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DETERMINISTIC COMMUNICATION VS. PARTITION NUMBER*
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Abstract. We show that deterministic communication complexity can be superlogarithmic
in the partition number of the associated communication matrix. We also obtain near-optimal
deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields
new lower bounds for the log-rank conjecture. All of these results follow from a simple adaptation
of a communication-to-query simulation theorem of Raz and McKenzie [Combinatorica, 19 (1999),
pp. 403-435] together with lower bounds for the analogous query complexity questions.
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1. Introduction. The partition number of a two-party function F: X x Y —

{0,1} is defined by
X(F) = xa(F) + xo(F),

where x;(F) is the least number of rectangles (sets of the form A x B, where A C X,
B C Y) needed to partition the set F~1(i). Yao [43] observed that log x(F) is a lower
bound on the deterministic communication complexity of F' and inquired about the
exact relationship. For upper bounds, it is known that O(log? x(F)) bits [2], or even
O(log? x1(F)) bits [42], suffice.

Our results are as follows (here the notation Q(m) hides factors polylogarithmic
in m).

THEOREM 1.1. There is an F' with deterministic communication complexity
G(log"? x(F)).

THEOREM 1.2. There is an F' with deterministic communication complexity
Qlog® x1(F)).

Theorem 1.1 implies that the logarithm of the partition number does not character-
ize (up to constant factors) deterministic communication complexity, which solves an
old problem [28, Open Problem 2.10]. The previous best lower bound in this direction
was about 2 - log x(F') due to Kushilevitz, Linial, and Ostrovsky [27]. In this work,
we show—maybe surprisingly—that superlogarithmic lower bounds can be obtained

using known techniques!
Theorem 1.2 is essentially tight in view of the upper bound O(log® x1(F)) men-
tioned above. A recent work [15] exhibited a different F with Q(log"'*® y;(F))
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conondeterministic communication complexity (i.e., the logarithm of the least number
of rectangles needed to cover the set F'~1(0)); this is quantitatively weaker than
Theorem 1.2, and hence the two results are incomparable. The question about the rela-
tionship between log x1 (F') and deterministic communication complexity is sometimes
referred to as the Clique vs. Independent Set problem; see [24, sect. 4.4] for an excellent
overview. In particular, Theorem 1.2 implies that there exists a graph on n nodes
for which the Clique vs. Independent Set problem (Alice is given a clique, and Bob is
given an independent set: Do they intersect?) requires Q(log2 n) communication. (The
upper bound O(log2 n) holds for all graphs.) Theorem 1.2 also gives improved lower
bounds for the log-rank conjecture [30] (see [31] for a survey): Viewing rectangles as
all-1 submatrices, we have x1(F) > rank(F), where the rank is over the reals. Hence
Theorem 1.2 implies a communication lower bound of Q(log® rank(F)). The previous
record was Q(log" % rank(F)) due to Kushilevitz (see [34]).

1.1. Our approach. We follow a recurring theme (e.g., [34, 35, 40, 39, 22, 10,

18, 29)):

Instead of proving an ad hoc communication lower bound directly,

we prove a lower bound in the simpler-to-understand world of query

complezity [9], and then “lift” the result over to the world of commu-

nication complexity.
The general idea is to start with a boolean function f: {0,1}™ — {0, 1} (called the outer
function) and then study a composed function F = f o g™, where g: X x Y — {0,1}
is a small two-party function (called the gadget). More precisely, the communication
problem is to compute, on input x € X™ to Alice and y € Y™ to Bob, the output

F(x7y) = f(g(xlvyl)v"'7g(xn7yn))'

Deterministic simulation. We use tools that were introduced in 1997 by Raz and
McKenzie [35] (building on [14]). They proved a simulation theorem that converts
a deterministic protocol for F' := f o g" (where f is arbitrary, but the gadget g is
chosen carefully) into a deterministic decision tree for f. Unfortunately, their result
was originally formulated only in the case where f was a certain “structured” search
problem (canonical search problem associated with a disjunctive normal form (DNF)
tautology), and this is how their result has been applied subsequently [8, 23]. However,
we observe that, with minor modifications, their proof actually works without any
assumptions on f. Such a simulation theorem (for functions f) was conjectured in
[13]. We provide (in section 3) a self-contained and streamlined exposition (including
some simplifications) of the following version of the Raz-McKenzie result—here P<(F)
denotes the deterministic communication complexity of F, and P%(f) denotes the
deterministic decision tree complexity of f.

THEOREM 1.3 (Simulation Theorem). There is a gadget g: X x Y — {0,1}, where
the size of Alice’s input is log |X| = ©(logn) bits such that for all f: {0,1}" — {0,1}
we have

P<(fog") = P(f)-O(logn).

The gadget in the above can be taken to be the usual indexing function g: [m] x
{0,1}™ — {0,1}, where m = poly(n) and g(x,y) = y,. The upper bound in
Theorem 1.3,

(L.1) P<(fog") < P(f) - O(logn),

follows simply because a communication protocol can always simulate a decision tree
for f with an overhead of factor P*(g) < [logm] + 1 = ©(logn). Indeed, whenever
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the decision tree queries the ith input bit of f, Alice and Bob exchange ©(logn) bits to
compute the output g(z;, y;) of the ith gadget. The nontrivial part of Theorem 1.3 is to
show that this type of protocol is optimal: There are no shortcuts to computing f o g”
other than to “query” individual input bits of f in some order.

