let χr ∈ {0, 1} indicate whether (x, y) ∈⋃

w Sr
vr,w (i.e., the NP oracle’s response). Let A := {r : χr = 1},

A := {r : χr = 0}, B :=
{
r : or

vr(χr) = F (x, y)
}
, and

B :=
{
r : or

vr(χr) = ⊥}
. We have

P
[
Π̃r(x, y) = F (x, y)

] ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2−(k+1) if r ∈ A ∩ B

0 if r ∈ A ∩ B

2−(k+3) if r ∈ A ∩ B

0 if r ∈ A ∩ B

and

P
[
Π̃r(x, y) = 1 − F (x, y)

] ≤
{

2−(k+3) if r ∈ A

0 if r ∈ A
.

Thus since P[r ∈ B] ≥ 3/4 we have

P
[
Π̃(x, y) = F (x, y)

] ≥ 2−(k+3) · P[r ∈ B]

+
(
2−(k+1) − 2−(k+3)

) · P[r ∈ A ∩ B]

= 2−(k+3) · (
P[r ∈ B] + 3 · P[r ∈ A ∩ B]

)
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≥ 2−(k+3) · (
3 · P[r ∈ B] + 3 · P[r ∈ A ∩ B]

)

≥ 3 · 2−(k+3) · P[r ∈ A]

≥ 3 · P
[
Π̃(x, y) = 1 − F (x, y)

]

so Π̃ is a correct PostBPP protocol for F .

6. Lower bound for majority

In this section we prove Theorem 2.6. We first give a general lower
bound technique for UPostBPP� in Section 6.1, then we describe
the machinery we borrow from Göös et al. (2016a) in Section 6.2,
and finally we give the proof of Theorem 2.6 in Section 6.3.

6.1. Lower bound technique.

Definition 6.1. For F : {0, 1}n ×{0, 1}n → {0, 1}, R ⊆ {0, 1}n ×
{0, 1}n, and μ a distribution over {0, 1}n × {0, 1}n, we say R is μ-
unbiased (with respect to F ) if 1

2
·μ(

R∩F−1(0)
) ≤ μ

(
R∩F−1(1)

) ≤
2 · μ

(
R ∩ F−1(0)

)
, and is μ-biased otherwise.

Lemma 6.2. Suppose μ is a distribution over F−1 and ρ is a prod-
uct distribution over {0, 1}n × {0, 1}n such that for every rect-
angle R ⊆ {0, 1}n × {0, 1}n, if ρ(R) ≥ δ then R is μ-unbiased
(with respect to F ), and if ρ(R) ≥ 1/2 then μ(R) > 0. Then
UPostBPP�(F ) ≥ Ω(log(1/δ)).

The case where μ = ρ is equivalent to extended discrepancy
Gavinsky & Lovett (2014) under product distributions, and leads
to the lower bound UPostBPP�(Conf-Maj) ≥ Ω(

√
n log n) (de-

tails omitted). The more general form is needed to get the Ω(n)
lower bound. The results of Gavinsky & Lovett (2014) show that
for total F , P(F ) ≤ poly(log n) follows from the assumptions that
F ’s matrix has poly(log n) rank (over the reals) and that every
rectangle S has a subrectangle that has measure ≥ 2− poly(log n) and
is biased (both with respect to the uniform distribution over S).
By letting ρ = μ be uniform over an arbitrary S in Lemma 6.2,
the latter property follows from the existence of a poly(log n)-cost
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UPostBPP� protocol. Hence to prove the Log Rank Conjecture, it
suffices to prove the same with UPostBPP� instead of P.

Proof (Proof of Lemma 6.2). Suppose Π is a cost-k UPostBPP�
protocol for F . By Observation B.21 (in Appendix B), we may as-
sume Π is just a distribution over 2k many {0, 1}-labeled rectangles.
For R a rectangle and o ∈ {0, 1}, we let πR,o denote the probability
of getting R with label o under Π.

We start by recording the following observation: For every dis-
tribution ν over F−1 there exists an (R, o) such that πR,o > 0 and
R is ν-biased. This follows by considering the 2-player 0-sum game
where the row strategies are inputs (x, y) ∈ F−1, the column strate-
gies are (R, o) pairs with πR,o > 0, and the payoff to the column
player is 1 if (x, y) ∈ R and F (x, y) = o, is −2 if (x, y) ∈ R and
F (x, y) = 1 − o, and is 0 if (x, y) �∈ R. The mixed column strategy
π demonstrates that the game has positive value, and hence for
every mixed row strategy there exists a pure column strategy for
which the expected payoff to the column player is positive. This
implies the observation. Only the straightforward direction of the
Minimax Theorem is used.

Consider the following procedure.

1 let Q0 := {0, 1}n × {0, 1}n

2 for i = 1, 2, . . . do
3 let Ri be a (μ | Qi−1)-biased rectangle such that

πRi,oi > 0 for some oi

4 let Ai × Bi := Ri ∩ Qi−1

5 let Qi := Qi−1 �(
either Ai × {0, 1}n or {0, 1}n × Bi, whichever is smaller
under ρ

)

6 until ρ(Qi) < 1/2

We show by induction on i that lines 3 and 4 always succeed,
Qi is a rectangle, ρ(Qi) ≥ 1− i ·√δ, and the Rj’s for j ∈ {1, . . . , i}
are all distinct from each other and disjoint from Qi. The base
case i = 0 is trivial, so assume this holds for i − 1. Since Qi−1 is
a rectangle and ρ(Qi−1) ≥ 1/2 by line 6, we have μ(Qi−1) > 0 by
assumption (with R := Qi−1) and hence the conditioning on line
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3 is valid. By the above observation (with ν := (μ | Qi−1)), line
3 succeeds. Since Qi−1 is a rectangle, so are Ri ∩ Qi−1 (hence line
4 succeeds) and Qi. Since Ri is (μ | Qi−1)-biased, we have that
Ri ∩ Qi−1 is μ-biased and hence ρ(Ri ∩ Qi−1) < δ by assumption
(with R := Ri ∩ Qi−1). Since ρ is a product distribution, either
ρ
(
Ai × {0, 1}n

)
<

√
δ or ρ

({0, 1}n × Bi

)
<

√
δ. Hence ρ(Qi) ≥

ρ(Qi−1) − √
δ ≥ 1 − i · √

δ. Since Ri ∩ Qi−1 is μ-biased, Ri is
not disjoint from Qi−1 and hence Ri is distinct from the Rj’s for
j ∈ {1, . . . , i − 1} (since the latter are all disjoint from Qi−1).
Since Qi ⊆ Qi−1, the Rj’s for j ∈ {1, . . . , i − 1} are also disjoint
from Qi. Finally, line 5 ensures that Ri is disjoint from Qi, since
Qi ⊆ Qi−1 � (Ai × Bi) = Qi−1 � Ri. This completes the induction
step.

