
1 23

computational complexity

ISSN 1016-3328
Volume 28
Number 1

comput. complex. (2019) 28:113-144
DOI 10.1007/s00037-018-0175-5

Query-to-Communication Lifting for P NP

Mika Göös, Pritish Kamath, Toniann
Pitassi & Thomas Watson

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Nature Switzerland AG. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

comput. complex. (2019), 113 – 144

c© Springer Nature Switzerland AG 2018, corrected publication 2019

1016-3328/19/010113-32

published online November 30, 2018

https://doi.org/10.1007/s00037-019-0175-5 computational complexity

QUERY-TO-COMMUNICATION

LIFTING FOR PNP

Mika Göös, Pritish Kamath, Toniann Pitassi,

and Thomas Watson

Abstract. We prove that the PNP-type query complexity (alternatively,
decision list width) of any Boolean function f is quadratically related
to the PNP-type communication complexity of a lifted version of f . As
an application, we show that a certain “product” lower bound method
of Impagliazzo and Williams (CCC 2010) fails to capture PNP communi-
cation complexity up to polynomial factors, which answers a question
of Papakonstantinou, Scheder, and Song (CCC 2014).

Keywords. Query, Communication, Lifting, PNP

Subject classification. 68Q15

1. Introduction

Broadly speaking, a query-to-communication lifting theo-
rem (a.k.a. communication-to-query simulation theorem) trans-
lates, in a black-box fashion, lower bounds on some type of query
complexity (a.k.a. decision tree complexity Buhrman & de Wolf
(2002); Jukna (2012); Vereshchagin (1999)) of a Boolean function
f : {0, 1}n → {0, 1} into lower bounds on a corresponding type
of communication complexity (Jukna (2012); Kushilevitz & Nisan
(1997); Rao & Yehudayoff (2017)) of a two-party version of f . Ta-
ble 1.1 lists several known results in this vein.

In this work, we provide a lifting theorem for PNP-type query/
communication complexity.

Author's personal copy

114 M. Göös et al. cc (2019)

PNP decision trees. Recall that a deterministic (i.e., P-type)
decision tree computes an n-bit Boolean function f by repeatedly
querying, at unit cost, individual bits xi ∈ {0, 1} of the input x
until the value f(x) is output at a leaf of the tree. A PNP decision
tree is more powerful: in each step, it can query/evaluate a width-k
DNF of its choice, at the cost of k. Here, k is simply the nondeter-
ministic (i.e., NP-type) decision tree complexity of the predicate
being evaluated at a node. The overall cost of a PNP decision tree
is the maximum over all inputs x of the sum of the costs of the
individual queries that are made on input x. The PNP query com-
plexity of f , denoted PNPdt(f), is the least cost of a PNP decision
tree that computes f .

x3?

x4? x2?

x1?

Deterministic decision tree of cost 3

1 0 1

0 1

0 1

10 0 1

0 1

x3 ∨ x4 ∨ x5?

x6? x1x2 ∨ x5x6?

x4x5 ∨ x1?

PNP decision tree of cost 4

1 0 1

0 1

0 1

10 0 1

0 1

Example 1.1. Consider the fabled odd-max-bit function (Beigel
(1994); Buhrman et al. (2007); Bun & Thaler (2018); Servedio et al.
(2012); Thaler (2016)) defined by Omb(x) := 1 iff x �= 0n and the
largest index i ∈ [n] such that xi = 1 is odd. This function admits
an efficient O(log n)-cost PNP decision tree: we can find the largest
i with xi = 1 by using a binary search that queries 1-DNFs of the
form

∨
a≤j≤n xj for different a ∈ [n]. ♦

PNP communication protocols. Let F : X × Y → {0, 1} be
a two-party function, i.e., Alice holds x ∈ X , Bob holds y ∈ Y .
A deterministic communication protocol can be viewed as a deci-
sion tree where in each step, at unit cost, it evaluates either an
arbitrary predicate of Alice’s input x or an arbitrary predicate of

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 115

Query model Communication model References

Deterministic Deterministic Göös et al. (2018a); Raz & McKenzie (1999);

Hatami et al. (2018); de Rezende et al. (2016)

Nondeterministic Nondeterministic Göös (2015); Göös et al. (2016)

Polynomial degree Rank Sherstov (2011); Shi & Zhu (2009);

Razborov & Sherstov (2010); Robere et al. (2016)

Conical junta degree Nonnegative rank Göös et al. (2016); Kothari et al. (2017)

Sherali–Adams LP extension complexity Chan et al. (2016); Kothari et al. (2017)

Sum-of-squares SDP extension complexity Lee et al. (2015)

Table 1.1: Some query-to-communication lifting theorems. The
first four are formulated in the language of boolean functions (as
in this paper); the last two are formulated in the language of com-
binatorial optimization.

Bob’s input y. A PNP communication protocol (Babai et al. (1986);
Göös et al. (2018b)) is more powerful: in each step, it can evalu-
ate an arbitrary predicate of the form (x, y) ∈ ⋃

i∈[2k] Ri (“oracle

query”) at the cost of k (We always assume k ≥ 1, and k is an
integer). Here, each Ri is a rectangle (i.e., Ri = Xi × Yi for some
Xi ⊆ X , Yi ⊆ Y) and k is just the usual nondeterministic commu-
nication complexity of the predicate being evaluated. The overall
cost of a PNP protocol is the maximum over all inputs (x, y) of the
sum of the costs of the individual oracle queries that are made on
input (x, y). The PNP communication complexity of F , denoted
PNPcc(F), is the least cost of a PNP protocol computing F .

Note that if F : {0, 1}n × {0, 1}n → {0, 1} can be written as a
k-DNF on 2n variables, then the nondeterministic communication
complexity of F , denoted NPcc(F), is at most O(k log n) bits: we
can guess one of the ≤ 2k

(
n
k

)
many terms in the k-DNF and verify

that the term evaluates to true. Consequently, any PNP decision
tree for a function f can be simulated efficiently by a PNP protocol,
regardless of how the input bits of f are split between Alice and
Bob. That is, letting F be f equipped with any bipartition of the
input bits, we have

(1.2) PNPcc(F) ≤ PNPdt(f) · O(log n).

1.1. Main result. Our main result establishes a rough converse
to inequality (1.2) for a special class of composed, or lifted, func-

Author's personal copy

116 M. Göös et al. cc (2019)

tions. For an n-bit function f and a two-party function g : X ×Y →
{0, 1} (called a gadget), their composition F := f ◦gn : X n ×Yn →
{0, 1} is given by F (x, y) := f(g(x1, y1), . . . , g(xn, yn)). We use as
a gadget the popular index function Indm : [m] × {0, 1}m defined
by Indm(x, y) := yx.

Theorem 1.3 (Lifting for PNP). Let m = m(n) := n4. For every
f : {0, 1}n → {0, 1},

PNPcc(f ◦ Ind
n
m) ≥

√

PNPdt(f) · Ω(log n).

The lower bound is tight up to the square root, since (1.2) can
be adapted for composed functions to yield PNPcc(f ◦ Ind

n
m) ≤

PNPdt(f) · O(log m + log n). The reason we incur a quadratic loss
is because we actually prove a lossless lifting theorem for a re-
lated complexity measure that is known to capture PNP query/
communication complexity up to a quadratic factor, namely deci-
sion lists, discussed shortly in Section 1.3.

1.2. Application. Impagliazzo & Williams (2010) gave the fol-
lowing criteria—we call it the product method—for a function F to
have large PNP communication complexity. Here, a product distri-
bution μ over X × Y is such that μ(x, y) = μX (x) · μY(y) for some
distributions μX , μY . A rectangle R ⊆ X × Y is monochromatic
(relative to F) if F is constant on R.

Product method Impagliazzo & Williams (2010): Let
F : X × Y → {0, 1} and suppose μ is a product dis-
tribution over X × Y such that μ(R) ≤ δ for every
monochromatic rectangle R. Then,

PNPcc(F) ≥ Ω(log(1/δ)).

