
Towards Refactoring-Aware Regression Test Selection

Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim*, Don Batory, and Milos Gligoric
The University of Texas at Austin, *Iona College

{kaiyuanw,cgzhu,ahmetcelik}@utexas.edu,jkim@iona.edu,batory@cs.utexas.edu,gligoric@utexas.edu

ABSTRACT

Regression testing checks that recent project changes do not break

previously working functionality. Although important, regression

testing is costly when changes are frequent. Regression test selec-

tion (RTS) optimizes regression testing by running only tests whose

results might be affected by a change. Traditionally, RTS collects

dependencies (e.g., on files) for each test and skips the tests, at a

new project revision, whose dependencies did not change. Existing

RTS techniques do not differentiate behavior-preserving transfor-

mations (i.e., refactorings) from other code changes. As a result,

tests are run more frequently than necessary.

We present the first step towards a refactoring-aware RTS tech-

nique, dubbed Reks, which skips tests affected only by behavior-

preserving changes. Reks defines rules to update the test depen-

dencies without running the tests. To ensure that Reks does not

hide any bug introduced by the refactoring engines, we integrate

Reks only in the pre-submit testing phase, which happens on the

developers’ machines. We evaluate Reks by measuring the savings

in the testing effort. Specifically, we reproduce 100 refactoring tasks

performed by developers of 37 projects on GitHub. Our results show

that Reks would not run, on average, 33% of available tests (that

would be run by a refactoring-unaware RTS technique). Addition-

ally, we systematically run 27 refactoring types on ten projects. The

results, based on 74,160 refactoring tasks, show that Reks would

not run, on average, 16% of tests (max: 97% and SD: 24%). Finally,

our results show that the Reks update rules are efficient.

CCS CONCEPTS

• Software and its engineering→ Software evolution;

KEYWORDS

Regression test selection, behavior-preserving changes, Reks

ACM Reference Format:

Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim*, Don Ba-

tory, and Milos Gligoric. 2018. Towards Refactoring-Aware Regression Test

Selection. In ICSE ’18: ICSE ’18: 40th International Conference on Software

Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180254

1 INTRODUCTION
Regression testing runs available tests against each project revision

to check that recent changes did not break previously working

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180254

functionality. Although important, regression testing is costly due

to both the number of tests and the number of revisions, as recently

reported by large software organizations, including Google and

Microsoft [12, 30, 31, 70, 74].

Regression test selection (RTS) [21, 60, 79] techniques optimize

regression testing by skipping tests that are unaffected by recent

project changes. Traditionally, an RTS technique collects dependen-

cies (e.g., statements, methods, or files) for each test and then runs

tests whose dependencies are modified. RTS is considered (1) safe

if it guarantees to select all affected tests (under standard assump-

tions [60], e.g., there are no changes in the environment between

test runs [25]), and (2) precise if it does not select unaffected tests.

Many RTS techniques have been proposed over the last several

decades [6, 21–23, 28, 44, 49, 54, 55, 59, 60, 68, 70, 77–80]; these

techniques differ in granularity on which they collect dependencies.

For example, Ekstazi [3, 19, 28] is a recent RTS technique that

collects dependencies on files, i.e., Ekstazi collects files that are used

by each test class and runs a test class (at the new project revision)

if any of its dependent files changes.

Motivation. Despite recent improvements of RTS techniques, no

RTS technique specially treats behavior-preserving changes, i.e.,

refactorings [24, 51, 52, 73]1, which are common in practice [63]. Our

key insight is that formally proven behavior-preserving changes [7,

14, 62] do not impact the test outcomes, and therefore no test needs

to be run after refactorings. However, the existing RTS techniques

run all tests affected by refactorings, e.g., if a developer renames a

method in class ĉ , and the method is used in class ĉ ′, Ekstazi selects

all tests that depend on either ĉ or ĉ ′. In other words, the existing

RTS techniques are imprecise (i.e., too conservative) for changes

made by refactorings.

Technique. We present the first step towards a refactoring-aware

RTS technique, dubbed Reks, which does not run tests that are

affected only by refactorings. At the same time, because refactor-

ings modify the structure of code, dependencies for tests need to

be updated, e.g., when a class is renamed (from ĉ to ĉ ′), each test

that depended on the old class ĉ has to depend on the new class

ĉ ′. Reks defines necessary rules to update the set of dependencies

of each test, after refactorings are performed, without running the

tests. These rules require a close integration of refactoring engines

and RTS tools. Whenever a user performs an automated refac-

toring, the refactoring engine should notify Reks about the files

that are affected by the refactoring and the way in which those

files are affected. Reks optimizes regression testing even in cases

when changes are made by a mix of refactorings and (manual) non-

refactoring changes.