Since the Ri’s are all distinct and πRi,oi > 0, there are at most
2k iterations. Let i∗ be the final value of i. By line 6, we have
1/2 > ρ(Qi∗) ≥ 1 − i∗ · √

δ and hence 2k ≥ i∗ > 1/2
√

δ. Thus
k > 1

2
· log(1/δ) − 1. �

6.2. Conjunction rectangles. We now state the “Packing with
Conjunctions Theorem” from Göös et al. (2016a), which is the
technical heart of the main “Junta Theorem” from that paper. The
theorem makes no reference to the outer function f ; it is simply a
statement about the function G := gm where g is the confounding
gadget with block length b (Definition 2.5).

Definition 6.3. Two distributions over {0, 1}m are ε-close if for
every z ∈ {0, 1}m, the probabilities of z under the two distributions
are within a factor (1 ± ε) of each other.

Definition 6.4. A rectangle S is a (d, ε)-conjunction rectangle if
there exists a width-d conjunction h : {0, 1}m → {0, 1} (i.e., h can
be written as (�1 ∧ · · · ∧ �w) where w ≤ d and each �i is an input
variable or its negation) such that the distributions over {0, 1}m

obtained in the following two ways are ε-close:

� picking a uniformly random z ∈ {0, 1}m and a uniformly
random (x, y) ∈ G−1(z) and conditioning on (x, y) ∈ S,

� picking a uniformly random z ∈ h−1(1).
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Definition 6.5. A distribution ν over {0, 1}n ×{0, 1}n is the lift
of a distribution ξ over {0, 1}m if ν(x, y) = ξ(z)/|G−1(z)| where
z := G(x, y). Note that a lifted distribution is a convex combina-
tion of distributions that are uniform over a set G−1(z).

Theorem 6.6. For ε := 1/100, and for every d ≥ 0, every lifted
distribution ν, and every rectangle R with ν(R) ≥ 2−db/20, there
exist disjoint (d, ε)-conjunction subrectangles S1, S2, . . . ⊆ R such
that ν

(⋃
i Si | R

) ≥ 1 − ε.

The proof in Göös et al. (2016a) actually gives ε := 2−Θ(b), but
we only need ε := 1/100.

6.3. Proof of Theorem 2.6. For convenience, assume m is odd.
We have Conf-Maj := f ◦ G where G := gm. Let M :=

{
z ∈

{0, 1}m : |z| ∈ {�m/2�, �m/2�}}
(the “middle layers” of the Ham-

ming cube), and let L := G−1(M) (the “lifted version” of the set
M). Let the distribution μ be the lift of the uniform distribution
over M (so μ is supported on L), and let ρ be the uniform distri-
bution over {0, 1}n ×{0, 1}n (which is a product distribution). We
argue the following two claims, both of which exploit Theorem 6.6.
Recall that b := 100 log m and n := m · b.

Claim 6.7. For every rectangle R, if ρ(R) ≥ 0.99999n then μ(R) ≥
0.997n.

Claim 6.8. For every rectangle R, if μ(R) ≥ 0.997n then R is
μ-unbiased.

Theorem 2.6 follows because the assumptions of Lemma 6.2
hold with δ := 0.99999n: The first part (if ρ(R) ≥ δ then R is
μ-unbiased) holds by Claim 6.7 and Claim 6.8. The second part
(if ρ(R) ≥ 1/2 then μ(R) > 0) holds by Claim 6.7 alone.

Observation 6.9. Let ρ′ be the lift of the uniform distribution
over {0, 1}m, and note the following.
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(i) ρ and ρ′ are (1/2)-close. (This is straightforward to verify
using b := 100 log m and the fact that |g−1(0)|, |g−1(1)| ∈
22b−1 ± 2b−1.)

(ii) μ(·) = ρ′(· | L).

(iii) The first distribution in Definition 6.4 picks z with probabil-
ity ρ′(G−1(z) | S

)
; hence this value is in (1±ε)·Pz′∈h−1(1)[z

′ =
z] where the notation Pz′∈h−1(1) means a uniformly random
choice.

In the proof of Claim 6.7 we use the following fact, which holds
by Stirling approximations.

Fact 6.10. For all s ≥ t we have

(
s

t

)
= Θ

(
1√
s

·
(s

t

)t+1/2

·
(

s

s − t

)s−t+1/2
)

≥ Ω

(
1√
s

·
(

s

max(t, s − t)

)s)
.

Proof (Proof of Claim 6.7). Assuming ρ(R) ≥ 0.99999n, we
have ρ′(R) ≥ 0.99998n. Apply Theorem 6.6 with ν := ρ′ and
d := m/1000 (noting that 0.99998n ≥ 2−db/20) to get disjoint (d, ε)-
conjunction subrectangles S1, S2, . . . ⊆ R with associated conjunc-
tions h1, h2, . . ., such that ρ′(⋃

i Si | R
) ≥ 1− ε (where ε := 1/100).

For each i, assuming for convenience that hi depends on exactly d
variables, exactly j of which are positive literals, we have

∣
∣h−1

i (1) ∩ M
∣
∣ =

(
m − d

�m/2� − j

)
+

(
m − d

�m/2� − j

)

≥
(

m − d

�m/2� − j

)

≥ Ω

(
1√
m

·
(

m − d

�m/2�
)m−d

)

≥ 2m−d · Ω

(
1√
m

· 0.9987m−d

)

≥ 2m−d · 0.9985m
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where the third line follows by Fact 6.10 and the fourth line follows

by d := m/1000. Thus we have Pz∈h−1
i (1)[z ∈ M ] =

|h−1
i (1)∩M |
2m−d ≥

0.9985m, and hence

ρ′(L | Si) =
∑

z∈M ρ′(G−1(z) | Si

)

≥ ∑
z∈M (1 − ε) · Pz′∈h−1

i (1)[z
′ = z]

= (1 − ε) · Pz∈h−1
i (1)[z ∈ M ]

≥ 0.9983m

where the second line follows since Si is a (d, ε)-conjunction rect-
angle. Then we have

ρ′(L | R) ≥
∑

i
ρ′(L ∩ Si | R)

=
∑

i
ρ′(L | Si) · ρ′(Si | R)

≥
∑

i
0.9983m · ρ′(Si | R)

= 0.9983m · ρ′(⋃

i
Si | R

)

≥ 0.998m

where the last line follows by ρ′(⋃
i Si | R

) ≥ 1 − ε, and finally

μ(R) = ρ′(R | L)

≥ ρ′(L | R) · ρ′(R)

≥ 0.998m · 0.99998n

≥ 0.997n.