Nondeterministic models. Recall that a nondeterministic protocol (e.g., [28, 24])
is a protocol that is allowed to make guesses—an input is accepted iff there is at
least one accepting computation. Combinatorially, a nondeterministic protocol for
F of communication cost k can be visualized as a covering of the set F~1(1) using
at most 2F (possibly overlapping) rectangles. Thus, the nondeterministic commu-
nication complexity of F', denoted NP““(F’) in analogy to the classical (Turing ma-
chine) complexity class NP, is just the logarithm of the least number of rectangles
needed to cover F~1(1). A nondeterministic protocol is unambiguous if for each
input, there is at most one accepting computation. Combinatorially, this means
that the associated rectangles covering F~1(1) do not overlap. Hence we use the
notation UP““(F) := [log x1(F)] in analogy to the classical class UP. We also define
coUP“(F) == [log xo(F)], and, using the shorthand 2UP := UP N coUP, we define the
two-sided measure 2UP(F) := [log x(F)| € max{UP“(F), coUP*(F)} + O(1).

Analogously, a nondeterministic decision tree (e.g., [24, sect. 14.2]) is a decision
tree that is allowed to make guesses. Formally, we treat a nondeterministic decision
tree for f as a collection of 1-certificates (accepting computations), that is, partial
assignments to variables of f that force the output of the function to be 1; the cost
is the maximum number of variables fixed by a partial assignment. In other words,
a nondeterministic decision tree is just a DNF formula; the cost is the maximum
width of its terms. We denote by NPY(f) the minimum cost of a nondeterministic
decision tree for f, that is, its DNF width. A nondeterministic decision tree is
unambiguous if for each input, there is at most one accepting certificate. We denote
by UPdt( f) the minimum cost of an unambiguous decision tree for f. We also let
coUP¥(f) := UP¥(=f) and 2UP(f) := max{UP%(f), coUP®(f)}.

Commaunication <> query. Generalizing (1.1), it is straightforward to check that
a communication protocol can simulate a corresponding type of decision tree also in
the case of our nondeterministic models. That is, for any f: {0,1}" — {0,1} and for
the gadget g from Theorem 1.3 we have

(1.2) C<(fog™) < C¥(f)-O(logn)  VC e {2UP,UP}.

(It is not known whether the corresponding lower bounds hold above—we conjecture
they do—but luckily we need only the upper bounds in this work.)
We can rephrase our communication results with the new notation defined above.

THEOREM 1.1 (rephrased). There is an F such that P(F) > Q(2UP(F)!?).
THEOREM 1.2 (rephrased). There is an F such that P(F) > Q(UP“(F)?).

Our goal is to prove the following analogous query complexity separations (in
section 2).

THEOREM 1.4. There is an f such that PY(f) > Q(UPY(f)15).
THEOREM 1.5. There is an f such that PY(f) > Q(UPY(f)?).

Theorems 1.1 and 1.2 can now be derived by simply applying Theorem 1.3 and
the upper bounds (1.2) to Theorems 1.4 and 1.5. We only add that the functions
in Theorems 1.4 and 1.5 will actually satisfy P9(f) = n®("), and hence the factor
O(log n) overhead that is introduced by the gadget gets hidden in our Q-notation.
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A few comments about Theorems 1.4 and 1.5 are in order. First, Savicky [38] and
Belovs [7] have previously exhibited a function with P9(f) > Q(2UP%(f)!-261). This
means that a quantitatively weaker (but still superlogarithmic) version of Theorem 1.1
follows already by combining the Savicky—Belovs result with Theorem 1.3. Second, it
is not hard to see that UPY(f) > deg(f), where deg(f) is the minimum degree of a
multilinear real polynomial that agrees with f on boolean inputs. (The communication
analogue of this inequality, namely UP““(F) > logrank(F), was discussed above.)
Consequently, Theorem 1.5 gives the largest known gap between P9 (f) and deg(f). The
previous record was PU(f) > Q(deg(f)':%%) by Kushilevitz (see [34]), and the current
best upper bound in this context is P9t(f) < O(deg(f)?) for all f by Midrijanis [32].

The work [15] also uses the “query separation plus simulation theorem” approach
to exhibit an F with coNP*“(F) > Q(UP“(F)>128). The query separation in that paper
involves a recursive composition that is intricate and delicate, due to the one-sided
nature of coNP and UP. In contrast, our query separation is direct (without recursive
composition) and much simpler to prove. However, the deterministic simulation
theorem we employ is a fair bit more complicated to prove than the conondeterministic
simulation theorem used in [15] (which is a relatively simple special case of a general
simulation theorem from [18]).

2. Query separations. In proving the query complexity separations it is conve-
nient to work with functions f: 3" — {0,1} that have a larger-than-boolean input
alphabet ¥. For such functions the understanding is that it still costs one query for a
decision tree to learn a particular input variable. At the end, we may always convert
such an f back into a boolean function f o h™, where h: {0,1}1°8I¥I1 — 3 is some
surjection. The following trivial bounds suffice for us:

(2.1)  CU(f) < CH(foh™) < CU(f)-[log|Z|]]  VC e {P,2UP,UP}.

We start with the proof of Theorem 1.5 since the proof of Theorem 1.4 uses Theorem 1.5
(as a black box).