This should be compared with the well-known rectangle size method
(Karchmer et al. (1995); (Kushilevitz & Nisan 1997, §2.4)) (μ
over F−1(1) such that μ(R) ≤ δ for all monochromatic R implies
NPcc(F) ≥ Ω(log(1/δ))), which is known to characterize nonde-
terministic communication complexity up to an additive Θ(log n)
term.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 117

Papakonstantinou, Scheder, and Song (Papakonstantinou et al.
2014, Open Problem 1) asked whether the product method can
yield a tight PNP communication lower bound for every function.
This is especially relevant in light of the fact that all existing lower
bounds against PNPcc (proved in Impagliazzo & Williams (2010);
Papakonstantinou et al. (2014)) have used the product method
(except those lower bounds that hold against an even stronger
model: unbounded error randomized communication complexity,
UPPcc Paturi & Simon (1986)). We show that the product method
can fail exponentially badly, even for total functions.

Theorem 1.4. There exists a total F : {0, 1}n × {0, 1}n → {0, 1}
satisfying the following.

− F has large PNP communication complexity: PNPcc(F) ≥
nΩ(1).

− For any product distribution μ over {0, 1}n×{0, 1}n, there ex-
ists a monochromatic rectangle R that is large: log(1/μ(R)) ≤
logO(1) n.

1.3. Decision lists (DLs).

Conjunction DLs. The following definition is due to Rivest
(1987): a conjunction decision list of width k is a sequence (C1, �1),
. . . , (CL, �L) where each Ci is a conjunction of ≤ k literals and
�i ∈ {0, 1} is a label. We assume for convenience that CL is
the empty conjunction (accepting every input). Given an input
x, the conjunction decision list finds the least i ∈ [L] such that
Ci(x) = 1 and outputs �i. We define the conjunction decision list
width of f , denoted DLdt(f), as the minimum k such that f can
be computed by a width-k conjunction decision list. For example,
DLdt(Omb) = 1. This complexity measure is quadratically related
to PNP query complexity (see Appendix A).

Fact 1.5. For all f : {0, 1}n → {0, 1}, Ω(DLdt(f)) ≤ PNPdt(f) ≤
O(DLdt(f)2 · log n).

Author's personal copy

118 M. Göös et al. cc (2019)

x2x5? x3x4x6? x1x3? x4x5x6? x1x2x3? ∅

A conjunction decision list of width 3

1 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1 1

Rectangle DLs. A communication complexity variant of deci-
sion lists was introduced by Papakonstantinou et al. (2014) (they
called them rectangle overlays). A rectangle decision list of cost k
is a sequence (R1, �1), . . . , (R2k , �2k) where each Ri is a rectangle
and �i ∈ {0, 1} is a label. We assume for convenience that R2k

contains every input. Given an input (x, y), the rectangle deci-
sion list finds the least i ∈ [2k] such that (x, y) ∈ Ri and outputs
�i. We define the rectangle decision list complexity of F , denoted
DLcc(F), as the minimum k such that F can be computed by a
cost-k rectangle decision list. We again have a quadratic relation-
ship (Papakonstantinou et al. 2014, Theorem 3) (see Appendix A).

Fact 1.6. For all F : {0, 1}n × {0, 1}n → {0, 1}, Ω(DLcc(F)) ≤
PNPcc(F) ≤ O(DLcc(F)2).

DLs are combinatorially slightly more comfortable to work with
than PNP decision trees/protocols. This is why our main lifting
theorem (Theorem 1.3) is in fact derived as a corollary of a lossless
lifting theorem for DLs.

Theorem 1.7 (Lifting for DL). Let m = m(n) := n4. For every
f : {0, 1}n → {0, 1},

DLcc(f ◦ Ind
n
m) = DLdt(f) · Θ(log n).

Indeed, Theorem 1.3 follows because

PNPcc(f ◦ Ind
n
m) ≥ Ω(DLcc(f ◦ Ind

n
m))

≥ Ω(DLdt(f) · log n)

≥ Ω((PNPdt(f)/ log n)1/2 · log n)

= (PNPdt(f) · Ω(log n))1/2,

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 119

where the first inequality is by Fact 1.6, the second is by Theo-
rem 1.7, and the third is by Fact 1.5. We mention that Theorem 1.3
and Theorem 1.7, as well as Fact 1.5 and Fact 1.6, in fact hold for
all partial functions.

As a curious aside, we mention that a time-bounded analogue
of decision lists (capturing PNP) has also been studied in a work of
Williams (2001).

1.4. Separation between PNP and DL. Fact 1.5 and Fact 1.6
show that decision lists can be converted to PNP decision trees or
protocols with a quadratic overhead. Is this conversion optimal?
In other words, are there functions that witness a quadratic gap
between PNP and DL? We at least show that if a lossless lifting
theorem holds for PNP, then such a quadratic gap indeed exists for
communication complexity.

Conjecture 1.8. There is an m = m(n) := nΘ(1) such that for
every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Ind
n
m) = PNPdt(f) · Θ(log n).

Our bonus contribution here (proven in Section 5) shows that
the simple O(log n)-cost PNP decision tree for the odd-max-bit func-
tion is optimal:

Theorem 1.9. PNPdt(Omb) ≥ Ω(log n).

Corollary 1.10. The second inequality of Fact 1.5 is tight (i.e.,
PNPdt(f) ≥ Ω(DLdt(f)2 · log n) for some f), and assuming Conjec-
ture 1.8, the second inequality of Fact 1.6 is tight (i.e., PNPcc(F) ≥
Ω(DLcc(F)2) for some F).

This corollary is witnessed by f := Omb (which has DLdt(f) ≤
O(1) and PNPdt(f) ≥ Ω(log n)) and its lifted version F := Omb ◦
Ind

n
m (which has DLcc(F) ≤ O(log n) and PNPcc(F) ≥ Ω(log2 n)

under Conjecture 1.8). One caveat is that we have only shown the
corollary for an extreme setting of parameters (constant DLdt(f)
and logarithmic DLcc(F)). It would be interesting to show a sepa-
ration for functions of nΩ(1) decision list complexity.

Author's personal copy

120 M. Göös et al. cc (2019)

2. Preliminaries: decision list lower bound
techniques

We present two basic lemmas in this section that allow one to
prove lower bounds on conjunction/rectangle decision lists. First,
we recall the proof of the product method, which will be important
for us, as we will extend the proof technique in both Section 3 and
Section 4.

Lemma 2.1 (Product method for DLcc). Let F : X × Y → {0, 1}
and suppose μ is a product distribution over X×Y . Then, F admits
a monochromatic rectangle R with log(1/μ(R)) ≤ O(DLcc(F)).

Proof. (from Impagliazzo & Williams (2010);Papakonstantinou
et al. (2014)) Let (R1, �1), . . . , (R2k , �2k) be an optimal rectangle
decision list of cost k := DLcc(F) computing F . Recall we assume
that R2k = X ×Y contains every input. We find a monochromatic
R with μ(R) ≥ 2−2k via the following process.

We initialize X := X and Y := Y and iterate the following for
i = 1, . . . , 2k rounds, shrinking the rectangle X × Y in each round.

(†) Round i: (loop invariant: Ri ∩ (X × Y) is a monochromatic
rectangle)

Write Ri ∩ (X ×Y) = Xi ×Yi and test whether μ(Xi ×Yi) =
μX (Xi) · μY(Yi) is at least 2−2k. Suppose not, as otherwise
we are successful. Then, either μX (Xi) < 2−k or μY(Yi) <
2−k; say the former. We now “delete” the rows Xi from
consideration by updating X ← X � Xi.

Note that since Ri ∩ (X × Y) is removed from X × Y in each un-
successful round, it must hold (inductively) that

⋃
j<i Rj is disjoint

from X × Y at the start of the i-th round, and so Ri ∩ (X × Y)
is indeed monochromatic (since it only contains points for which
Ri is the first rectangle in the decision list to contain them, which
means F evaluates to �i). The process starts out with μ(X×Y) = 1
and in each unsuccessful round the quantity μ(X ×Y) decreases by
< 2−k. Some round must succeed, as otherwise the process would
finish with X × Y = ∅, and hence, μ(X × Y) = 0 in 2k rounds,
which is impossible. �

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 121

Recall that our Theorem 1.4 states that the product method is
not complete for the measure DLcc. By contrast, we are able to give
an alternative characterization for the analogous query complexity
measure DLdt. We do not know if this characterization has been
observed in the literature before.