�

Proof (Proof of Claim 6.8). Apply Theorem 6.6 with ν := μ
and d := m/10 (noting that 0.997n ≥ 2−db/20) to get disjoint (d, ε)-
conjunction subrectangles S1, S2, . . . ⊆ R with associated conjunc-
tions h1, h2, . . ., such that μ

(⋃
i Si | R

) ≥ 1− ε (where ε := 1/100).
Recall that f : {0, 1}m → {0, 1} is the majority function. For each
i, assuming for convenience that hi depends on exactly d variables,
exactly j of which are positive literals, we have

Pz∈h−1
i (1)

[
z ∈ f−1(0) ∩ M

]

Pz∈h−1
i (1)

[
z ∈ f−1(1) ∩ M

] =

(
m−d


m/2�−j

)

(
m−d

�m/2
−j

)
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=
�m/2� − j

�m/2� − d + j

= 1 +
d − 2j

�m/2� − d + j

∈ [3
4
, 4

3
]

since d := m/10. Now fix any output o ∈ {0, 1}, and let Eo :=
Conf-Maj

−1(o) = G−1(f−1(o)). We have

ρ′(Eo ∩ L | Si) =
∑

z∈f−1(o)∩M ρ′(G−1(z) | Si

)

≥ ∑
z∈f−1(o)∩M (1 − ε) · Pz′∈h−1

i (1)[z
′ = z]

= (1 − ε) · Pz∈h−1
i (1)

[
z ∈ f−1(o) ∩ M

]

≥ (1 − ε) · 3
4

· Pz∈h−1
i (1)

[
z ∈ f−1(1 − o) ∩ M

]

≥ (1 − ε) · 3
4

· (1 − ε) · ρ′(E1−o ∩ L | Si)

≥ 2
3

· ρ′(E1−o ∩ L | Si).

If μ(Si) > 0 (equivalently, ρ′(L | Si) > 0) then

μ(Eo | Si) = ρ′(Eo | L ∩ Si)

= ρ′(Eo ∩ L | Si) / ρ′(L | Si)

≥ 2
3

· ρ′(E1−o ∩ L | Si) / ρ′(L | Si)

= 2
3

· μ(E1−o | Si)

and hence μ(Eo | Si) ≥ 2
5
. Now we have

μ(Eo | R) ≥ ∑
i μ(Eo ∩ Si | R)

=
∑

i : μ(Si)>0 μ(Eo | Si) · μ(Si | R)

≥ ∑
i : μ(Si)>0

2
5

· μ(Si | R)

= 2
5

· μ
(⋃

i Si | R
)

≥ 1
3
.

where the last line follows by μ
(⋃

i Si | R
) ≥ 1 − ε. Thus μ(Eo |

R) ≥ 1
2
· μ(E1−o | R) and hence μ(R ∩ Eo) ≥ 1

2
· μ(R ∩E1−o). Since

this holds for either o ∈ {0, 1}, R is μ-unbiased with respect to
Conf-Maj. �
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7. Additional observations

Observation 7.1. UPostBPP�(F ) ≤ O
(
PNP(F )

)
for all F , and

hence PNP ⊆ UPostBPP�.

Proof (Proof sketch). It is a classical fact that if we consider
“super-witnesses” that consist of a string of purported responses
to the NP oracle queries along with purported witnesses for all
the queries for which the purported response is “1,” and if we
order the super-witnesses reverse-lexicographically by the string of
oracle responses (the witnesses do not matter for the ordering),
then the output of a PNP computation is determined by the first
super-witness for which all the purported oracle query witnesses
check out. (This fact was phrased as an “overlay” characterization
in Papakonstantinou et al. (2014) and was also used in the proof
that PNP ⊆ S2P Canetti (1996); Russell & Sundaram (1998).) To
get a UPostBPP� protocol, we can pick a random super-witness
with probabilities geometrically decreasing according to the order,
output ⊥ if one of the purported witnesses does not check out, and
otherwise produce the same output as the computation path given
the purported oracle responses. �

Let Neq be the non-equality function, which is in RP.

Observation 7.2. US(Neq) = Θ(n), and hence RP �⊆ US.

Proof. The matrix of Neq is the complement of the identity
matrix. Consider a collection of rectangles that touches each off-
diagonal entry exactly once, and touches each diagonal entry either
zero times or at least twice. If we sum these rectangles as 0-1
matrices over the reals, the resulting matrix M has all off-diagonal
entries = 1 and all diagonal entries �= 1. Subtracting the all-
1’s matrix from M results in a diagonal matrix with all nonzero
diagonal entries, which has full rank. Thus M has rank at least
2n − 1 since the all-1’s matrix has rank 1. However, the number
of rectangles upper bounds the rank since each rectangle has rank
1. �

Consider the partial function Which-Eq : {0, 1}n × {0, 1}n →
{0, 1} where the two inputs are each partitioned into two strings of
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length n/2, x := x0x1 and y := y0y1, such that Which-Eq(x, y) =
0 iff x0 = y0 and x1 �= y1, and Which-Eq(x, y) = 1 iff x0 �= y0 and
x1 = y1. Note that Which-Eq ∈ ZPP.

Observation 7.3. ⊕P(Which-Eq) = Θ(n), and hence ZPP �⊆
⊕P.