2.1. Proof of Theorem 1.5.

Motivating example. Let n := k2, and consider the function f: {0, 1}*** — {0,1}
defined on boolean matrices M € {0,1}*** such that f(M) = 1 iff M contains a
unique all-1 column. We claim that

NPY(f) < 2k—1,
Pdt(f) Z k2.

For the upper bound, consider 1-certificates that read the unique all-1 column and a
single 0-entry from each of the other columns. (Note that this collection of certificates is
not unambiguous!) For the lower bound, it suffices to give an adversary argument (see,
e.g., [24, sect. 14]), that is, a strategy to answer queries made by a decision tree such
that even after k2 — 1 queries, the output of the function is not yet determined. Here is
the strategy: Suppose the decision tree queries M;;. If M;; is the last unqueried entry
in the jth column, answer M;; = 0. Otherwise answer M;; = 1. It is straightforward
to check that this strategy forces the decision tree to query all of the entries.

Actual gap example. We modify the function described above with the goal of
establishing

UPY(f) < 2k —1,
Pdt(f) Z k2.
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The modified function, which we still call f, has input variables that take on values
from the alphabet ¥ = {0, 1} x ([k] x [k]U{L}). Here [k] x [k]U{L} is a set of pointer
values, where we interpret an entry M;; = (msj,pi;) € ¥ as pointing to another entry
M,,, given that p;; # L. If p;; = L, then we have a null pointer. We define the
function f: ¥¥*k — {0, 1} by describing an unambiguous decision tree computing it.
(We give an “algorithmic” definition rather than writing a list of certificates.)

Unambiguous decision tree: Nondeterministically guess a column

index j € [k]. Read the entries M;; = (m;j,p;;) for i € [k] while

checking that m;; = 1 for all 7 and that p;; # L for at least one 1.

Let 7 be the first index for which p;; # L. Next, iteratively follow

pointers for k — 1 steps starting at (i1,j1) = p;;. Namely, at the

sth step, read M;, ;,, and if s < k — 2, then check that p;, ;, # L

and define (is11,js+1) = pi, ;.- Finally, check that the resulting

sequence (i1,71),-..,(ik—1,Jk—1) visits all but the jth column (i.e.,

{71, je—1} = [k] ~ {j}) and that m,;_ ; =0 for all s € [k —1].
Thus the upper bound holds by construction. For the lower bound, we use the strategy
below; here a query to an entry M;; is called critical if M;; is the last unqueried entry
in its column.

Adversary strategy: Always answer queries with (1, L) unless the query

is critical. On the first critical query, answer (0, L). On subsequent

critical queries, answer (0, p), where p € [k] x [k] points to where the

previous critical query took place.
The function value remains undetermined after k2 — 1 queries, because we can answer
the last (k%th) query with (0, L) to make the function evaluate to 0, or with (1, p), where
p is as above, to make the function evaluate to 1. This proves P9(f) > Q(UPY(f)?)
for a function with a non-boolean alphabet. If we convert f into a boolean function
f' == foh" (where n := k?) as in (2.1), we end up with the claimed gap P(f") >
Q(UP®(f")?) since the conversion introduces only some [log|%|] = ©(logn) factors.

2.2, Proof of Theorem 1.4. Let g be given by Theorem 1.5 such that Pdt(g) =
O(¢?), where q = UP%(g). We define f :== AND o g9, that is, f(z1,...,2,) = 1 iff
g(z;) =1 for all i € [g]. We claim that

2UP%(f) < O(g%),

PE(F) = Q).
For the upper bound, an unambiguous certificate for an input z will contain unam-
biguous 1-certificates for g(z;) = 1 for all i € [¢ — 1], where ¢ is the least index such
that g(z¢) = 0, or £ := g + 1 if no such index exists. If £ < ¢, we also include an
unambiguous 0-certificate for g(z¢) = 0 that just mimics the execution of an optimal
decision tree for g on input z,. In other words, we use the fact that coU Pdt(g) < Pdt(g).
The cost is at most (£ — 1) - UP¥(g) + P%(g) < O(¢?). For the lower bound, we have
PY(AND o g?) = P¥(AND) - Pd(g) = ¢ - ©(¢?) = O(¢®) by the basic fact (e.g., [38,

Lemma 3.2]) that P9t behaves multiplicatively with respect to composition.

3. Raz—McKenzie simulation. The goal of this section is a self-contained,

streamlined, and somewhat simplified proof of the Simulation Theorem that works
without any assumptions on the outer function

f:{0, 13N — {o0,1}.

(Here we use N for the input length instead of n, which we reserve for later use.) In
fact, f can be taken to be anything, e.g., a partial function or a search problem (a
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general relation), or to have a non-boolean codomain. However, we stick with the
boolean function case for concreteness.

The gadget g: [m] x {0,1}™ — {0,1}, where m = N?° is chosen to be the
indexing function defined by g(z,y) := y,. Recall that for the composed function
F = fog", Alice’s input is z = (z1,...,2x) € [m]" and Bob’s input is y =
(Y1, ---,yn) € ({0,1}™)N. We denote by z; == g(w;,y;) the ith input bit of f so that
F(I7y) = f(zla"'azN)'

We prove the nontrivial part of the Simulation Theorem, namely the lower bound

P<(fog™) = PU(f)-Qlogm).