Lemma 2.2 (Characterization for DLdt). Let f : {0, 1}n → {0, 1}.
Then, DLdt(f) ≤ k iff for every nonempty Z ⊆ {0, 1}n there exists
an � ∈ {0, 1} and a width-k conjunction that accepts an input in
Z� := Z ∩ f−1(�) but none in Z1−�.

Proof. Suppose f has a width-k conjunction decision list
(C1, �1), (C2, �2), . . . , (CL, �L). The first Ci that accepts an input
in Z (such an i must exist since the last CL accepts every input)
must accept an input in Z�i but none in Z1−�i (since all inputs in
C−1

i (1) ∩ Z are such that Ci is the first conjunction in the decision
list to accept them).

Conversely, assume the right side of the “iff” holds. Then, we
can build a conjunction decision list for f iteratively as follows.
Start with Z = {0, 1}n. Let C1 be a width-k conjunction that
accepts an input in some Z�1 but none in Z1−�1 , and remove from
Z all inputs accepted by C1. Then continue with the new Z: let
C2 be a width-k conjunction that accepts an input in some Z�2

but none in Z1−�2 , and further remove from Z all inputs accepted
by C2. Once Z becomes empty (this must happen since the right
side of the iff holds for all nonempty Z), we have constructed a
conjunction decision list (C1, �1), (C2, �2), . . . for f . �

3. Proof of the lifting theorem

In this section we prove Theorem 1.7, restated here for convenience.

Theorem 1.7 (Lifting for DL). Let m = m(n) := n4. For every
f : {0, 1}n → {0, 1},

DLcc(f ◦ Ind
n
m) = DLdt(f) · Θ(log n).

Author's personal copy

122 M. Göös et al. cc (2019)

We use the abbreviations g := Indm : [m] × {0, 1}m → {0, 1}
and F := f ◦ gn.

The upper bound of Theorem 1.7 is straightforward: given a
width-k conjunction decision list for f (which necessarily has length
≤ 2k

(
n
k

) ≤ nO(k)), we can form a rectangle decision list for F by
transforming each labeled conjunction into a set of same-labeled
rectangles (which can be ordered arbitrarily among themselves),
one for each of the mk ways of choosing a row from each of the
copies of g corresponding to bits read by the conjunction—for a
total of nO(k) ·mk ≤ nO(k) rectangles and hence a cost of k ·O(log n).
For example, if k = 2 and the conjunction is z1z2, then for each
x1, x2 ∈ [m] there would be a rectangle consisting of all inputs with
that value of x1, x2 and with y1, y2 such that g(x1, y1) = 1 and
g(x2, y2) = 0. For the rest of this section, we prove the matching
lower bound.

3.1. Overview. Fix an optimal rectangle decision list (R1, �1),
. . . , (R2k , �2k) for F . By our characterization of DLdt (Lemma 2.2),
it suffices to show that for every nonempty Z ⊆ {0, 1}n there is
a width-O(k/ log n) conjunction that accepts an input in Z� :=
Z ∩ f−1(�) for some � ∈ {0, 1}, but none in Z1−�. Thus fix some
nonempty Z henceforth.

Write G := gn for short. We view the communication matrix of
F as being partitioned into slices G−1(z) = {(x, y) : G(x, y) = z},
one for each z ∈ {0, 1}n; see (a) below. We focus naturally on the
slices corresponding to Z, namely G−1(Z) =

⋃
z∈Z G−1(z), which

is further partitioned into G−1(Z0) and G−1(Z1); see (b) below.
Our goal is to find a rectangle R that touches G−1(Z�) (for some
�) but not G−1(Z1−�), and such that G(R) = C−1(1) for a width-
O(k/ log n) conjunction C; see (c) below. Thus, C−1(1) touches Z�

but not Z1−�, as desired.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 123

[m]n

({0, 1}m)n

G −1(Z
0)

G −1(Z
1)

R

(c)(b)(a)

We find such an R as follows. We maintain a rectangle X × Y ,
which is initially the whole domain of F and which we iteratively
shrink. In each round, we consider the next rectangle Ri in the
decision list, and one of two things happens. Either:

− The round is declared unsuccessful, in which case we remove
from X×Y a small number of rows and columns that together
cover all of Ri ∩ (X × Y) ∩ G−1(Z). This guarantees that
throughout the whole execution, by the i-th round,

⋃
j<i(Rj∩

G−1(Z)) has been removed from X ×Y —thus every input in
Ri ∩ (X ×Y)∩G−1(Z) is such that Ri is the first rectangle in
the decision list that contains it, so it is in G−1(Z�i) ⊆ F−1(�i)
by the definition of decision lists.

Or,

− Success is declared, in which case it will hold that Ri ∩ (X ×
Y) touches G−1(Z)—in fact, it touches G−1(Z�i) but not
G−1(Z1−�i), by the above—and we can restrict Ri ∩ (X × Y)
to a subrectangle R that still touches G−1(Z�i) but is such
that G(R) is fixed on O(k/ log n) coordinates and has full sup-
port on the remaining coordinates. In other words, G(R) =
C−1(1) for a width-O(k/ log n) conjunction C.

This process is a variation of the process (†) from the product
method (Lemma 2.1). The difference is that the Z-slices, G−1(Z),
now play the role of the product distribution, and we maintain the
monochromatic property for Ri ∩ (X × Y) only inside the Z-slices.
Another difference is that in each unsuccessful round we remove
both rows and columns from X × Y (not either–or as in (†)).

To flesh out this outline, we need to specify how to determine
whether a round is successful, which rows and columns to remove

Author's personal copy

124 M. Göös et al. cc (2019)

if not, and how to restrict to the desired R if so, and we need to
argue that the process will terminate with success.

3.2. Tools. We will need to find a rectangle R such that G(R)
is fixed on few coordinates and has full support on the remaining
coordinates. We now describe some tools that help us achieve this.
First of all, under what conditions on R = A×B can we guarantee
that G(R) has full support over all n coordinates?

Definition 3.1 (Blockwise-density Göös et al. 2016). A ⊆ [m]n

is called δ-dense if the uniform random variable x over A satisfies
the following: for every nonempty I ⊆ [n], the blocks xI have min-
entropy rate at least δ, that is, H∞(xI) ≥ δ · |I| log m. Here, xI is
marginally distributed over [m]I , and H∞(x) := minx log(1/Pr[x =
x]) is the usual min-entropy of a random variable (see, e.g., Vad-
han’s monograph Vadhan (2012) for an introduction).

Definition 3.2 (Deficiency). For B ⊆ ({0, 1}m)n, we define
D∞(B) := mn−log |B| (equivalently, |B| = 2mn−D∞(B)), represent-
ing the log-size deficiency of B compared to the universe ({0, 1}m)n.
(The notation D∞ was chosen partly because this corresponds to
the Rényi max-divergence between the uniform distributions over
B and over ({0, 1}m)n.)

Lemma 3.3 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆
({0, 1}m)n satisfies D∞(B) ≤ n2, then G(A × B) = {0, 1}n (i.e.,
for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with G(x, y) = z).

We prove Lemma 3.3 in Section 3.4 using the probabilistic
method: we show for a suitably randomly chosen rectangle U×V ⊆
G−1(z), (i) U intersects A with high probability, and (ii) V inter-
sects B with high probability. The proof of (i) uses the second
moment method (which is different from how blockwise-density
was employed in previous work Göös et al. (2016)). The proof of
(ii), which is simpler than the one in the original version of this
paper Göös et al. (2017), is inspired by arguments from Göös et al.
(2018a); Raz & McKenzie (1999) (these papers proved the full sup-
port property under a different assumption on A, which they called
“thickness”) and a key suggestion from an anonymous reviewer.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 125

Lemma 3.3 gives us the full support property assuming A is
blockwise-dense and B has low deficiency. How can we get
blockwise-density? Our tool for this is the following claim, which
follows from Göös et al. (2016); we provide the simple argument.

Claim 3.4. If A ⊆ [m]n satisfies |A| ≥ mn/2s then there exists an
I ⊆ [n] of size |I| ≤ 10s/ log m and an A′ ⊆ A such that A′ is fixed
on I and 0.9-dense on I := [n] � I.