Proof. Consider any total boolean matrix M that agrees with
Which-Eq on the latter’s domain (i.e., on the set of all inputs
(x, y) on which Which-Eq is defined, meaning that exactly one
of x0 = y0 or x1 = y1 holds). We claim that M contains a 2n/2−1 ×
2n/2−1 identity or complement-of-identity submatrix; hence M has
rank at least 2n/2−1 − 1 over GF (2). If M(z, z) = 1 for at least
half of all z ∈ {0, 1}n, fix z0 so that M(z0z1, z0z1) = 1 for all z1 in
some Z1 ⊆ {0, 1}n/2 of size 2n/2−1, and note that for x1, y1 ∈ Z1,
M(z0x1, z0y1) indicates whether x1 = y1. On the other hand, if
M(z, z) = 0 for at least half of all z ∈ {0, 1}n, fix z1 so that
M(z0z1, z0z1) = 0 for all z0 in some Z0 ⊆ {0, 1}n/2 of size 2n/2−1,
and note that for x0, y0 ∈ Z0, M(x0z1, y0z1) indicates whether x0 �=
y0. �

8. Conclusion and open questions

It is open to prove that any explicit function is not in S2P; we wish
to highlight this as a new frontier (presumably incomparable to
the AM ∩ coAM frontier) toward proving explicit lower bounds for
the communication polynomial hierarchy.

Is Lemma 6.2 a tight lower bound technique for UPostBPP�?
(This is related to the question of whether the lower bound tech-
nique given in Papakonstantinou et al. (2014) for PNP is tight,
which has been resolved in the negative Göös et al. (2017).) It
is also open to prove a UPostBPP� lower bound for the majority
function lifted with a constant-size gadget (which, without loss of
generality, would be And or Xor). Finally, we mention that for
some known results, there is room for quantitative improvement;
e.g., is there an F ∈ MA such that ZPPNP[1](F ) ≥ ω(

√
n)?

Our survey in Section 3 lists all the open problems that fall
directly within the scope of this paper. Although we aimed for
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our survey to be fairly comprehensive, there are some further top-
ics concerning communication complexity classes that we have not
addressed. Our discussion has excluded classes involving limited
ambiguity (such as UP, FewP Grolmusz & Tardos (2003); Karch-
mer et al. (1994); Klauck (2010), and UAM Göös et al. (2016b)),
more exotic counting classes (such as Few, APP,8 WPP, AWPP,
WAPP, LWPP, SPP, C=P, and ModmP Damm et al. (2004) for
integers m > 2), classes defined using the dot operator (such as
BP · UP Klauck (2010), U · BPP, and N · BPP which may dif-
fer from MA), and classes with oracles other than NP. One can
also ask about more complicated relationships among the classes
(e.g., concerning intersections of different classes, although we have
mentioned NP ∩ coNP, AM ∩ coAM, and Σ2P ∩ Π2P), and about
closure properties (e.g., it is open whether UPP is closed under in-
tersection). Finally, we have not considered average-case models,
quantum models, multi-party models, variable partition models,
round-restricted models, asymmetric models, search problems, or
functions with non-boolean codomains.

A. Appendix: Information complexity proof of
Theorem 2.2

In this appendix we provide an alternate proof of Theorem 2.2
using information complexity tools.

A.1. Preliminaries. In this proof it is more convenient to con-
sider the private-randomness version of ZPPNP[1], in which a proto-
col consists of a single PNP[1]-type protocol over the domain

({0, 1}n

× {0, 1}q
) × ({0, 1}n × {0, 1}q

)
(for some q), and on input (x, y)

the protocol is applied to
(
(x, rx), (y, ry)

)
where rx, ry ∈ {0, 1}q are

chosen independently uniformly at random. This model is equiv-
alent to the public-randomness version, within a constant factor
and additive O(log n) term in the cost, by standard sparsification
of randomness and the fact that the success probability can be am-
plified as long as it is a constant greater than 1/2 Chang & Purini

8 Not to be confused with the measure APP from Klauck (2003), which is
equivalent to PostBPP.



38 Göös, Pitassi & Watson cc (2018)

(2008).
Throughout this appendix, we use bold letters for random vari-

ables, P for probability, E for expectation, H for Shannon en-
tropy, I for mutual information, H for Hellinger distance, and
Δ for statistical (total variation) distance. Recall that if Ψ1,Ψ2

are distributions over a finite set Ω, then H2(Ψ1,Ψ2) := 1 −∑
ω∈Ω

√
Ψ1(ω)Ψ2(ω) and Δ(Ψ1,Ψ2) := 1

2

∑
ω∈Ω

∣
∣Ψ1(ω) − Ψ2(ω)

∣
∣.

We use the following (by-now standard) lemmas Bar-Yossef et al.
(2004); Lin (1991).

Lemma A.1. Suppose Ψ,Λ are jointly distributed random vari-
ables and Λ is uniform over two outcomes, say {1, 2}. Then
H2(Ψ1,Ψ2) ≤ I(Ψ ; Λ) where ΨΛ := (Ψ | Λ = Λ) for Λ ∈ {1, 2}.

Lemma A.2. If Ψ1,Ψ2 are distributions, then

H2(Ψ1,Ψ2) ≤ Δ(Ψ1,Ψ2) ≤
√

2H(Ψ1,Ψ2).

A.2. Proof of Theorem 2.2. Suppose for contradiction there
is a cost-o(n) private-randomness ZPPNP[1] protocol Π computing
Unique-Inter with success probability 1/2 + ε (for any constant
ε > 0). Let the notation k,Rv, Sv,w, ov be with respect to Π (simi-

larly to the definition of ZPPNP[1] in Section 2.1), and let c be the
communication cost of the deterministic part of Π. Consider the
following jointly distributed random variables.

� Let i be uniform over [n].

� Let z := z1 · · ·zn be distributed as follows. For each j ∈ [n]
(independently), if j = i then zj is uniform over the two
outcomes

{{00}, {11}}
, and if j �= i then zj is uniform over

the two outcomes
{{00, 10}, {00, 01}}

.

� Let x := x1 · · · xn and y := y1 · · ·yn be distributed as fol-
lows. For each j ∈ [n] (independently), xjyj is uniform over
the elements of the outcome of zj.

� Let rx, ry be the private random strings, which are indepen-
dent of x,y.

� Let v ∈ {0, 1}c be the leaf reached (i.e., the deterministic
transcript) of Π

(
(x, rx), (y, ry)

)
.
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� Let χ ∈ {0, 1} indicate whether
(
(x, rx), (y, ry)

) ∈ ⋃
w Sv,w

(i.e., the NP oracle’s response).