3.1. High-level overview. Once and for all, we fix a deterministic protocol for
F = fog" of communication cost k¥ < o(NN -logm). The basic strategy is to use the
protocol to build a decision tree of cost O(k/logm) for evaluating the outer function
f on an unknown input z € {0,1}"V. The simulation algorithm proceeds in iterations,
where in each iteration we either descend one level in the communication protocol
tree (by making the protocol send a bit) or descend one level in the decision tree (by
querying a bit of z). To show that the simulation is correct, we maintain invariants
ensuring that when we reach a leaf in the protocol tree, the value it outputs must be
the correct value of f(z) (hence we can make the current node in the decision tree a
leaf). To show that the simulation is efficient, we use a potential function argument
showing that in each “communication iteration” the potential increases by at most
O(1) and in each “query iteration” the potential decreases by at least Q(logm), and
hence the number of query iterations is at most O(k/logm) since there are at most &
communication iterations.

In a little more detail, let R, denote the rectangle associated with the current
node v in the communication protocol tree. The simulation maintains a “cleaned up’
subrectangle A x B C R, with the property that the set of all outputs of ¢g"¥ over
points in A x B is exactly the set of all possible z’s that are consistent with the results
of the queries made so far. This ensures the correctness when we reach a leaf. The
analysis has two key lemmas: the Thickness Lemma (Lemma 3.1) helps us update
A x B in a communication iteration, and the Projection Lemma (Lemma 3.2) helps
us update A x B in a query iteration.

To determine which type of iteration should be next, we examine, for each
unqueried coordinate, how predictable it is (in some sense) from the values of the other
unqueried coordinates of ¢’V within 4 x B. If no coordinate is too predictable, then it
is “safe” to have a communication iteration; the protocol partitions the rectangle R,
into two parts, and we restrict to the part that is “bigger” (from the perspective of
the unqueried coordinates), and then use the Thickness Lemma to do some further
cleanup that restores our invariants. On the other hand, if, say, the ith coordinate is
too predictable from the others, then its value (within A x B) is in danger of becoming
a function of the values of the other coordinates (which would violate our invariants).
In this case, we query z; while we are still able to accommodate either possible value
for it (which might become impossible if we delayed querying z;), and the Projection
Lemma allows us to clean up A x B and restore our invariants.

We describe our notation and state the two key lemmas in section 3.2. Then we
describe the simulation algorithm itself in section 3.3 and analyze it in section 3.4.
Finally, we provide the proofs of the two key lemmas in sections 3.5 and 3.6.

)

3.2. Notation and lemmas. For a node v in the communication protocol tree,
let R, := X" x Y denote its associated rectangle, let X¥* C X be the set of Alice’s
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inputs on which the bit b would be sent (if Alice sends), and let Y¥** C Y be the set
of Bob’s inputs on which the bit b would be sent (if Bob sends).
Supposing A C [m]|™ and B C ({0,1}™)™ for some n < N, we make the following
definitions.
e Size of sets: Let a(A) be such that |A| = 274 . |[m]"|, and let B(B) be such
that |B| = 27A(8) . |({0,1}™)"| (assuming |A[, |B| > 0).
e Projections: If I C [n], then let

Aj = {(xi)ief (21, ..,2,) € A for some (a?j)je[n]\l} C [m]lll

be the projection of A onto the coordinates in I, and similarly for
By = {(yi)iel (Y15 -+, Yn) € B for some (yj)je[n]\l} C ({07 1}m)\1\.

e Pruning: If U C [m], V C {0,1}™, and i € [n], then let A®Y == {z € A:a; €
U} and B = {yeB:y, €V}.

o Auziliary graph: If i € [n], then let Graph;(A) be the bipartite graph defined
as follows. The left nodes are [m], the right nodes are [m]"~!, and each tuple
x = (x1,...,2,) € A is viewed as an edge between the left node z; and
the right node (z1,...,2-1,%i41,...,7,). Note that Ay, gy is the set of
nonzero-degree right nodes.

e Average/minimum degree: Let AvgDeg,(A) := |A[/| A< iy | and MinDeg, (A)
be, respectively, the average and minimum degrees of a nonzero-degree right
node in Graph;(A4).

e Thickness: We say A is thick iff MinDeg;(A) > m'7/20 for all i € [n].

The following lemma is helpful for when we need to let the communication protocol
send a bit.

LEMMA 3.1 (Thickness Lemma). Ifn > 2 and A C [m]™ is such that AvgDeg,(A) >
d for alli € [n], then there exists an A’ C A such that

(1) MinDeg,(A") > d/2n for all i € [n],

(2) a(4) <a(A)+1.

The following lemma is helpful for when we need to have the decision tree query a
bit.

LEMMA 3.2 (Projection Lemma). Suppose n > 2, A C [m|™ is thick, and
B C ({0,1}™)" is such that B(B) < m?/?°. Then for everyi € [n] and every b € {0,1}
there exists a b-monochromatic rectangle U x V C [m] x {0,1}™ in g such that

1) AYY s thick,
[n]~{i}

(2) a(Af';z]\{i}) < a(A) — logm + log AvgDeg;(A),

3) 5(Bfﬁ‘]/\{i}) <B(B)+1.

3.3. Description of the simulation algorithm. The Simulation Theorem is
witnessed by Algorithm 1, which is a decision tree for f that employs the hypothesized
communication protocol for F. Algorithm 1 uses the following variables: v is a node
in the communication protocol tree, I C [N] is the set of unqueried coordinates,
A C [m]V is a set of inputs to Alice, and B C ({0,1}™)" is a set of inputs to Bob.
We now exposit what Algorithm 1 is doing, with reference to the high-level overview
in section 3.1.