Proof. If A is 0.9-dense, then we can take I = ∅ and A′ = A,
so assume not. Letting x be the uniform random variable over A,
take I ⊆ [n] to be a maximal subset for which there is a violation
of blockwise-density: H∞(xI) < 0.9 · |I| log m. From H∞(x) ≥
n log m − s, we deduce H∞(xI) ≥ |I| log m − s since marginalizing
out |I| log m bits may only cause the min-entropy to go down by
|I| log m. Combining these, we get |I| log m − s < 0.9 · |I| log m, so
|I| ≤ 10s/ log m.

Let α ∈ [m]I be an outcome for which Pr[xI = α] > 2−0.9·|I| log m,
and take A′ := {x ∈ A : xI = α}, which is fixed on I. To see that
A′ is 0.9-dense on I, let x′ be the uniform random variable over A′

and note that if H∞(x′
J) < 0.9 · |J | log m for some nonempty J ⊆ I,

a straightforward calculation shows that then xI∪J would also have
min-entropy rate < 0.9, contradicting the maximality of I. �

3.3. Finding R. We initialize X := [m]n and Y := ({0, 1}m)n

and iterate the following for i = 1, . . . , 2k rounds.

(‡) Round i: (loop invariant: Ri∩(X×Y)∩G−1(Z) is monochro-
matic)

Define a set A ⊆ X of weighty rows as

A :=
{
x ∈ X : |Yx| ≥ 2mn−n2}

where

Yx :=
{
y ∈ Y : (x, y) ∈ Ri ∩ G−1(Z)

}
.

Test whether there are many weighty rows: |A| ≥ mn/2k+1?

− If no, we update X ← X � A and Y ← Y �

⋃
x∈X�A Yx

and proceed to the next round. Since Ri ∩ G−1(Z) has
been removed from X × Y , this ensures our loop invari-
ant, as explained in Section 3.1.

Author's personal copy

126 M. Göös et al. cc (2019)

− If yes, we declare this round a success and halt.

X

Y

Ri

Ri ∩
X×Y ∩
G−1(Z)

G
−
1(Z

)

A

x X�A Yx

We shortly argue that the process halts with success. First, we
show how to find a desired R assuming the process is successful in
round i (with associated sets Ri, X × Y , A, and Yx for x ∈ X).
Using Claim 3.4 with s = k + 1, obtain A′ ⊆ A which is fixed to α
on some I ⊆ [n] of size |I| ≤ 10(k + 1)/ log m ≤ O(k/ log n) and is
0.9-dense on I. Pick any x′ ∈ A′, define β ∈ ({0, 1}m)I to maximize
the size of B := {y ∈ Yx′ : yI = β}, and let γ := gI(α, β) ∈ {0, 1}I .

Note that |B| ≥ |Yx′|/2m|I| ≥ 2mn−n2−m|I| = 2m|I|−n2
since x′ ∈ A.

We claim that R := A′ × B can serve as our desired rectangle.
Certainly, R touches G−1(Z�i) (at (x′, y) for any y ∈ B) but not
G−1(Z1−�i) by the loop invariant (since R ⊆ Ri ∩ (X × Y)). Also,
G(R) is fixed to γ on I. Defining

A′
I

:=
{
xI ∈ [m]I : αxI ∈ A′} and

BI :=
{
yI ∈ ({0, 1}m)I : βyI ∈ B

}

to be the projections of A′ and B to the coordinates I, we have
that

A′
I

is 0.9-dense and D∞(BI) ≤ n2

(noting that D∞(BI) is relative to ({0, 1}m)I). Applying Lemma 3.3
to A′

I
× BI shows1 that G(R) has full support on I. In summary,

“zI = γ” is the conjunction we were looking for.

We now argue that the process halts with success. In each
unsuccessful round, we remove |A| < mn/2k+1 rows from X and

1 Technically, we need the result of Lemma 3.3 with |I ′| as the number of
coordinates instead of n, but it still works.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 127

at most
∑

x∈X�A |Yx| < mn · 2mn−n2 ≤ 2mn/2k+1 columns2 from Y
(since k+1 ≤ n log m+1 ≤ n2−n log m). Suppose for contradiction
that all 2k rounds are unsuccessful, then at most half of the rows
and half of the columns are removed altogether. Supposedly, the
set X × Y we finish with is disjoint from

⋃
i∈[2k](Ri ∩ G−1(Z)) =

G−1(Z). But since Z is nonempty, this contradicts the fact that
G(X × Y) has full support by Lemma 3.3 (as it is straightforward
to check that since X × Y contains at least half the rows and half
the columns, it also satisfies the assumptions of the lemma).

This concludes the proof of Theorem 1.7, except for the proof
of Lemma 3.3.

3.4. Full support Lemma. In this section, we prove Lemma 3.3,
restated here for convenience.

Lemma 3.3 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆
({0, 1}m)n satisfies D∞(B) ≤ n2, then G(A × B) = {0, 1}n (i.e.,
for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with G(x, y) = z).

Fixing any z ∈ {0, 1}n, our goal is to show that (A × B) ∩
G−1(z) �= ∅. We write random variables as bold letters. For each
i ∈ [n] independently: Choose Ui ⊆ [m] by letting each j ∈ [m] be
in Ui independently with probability m−0.64, and correspondingly
define Vi := {y ∈ {0, 1}m : ∀j ∈ Ui, yj = zi}. Then, let U := U1 ×
· · · × Un ⊆ [m]n and V := V1 × · · · × Vn ⊆ ({0, 1}m)n. We
have U × V ⊆ G−1(z) by construction, so it suffices to show that
(A × B) ∩ (U × V) is nonempty with positive probability. This
holds by the following two claims and a union bound.

Claim 3.5 (Alice side). Pr[A ∩ U �= ∅] > 1/2 if A ⊆ [m]n is
0.9-dense.

2 This is the main reason we need to use the index gadget in which Bob
gets a polynomially long string, rather than, say, the inner product gadget on
O(log n) bits, which has been used in other lifting theorems (Chattopadhyay
et al. (2017); Göös et al. (2016); Wu et al. (2017)). Since we sum |Yx| over
potentially mn many x’s, we need the threshold in the definition of weighty
rows to be much less than an m−n fraction of columns. For the inner product
gadget, this would be less than one column, but for the index gadget it leaves
a substantial number of columns—enough for the full support lemma.

Author's personal copy

128 M. Göös et al. cc (2019)

Claim 3.6 (Bob side). Pr[B ∩ V �= ∅] > 1/2 if B ⊆ ({0, 1}m)n

satisfies D∞(B) ≤ n2.

Proof (of Claim 3.5). For each x ∈ A consider the indicator
random variable 1x ∈ {0, 1} for whether x ∈ U . Let s :=

∑
x∈A 1x

so that s = |A ∩ U | and E[s] = p|A|, where p := m−0.64n. By the
second moment method, it will suffice to show that s has small
variance. Blockwise-density implies that distinct elements of A are
likely to disagree on most coordinates, in which case their contri-
bution to the variance is small. We now carry out this argument.
Since

Pr[A ∩ U �= ∅] = 1 − Pr[s = 0] ≥ 1 − Var[s]

E[s]2
,

to prove the claim it suffices to show that Var[s] < E[s]2/2 =
p2|A|2/2. Since

Var[s] =
∑

x,x′ Cov[1x,1x′] =
∑

x,x′ (E[1x1x′] − E[1x]E[1x′]) ,

it suffices to show that for each fixed x∗ ∈ A,

∑
x∈A Cov[1x,1x∗] < p2|A|/2.

Fix x∗ ∈ A. Let Ix ⊆ [n] denote the set of all blocks i such that
xi = x∗

i . First note that if Ix = ∅ then Cov[1x,1x∗] = 0, i.e., the
events “x ∈ U” and “x∗ ∈ U” are independent. The interesting
case is thus Ix �= ∅ when the two events are positively correlated.
We note that

(3.7) Pr[x ∈ U | x∗ ∈ U] = (m−0.64)
n−|Ix|

= m0.64|Ix| · p.