� Let w ∈ {ε} ∪ {0, 1}k (where ε is the empty string) be dis-
tributed as follows. If χ = 0 then w := ε. If χ = 1 then let
w ∈ {0, 1}k be chosen arbitrarily such that

(
(x, rx), (y, ry)

) ∈
Sv,w .

� Let Π := vw, which is distributed over {0, 1}c ∪ {0, 1}c+k.
Note that Π is a deterministic function of

(
(x, rx), (y, ry)

)
.

Let x−i,y−i,z−i denote the restrictions of x,y,z to coordinates
in [n] � {i}. We have

I
(
Π ; x−i,y−i | i,z

) ≤ H
(
Π | i,z

) ≤ c + k ≤ o(n).

By the standard direct sum property for mutual information Bar-
Yossef et al. (2004); Jayram et al. (2003), if j is uniform over [n]�
{i} (and independent of the other random variables, conditioned
on i) then

I
(
Π ; xj ,yj | i, j,z

) ≤ 1
n−1

· I
(
Π ; x−i,y−i | i,z

) ≤ o(1).

Define two more random variables (which are deterministic func-
tions of (i, j,z)) as follows: h := {i, j} and

g :=

{
heads if i < j and zi={11}, or if i > j and zi = {00}
tails if i < j and zi = {00}, or if i > j and zi = {11} .

Let x−h,y−h,z−h denote the restrictions of x,y,z to coordinates
in [n]�h. Since we have I

(
Π ; xj ,yj | g,h, i, j,z

) ≤ o(1), there

must exist outcomes g∗ ∈ {heads,tails}, h∗ ∈ (
[n]
2

)
, and z∗

−h∗ such
that if we let E denote the event

(
g = g∗, h = h∗, z−h = z∗

−h∗
)

then

(A.3) I
(
Π ; xj ,yj | E, i, j,zh

) ≤ o(1).

Assume g∗ = heads and h∗ = {1, 2} (the other cases are anal-
ogous). As illustrated in Figure A.1, define a := (00, 00), b :=
(10, 00), c := (00, 10), d := (10, 10), e := (11, 10), f := (10, 11).
Conditioned on E, there are the following four equally likely out-
comes of (i, j,zh).
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a

b

c

d

e

f

00

01

10

11

00 01 10 11

x1x2

y1y2

Figure A.1: The shaded rectangles are all 1-inputs, and the un-
shaded rectangles are all 0-inputs.

(
i = 2, j = 1, zi = {00}, zj = {00, 10})

so (x1x2,y1y2) is
uniform over {a,b}.(
i = 2, j = 1, zi = {00}, zj = {00, 01})

so (x1x2,y1y2) is
uniform over {a,c}.(
i = 1, j = 2, zi = {11}, zj = {00, 10})

so (x1x2,y1y2) is
uniform over {d,e}.(
i = 1, j = 2, zi = {11}, zj = {00, 01})

so (x1x2,y1y2) is
uniform over {d, f}.

Letting e ∈ {ab,ac,de,df} be the random variable indicating
which of these cases holds, ((A.3)) says that I

(
Π ; xj ,yj | E,e

) ≤
o(1). Thus for each outcome e we have

I
(
Π ; xj ,yj | E, e = e

) ≤ o(1).

Conditioned on (E, e = e), (xj ,yj) is uniform over two outcomes,
so we can apply Lemma A.1 with Ψ := (Π | E, e = e) and
Λ := (xj ,yj | E, e = e).

Hence, if for s ∈ {a,b,c,d,e, f} we let Es denote the event(
(x1x2,y1y2) = s, z−h∗ = z∗

−h∗
)

and we define the distribution
Πs := (Π | Es), then (noting that Πa is distributed identically to(
Π | E, e = ab, x1y1 = 00

)
and similarly for the other possibili-

ties) we have H(Πa,Πb), H(Πa,Πc), H(Πd,Πe), H(Πd,Πf) ≤
o(1). Assuming that “close” means “within Hellinger distance
o(1)” or equivalently “within statistical distance o(1)” (by
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Lemma A.2), by the triangle inequality, Πa,Πb,Πc are all close
and Πd,Πe,Πf are all close. In particular, the same holds for the
distributions vs := (v | Es) (equivalently, vs is the marginal of
the first c bits of Πs): va,vb,vc are all close and vd,ve,vf are all
close.

Note that (x,y | Es) is uniform over a rectangle consisting
only of 0-inputs if s ∈ {a,b,c} and only of 1-inputs if s ∈ {d,e, f}.
Since for every leaf v, the event v = v consists of a rectangle in the
domain of

(
(x, rx), (y, ry)

)
, we have P[va = v] ·P[vd = v] = P[vb =

v] ·P[vc = v]. This implies that H(va,vd) = H(vb,vc) ≤ o(1), and
hence va,vb,vc,vd,ve,vf are all close.

Let Es,v denote the intersection of the event v = v with Es.
Let ws,v denote the distribution (w | Es,v) assuming P[Es,v] > 0
(equivalently, assuming P[vs = v] > 0).

Claim A.4. There exists a leaf v∗ such that the following all hold.

� P[Es,v∗ ] > 0 for all s ∈ {a,b,c,d,e, f}.
� P

[
ov∗(χ) = ⊥ | Ed,v∗

]
< 1.

� P
[
ov∗(χ) = ⊥ | Ea,v∗

]
< 1.

� Δ
(
wb,v∗ ,wc,v∗

)
< 1.

� Δ
(
we,v∗ ,wf,v∗

)
< 1.