On input z € {0,1}", the node variable v traces a root-to-leaf path (of length at
most k) in the protocol tree, which is used to determine which z; bits to query, and
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Algorithm 1: Simulation algorithm for Theorem 1.3.
Input: z € {0,1}V
Output: f(2)
1 initialize v = root, I = [N], A = [m]", B = ({0, 1}™)¥
2 while v is not a leaf do
3 if AvgDeg;(A;) > m!'%/?0 for all i € I then
4 let vy, v be the children of v
5 if Alice sends a bit at v then
6 let b € {0,1} be such that a((AN X)) < (A7) +1
7 let A’ C (AN X""); be such that
8 (1) A’ is thick
9 (2) a(A) <a((ANX"Y)) +1
10 update A = {x € ANXYY: (z)ier € A’} and v = vy
(so now Ay = A')
11 else if Bob sends a bit at v then
12 let b € {0,1} be such that B((BNY"?);) < B(Br) +1
13 update B=BNY"" and v =
14 end
15 else if AvgDeg;(Ar) < m!®/?° for some i € I then
16 query z;
17 let U x V C [m] x {0,1}™ be a z-monochromatic rectangle of g s.t.
18 (1) A7,y is thick
19 (2) a(AiI’\U{i}) < a(Ar) — (logm)/20
20 (3) B(BY ) < B(Bi) +1
21 update A = AV B =B% and I =1~ {i}
22 end
23 end
24 output the same value that v does

when. The set A x B is the “cleaned up” subrectangle of R,, (so we maintain A C X"
and B C Y?). We maintain the invariant that every (z,y) € A x B is consistent
with the results of the queries made so far (i.e., gV (z,y) agrees with z on queried
coordinates), or in other words, Agy) X Bygy is zi-monochromatic in g for ¢ € [N] I
Thus we never need to worry about any coordinate that has previously been queried.
The interesting structure in the sets A and B is what they look like on the unqueried
coordinates, i.e., the projections A; and B;. Since all 2I| settings of the unqueried
bits of z remain possible, we must maintain that all these settings are indeed possible
outcomes of ¢!’ on points in A; x B;. In fact we maintain a stronger property that
turns out to entail this, namely that A; is thick (MinDeg,(A;) > m'7/?° for every
i € I)and By is “large” (as measured by 5(By)). The potential function is a(A4y); i.e.,
we look at the set of all projections of elements of A onto the unqueried coordinates,
and we consider how large this set is compared to its domain [m]” |, Smaller potential
corresponds to a larger set.

We caution that the sets A and B in the statements of the Thickness Lemma
and Projection Lemma will not be the A C [m]" and B C ({0,1}™)" maintained by
the algorithm, but rather will be subsets of the projected spaces ([m|™); = [m]|"™ and
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(({0,1}™)™); = ({0,1}™)", where n is the size of I.

Lines 2-23 are the main loop, with each iteration being either a “communication
iteration” (if line 3 holds) in which we update v, A, B, or a “query iteration” (if
line 15 holds) in which we update I, A, B. The type of iteration is determined by
min;e; AvgDeg,(Ar), which is our measure of how much the values of the unqueried
coordinates are unpredictable from each other within A x B.

In a communication iteration, there are two subcases depending on whether it is
Alice’s turn (line 5) or Bob’s turn (line 11) to communicate. In either subcase, the bit
of communication partitions R, (and hence A x B) into two parts, and we restrict our
attention to the “bigger” part (lines 6 and 12) by having the communication protocol
“send” the corresponding bit. Here, “bigger” is actually in terms of the projections A;
and Bj. This ensures that the potential does not increase too much if Alice sends, and
that Bj stays large enough if Bob sends. However, if Alice sends, then the restriction
to the bigger part may destroy the thickness invariant, and the Thickness Lemma is
used (lines 7-9) to repair this.

In a query iteration, we have the decision tree query a bit z; for which AvgDeg;(Ar)
is too small (line 16). Then we can use the Projection Lemma (lines 17-20) to restrict
A x B to a subrectangle on which the ith output bit of ¢/ is fixed to z; (for either
possible value of z; € {0,1}); this exploits the fact that MinDeg,;(A;) is large by the
thickness invariant. Furthermore, the fact that AvgDeg,(A;) is small allows us to
ensure an ((logm) decrease in potential (i.e., the density of A; increases). (Although
the absolute size of A; decreases, recall that the measure a(Aj) is relative to the
current set I; by fixing the ith coordinate, I becomes I \ {i}, and since we fixed a
coordinate of small average degree, the density projected to I \ {i} will increase a lot.)

3.4. Analysis of the simulation algorithm. We now formally argue that
Algorithm 1 witnesses the Simulation Theorem (assuming the Thickness Lemma and
the Projection Lemma). Assuming lines 7-9 and 17-20 always succeed (which we
argue below), in each iteration one of the following three cases occurs:

e If lines 3 and 5 hold, then a(Ay) increases by < 2 and [(By) stays the same.
e If lines 3 and 11 hold, then «(Aj) stays the same and 8(Bj) increases by < 1.
e If line 15 holds, then a(Aj) decreases by > (logm)/20 and B(B;) increases
by < 1.
Since there are at most k iterations in which line 3 holds, and since «(Ay) is initially
0 and always nonnegative, it follows that there are at most 40k/logm iterations in
which line 15 holds, and hence the decision tree makes at most 40k/logm queries.
Moreover, since there are at most k + 40k/logm < m?/?° iterations and B(By) is
initially 0, at all times we have 3(B;) < m?/?.