Let I be the distribution of Ix when x ∈ A is chosen uniformly at
random. We have

∑
x∈A Cov[1x,1x∗]

=
∑

x:Ix �=∅ Cov[1x,1x∗]

≤ ∑
x:Ix �=∅ E[1x1x∗]

=
∑

x:Ix �=∅ Pr[x ∈ U and x∗ ∈ U]

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 129

= Pr[x∗ ∈ U] · ∑
x:Ix �=∅ Pr[x ∈ U | x∗ ∈ U]

= p · ∑
x:Ix �=∅ Pr[x ∈ U | x∗ ∈ U]

= p|A| · ∑
∅�=I⊆[n] Pr[I = I] · Ex∼A|Ix =I Pr[x ∈ U | x∗ ∈ U]

≤ p|A| · ∑
∅�=I⊆[n] Prx∼A[xI = x∗

I] · Ex∼A|Ix =I Pr[x ∈ U | x∗ ∈ U]

≤ p|A| · ∑
∅�=I⊆[n] 2

−0.9|I| log m · m0.64|I| · p

(0.9-density and (3.7))

= p2|A| · ∑
∅�=I⊆[n] 2

−0.26|I| log m

= p2|A| · ∑
k∈[n]

(
n
k

)
2−0.26k log m

≤ p2|A| · ∑
k∈[n](m

0.25)k · 2−0.26k log m

≤ p2|A| · 2 · 2−0.01 log m

< p2|A|/2.

�

For the Bob side claim, we first reproduce the proof of a claim
from Göös et al. (2018a). For any W ⊆ {0, 1}� and j ∈ [�] for some
�, we define Wj := {w ∈ W : wj = 1} and Bad(W) := {j ∈ [�] :
|Wj| < |W |/4}, and we recall that D∞(W) := � − log |W |.

Claim 3.8. |Bad(W)| ≤ 6D∞(W) for every W ⊆ {0, 1}�.

Proof (of Claim 3.8). Let w be a random variable uniformly
distributed over W , and let H(·) denote the Shannon entropy.
Note that j ∈ Bad(W) iff Pr[wj = 1] < 1/4. There are at most
6D∞(W) coordinates j such that Pr[wj = 1] < 1/4, since other-

wise H(w) ≤ ∑�
j=1 H(wj) < 6D∞(W) ·H(1/4) + (� − 6D∞(W)) ·

1 ≤ � − 6D∞(W) · (1 − 0.82) ≤ � −D∞(W), contradicting the fact
that H(w) = log |W | = � − D∞(W). �

Proof (of Claim 3.6). We assume z is the all-1’s string; the
same argument works for any z ∈ {0, 1}n, but this assumption
simplifies our notation somewhat.

Defining T := {(i, j) ∈ [n] × [m] : j ∈ Ui}, we have

V := {y ∈ ({0, 1}m)n : ∀(i, j) ∈ T , yi,j = 1} .

Author's personal copy

130 M. Göös et al. cc (2019)

Now we may “flatten” things by forgetting the block structure:
letting � := mn, we identify [n]× [m] = [�] and ({0, 1}m)n = {0, 1}�,
and we view V ⊆ {0, 1}� as the set of all strings with 1’s in the
positions indexed by T ⊆ [�].

The claim can be viewed as saying that if B ⊆ {0, 1}� satisfies
D∞(B) ≤ n2 and we sample a random restriction ρ ∈ {1, ∗}� by
independently letting each ρj be 1 with probability m−0.64 and be ∗
otherwise, then w.h.p. at least one string in B is consistent with the
partial assignment ρ (it “survives” the random restriction). This
corresponds to letting T be the positions fixed to 1 in ρ and V be
all strings consistent with ρ.

To analyze this, we introduce a procedure that samples T in
an adaptive way that depends on B. We initialize T 0 := ∅ and
B0 := B. At the beginning of each step i = 0, . . . , �−1, we will have
a set T i ⊆ [�] and correspondingly Bi := {y ∈ B : ∀j ∈ T i, yj = 1}.
In step i, we select a j ∈ [�] that has not been previously considered,
and we update T i to T i+1 by randomly deciding once and for all
whether to include j (so Bi+1 = Bi

j) or leave it out (so Bi+1 = Bi).
By the end, we will have sampled T := T � and B ∩ V = B�.

We let J i ⊆ [�] be the set of coordinates that have not yet been
considered by the beginning of step i. Thus, T i ∩ J i = ∅ and the
coordinates [�]�J i are “finalized” (T i is guaranteed to agree with
the final T on which of these are included). We have J0 = [�]
and J � = ∅ and in general |J i| = � − i since we select one new
coordinate to finalize in each step.

The procedure has two phases, and the random variable i∗

records the step during which it switches from phase 1 to phase
2. Here is the procedure:

Initialize T 0 := ∅, B0 := B, and J0 := [�].
For i = 0, 1, 2, . . . , � − 1:

1. If i∗ is unassigned (phase 1):
1a. If J i ⊆ Bad(Bi) then assign i∗ := i.
1b. Else non-randomly select any j ∈ J i

� Bad(Bi).
2. If i∗ is assigned (phase 2) then non-randomly select any

j ∈ J i.
3. With probability m−0.64 execute 3a; else execute 3b:

3a. Let T i+1 := T i ∪ {j} and Bi+1 := Bi
j.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 131

3b. Let T i+1 := T i and Bi+1 := Bi.
4. Let J i+1 := J i

� {j}.
Let T := T � and V :=

{
y ∈ {0, 1}� : ∀j ∈ T , yj = 1

}
, and if

i∗ is unassigned then let i∗ := �.

This indeed generates a correctly distributed sample from T and
V , and we have B ∩ V = B�.

We have E[|T |] = m−0.64� = m0.61, and by |T i∗| ≤ |T | and a
standard concentration bound,

Pr
[|T i∗| ≤ 2m0.61

] ≥ Pr
[|T | ≤ 2m0.61

] ≥ 1 − e−m0.61/3 ≥ 3/4.

If i is a phase 1 step in which some j is added to T , then D∞(Bi+1) ≤
D∞(Bi)+2 since j �∈ Bad(Bi). Thus, conditioned on any outcome
of phase 1 such that |T i∗| ≤ 2m0.61, by Claim 3.8 we have

|Ji∗| ≤ |Bad(Bi∗
)|

≤ 6D∞(Bi∗
)

≤ 6
(
D∞(B) + 2|T i∗|)

≤ 6(m0.5 + 4m0.61)

≤ m0.62

in which case by a union bound, with probability at least 1−m−0.64·
m0.62 = 1 − m−0.02 ≥ 3/4, all of Ji∗

will remain excluded from T ,
implying that T = T i∗

and B ∩V = Bi∗
, which is nonempty since

D∞(Bi∗
) < m0.62 is finite. In summary,

Pr[B ∩ V �= ∅]

≥ Pr
[|T i∗| ≤ 2m0.61

] · Pr
[
B ∩ V �= ∅ ∣

∣ |T i∗| ≤ 2m0.61
]

≥ 3
4

· 3
4

> 1
2
.

�

4. Application

In this section, we prove Theorem 1.4, restated here for convenience.

Author's personal copy

132 M. Göös et al. cc (2019)

Theorem 1.4. There exists a total F : {0, 1}n × {0, 1}n → {0, 1}
satisfying the following.

− F has large PNP communication complexity: PNPcc(F) ≥
nΩ(1).

− For any product distribution μ over {0, 1}n×{0, 1}n, there ex-
ists a monochromatic rectangle R that is large: log(1/μ(R)) ≤
logO(1) n.

The function witnessing the separation is F := f ◦ gn where
g := Indm is the index function with m := n4 and f : {0, 1}n →
{0, 1} is defined as follows. We interpret the input M to f as a√

n × √
n Boolean matrix, and set

f(M) := 1 iff every row of M contains a unique 1-entry.

Complexity class aficionados (Aaronson et al. (2017)) can recog-
nize f as the canonical complete problem for the decision tree ana-
logue of ∀·US (⊆ Π2P) where US is the class of functions whose
1-inputs admit a unique witness (Blass & Gurevich (1982)). We
have F : {0, 1}n log m × {0, 1}nm → {0, 1}, but we can polynomially
pad Alice’s input length to match Bob’s (as in the statement of
Theorem 1.4).

4.1. Lower bound. It is proved in several sources (H̊astad et al.
(1995); Ko (1990); Santha (1989)) that f cannot be computed by an
efficient Σ2P-type decision tree (i.e., quasi-polynomial-size depth-3
circuit with an Or-gate at the top and small bottom fan-in), let
alone an efficient PNP decision tree. However, for completeness,
we might as well give a simple proof using our characterization
(Lemma 2.2). Applying the lifting theorem to the following lemma
yields the lower bound.