Proof. Since

Ev∼vd
P
[
ov(χ) = ⊥ | Ed,v

]
= P

[
ov(χ) = ⊥ | Ed

] ≤ 1/2 − ε,

we have
(A.5)

Pv∼vd

[
P
[
ov(χ) = ⊥ | Ed,v

]
< 1 and P[Ed,v] > 0

]
≥ 1/2 + ε

by Markov’s inequality. Similarly, ((A.5)) holds with a in place of
d, and thus
(A.6)

Pv∼vd

[
P
[
ov(χ) = ⊥ | Ea,v

]
< 1 and P[Ea,v] > 0

]
≥ 1/2+ε−o(1)
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since Δ(va,vd) ≤ o(1). Next, we show that

Pv∼vd

[
Δ

(
wb,v,wc,v

)
< 1 and P[Eb,v] > 0 and P[Ec,v] > 0

](A.7)

≥ 1 − o(1)

holds. Similarly,

Pv∼vd

[
Δ

(
we,v,wf,v

)
< 1 and P[Ee,v] > 0 and P[Ef,v] > 0

](A.8)

≥ 1 − o(1)

will hold. The claim then follows from ((A.5)), ((A.6)), ((A.7)),
and ((A.8)) by a union bound over v ∼ vd. It remains to show
((A.7)). Let

V :=
{

v : Δ
(
wb,v,wc,v

)
= 1 and P[Eb,v] > 0 and P[Ec,v] > 0

}

and let T :=
{
vw : v ∈ V and w ∈ supp(wb,v)

}
. Note that

P[Πc ∈ T ] = 0 since supp(wb,v) ∩ supp(wc,v) = ∅ for each v ∈
V . Thus P[vb ∈ V ] = P[Πb ∈ T ] ≤ 0 + Δ(Πb,Πc) ≤ o(1). It
follows that P[vd ∈ V ] ≤ o(1) + Δ(vd,vb) ≤ o(1). We also have
Pv∼vd

[
P[Eb,v] = 0

] ≤ Δ(vb,vd) ≤ o(1) and Pv∼vd

[
P[Ec,v] = 0

] ≤
Δ(vc,vd) ≤ o(1). Hence the left side of ((A.7)) is at least

1−Pv∼vd
[v∈V ]−Pv∼vd

[
P[Eb,v]=0

]−Pv∼vd

[
P[Ec,v] = 0

] ≥ 1−o(1).

�

By the correctness of Π, we have P
[
ov∗(χ) = 0 | Ea,v∗

]
> 0

and P
[
ov∗(χ) = 1 | Ed,v∗

]
> 0. Thus 0 and 1 are both possible

outputs of ov∗ , and hence ⊥ is not a possible output of ov∗ ; i.e.,
since there are only two possible inputs to ov∗ , namely 0 and 1, one
of them must map to 0 and the other to 1 (and neither to ⊥). In
what follows, note that Es can be viewed as a subset of the domain
of

(
(x, rx), (y, ry)

)
.

First suppose ov∗(1) = 0 and ov∗(0) = 1. For all s ∈ {a,b,c},
we actually have P

[
ov∗(χ) = 0 | Es,v∗

]
= 1 and hence P

[
χ =
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1 | Es,v∗
]

= 1 and hence P
[
ws,v∗ �= ε

]
= 1. Since Δ

(
wb,v∗ ,wc,v∗

)
<

1, this implies that there exists a w∗ ∈ {0, 1}k such that P
[
wb,v∗ =

w∗] > 0 and P
[
wc,v∗ = w∗] > 0. Hence there exist a

(
(x, rx), (y, ry)

)

∈ Sv∗,w∗ ∩Eb and a
(
(x′, r′

x), (y
′, r′

y)
) ∈ Sv∗,w∗ ∩Ec. Since Sv∗,w∗ is a

rectangle,
(
(x, rx), (y

′, r′
y)

) ∈ Sv∗,w∗ and hence Π outputs ov∗(1) =
0. This contradicts the correctness since (x, y′) is a 1-input (having
x ∩ y′ = {1} and lying in the d cell).

On the other hand, suppose ov∗(1) = 1 and ov∗(0) = 0. The
argument is very similar: For all s ∈ {d,e, f}, we actually have
P
[
ov∗(χ) = 1 | Es,v∗

]
= 1 and hence P

[
χ = 1 | Es,v∗

]
= 1 and

hence P
[
ws,v∗ �= ε

]
= 1. Since Δ

(
we,v∗ ,wf,v∗

)
< 1, this implies

that there exists a w∗ ∈ {0, 1}k such that P
[
we,v∗ = w∗] > 0

and P
[
wf,v∗ = w∗] > 0. Hence there exist a

(
(x, rx), (y, ry)

) ∈
Sv∗,w∗ ∩ Ee and a

(
(x′, r′

x), (y
′, r′

y)
) ∈ Sv∗,w∗ ∩ Ef. Since Sv∗,w∗ is a

rectangle,
(
(x, rx), (y

′, r′
y)

) ∈ Sv∗,w∗ and hence Π outputs ov∗(1) =
1. This contradicts the correctness since (x, y′) is a 0-input (having
x ∩ y′ = {1, 2} and lying in the bottom-right cell in Figure A.1).

B. Appendix: Catalog of communication
complexity classes

We now provide formal definitions of all the communication com-
plexity classes considered in Section 3. If C is the name of a model
and F : {0, 1}n × {0, 1}n → {0, 1} is a partial function, then we let
C(F ) denote the minimum cost of a correct protocol for F in model
C, and we also let C denote the class of all (families of) partial func-
tions F with C(F ) ≤ poly(log n). We let coC(F ) := C(¬F ).

For example, P(F ) is the minimum cost of a deterministic pro-
tocol for F , and P is the set of partial functions with poly(log n)-
cost deterministic protocols. We group the remaining models into
four categories (corresponding to the four subsections): the NP
query hierarchy, bounded-error randomized models, models with
postselection or unbounded error, and models with alternation.

In the definitions that follow, we always use Π to denote a
protocol, F to denote an arbitrary partial function, and (x, y) to
denote an arbitrary input in the domain of F (the models are worst
case, so the correctness criteria always hold for all such (x, y)). All
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randomized models are assumed to have public randomness except
when noted otherwise.

B.1. The NP query hierarchy.

Definition B.1. (NP)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
,

and Π outputs 1 or 0 indicating whether (x, y) ∈⋃
w Rw.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition B.2. (US)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
,

and Π outputs 1 or 0 indicating whether the number
of w’s such that (x, y) ∈ Rw is exactly one.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition B.3. (DP)

Syntax: Π is a pair of collections of rectangles,
{
Sw : w ∈

{0, 1}k
}

and
{
Tw : w ∈ {0, 1}k

}
, and Π outputs 1

or 0 indicating whether (x, y) ∈ ⋃
w Sw �

⋃
w Tw.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition B.4. (P
NP[q]
‖ for constant q)

Syntax: Π is a deterministic protocol where for each leaf v
with associated rectangle Rv, there are q associated
collections of subrectangles

{
Sv,i,w ⊆ Rv : w ∈

{0, 1}k
}

(i ∈ [q]) and an associated output function
ov : {0, 1}q → {0, 1} that is applied to the indicators
of whether (x, y) ∈ ⋃

w Sv,i,w for each i.