Implementation. We implemented a prototype of the Reks rules

as a library, which can be easily integrated into any IDE. We further

integrated the Reks library into Eclipse [17] via a plugin.

1We consider traditional refactoring types that are frequently integrated in IDEs, e.g.,
rename method, extract method, etc.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

pre-submit testing post-submit testing

Executed on local machine continuous integration system

Uses RTS + Reks test-case prioritization

Runs selected tests all tests

Figure 1: Recent work, which involved Google developers,

described a testing process that includes two phases: pre-

submit and post-submit [20]. Pre-submit testing executes

only selected tests locally, while post-submit testing exe-

cutes all tests on a continuous integration system. Reks in-

tegrates into the pre-submit phase to skip tests affected only

by refactoring changes; the integration into the pre-submit

phase ensures that potential bugs introduced by the refac-

toring tools will be detected in the post-submit phase.

To ensure that Reks does not hide any bug introduced by the

refactoring engines [16, 27, 46, 67], we integrate Reks only in

the pre-submit testing phase, which happens on the developers’

machines [29]. Large companies, including Google, split testing

into the pre-submit and post-submit phases to balance the testing

load [20]; many other developers follow the same approach [29].

If any bug remains undetected in the pre-submit phase, the bug

would be detected in the post-submit phase that runs all available

tests. Figure 1 shows the way in which Reks should be integrated

into the testing process.

Evaluation. We evaluated Reks by measuring savings in the test-

ing effort. Specifically, we reproduced 100 refactoring tasks per-

formed by open-source developers of 37 projects on GitHub [63].

Our results show that Reks would not run, on average, 33% (max:

100% and SD: 33%) of available tests; these tests would be run by a

refactoring-unaware RTS. Additionally, we systematically ran 27

refactoring types on ten open-source projects and measured (1) the

percent of tests not run due to Reks, and (2) time to update the set

of dependencies with the Reks rules. The results, based on 74,160

refactoring tasks, show that Reks does not run, on average, 16%

of available tests (max: 97% and SD: 24%). Our experiments also

revealed that only 0.47% test methods fail due to bugs in refactoring

engines. Although these bugs would be hidden in the pre-submit

testing phase, the bugs would be detected in the post-submit testing

phase (see Figure 1). Finally, our experiments show that the update

rules are efficient regardless of the size of the target project.

2 MOTIVATING EXAMPLE

This section illustrates an existing RTS technique, shows the limi-

tations of the technique (and other existing RTS techniques), and

introduces a novel refactoring-aware RTS technique, dubbed Reks.

Project. Consider the Byte-Buddy project [11], which is a popular

light-weight Java library that supports runtime code generation and

manipulation; the project is hosted on GitHub. At revision 35da279,

the Byte-Buddy project had 3,150 test methods in 362 test classes

that execute in about 37 seconds. Developers then made several

changes and obtained a new project revision (f1dfb66). Figures 2a

and 2b show code before and after the change, respectively. The

change triggered the execution of all (362) available test classes

(https://travis-ci.org/raphw/byte-buddy).

Ekstazi. Suppose that the Byte-Buddy project uses the Ekstazi tool [3,

19, 28]. Ekstazi collects for each test class the set of dynamically

accessed files. The set of collected files includes both the executable

(e.g., Java classfiles) and non-executable (e.g., property) files.

During the execution of the tests at old revision (35da279), Ekstazi

would collect a set of dependencies for each test class. Figure 3a

shows a subset of dependencies for three test classes. Each depen-

dency is a pair of the file name and the checksum of the file.

After the developers make changes between 35da279 (old) and

f1dfb66 (new), Ekstazi analyzes the changes and runs only tests

that are affected by the changes. Specifically, to detect modified

files, Ekstazi computes the checksum for each file and finds the files

whose checksum has changed. Any test that depends on at least

one of the changed files is selected for the execution.

In our example, the developers modified AbstractBase and ForLo-

adedExecutable files. We can see in Figure 3 that some tests depend

on the modified files and are selected. Specifically, at new revision

f1dfb66, Ekstazi selects 1,248 test methods in 88 test classes (out

of 362 test classes) taking about 27 seconds (including time to find

modified files). Additionally, during the execution of the affected

tests, Ekstazi collects new dependencies for these tests. Figure 3b

shows the updated dependencies for our example.

Reks. What is interesting about the changes between 35da279 and

f1dfb66 is that these changes are refactorings, i.e., behavior preserv-

ing transformations. Specifically, by manually analyzing the change,

we found that a developer pulled up [71, 72] the wrap(List<Parame-

terDescription>)method from subclasses to the superclass (Abstra-

ctBase) between two revisions.