Lemma 4.1. DLdt(f) ≥ √
n.

Proof. By Lemma 2.2, it is enough to exhibit a nonempty sub-
set Z ⊆ {0, 1}n of inputs such that each conjunction C of width√

n− 1 accepts an input in Z1 := Z ∩ f−1(1) iff it accepts an input
in Z0 := Z ∩ f−1(0). We define Z as the set of

√
n × √

n matri-
ces with at most one 1-entry in each row. If C accepts an input

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 133

M ∈ Z1, then there is some row of M none of whose entries are
read by C; we may modify that row to all-0 and conclude that
C accepts an input in Z0. If C accepts an input M ∈ Z0, then
for each all-0 row of M there is some entry that is not read by C;
we may modify each of those entries to a 1 and conclude that C
accepts an input in Z1. �

4.2. Upper bound. Let μ be a product distribution over the
domain of F = f ◦ gn. Call a matrix M heavy if it contains a
row with at least two 1-entries. Hence, f(M) = 0 for every heavy
matrix M . There is an efficient nondeterministic protocol of cost
k ≤ O(log n), call it Π, that checks whether a particular (x, y)
describes a heavy matrix M = gn(x, y). Namely, Π guesses a
row index i ∈ [

√
n] and two column indices 1 ≤ j < j′ ≤ √

n,
and then communicates 2 log m + 1 ≤ O(log n) bits to check that
Mij = Mij′ = 1. Thus, letting F ′ be such that F ′(x, y) := 1 iff
M = gn(x, y) is heavy, we have

DLcc(F ′) ≤ O(PNPcc(F ′)) ≤ O(NPcc(F ′)) ≤ O(log n).

Hence, we can apply the product method (Lemma 2.1) to find
a rectangle S that is monochromatic for F ′ with log(1/μ(S)) ≤
O(log n). If S is 1-monochromatic for F ′ then it is 0-monochromatic
for F and we are done, so now assume S is 0-monochromatic for
F ′. We will complete the argument by showing that FS (i.e., F re-
stricted to the rectangle S) admits a large monochromatic rectangle
relative to μS, the conditional distribution of μ given S (which is
also product).

Author's personal copy

134 M. Göös et al. cc (2019)

∀·US

∀·UP

∀·P

coNP

Large monochr.
rectangle

restrict to S

Yannakakis

=

product
method

All (x, y) ∈ S are such that M =
gn(x, y) is not heavy. This means that
the function FS is easier than the (∀·US-
complete) function F in the following
sense: for each row i ∈ [

√
n] there is an

efficient O(log n)-cost nondeterministic
protocol, call it Πi, to check whether
the i-th row of M = gn(x, y) contains
a 1-entry, and moreover, this protocol
is unambiguous in that it has at most
one accepting computation on any in-
put. (In complexity lingo, FS admits
an efficient ∀·UP protocol.) It is a well-
known theorem of (Yannakakis 1991,
Lemma 1) that any such unambiguous Πi can be made determin-
istic with at most a quadratic blow-up in cost; let Πdet

i be that
O(log2 n)-bit deterministic protocol. But now ¬FS (negation of
FS) is computed by the following O(log2 n)-bit nondeterministic
protocol: on input (x, y) guess a row index i ∈ [

√
n] and run

Πdet
i accepting iff Πdet

i (x, y) = 0. (That is, FS admits an efficient
∀·P = coNP protocol.) We proved NPcc(¬FS) ≤ O(log2 n); in
particular,

DLcc(FS) ≤ O(PNPcc(FS)) ≤ O(NPcc(¬FS)) ≤ O(log2 n).

Hence, we can apply the product method (Lemma 2.1) to find a
monochromatic rectangle R ⊆ S with log(1/μS(R)) ≤ O(log2 n)
and hence log(1/μ(R)) = log(1/μS(R)) + log(1/μ(S)) ≤ O(log2 n).
This completes the proof of Theorem 1.4.

In summary, the above proof finds a monochromatic rectan-
gle S for F ′ using a nondeterministic protocol, then a monochro-
matic subrectangle of S for F using a conondeterministic protocol.
These protocols cannot be “combined” into a PNP protocol for F
since the conondeterministic one only works on S, so there is no
contradiction with the lower bound. We also mention that non-
deterministic protocols yield large monochromatic rectangles even
for non-product distributions (Karchmer et al. (1995); Kushilevitz
& Nisan (1997)) but only for distributions over inputs accepted by

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 135

the protocols. We need μ to be product so we can find monochro-
matic rectangles even though μ is distributed over potentially all
inputs.

5. Odd-max-bit lower bound

Proof (of Theorem 1.9: PNPdt(Omb) ≥ Ω(log n)).

Consider any PNP decision tree of cost o(log n), i.e., on every root-
to-leaf path, the sum of the widths of the DNFs queried is o(log n).
We exhibit an adversary strategy that finds an input on which the
decision tree fails to compute Omb. The adversary maintains a
partial assignment (which fixes some of the input bits to 0 or to
1 and leaves others unfixed), starting with the empty assignment
and fixing more bits in each round until a complete input has been
specified at the end. The game between the decision tree and the
adversary follows a root-to-leaf path (with one round per node on
the path), and the adversary ensures that all inputs consistent with
the current partial assignment indeed lead the decision tree to the
current node. In other words, in each non-leaf round the adversary
extends the partial assignment in a way that forces the current
DNF query to evaluate to a particular value (0 or 1). In the leaf
round, the adversary fixes all remaining bits to get an input x such
that the output produced at the leaf disagrees with Omb(x).

Our adversary strategy maintains a contiguous “range” of in-
dices (with smaller indices being thought of as to the left, and
larger indices to the right), with the following key invariants:

(I) All bits to the right of range are fixed to 0.
(II) No bit within range is fixed to 1.

Thus, an example picture to have in mind, showing a partial as-
signment x and range at some time during the execution, is as
follows:

∗ ∗ 1 ∗ ∗ 0 1 ∗ [
0 ∗ 0 ∗]

0 0 0 0

Here is our adversary strategy:

1. Initialize x = empty partial assignment, range = [n], and
node = root of the decision tree.

Author's personal copy

136 M. Göös et al. cc (2019)

2. While node is not a leaf:
2a. If the DNF queried at node contains a term that (i) is

not refuted by x and (ii) does not contain a positive
literal whose index is in the right half of range, then:

� Extend x by fixing the bits appearing in the term
in the unique way to satisfy it, thus ensuring that
x forces the DNF to evaluate to 1.

� Restrict range to its right half.
� Update node by following the edge labeled 1.

2b. Otherwise, if every term of the DNF either (i) is refuted
by x or (ii) contains a positive literal whose index is in
the right half of range, then:

� Extend x by fixing all remaining bits in the right
half of range to 0, thus ensuring that x forces the
DNF to evaluate to 0.

� Restrict range to its left half.
� Update node by following the edge labeled 0.

3. When node becomes a leaf:
� Find an index i in range such that xi is unfixed and

such that i is odd if the leaf’s output is 0 and is even if
the leaf’s output is 1.

� Fix xi = 1.
� Fix all remaining bits of x to the right of i to 0.
� Fix all remaining bits of x to the left of i arbitrarily.

It is straightforward to verify that this adversary indeed maintains
invariants (I) and (II) and ensures that all inputs consistent with
the current x lead to the current node. Furthermore, since in
each round the adversary fixes bits according to one term and cuts
range in half, the following properties are maintained throughout
the execution:

(III) The number of bits in range that are fixed to 0 is at most
the sum of the widths of the DNFs queried so far.

(IV) The size of range is n/2depth(node) where depth(node) is the
distance of node from the root.

Assuming that in step 3 such an i does, in fact, exist, (I) and (II)
guarantee that i is the maximum index of a 1 in the final x, so the

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 137

output of the decision tree on x disagrees with Omb(x). To see
that such an i exists, note that (III) guarantees that the number
of fixed bits in range is at most the cost of the decision tree, which
is at most log n, while (IV) guarantees that the size of range is
at least n/2depth-of-tree ≥ n/2o(log n) > 2 log n + 1. Thus in step 3,
range must contain both an odd unfixed index and an even unfixed
index. �

6. Conclusion

Let PM(F) denote the best lower bound on DLcc(F) that can be de-
rived by the product method (Lemma 2.1). For any communication
complexity measure C(F), we use the convention that C by itself
refers to the class of (families of) functions F : {0, 1}n × {0, 1}n →
{0, 1} with C(F) ≤ polylog(n). Then, our application (Theo-
rem 1.4) shows that the inclusion PNPcc ⊆ PM is strict: there
is an F ∈ PM � PNPcc. Here are some open questions. (See Göös
et al. (2018b) for definitions of classes such as PPcc, UPPcc, and
PSPACEcc.)