Correctness: Π(x, y) = F (x, y).

Cost: k+the communication cost of the deterministic part.
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Definition B.5. (PNP)

Syntax: Π is a protocol tree where each internal node v is
labeled with either (i) a 1-bit function of Alice’s or of
Bob’s input in the usual way, or (ii) an “NP query”
consisting of a collection of rectangles

{
Sv,w : w ∈

{0, 1}kv
}
, where the indicator of whether (x, y) ∈⋃

w Sv,w determines which child to descend to in the
protocol tree. The output of Π is determined by the
leaf reached.

Correctness: Π(x, y) = F (x, y).

Cost: The maximum over all root-to-leaf paths of the fol-
lowing: the length of the path plus the sum of kv

over all type-(ii) nodes v on the path.

Definition B.6. (PNP[q] for constant q)

Syntax: Π is a PNP-type protocol where there are at most q
NP queries on each root-to-leaf path.

Correctness: Π(x, y) = F (x, y).

Cost: Same as Definition B.5. Affecting the cost only by
a constant factor, it can be assumed that all NP
queries happen at the end and all have the same
witness length kv.

Definition B.7. (PNP
‖ )

Syntax: Π is a PNP-type protocol where the result of each
NP query is not revealed until the last query on any
path down the tree. Thus, each type-(ii) node has
1 child if it has a type-(ii) descendant, and has 2q

children if it has no type-(ii) descendants (where
q is the number of type-(ii) nodes on that path).
Hence without loss of generality, all the NP queries
are consecutive.

Correctness: Π(x, y) = F (x, y).

Cost: Same as Definition B.5.
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B.2. Bounded-error randomized models.

Definition B.8. (ZPP)

Syntax: Π is a distribution over deterministic protocols out-
putting values in {0, 1,⊥}.

Correctness: P
[
Π(x, y) ∈ {F (x, y),⊥}]

= 1 and P
[
Π(x, y) =

F (x, y)
] ≥ 3/4.

Cost: The maximum communication cost of any con-
stituent deterministic protocol.

Definition B.9. (RP)

Syntax: Π is a distribution over deterministic protocols out-
putting values in {0, 1}.

Correctness: If F (x, y) = 1 then P[Π(x, y) = 1] ≥ 1/2.
If F (x, y) = 0 then P[Π(x, y) = 0] = 1.

Cost: The maximum communication cost of any con-
stituent deterministic protocol.

Definition B.10. (BPP)

Syntax: Π is a distribution over deterministic protocols out-
putting values in {0, 1}.

Correctness: P
[
Π(x, y) = F (x, y)

] ≥ 3/4.

Cost: The maximum communication cost of any con-
stituent deterministic protocol.

Definition B.11. (MA)

Syntax: Π is a distribution over deterministic protocols that
take an additional input w ∈ {0, 1}k, which is visible
to both Alice and Bob.

Correctness: Completeness: if F (x, y) = 1 then
∃w : P

[
Π(x, y, w) = 1

] ≥ 3/4.

Soundness: if F (x, y) = 0 then
∀w : P

[
Π(x, y, w) = 0

] ≥ 3/4.

Cost: k+the maximum communication cost of any con-
stituent deterministic protocol.
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Definition B.12. (AM)

Syntax: Π is a distribution over nondeterministic (NP-type)
protocols.

Correctness: P
[
Π(x, y) = F (x, y)

] ≥ 3/4.

Cost: The maximum cost of any constituent nondetermin-
istic protocol.

Definition B.13. (ZPP
NP[q]
‖ for constant q)

Syntax: Π is a distribution over P
NP[q]
‖ -type protocols out-

putting values in {0, 1,⊥}.

Correctness: Same as Definition B.8.

Cost: The maximum cost of any constituent P
NP[q]
‖ -type

protocol.

Definition B.14. (ZPPNP
‖ )

Syntax: Π is a distribution over PNP
‖ -type protocols out-

putting values in {0, 1,⊥}.

Correctness: Same as Definition B.8.

Cost: The maximum cost of any constituent PNP
‖ -type pro-

tocol.

Definition B.15. (ZPPNP[q] for constant q)

Syntax: Π is a distribution over PNP[q]-type protocols out-
putting values in {0, 1,⊥}.

Correctness: Same as Definition B.8.

Cost: The maximum cost of any constituent PNP[q]-type
protocol.

Definition B.16. (ZPPNP)

Syntax: Π is a distribution over PNP-type protocols out-
putting values in {0, 1,⊥}.

Correctness: Same as Definition B.8.

Cost: The maximum cost of any constituent PNP-type pro-
tocol.
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B.3. Models with postselection or unbounded error.

Although SBP is not defined in terms of postselection or un-
bounded error, we include the definition here since it provides a
nice segue.

Definition B.17. (SBP)

Syntax: Π has public randomness uniformly distributed over
{0, 1}k, with each outcome having an associated de-
terministic protocol outputting values in {0, 1}.

Correctness: min(x,y)∈F −1(1) P[Π(x, y)=1]>2 ·
max(x,y)∈F −1(0) P[Π(x, y) = 1].

Cost: k+the maximum communication cost of any con-
stituent deterministic protocol.

SBP communication complexity is known to be equivalent to
the corruption bound Göös & Watson (2016).

Definition B.18. (PostBPP)

Syntax: Π has public randomness uniformly distributed over
{0, 1}k, with each outcome having an associated de-
terministic protocol outputting values in {0, 1,⊥}.

Correctness: P
[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) = 1 − F (x, y)

]
.

Cost: k+the maximum communication cost of any con-
stituent deterministic protocol.

PostBPP communication complexity is known to be equivalent
to the extended discrepancy bound Gavinsky & Lovett (2014).

Definition B.19. (UPostBPP�)

Syntax: Same as Definition B.18, except the public random-
ness is arbitrarily distributed over {0, 1}k.

Correctness: Same as Definition B.18.

Cost: Same as Definition B.18.
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Definition B.20. (UPostBPP)

Syntax: Π is a private-randomness protocol outputting val-
ues in {0, 1,⊥}.