As we illustrated above, Ekstazi, like other existing RTS tech-

niques, is refactoring-unaware, i.e., it runs tests affected by refac-

torings. However, behavior-preserving changes [7, 14, 62] do not

impact the test outcomes, and therefore no test has to be run af-

ter refactorings. (We are aware that refactorings may introduce

bugs [16, 27, 46, 67], as we discussed in the introduction.)

Reks is a novel RTS technique that skips running the tests after

refactorings, but updates the dependencies for each test. Reks is

built on top of Ekstazi, i.e., it keeps dependencies on files and defines

the rules to update such dependencies. In our example, Reks would

not run any test between 35da279 and f1dfb66, but it would update

the set of dependencies to match those in Figure 3b. Reks also

supports mixed changes, i.e., changes with refactorings and other

manual edits. The following section defines the update rules.

3 TECHNIQUE

This section formally introduces the Reks update rules, and Sec-

tion 4 illustrates these rules using two refactoring types.

3.1 Preliminaries

Wewrite P t to denote the state of the project P at time t . P t includes

all files on disk, at time t , which belong to the project. Project

revisions are states of the project that are observable in the version-

control system (i.e., commits on GitHub). There can be one or more

changes between two project revisions [29, 61].

A test session identifies a point in time when tests were executed;

a test session is started either by a developer or a continuous in-

tegration system, e.g., Travis CI [33]. For simplicity of exposition,

we assume that a test session runs all affected tests. A test session

Towards Refactoring-Aware Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

abs t rac t c l a s s Abs t r a c tB a s e { . . .

}

c l a s s Fo rLoadedExecu t ab l e extends Abs t r a c tB a s e {

@Override

protected P a r ame t e r L i s t wrap (L i s t < Pa r ame t e rDe s c r i p t i on > v a l u e s) {

return new E x p l i c i t (v a l u e s) ;

} . . .

} . . .

(a) Code before refactoring

abs t rac t c l a s s Abs t r a c tB a s e {

@Override

protected P a r ame t e r L i s t wrap (L i s t < Pa r ame t e rDe s c r i p t i on > v a l u e s) {

return new E x p l i c i t (v a l u e s) ;

} . . .

}

c l a s s Fo rLoadedExecu t ab l e extends Abs t r a c tB a s e { . . .

} . . .

(b) Code after refactoring

Figure 2: An example refactoring change in the Byte-Buddy project. Developers used Pull Up refactoring to move the method

wrap from sublasses (e.g., ForLoadedExecutable) to their superclass (AbstractBase).

JavaMethodTest

(ByteBuddyCommons, 4677), (JavaMethod, 1783), ...

JavaInstanceMethodTypeTest

(AbstractBase, 7263), (ForLoadedExecutable, 4267), ...

JavaInstanceMethodHandleTest

(AbstractBase, 7263), (ForLoadedExecutable, 4267), ...

(a) Dependencies for three tests at 35da279

JavaMethodTest

(ByteBuddyCommons, 4677), (JavaMethod, 1783), ...

JavaInstanceMethodTypeTest

(AbstractBase, 1076), (ForLoadedExecutable, 1291), ...

JavaInstanceMethodHandleTest

(AbstractBase, 1076), (ForLoadedExecutable, 1291), ...

(b) Dependencies for three tests at f1dfb66

Figure 3: Impact of refactoring changes from Figure 2 on Ekstazi dependencies. (a) shows test dependencies for three tests

before refactoring and (b) shows test dependencies for the same tests after refactoring. Each dependency is a pair of a file and

its checksum. We highlight the dependencies that are changed and tests that are affected between the two revisions.

can be triggered at any point in between revisions (i.e., pre-submit

testing phase) [29]. We write Pold to denote a project state after

the latest test session. A refactoring task identifies a point in time

when one of the refactoring types is invoked by a developer. We

write Pmiddle and Pnew to denote the states immediately before

and immediately after the latest refactoring task, respectively.

We define a sequence as a triple (Pold , Pmiddle
, Pnew). Figure 4

shows an example project timeline, including revisions, test ses-

sions, a refactoring task, and a sequence.

We define a function tests(P t) that returns a set of available tests

at the state P t . Similarly, we define a function files(P t) that returns

a set of files (i.e., normalized paths) that belong to the project at the

state P t .

Wewill use ĉ as a variable of type file, and function content(P t , ĉ)

returns the content of the file at state P t . We also define a function

cksum(content(P t , ĉ)) that computes the checksum of the file’s

content as a string at state P t ; the function returns a special value

if the file does not exist. If the state is clear from the context, we

simply write cksum(ĉ). We use ŝ as a free variable of type string.