Cram 3.1. Lines 7T-9 and 17-20 always succeed, and the following loop invariants
are maintained:
(i) Ay is thick.
(il) Ax BCR,.
(iii) g(mi,y;) = 2z for all (z,y) € Ax B and alli € [N] N I.

Proof. The invariants trivially hold initially. Now assume they hold at the begin-
ning of an iteration.

Suppose lines 3 and 5 hold. For all i € I, we have AvgDeg,((A N X"?%)) =
(AN X");| /(AN X0 1] 2 (1A1l/2) / [Ar gy ] = AveDeg;(Ar)/2 > m'9/>0 /2.
Thus we may apply the Thickness Lemma with (ANX""?); (in place of A in the lemma),
I identified with [n], and d := m'%/2° /2 (noting that d/2n > m'/20 /4m1/20 > m17/20)
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to conclude that lines 7-9 succeed, and hence (i) is maintained. Also, (ii) is maintained
by line 10. If lines 3 and 11 hold, then (i) is trivially maintained and (ii) is maintained
by line 13. Supposing line 3 holds, in either case (iii) is maintained since the new
A x B is a subset of the old A x B and [ is unchanged.

Now suppose line 15 holds. Since (i) holds and 8(B;) < m?/?°,! we may apply the
Projection Lemma with A; and By (in place of A and B in the lemma), I identified
with [n], and b := z; (noting that —logm + log AvgDeg,(A;) < —(logm)/20) to
conclude that lines 17-20 succeed, and hence (i) is maintained. The new A x B is a
subset of the old A x Bj; therefore, (ii) is maintained since v is unchanged, and (iii) is
maintained since U x V is z;-monochromatic in g. 0

Let v be the leaf reached at termination. We claim that there exists an (z,y) € R,
such that ¢"V(z,y) = 2, and hence the algorithm indeed outputs f(z) = F(xz,y).
Imagine that instead of terminating, the algorithm continues by executing lines 16-21
repeatedly, once for each remaining coordinate ¢ € I in arbitrary order until only one
coordinate remains unqueried—except that we ignore condition (2) (line 19). In this
“extended” execution there are a total of k + N — 1 < m?2/20 iterations, so we have
B(Br) < m?/?° at all times, and thus as in the proof of Claim 3.1, the application of
the Projection Lemma always succeeds and invariants (i), (ii), (iii) are maintained.
Consider the state (i.e., v, I, A, B) at the end of this extended execution. Then
I is a singleton, say {1}, and [A{1;| = MinDeg; (A1}) > m!'7/?% by (i), and |B1y| >

277”2/20 )

monochromatic rectangle with rows Ay has at most oam=lAml < | B{1y| columns. Pick
an (z1,y1) € Ag1y X By1y such that g(z1,y1) = 21, and pick an (z,y) € A x B with this
value of (z1,y1). By (ii) we have (z,y) € R,, and by (iii) we also have g(z;,y;) = 2;
for all i € [N] \ {1}, and thus g™V (z,y) = 2. The correctness is established.

9m — 9m=m**" Hance A1y X By is not monochromatic in g, since the largest

3.5. Proof of the Thickness Lemma. The Thickness Lemma is witnessed by
Algorithm 2, which constructs a sequence A = A° D A D A2 D ... that converges to
the desired set A’.

Algorithm 2: Algorithm for Lemma 3.1.
1let A=A
2 for j=0,1,2,... do
3 | if MinDeg;(A7) > d/2n for all i € [n] then stop and output A’ = AJ
4 let i be such that MinDeg, (A7) < d/2n,

and assume ¢ = 1 for convenience of notation
5 let (x3,...,7%) be a nonzero-degree right node in Graph, (A7)

with degree < d/2n

let AT = AJ \{(z1,23,...,2%) : z1 € [m]}

7 end

If the algorithm terminates, then A’ satisfies (1). We just need to argue that
it does terminate, moreover, with |A’| > |A|/2 (which is equivalent to (2)). In an
iteration, it obtains Graph,(A7*!) from Graph;(A7) by removing all edges incident
to some right node in A}, .. Hence |Af7ﬁi{i}| = |Afn]\{i}| — 1, and for every

IThere is no circular reasoning here; in showing that 8(B;) < m?2/20

7-9 and 17-20 succeeded in all iterations before this one.

we just needed that lines
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i’ £, |A{$l\{i,}’ < |A{n]\{i,}’. Therefore, the total number of iterations is at most
S Apgiy] = 2oiey |Al/ AvgDeg,;(A) < n-|A]/d. Since |A7T!| > |A7] —d/2n in
each iteration, in total at most (n-|A|/d)-(d/2n) = |A|/2 elements of A can be removed
throughout the execution. Thus the algorithm must terminate with |A’| > |A|/2.

3.6. Proof of the PI’OJeCtiOl’l Lemma. Assume ¢ = n for convenience of
notation, so Af;l(]]\{i} A"’ Ty = = {(z1,...,xp-1) : (x1,...,7,) € A for some z,, €
U} (which is the set of rlght nodes in Graph,,(A4) that have a neighbor in U) and
Bfn‘]/\{ = BEZL’ = {(91, ey Yn—1): (Y1,-..,yn) € B for some y, € V}.