Correctness: Same as Definition B.18.

Cost: The communication cost of the underlying deter-
ministic protocol.

We have UPostBPP(F ) ≤ UPostBPP�(F ) ≤ PostBPP(F ) for
all F , and hence PostBPP ⊆ UPostBPP� ⊆ UPostBPP.

Observation B.21. Without loss of generality, in a PostBPP or
UPostBPP� protocol, each of the constituent deterministic proto-
cols consists of a single rectangle (with fixed output 0 or 1 on inputs
in the rectangle, and output ⊥ on inputs outside the rectangle).

Proof. We may modify a PostBPP or UPostBPP� protocol so
that after choosing the original public randomness, it then picks
a uniformly random leaf rectangle (of which we assume there are
exactly 2c) from the associated deterministic protocol, outputs the
same value on inputs in the rectangle, and outputs ⊥ on all inputs
outside the rectangle. The correctness is unaffected. The number
of random bits becomes k+c, and the communication cost becomes
2, so the overall cost becomes k+c+2. If after the transformation,
any rectangle has label ⊥, we can instead assume it is an empty
rectangle with non-⊥ label. �

Observation B.22.

UPostBPP(F ) ∈ min
(
log rank+(M0)+log rank+(M1)

)±O(1) where
rank+ denotes nonnegative rank, and the minimum is over nonneg-
ative real matrices M0,M1 (indexed by inputs) such that for each

(x, y) ∈ F−1, M
F (x,y)
x,y > 2 · M

1−F (x,y)
x,y .

The argument for Observation B.22 is essentially the same as
the argument from Paturi & Simon (1986) that UPP complexity
is equivalent to log of sign-rank (Observation B.27 below).
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Definition B.23. (PP)

Syntax: Π has public randomness uniformly distributed over
{0, 1}k, with each outcome having an associated de-
terministic protocol outputting values in {0, 1}.

Correctness: P
[
Π(x, y) = F (x, y)

]
> 1/2.

Cost: k+the maximum communication cost of any con-
stituent deterministic protocol.

PP communication complexity is known to be equivalent to
the discrepancy bound Klauck (2007).

Definition B.24. (UPP�)

Syntax: Same as Definition B.23, except the public random-
ness is arbitrarily distributed over {0, 1}k.

Correctness: Same as Definition B.23.

Cost: Same as Definition B.23.

Definition B.25. (UPP)

Syntax: Π is a private-randomness protocol outputting val-
ues in {0, 1}.

Correctness: Same as Definition B.23.

Cost: The communication cost of the underlying deter-
ministic protocol.

We have UPP(F ) ≤ UPP�(F ) ≤ PP(F ) for all F , and hence
PP ⊆ UPP� ⊆ UPP.

Observation B.26. Without loss of generality, in a PP or UPP�
protocol, each of the constituent deterministic protocols consists
of a single rectangle (with output only depending on whether the
input is in the rectangle).

Proof. We may modify a PP or UPP� protocol so that after
choosing the original public randomness, it then picks a uniformly
random leaf rectangle (of which we assume there are exactly 2c)
from the associated deterministic protocol, outputs the same value
on inputs in the rectangle, and flips a coin to determine the output
on all inputs outside the rectangle. The correctness is unaffected.
The number of random bits becomes k + c + 1, and the communi-
cation cost becomes 2, so the overall cost becomes k + c + 3. �
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Observation B.27.

UPP(F ) ∈ min
(
log rank+(M0) + log rank+(M1)

) ± O(1) where
rank+ denotes nonnegative rank, and the minimum is over non-
negative real matrices M0,M1 (indexed by inputs) such that for

each (x, y) ∈ F−1, M
F (x,y)
x,y > M

1−F (x,y)
x,y .

B.4. Models with alternation.

Definition B.28. (S2P)

Syntax: Π is a matrix with rows indexed by w0 ∈ {0, 1}k and
columns indexed by w1 ∈ {0, 1}k, with each entry
(w0, w1) having an associated deterministic protocol
Πw0,w1 outputting values in {0, 1}.

Correctness: If F (x, y) = 1 then ∃w1 ∀w0 : Πw0,w1(x, y) = 1.

If F (x, y) = 0 then ∃w0 ∀w1 : Πw0,w1(x, y) = 0.

Cost: k+the maximum communication cost of any con-
stituent deterministic protocol.

Definition B.29. (Σ�P for constant �)

Syntax: Π is a complete 2k-ary tree of depth � (root-to-leaf
paths have � edges) representing a formula with al-
ternating layers of Or and And gates, with an Or

gate at the root, and where each leaf is the indicator
for a rectangle (if � is odd) or the complement of a
rectangle (if � is even).

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition B.30. (Π�P for constant �)

Syntax: Π is a complete 2k-ary tree of depth � (root-to-leaf
paths have � edges) representing a formula with al-
ternating layers of And and Or gates, with an And

gate at the root, and where each leaf is the indicator
for a rectangle (if � is even) or the complement of a
rectangle (if � is odd).

Correctness: Π(x, y) = F (x, y).

Cost: k.
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The class PH is defined as
⋃

� Σ�P =
⋃

� Π�P (where the union
is over constants �).

Definition B.31. (PSPACE)

Syntax: Π is a formula where each leaf is the indicator for a
rectangle.

Correctness: Π(x, y) = F (x, y).

Cost: The log of the size of the formula.

Although ⊕P is not defined in terms of alternation, we include
the definition in this subsection since in a sense, it is at least as
powerful as alternation: PH ⊆ BP · ⊕P Toda (1991).

Definition B.32. (⊕P)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
,

and Π outputs 1 or 0 indicating whether the number
of w’s such that (x, y) ∈ Rw is odd.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Observation B.33. ⊕P(F ) ∈ log rank(F )±O(1) where the rank
is over GF (2).

Acknowledgements

We thank anonymous referees for helpful remarks. This work was
supported by NSERC funding and by NSF grant CCF-1657377.

References

Scott Aaronson (2005). Quantum Computing, Postselection, and
Probabilistic Polynomial-Time. Proceedings of the Royal Society A
461(2063), 3473–3482.

Scott Aaronson & Avi Wigderson (2009). Algebrization: A New
Barrier in Complexity Theory. ACM Transactions on Computation
Theory 1(1).
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