Further we overload the cksum function to accept a project

state as an argument, i.e., cksum(P t). This function returns a set

of pairs (ĉ, cksum(ĉ)) for all files at the state P t , i.e., cksum(P t) =

{(ĉ, cksum(ĉ)) | ĉ ∈ files(P t)}. We define a function deps(P t ,τ),

s.t., deps(P t ,τ) ⊆ cksum(P t), where τ ∈ tests(P t), that returns a

set of dependencies (i.e., a set of (ĉ, cksum(ĉ)) pairs) for a given test

in the given project state. The set of dependencies for each test is col-

lected by a code coverage tool [28, 35, 64, 80].Wewrite deps(P t ,τ)∪

(ĉ, cksum(ĉ)) to denote an addition of the pair (ĉ, cksum(ĉ)) to the

set of dependencies of τ for state P t . Similarly, wewrite deps(P t ,τ)\

(ĉ, ŝ) to denote a removal of the pair (ĉ, ŝ) from the set of depen-

dencies. Finally, we write deps(P t ,τ) ⊎ (ĉ, cksum(ĉ)) to denote an

update of the set, i.e., deps(P t ,τ) ⊎ (ĉ, cksum(ĉ)) = deps(P t ,τ) \

(ĉ, ŝ)∪ (ĉ, cksum(ĉ)), where ŝ is an old checksum of ĉ . The addition,

removal, and update are overloaded to also work with a set of pairs.

· · · · · ·
Pold PnewPmiddle

Project Revisions

Test sessions Refactoring task

Figure 4: An example project development timeline that il-

lustrates revisions (which are available in version control

history of the project), test sessions (which are points in

time when developers run tests), refactoring tasks (which

are points in time when developers run one of the refactor-

ings), and various project states.

We define a function diff(Pold , Pnew) that returns a set of mod-

ified files between two states, i.e., diff(Pold , Pnew) = {ĉ ′ | ĉ ∈

files(Pold) ∧ ĉ ′ ∈ files(Pnew) ∧ cksum(ĉ) , cksum(ĉ ′) ∧ ĉ = ĉ ′}.

We also define functions that return sets of added and deleted files,

i.e., added(Pold , Pnew) = {ĉ | ĉ < files(Pold) ∧ ĉ ∈ files(Pnew)}

and deleted(Pold , Pnew) = {ĉ | ĉ ∈ files(Pold) ∧ ĉ < files(Pnew)}.

Ξdev denotes files that are added, modified, and deleted by de-

velopers in a single sequence (Pold , Pmiddle , Pnew), i.e., Ξdev =

diff(Pold , Pmiddle)∪added(Pold , Pmiddle)∪deleted(Pold , Pmiddle).

Similarly, Ξr f t denotes a set of files that are modified by the in-

voked refactoring, i.e., Ξr f t = diff(Pmiddle
, Pnew). Further, we

write Π±f iles to denote a set of file pairs that describe replace-

ments of files, i.e., the first file of each pair is a file that is replaced

with the second file of the pair. Similarly, we write Π±elems to

denote a set of file pairs such that some code elements (e.g., meth-

ods or fields) from the first file are moved to the second file; both

files exist after the elements are moved. The last three sets (Ξr f t ,

Π±f iles and Π±elems) can be extracted from the refactoring engine

when a refactoring task is invoked.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

3.2 Update Rules

Let (Pold , Pmiddle
, Pnew) be a sequence. We define three rules to

update the set of dependencies for τ at state Pnew , where τ ∈

tests(Pold) ∧ τ ∈ tests(Pnew).

Modified dependencies. For the set of dependencies that are mod-

ified by the refactoring engine (Ξr f t), we have to recompute the

checksum for each of these dependencies. However, we do not up-

date the checksum of the dependencies that are also modified by

the developers (Ξdev) in the current sequence.

deps(Pnew ,τ) = deps(Pold ,τ) ⊎ {(ĉ, cksum(ĉ)) | (1)

ĉ ∈ Ξr f t ∧ ĉ < Ξdev ∧ (ĉ, ŝ) ∈ deps(Pold ,τ)}

Replaced files. For each pair of files that describes a file replace-

ment (Π±f iles), we have to remove the old file from the set of

dependencies and include a new file in the set of dependencies. As

in the previous rule, we have to skip the files that are modified

by the developers (Ξdev), prior to file replacement, in the current

sequence. Therefore, we update the set of dependencies as follows:

deps(Pnew ,τ) = deps(Pold ,τ) \ {(ĉ, ŝ) | (2)