(1) Is there an F ∈ PM�UPPcc? This would be a stronger result
since PNPcc ⊆ UPPcc. Note that our ∀·US-complete function
does not witness this, since it is in PPcc. One way to see
this is to note that it is the intersection of a coNPcc function
(does each row have at most one 1?) and a PPcc function (is
the number of 1’s at least the number of rows?), and use the
closure of PP under intersection (Beigel et al. (1995)).

(2) Is there any reasonable upper bound for PM? For example,
does PM ⊆ PSPACEcc hold?

(3) Does BPPcc ⊆ PM or even BPPcc ⊆ PNPcc hold for total
functions? The separation BPPcc �⊆ PM was shown for partial
functions implicitly in Papakonstantinou et al. (2014).

(4) Is there a lossless PNPdt-to-PNPcc lifting theorem
(Conjecture 1.8)?

(5) Can the quadratic upper bounds in Fact 1.5 and Fact 1.6 be
shown tight for more general parameters (beyond constant
DLdt(f) and logarithmic DLcc(F) as in Section 1.4)?

Author's personal copy

138 M. Göös et al. cc (2019)

A. Appendix: Quadratic relationship between
PNP and DL

Proof (of Fact 1.5: Ω(DLdt(f)) ≤PNPdt(f) ≤ O(DLdt(f)2 · log n)).

For the first inequality, consider an optimal PNP decision tree for f
of cost k. Assume all the 0-edges point left and the 1-edges point
right. We will generate a width-k conjunction decision list for f
in phases, one phase for each leaf of the tree in right-to-left order
(i.e., reverse lexicographic order of the bit strings formed by the
edges along root-to-leaf paths). In each phase, say associated with
some path v0, v1, . . . , vh (where v0 is the root and vh is a leaf), we
append to our decision list a set of conjunctions (ordered arbitrar-
ily among themselves), each labeled with vh’s output. Specifically,
the conjunctions associated with this path are each obtained by the
following process: (i) for every vi such that (vi, vi+1) is a 1-edge,
choose a conjunction from the DNF queried by vi, and (ii) if the
conjunctions chosen in (i) are consistent with each other then form
the conjunction of all of them and append it to the decision list.
By the definition of PNPdt cost, each conjunction we append has
width ≤ k. If an input follows the path v0, v1, . . . , vh, then the first
conjunction in the decision list that accepts it will indeed be from
vh’s phase (hence have the correct label): the input is accepted
by the DNFs queried by each vi such that (vi, vi+1) is a 1-edge,
and so is accepted by a conjunction in vh’s phase; furthermore, no
conjunction from an earlier phase can accept the input since they
would all include the literals of a conjunction from a DNF that re-
jects the input. Thus, the conjunction decision list we constructed
is correct.

For the second inequality, consider an optimal conjunction de-
cision list (C1, �1), . . . , (CL, �L) for f of width k (which necessarily
has length L ≤ 2k

(
n
k

) ≤ nO(k)). Our PNP decision tree will perform
a binary search to find the first conjunction Ci that accepts, then
output �i. That is, the root will query the disjunction of the first
half of the Ci’s, (C1 ∨ C2 ∨ · · · ∨ CL/2), the 1-child of the root will
query the disjunction of the first quarter of the Ci’s, the 0-child
of the root will query the disjunction of the third quarter of the

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 139

Ci’s, and so on. Since an execution consists of O(k · log n) DNF
queries, each of width ≤ k, the cost of our PNP decision tree for f
is O(k2 · log n). �

Proof (of Fact 1.6: Ω(DLcc(F)) ≤ PNPcc(F) ≤ O(DLcc(F)2)).

The proof is very analogous to the proof of Fact 1.5 but with rect-
angles playing the role of conjunctions.

For the first inequality, consider an optimal PNP protocol tree
for F of cost k. Assume all the 0-edges point left and the 1-edges
point right. We will generate a cost-O(k) rectangle decision list for
F in phases, one phase for each leaf of the tree in right-to-left order
(i.e., reverse lexicographic order of the bit strings formed by the
edges along root-to-leaf paths). In each phase, say associated with
some path v0, v1, . . . , vh (where v0 is the root and vh is a leaf), we
append to our decision list a set of rectangles (ordered arbitrarily
among themselves), each labeled with vh’s output. Specifically,
the rectangles associated with this path are each obtained by the
following process: (i) for every vi such that (vi, vi+1) is a 1-edge,
choose a rectangle from the union queried by vi, and (ii) append
the intersection of all the rectangles chosen in (i) to the decision list.
(For the leftmost path, we take the “intersection of no rectangles”
to be the whole domain of F .) By the definition of PNPcc cost, each
phase contributes ≤ 2k rectangles and there are ≤ 2k phases, so the
cost of the final rectangle decision list is ≤ 2k. If an input follows
the path v0, v1, . . . , vh, then the first rectangle in the decision list
that contains it will indeed be from vh’s phase (hence have the
correct label): the input is contained in the unions queried by each
vi such that (vi, vi+1) is a 1-edge, and so is contained in a rectangle
in vh’s phase; furthermore, no rectangle from an earlier phase can
contain the input since they would all be contained within a union
that does not contain the input. Thus, the rectangle decision list
we constructed is correct.

For the second inequality, consider an optimal rectangle deci-
sion list (R1, �1), . . . , (R2k , �2k) for F . Our PNP protocol tree will
perform a binary search to find the first rectangle Ri that contains
the input, then output �i. That is, the root will query the union
of the first half of the Ri’s, (R1 ∪ R2 ∪ · · · ∪ R2k/2), the 1-child of

Author's personal copy

140 M. Göös et al. cc (2019)

the root will query the union of the first quarter of the Ri’s, the
0-child of the root will query the union of the third quarter of the
Ri’s, and so on. Since an execution consists of k oracle queries,
each of cost ≤ k, the cost of our PNP protocol for F is ≤ k2. �

Acknowledgements

We thank anonymous reviewers for comments, especially for a sug-
gestion that led to a simplified proof of Claim 3.6. We thank Paul
Balister, Shalev Ben-David, Béla Bollobás, Robin Kothari, Nirman
Kumar, Santosh Kumar, Govind Ramnarayan, Madhu Sudan, Li-
Yang Tan, and Justin Thaler for discussions and correspondence.
T.W. was supported by NSF grant CCF-1657377. A preliminary
version of this work was published as Göös et al. (2017).

References

Scott Aaronson, Greg Kuperberg & Christopher Granade

(2017). Complexity Zoo. Online. URL https://complexityzoo.
uwaterloo.ca.

László Babai, Peter Frankl & Janos Simon (1986). Complexity
Classes in Communication Complexity Theory. In Proceedings of the
27th Symposium on Foundations of Computer Science (FOCS), 337–
347. IEEE.

Richard Beigel (1994). Perceptrons, PP, and the Polynomial Hier-
archy. Computational complexity 4(4), 339–349.

Richard Beigel, Nick Reingold & Daniel Spielman (1995). PP
Is Closed under Intersection. Journal of Computer and System Sciences
50(2), 191–202.

Andreas Blass & Yuri Gurevich (1982). On the Unique Satisfia-
bility Problem. Information and Control 55(1–3), 80–88.

Harry Buhrman, Nikolai Vereshchagin & Ronald de Wolf

(2007). On Computation and Communication with Small Bias. In Pro-
ceedings of the 22nd Conference on Computational Complexity (CCC),
24–32. IEEE.

Author's personal copy

https://complexityzoo.uwaterloo.ca
https://complexityzoo.uwaterloo.ca

cc (2019) Query-to-communication lifting for PNP 141

Harry Buhrman & Ronald de Wolf (2002). Complexity Measures
and Decision Tree Complexity: A Survey. Theoretical Computer Science
288(1), 21–43.