We claim that if we take a uniformly random U C [m] of size m7/?° and let
Vi={we{0,1}™:w; =bforall j € U}, then

(0) AE;UI] Ay, —q) with probability greater than 1 —27"" ",
(1) App—qj is thick,

(2) a(Ap-1)) < a(A) —logm +log AvgDeg,,(A),

(3) ﬁ(B[ZVI ) < B(B) + 1 with probability greater than g—m?/*

The Projection Lemma then follows by a union bound. (We mention that our argument
for property (3) is substantially different from and simpler than the corresponding
part of the proof in [35].)

Property (0). For every nonzero-degree right node (z1,...,2,-1) € Ap,—1) of
Graph,,(A), let Ly, . 5, , = {x, € [m] : (z1,...,2n_1,2,) € A} denote the set
of all left nodes adjacent to it. We have |L,, .. ,| > MinDeg, (4) > m!7/20,
and (21,...,Tp—1) € A[n 1] iff U intersects Ly, ., ,. Since U has size m7/20 the
probability that U does not intersect Ly, . 5, is at most (1 — ml7/20/m)m7/20 <

/20

3/20

. Since the number of elements (z1,...,2,_1) € Ap,_1) is at most mn~! <

2m1/20.1ogm, by a union bound the probability that one of them is not in Aﬁgl] is at

most 2™ <2™m

Property (1). For this it sufﬁces to show that MinDeg;(A},_1)) > MinDeg;(A)
for all j € [n — 1]. Assume j = n — 1 for convenience of notation. For every nonzero-
degree right node (x1,...,2,_2) in Graph,,_;(Ap,—1)), there exists x,,_1 such that
(1, Tp_2,Tp_1) € Ap—q). Thus by the definition of Ap,_y) there exists x,, such
that (z1,...,Tn—2,Zn—1,2,) € A. Therefore, by the definition of MinDeg,, _;(A)
applied to the nonzero—degree right node (z1,...,%,—2,z,) of Graph,,_;(A), we have
that (z1,...,Zn—2,2,_1,%n) € A holds for at least MinDeg,,_;(A) different elements
a4 All these elements satisfy (21,...,2n 2,7, ;) € Aj,_1). Hence, the degree of
the right node (x1,...,7,_2) in Graph,_;(A},_1)) is at least MinDeg,,_;(A).

Property (2). We have |A},_qj| = |A|/ AvgDeg, (A) and |[m]"~!| = |[m]™|/m, and
hence al(Ap,—1)) = log(|[m]"|/|Ajn—1y|) = log(|[m]™|/|A]) —log(m/ AvgDeg,, (A)) =
a(A) —logm + log AvgDeg,, (A). (Thus (2) holds with equality, but we only needed
the inequality.)

Property (3). We first state a claim, whose proof we give later.

4/20 3/20

/20 10g m e m

CLAIM 3.2. For every W C {0,1}™ with B(W) < m'1/20 we have Pry[V AW #

0] > 3/4.
In particular, for every W C {0,1}™ we have Pry[VNW # 0] > 2 . |W|/2™ —
27" For every (g1, yn-1) € ({0,1}™)" 71 let Wi,y = {yn € {0,1}™ :
n—1

(Y1, -3 Yn—1,Yn) € B}. Letting (y1,...,Yn—1) be uniformly random in ({0, 1}™)"*,
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we have

By [|B7: /20

Eylw";ynfl PrU [(y1’ s ?y’ﬂ—l) E BE’:L,‘_/I]}
Ey17~--,yn—1 Pry [V N Wylau-,ynﬂ 7& @]
E

_.11/20
> Yl Yn—1 (% : ‘Wyhm,ynq ’/2m -2 )
= §-IBl/2mn — 27"
> g-1B|/2m,

where the last line follows since |B|/2m" = 27#(B) > 2-m**" Tt follows that with

probability at least % - |B|/2m™ > om0 ver U, we have ’B[Y;;‘_/l]|/2m(”_1) >
1 .|B|/2™", which is equivalent to (3). This finishes the proof of the Projection
Lemma, except for the proof of Claim 3.2.

Recall that b € {0,1} is fixed. For W C {0,1}™ and j € [m], define W7 := {w €
W :w; = b} and Bad(W) == {j € [m] : |[W7| < |W|/4}.

CramM 3.3. For every W C {0,1}™, |[Bad(W)| < 68(W).

Proof of Claim 3.3. Let w be a random variable uniformly distributed over W,
and let H(-) denote Shannon entropy. There are at most 65(W) coordinates j such
that Pr[w; = b] < 1/4, since otherwise H(w) < 377", H(w;) < 68(W) - H(1/4) +
(m—=68W))-1<m-—65W)-(1-0.82) <m— (W), contradicting the fact that
H(w) =log |W|=m— p(W). O

Proof of Claim 3.2. Suppose we sample U = {j1,...,J,,7/20 } by iteratively pick-
ing each ji11 € [m] ~ {j1,...,7:} uniformly at random. We write V as V as a
reminder that it depends on U. For i € {0,1,...,m"/?°} define W; = {w €
W :wj, =wj, = = wj, = b}, and note that Wy = W, W1 = W/, and
W,,720 = Vy NW. Let E;11 denote the event that j;11 ¢ Bad(W;), and note that
if E;y1 occurs, then S(W; 1) < B(W;) + 2. Thus if E; N---N E,,7/20 occurs, then
B(Vy NW) < B(W) + 2m™?° < 0o and hence Viy N W # (. Conditioned on any
particular outcome of jq,...,J; for which £1 N---N E; occurs, by Claim 3.3 we have
[Bad(W;)| < 68(W;) < 6(8(W) + 2¢) and thus