(ĉ, ĉ ′) ∈ Π±f iles ∧ ĉ < Ξdev } ∪ {(ĉ ′, cksum(ĉ ′)) |

(ĉ, ĉ ′) ∈ Π±f iles ∧ ĉ < Ξdev ∧ (ĉ, ŝ) ∈ deps(Pold ,τ)}

Moved elements. For each pair of files that identifies movement

of some code elements from one file to another (Π±elems), we have

to include the file into which the elements are moved to the set of

dependencies. At the same time, we keep the file from which the

elements are moved in the set of dependencies.

deps(Pnew ,τ) = deps(Pold ,τ) ∪ {(ĉ ′, cksum(ĉ ′)) | (ĉ, ĉ ′) ∈ (3)

Π±elems ∧ ĉ ′ < Ξdev ∧ (ĉ, ŝ) ∈ deps(τ , Pold)}

Rules (2) and (3) are mutually exclusive, because the former

requires that the first element of each file pair does not exist at

Pnew , and the latter requires that the first element of each file pair

exists at Pnew . Rule (1) and Rule (2)/Rule (3) always commute for a

single sequence.

3.3 Advanced Considerations

Added and removed tests. There is no need to specially treat

newly added tests (i.e., τ < tests(Pold) ∧ τ ∈ tests(Pnew)). These

tests will have no associated dependencies initially, so they will

always be selected by the RTS technique [28]. Deleted tests (i.e.,

τ ∈ tests(Pold)∧τ < tests(Pnew)) do not require special treatment

either, because their set of dependencies will not be used in the

subsequent test runs [28].

Relaxed definition of a sequence. In the update rules, we assume

that each sequence starts with a test session and ends at the time

of the first subsequent refactoring task. This means that there can

be an arbitrary number of manual changes between a test session

and a refactoring task, but there has to be at least one test session

between two refactoring tasks. We set this requirement only to

simplify the definition of diff, added, and deleted functions; there

is no such limitation in our implementation. This requirement is

relaxed by computing the modified, added, and deleted files at

every refactoring invocation by comparing the file checksum with

either the checksum at the previous refactoring task or previous

test session (whichever one is the latest in the project development

history) and then taking the union with already existing sets of

modified, added, and deleted files.

Overapproximation. Rule (3) may lead to an overapproximation

of the set of dependencies. Namely, if τ used only the moved ele-

ments in the original file, then τ does not have to depend on the

original file after the elements are moved. However, we are unable

to identify if τ should not depend on the original file any more,

because we keep the set of dependencies on files, and we do not

know the reason why τ depended on that file in the first place.

This is not a problem however, because overapproximation of the

set of dependencies does not impact the safety of regression test

selection [28].

We can reduce the overapproximation by reasoning about each

refactoring type independently. For example, consider the Move

Method refactoring that moves an instance method from file ĉ

to ĉ ′. Based on our Rule 3, we would always add ĉ ′ in the set of

dependencies. However, based on the definition of Move Method

refactoring (at least in the Eclipse JDT), there is no way that the

test could start depending on ĉ ′ in this case. Although case analysis

could be interesting, it would lead to a less elegant solution and it

would be specific to a refactoring engine.

4 UPDATE RULES ILLUSTRATED

This section illustrates the Reks rules using theMove Method and

Convert Anonymous to Nested refactoring types that are avail-

able in the Eclipse JDT [36]. We chose to presentMove Method

because it is one of the most frequently used refactorings in prac-

tice [48]. We chose Convert Anonymous to Nested because it

creates a new file and it has significant impact on regression testing

(Section 5). In this section, with the goal to simplify the presenta-

tion, we assume that a developer runs a test session prior to each

refactoring task, i.e., Pold = Pmiddle .

4.1 Move Method

Move Method refactoring moves the selected (“target”) method

from file ĉ to ĉ ′ and updates all references to this method. A non-

static (i.e., “instance”) method can be moved via a parameter or a

field using a JDT refactoring [36]. Moving an instance method “via

parameter” means that we choose one of the parameter types as

the destination of the method. Moving a method “via field” means

that we choose one of the fields and use its type as the destination

of our method.

Test depends on the declaring file. Consider a test class that

depends on file ĉ and the target method is moved from ĉ to ĉ ′. An

example of such code is shown in Figure 5a. We invoke a refactoring

task onmethod S.m and choose D (which is the type of the parameter)

as the destination type. The result of the refactoring is shown in

Figure 5b. The execution of the refactoring task will collect the

following information:

Ξr f t = {S,D} Set of modified files

Π±f iles = ∅ Set of pairs that describe replaced files

Π±elems
= {(S,D)} Set of pairs that described moved elements

Looking at the rules (1), (2), and (3), we can see that the Rule (2) is

not applicable in this case, because the set of pairs that describes the

Towards Refactoring-Aware Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

class T {

void t() {

new S().a();