Mark Bun & Justin Thaler (2018). Approximate Degree and the
Complexity of Depth Three Circuits. In Proceedings of the 22nd Inter-
national Conference on Randomization and Computation (RANDOM).
To appear.

Siu On Chan, James Lee, Prasad Raghavendra & David

Steurer (2016). Approximate Constraint Satisfaction Requires Large
LP Relaxations. Journal of the ACM 63(4), 34:1–34:22.

Arkadev Chattopadhyay, Michal Koucký, Bruno Loff & Sag-

nik Mukhopadhyay (2017). Composition and Simulation Theorems
via Pseudo-random Properties. Technical Report TR17-014, Electronic
Colloquium on Computational Complexity (ECCC). URL https://
eccc.weizmann.ac.il/report/2017/014/.

Mika Göös (2015). Lower Bounds for Clique vs. Independent Set. In
Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS), 1066–1076. IEEE.

Mika Göös, Pritish Kamath, Toniann Pitassi & Thomas Wat-

son (2017). Query-to-Communication Lifting for PNP. In Proceedings
of the 32nd Computational Complexity Conference (CCC), 12:1–12:16.
Schloss Dagstuhl.

Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson &
David Zuckerman (2016). Rectangles Are Nonnegative Juntas. SIAM
Journal on Computing 45(5), 1835–1869.

Mika Göös, Toniann Pitassi & Thomas Watson (2018a). De-
terministic Communication vs. Partition Number. SIAM Journal on
Computing To appear.

Mika Göös, Toniann Pitassi & Thomas Watson (2018b). The
Landscape of Communication Complexity Classes. Computational Com-
plexity 27(2), 245–304.

Johan Håstad, Stasys Jukna & Pavel Pudlák (1995). Top-Down
Lower Bounds for Depth-Three Circuits. Computational Complexity
5(2), 99–112. ISSN 1420-8954.

Author's personal copy

https://eccc.weizmann.ac.il/report/2017/014/
https://eccc.weizmann.ac.il/report/2017/014/

142 M. Göös et al. cc (2019)

Hamed Hatami, Kaave Hosseini & Shachar Lovett (2018). Struc-
ture of Protocols for XOR Functions. SIAM Journal on Computing
47(1), 208–217.

Russell Impagliazzo & Ryan Williams (2010). Communication
Complexity with Synchronized Clocks. In Proceedings of the 25th Con-
ference on Computational Complexity (CCC), 259–269. IEEE.

Stasys Jukna (2012). Boolean Function Complexity: Advances and
Frontiers, volume 27 of Algorithms and Combinatorics. Springer.

Mauricio Karchmer, Eyal Kushilevitz & Noam Nisan (1995).
Fractional Covers and Communication Complexity. SIAM Journal on
Discrete Mathematics 8(1), 76–92.

Ker-I Ko (1990). Separating and Collapsing Results on the Relativized
Probabilistic Polynomial-Time Hierarchy. Journal of the ACM 37(2),
415–438.

Pravesh Kothari, Raghu Meka & Prasad Raghavendra (2017).
Approximating Rectangles by Juntas and Weakly-Exponential Lower
Bounds for LP Relaxations of CSPs. In Proceedings of the 49th Sympo-
sium on Theory of Computing (STOC), 590–603. ACM.

Eyal Kushilevitz & Noam Nisan (1997). Communication Complex-
ity. Cambridge University Press.

James Lee, Prasad Raghavendra & David Steurer (2015). Lower
Bounds on the Size of Semidefinite Programming Relaxations. In Pro-
ceedings of the 47th Symposium on Theory of Computing (STOC), 567–
576. ACM.

Periklis Papakonstantinou, Dominik Scheder & Hao Song

(2014). Overlays and Limited Memory Communication. In Proceedings
of the 29th Conference on Computational Complexity (CCC), 298–308.
IEEE.

Ramamohan Paturi & Janos Simon (1986). Probabilistic Commu-
nication Complexity. Journal of Computer and System Sciences 33(1),
106–123.

Anup Rao & Amir Yehudayoff (2017). Communication Complexity.
In preparation.

Author's personal copy

cc (2019) Query-to-communication lifting for PNP 143

Ran Raz & Pierre McKenzie (1999). Separation of the Monotone
NC Hierarchy. Combinatorica 19(3), 403–435.

Alexander Razborov & Alexander Sherstov (2010). The Sign-
Rank of AC0. SIAM Journal on Computing 39(5), 1833–1855.

Susanna de Rezende, Jakob Nordström & Marc Vinyals (2016).
How Limited Interaction Hinders Real Communication (and What It
Means for Proof and Circuit Complexity). In Proceedings of the 57th
Symposium on Foundations of Computer Science (FOCS), 295–304.
IEEE.

Ronald Rivest (1987). Learning Decision Lists. Machine Learning
2(3), 229–246.

Robert Robere, Toniann Pitassi, Benjamin Rossman &
Stephen Cook (2016). Exponential Lower Bounds for Monotone Span
Programs. In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS), 406–415. IEEE.

Miklos Santha (1989). Relativized Arthur–Merlin versus Merlin–
Arthur Games. Information and Computation 80(1), 44–49.

Rocco Servedio, Li-Yang Tan & Justin Thaler (2012). Attribute-
Efficient Learning and Weight-Degree Tradeoffs for Polynomial Thresh-
old Functions. In Proceedings of the 25th Conference on Learning
Theory (COLT), 14.1–14.19. JMLR. URL http://www.jmlr.org/
proceedings/papers/v23/servedio12/servedio12.pdf.

Alexander Sherstov (2011). The Pattern Matrix Method. SIAM
Journal on Computing 40(6), 1969–2000.

Yaoyun Shi & Yufan Zhu (2009). Quantum Communication Com-
plexity of Block-Composed Functions. Quantum Information and Com-
putation 9(5–6), 444–460.

Justin Thaler (2016). Lower Bounds for the Approximate Degree
of Block-Composed Functions. In Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP), 17:1–
17:15. Schloss Dagstuhl.

Salil Vadhan (2012). Pseudorandomness. Foundations and Trends in
Theoretical Computer Science 7(1–3), 1–336.

Author's personal copy

http://www.jmlr.org/proceedings/papers/v23/servedio12/servedio12.pdf
http://www.jmlr.org/proceedings/papers/v23/servedio12/servedio12.pdf

144 M. Göös et al. cc (2019)

Nikolai Vereshchagin (1999). Relativizability in Complexity The-
ory. In Provability, Complexity, Grammars, volume 192 of AMS Trans-
lations, Series 2, 87–172. American Mathematical Society.

Ryan Williams (2001). Brute Force Search and Oracle-Based Com-
putation. Technical report, Cornell University. URL https://web.
stanford.edu/~rrwill/bfsearch-rev.ps.

Xiaodi Wu, Penghui Yao & Henry Yuen (2017). Raz–McKenzie
Simulation with the Inner Product Gadget. Technical Report TR17-010,
Electronic Colloquium on Computational Complexity (ECCC). URL
https://eccc.weizmann.ac.il/report/2017/010/.

Mihalis Yannakakis (1991). Expressing Combinatorial Optimization
Problems by Linear Programs. Journal of Computer and System Sci-
ences 43(3), 441–466.

Manuscript received 21 July 2017

Mika Göös

Institute for Advanced Study,
Princeton, USA

mika@ias.edu

Pritish Kamath

Massachusetts Institute of
Technology, Cambridge, USA
pritish@mit.edu

Toniann Pitassi

University of Toronto, Toronto,
Canada

toni@cs.toronto.edu

Thomas Watson

University of Memphis, Memphis,
USA

Thomas.Watson@memphis.edu

Author's personal copy

https://web.stanford.edu/~rrwill/bfsearch-rev.ps
https://web.stanford.edu/~rrwill/bfsearch-rev.ps
https://eccc.weizmann.ac.il/report/2017/010/

	Query-to-Communication Lifting for ¶NP
	Introduction
	Main result
	Application
	Decision lists (DLs)
	Separation between PtoPN and DL

	Preliminaries: decision list lower bound techniques
	Proof of the lifting theorem
	Overview
	Tools
	Finding R
	Full support Lemma

	Application
	Lower bound
	Upper bound

	Odd-max-bit lower bound
	Conclusion
	Appendix: Quadratic relationship between PtoPN and DL
	Acknowledgements
	References