_ [Bad(Wi)| 1 6(B(W) + 2i) S e MEV)+20)/m

Pr(Eiq | j1,..., 5] > 1 Il >
tBia [0l m—i (6/T)m

where the last inequality uses the fact that 1 —x > e=2% if x € [0,1/2], applied to
z = 6(B(W) 4 2i)/(6/7)m < 7(m/?0 4 2m7/2%) /m < 1/2. We conclude that

PI‘[VU NnNw 7é @] > Pr [El N---N Em7/zo}

m7/20_1
= H PP[E¢+1|E10"'QE7;]
=0
m7/20_1
> [ e revi/m
=0
m7/20 4

= exp|— Y 14(B(W)+2i)/m

=0
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= exp(=2(BV)m™/2 + (/2 — 1)m7/2))
exp(—14(m~%20 4 m~6/20))
3/4. 0

(AVARIV}

4. Conclusion.

Further observations. There is not much room for improvement in Theorem 1.2,
since an O(UP“(F)?) upper bound is known. A closer inspection of our proof shows
that P<(F) > Q(UP“(F)?/log® UP(F)). The lower bound can be improved to
Q(UP*(F)?/log” UP*(F)) by letting h: {0,1}°0°s™) — % (as in (2.1) at the begin-
ning of section 2, where |3| = poly(n)) be the decoder of any asymptotically good
error-correcting code (such as the Justesen code). For such an h, any adversary strategy
has the property that unless at least some small constant fraction of the input bits
to h have been queried, every element of ¥ remains a possible output of h. Thus an
adversary strategy for h composes with the adversary strategy for f (from section 2.1)
to give PI(f o k™) > Q(nlogn). The upper bound UP*(f o h™) < O(y/nlogn) is
unchanged. The Simulation Theorem introduces another logn factor.

Grolmusz and Tardos [21] (building on [25]) generalized the fact that for all F,
P<(F) < O(UP(F)?), by showing that for all F and ¢ > 1, P(F) is at most O(¥)
times the square of the “/-ambiguous nondeterministic communication complexity
of F'.” which is the logarithm of the least number of rectangles so that each 1-input
is covered between 1 and ¢ times, and no O-input is covered. This can be shown to
be tight by applying the Simulation Theorem to the corresponding query complexity
separation. The latter is witnessed by taking the OR of ¢ independent copies of the
function witnessing Theorem 1.5 (rather than taking the AND as in Theorem 1.4):
The deterministic query complexity goes up by a factor of ¢, but the f-ambiguous
query complexity of the new function is at most the unambiguous query complexity of
the original function.

Subsequent developments. Our techniques have been adapted in several subsequent
works. In [37], Saks and Wigderson conjectured that the largest separation between
deterministic and zero-sided randomized query complexities should be a power roughly
1.326 (witnessed by the recursive AND-OR tree). The paper [3] used variants of
our function from Theorem 1.5 to disprove the Saks—Wigderson conjecture and, in
fact, to give optimal (quadratic) separations between deterministic and zero-sided
randomized query complexities and between zero-sided and one-sided randomized query
complexities, as well as a fourth power separation between deterministic and quantum
query complexities, among other separations. The paper [33] independently showed
that our function from Theorem 1.5 already disproves the Saks—Wigderson conjecture.
Inspired by our techniques, the authors of [1] exhibited a function witnessing a power
2.5 separation between two-sided randomized and quantum query complexities, as well
as a function witnessing a power 4 separation between quantum query complexity and
approximate polynomial degree.

The paper [16] strengthened Theorems 1.1 and 1.2 to have randomized (BPP)
rather than deterministic lower bounds (using different functions). In particular, the
query complexity analogues of these results (the BPPY analogues of Theorems 1.4
and 1.5) were also shown, thereby quantitatively improving the main result from [26]
(which was the first superlinear BPP vs. 2UP® separation).

The exponent in our Theorems 1.1 and 1.4 has been improved from 1.5 to 2 —
o(1) (which is essentially tight) in [4]. Furthermore, several other query complexity
separations were proved in [4]: a power 2 separation between BPPY and 2UP%* (which
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has since been lifted to communication complexity [5, 20]), a power 1.5 separation
between BQP?t and 2U Pdt, and a power 2 separation between BQP? and UP®.

The papers [36, 6] adapted and applied the Simulation Theorem to prove lower
bounds on the communication complexity of finding Nash equilibria.

The Simulation Theorem itself has been improved in various ways: The authors
of [12] proved a version where rounds of communication in the protocol correspond
directly to rounds of adaptivity in the decision tree (and the paper gave applications
to proof complexity and circuit complexity), and the authors of [11, 41] improved the
gadget to be the inner-product function on O(logn) bits (as was used in [18]).

Finally, our techniques have inspired the development of simulation theorems for
other models: bounded-error randomized (BPP-type) protocols/decision trees [20], as
well as PNP_type protocols/decision trees [17].

Acknowledgments. We thank Raghu Meka and Ran Raz for very helpful dis-
cussions.
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