}

}

class S {

void m (D d) {}

void a() {}

}

class D {}

(a) Before:

deps (Pold ,T) = {(S, 52749)}

class T {

void t() {

new S().a();

}

}

class S {

void a() {}

}

class D {

void m () {}

}

(b) After moving m:

deps (Pnew ,T) =

{(S, 93752), (D, 88792)}

Figure 5: Move instance method (via parameter) when a test

class depends on the class that declares the moved method.

class T {

void t() {

D.a();

}

}

class S {

void m (D d) {}

}

class D {

static void a() {}

}

(a) Before:

deps(Pold ,T) = (D, 38562)

class T {

void t() {

D.a();

}

}

class S {}

class D {

static void a() {}

void m () {}

}

(b) After moving m:

deps(Pnew ,T) = (D, 24759)

Figure 6: Move instance method (via parameter) when a test

class depends on the destination class.

replaced files is empty. (In fact,Move Method refactoring never

uses Rule (2), because this refactoring cannot introduce a new file.)

By applying the Rule (1), we update the checksum of the file

where the movedmethod was declared previously. This is necessary,

because some code was changed and the checksum is not the same

any longer. Specifically, we have the following:

deps(Pnew ,T) = deps(Pold ,T) ⊎ {(S, 93752)}

= {(S, 52749)} ⊎ {(S, 93752)} = {(S, 93752)}

Further, by applying Rule (3), we include the additional file (i.e.,

destination of the moved method) in the set of dependencies.

deps(Pnew ,T) = {(S, 93752)} ∪ {(D, 88792)}

As discussed in Section 3.3, Move Method refactoring is one

of few that may overapproximate the set of dependencies and this

can be fixed by refining the rules for such refactorings with case

analysis. For example, in this particular example, we can see that

test class T does not actually use D after refactoring. In fact, if T

was using S.m before the refactoring, it would have already been

dependent on D.

Test depends on the destination file. Consider a test class that

depends on the destination file ĉ ′ of aMove Method refactoring

task. An example of such code is shown in Figure 6. We invoke

refactoring on S.m and choose D as the destination. As before, the

class T {

void t() {

new R().a();

}

}

class S {

void m (D d) {}

}

class D {}

class R {

void a() {}

void b() {

new S().m(new D());

}

}

(a) Before:

deps(Pold ,T) = (R, 63958)

class T {

void t() {

new R().a();

}

}

class S {}

class D {

void m () {}

}

class R {

void a() {}

void b() {

new D().m();

}

}

(b) After moving m:

deps(Pnew ,T) = (R, 83475)

Figure 7: Move instance method (via parameter) when a test

class depends on the class that references the method.

class T {

void t() {

new R().m();

}

}

class R {

void m() {

new P(){};

}

}

class P {}

(a) Before: deps(Pold ,T) =

{(R, 52749), (P , 52749),

(P$1, 52749)}

class T {

void t() {

new R().m();

}

}

class R {

static class D extends P {}

void m() {

new D();

}

}

class P {}

(b) After: deps(Pnew ,T) =

{(R, 22334), (P , 52749),

(D, 72892)}

Figure 8: Convert anonymous class to nested class when a

test class depends on the anonymous class.

execution of the refactoring will collect the following information:

Ξr f t = {S,D} Set of modified files

Π±f iles = ∅ Set of pairs that describe replaced files

Π±elems
= {(S,D)} Set of pairs that described moved elements

It is necessary to apply Rule (1) because the checksum of the

destination file changed when the newmethod was added. We have:

deps(Pnew ,T) = deps(Pold ,T) ⊎ {(D, 24759)}

= {(D, 38562)} ⊎ {(D, 24759)} = {(D, 24759)}

We can see that the Rule (3) is not applicable to our test T, because

the source file (S) is not in the original set of dependencies for T,

i.e., (S, cksum(S)) < deps(Pold ,T).

Test depends on a reference file. Consider a test class that de-

pends on a file that references the moved method. An example of

such code is shown in Figure 7. Test T is affected by the change

because the reference file (R) is modified when the method is moved

from S to D. The reasoning about the update rules is the same as

in the previous case when test was dependent on D, so we do not

discuss this case in more detail.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

4.2 Convert Anonymous Class to Nested

Convert Anonymous to Nested refactoring type converts an

anonymous class ĉ to a new nested class ĉ ′. This refactoring requires

two parameters: a name of the new class and a flag if the new class

should be an inner or a static nested class.

It is important to observe that although anonymous classes and

nested classes are in the same source file as their enclosing class,

they are in different classfiles from their enclosing class.

Consider, as shown in Figure 8, a test class T that depends on R,

P, and P$1; P$1 refers to the anonymous class. (A test that depends

on an anonymous class always depends on the enclosing class

too, because the anonymous class can only be referenced from its

enclosing class.) We invoke refactoring on new P() and choose D as

the name for the new nested class. The execution of the refactoring

task will collect the following information:

Ξr f t = {R} Set of modified files

Π±f iles = {(P$1,D)} Set of pairs that describe replaced files

Π±elems
= ∅ Set of pairs that described moved elements

It is necessary to apply the Rule (1), because the checksum of

the enclosing class (R) always changes.

deps(Pnew ,T) = {(R, 52749), (P , 52749), (P$1, 52749)} ⊎ {(R, 22334)}

= {(R, 22334), (P , 52749), (P$1, 52749)}

We also have to apply the Rule (2), as one of the files was replaced:

deps(Pnew ,T) = {(R, 22334), (P , 52749), (P$1, 52749)}

\{(P$1, 52749)} ∪ {(D, 72892)} = {(R, 22334), (P , 52749), (D, 72892)}

5 EVALUATION

We assess the benefits of the Reks technique by answering the

following research question:

RQ1: How many tests would have been skipped by Reks had it

been used by open-source developers?

Furthermore, we evaluated the benefits of Reks by systematically

performing refactorings (one at a time) on open-source projects

and answering the following questions:

RQ2: How many tests does Reks skip on average if refactorings

are systematically performed?

RQ3: How many tests does Reks skip on average for various refac-

toring types if refactorings are systematically performed?

RQ4: What is the cost of the Reks update rules and how does this

cost compare to the test execution time?

Additionally, we collect the data to study the frequency of bugs

(i.e., non-behavior preserving transformations) introduced by refac-

toring engines. As wementioned earlier (see Section 1), Reks should

be integrated in the pre-submit testing phase, so that any poten-

tial bug is discovered in the post-submit phase, which executes all

available tests. Specifically, we answer the following question:

RQ5: How many test methods fail, on average, due to refactoring

tasks (performed by the Eclipse refactoring engine)?

5.1 Refactorings in Open-Source Projects

5.1.1 Methodology. We evaluated Reks in a realistic setting

with pure refactorings (i.e., only refactoring changes) and mixed

· · · · · ·

{t1, t2, t3} {t1, t2}

RC

Sr ef =
| {t1,t2} |
| {t1,t2,t3} | =

2
3 = 67%

Figure 9: An example to illustrate the way we compute

Sr ef for a pure refactoring change (RC); the figure shows

tests run by Ekstazi, andReks always runs zero tests for RC.

· · · · · ·

{t1, t2, t3} {t1, t2} {t1}

RC NRC

Sr ef =
| {t1,t2}\{t1} |
| {t1,t2,t3} | =

1
3 = 33%

Figure 10: An example to illustrate the way we compute

Sr ef formixed changes; we split eachmixed changes to refac-

toring (RC) and non-refactoring (NRC) changes only to en-

able the experiment; the figure shows tests run by Ekstazi.

changes (i.e., refactorings + non-refactoring changes) performed by

open-source developers. We do not include results for only non-

refactoring changes, because Reks always gives the same results as

Ekstazi in those cases [28].

To find pure refactorings and mixed changes, we followed two

paths. First, we used projects and revisions detected in a recent study

that analyzed refactorings on GitHub [63]. Second, we searched

on GitHub for revisions with the commit messages that include

either “refactor”, “rename”, or “move” in Java repositories of two

organizations: Apache and Google.

We executed the following steps for each discovered pair of

(Project ,Revision) with the goal to select the pairs for our study:

a) Clone the Project and checkout the Revision.

b) If the Project does not use Maven, which is currently supported

by Reks, discard the (Project ,Revision) pair.

c) Build the Project (for the Revision and its parent revision). If

the build is not successful, discard the pair. We had to discard a

large number of pairs due to the broken builds. However, this

was not surprising [75].

d) Manually confirm (by reading the diff) that Revision is a pure

refactoring or a mixed change.

Pure refactorings. To evaluate Reks on pure refactorings, we

(1) checkout the parent revision of the Revision, (2) execute test

classes with Reks (to collect dependencies for each test class), (3) re-

play the refactoring from the Revision, and (4) execute test classes

with Reks (which always executes zero tests in this case but updates

dependencies). We also collect, at Revision, the set of all available

tests (T available) and the set of test classes that are executed with

Ekstazi, i.e., refactoring-unaware technique (T r ef). We compute

the percentage of test classes that are not run due to Reks as Sr ef =

|T r ef | / |T available | × 100. We illustrate this experiment for one

pure refactoring in Figure 9.

Mixed changes. To evaluate Reks on mixed changes we (1) manu-

ally split each mixed change into refactoring and non-refactoring

changes (the splitting is needed only for the evaluation, but not for

the actual use of the tool), (2) execute test classes with Reks (to

collect dependencies), (3) replay only refactoring changes, (4) exe-

cute test classes with Reks (which executes zero tests, but updates

Towards Refactoring-Aware Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0 20 40 60 80 100
Figure 11: Distribution of Sr ef for refactorings performed by

developers of open-source projects found onGitHub; the red

line shows the median and the star shows the average.

1 discover_affected_tests(refactoring, project):

2 run_tests_with_reks_without_rules(project)

3 elements = find_code_elements(refactoring, project)

4 for el in elements:

5 refactoring_tasks = create_tasks(refactoring, project, el)

6 for task in refactoring_tasks:

7 configure_properties(task)

8 try:

9 if check_preconditions(task):

10 refactored_project = perform(task)

11 else:

12 continue

13 except exc:

14 continue

15 if is_successful(compile(refactored project)):

16 affected_tests = analyze(refactored_project)

17 store_affected_tests(affected_tests, task)

18 undo(task)

Figure 12: Procedure for systematically discovering affected

test classes for one given refactoring and project.

the dependencies and records the set of tests selected by Ekstazi:

T r ef), (5) replay non-refactoring changes, (6) execute test classes

with Reks to record the available (T available) and selected test

classes (Tnon−r ef). (The order in which we replay refactoring and

non-refactoring changes does not affect the outcome of our experi-

ments.) We compute the percentage of test classes that are not run

due to Reks as Sr ef = |T r ef \ Tnon−r ef | / |T available | × 100. We

illustrate this experiment for one mixed change in Figure 10.

5.1.2 RQ1: Howmany tests would have been skipped by Reks had

it been used by open-source developers? Following our methodology,

we performed our experiment on 100 pairs (17 are from prior study

of refactorings [63] and 8% are mixed changes). Similar to recent

work [63], due to the space constraints, we do not include the info

for each (project, revision) pair in this paper; the list is available at

http://cozy.ece.utexas.edu/reks.

Boxplot in Figure 11 shows the distribution of Sr ef values for all

100 pairs. In sum, we find that Sr ef for all pairs is 33% on average

(min: 0%; max: 100%). We also find that Sr ef for pure refactorings

is 34% on average (min: 0%; max: 100%). Finally, Sr ef for mixed

changes is 11% on average (min: 0%; max: 64%).

5.2 Systematically Performed Refactorings

5.2.1 Methodology. We follow a systematic methodology to

evaluate the impact of refactorings on RTS (RQ2, RQ3, RQ4, and

RQ5) [27]. Namely, for a given project, we perform refactorings to

all applicable program elements (e.g., methods), up to 5 per file, and

measure the impact of each refactoring type on regression testing.

Figure 12 shows the procedure to discover affected tests for one

given refactoring type and one project. (We modify a procedure pre-

sented in an earlier work used for testing refactoring engines [27].)

The procedure takes two inputs: the refactoring type to perform

and a project on which refactoring type will be performed.

In the first step (line 2), we run available test classes (T available)

for the given project with Reks. This step collects dependencies

for all test classes, as described in Section 2 (i.e., deps(Pmiddle
,τ)

where τ ∈ tests(Pmiddle)). The collected dependencies are stored

on disk in a Reks specific directory, which is used later in the pro-

cedure. In the second step (line 3), we find code elements for the

project on which the given refactoring type can be invoked and

create for each code element (line 5) a set of refactoring tasks. For

example, for Move Method, the set of code elements contains

all methods in the project, and the set of tasks includes moving

each method to another class. In the third step (line 6), for each

refactoring task, the procedure configures the refactoring task pa-

rameters (line 7); we discuss the details of the task configuration in

Section 5.2.3. In the fourth step (line 9), we check if the refactoring

task can be applied. Each refactoring has preconditions that need

to be satisfied before a refactoring task can be performed. For JDT’s

MoveMethod, one of the preconditions is not satisfied if the target

class already contains a method with the same name and same num-

ber of arguments as the method being moved. If all precondition

checks succeed, we perform the refactoring task (line 10) and obtain

the refactored project (i.e., Pnew). We additionally check (line 15)

that the refactored project compiles, which may not be the case if

the refactoring engine encounters a bug.

In the final step (line 16), we analyze code with Reks to discover

affected tests (T r ef); our goal is only to compute the percentage of

tests that are not run by Reks but are selected with Ekstazi (Sr ef =

|T r ef | / |T available | × 100). Before the analysis phase is invoked,

we need to compile the refactored project because Reks detects

modified files by analyzing classfiles (rather than source files). Then

Reks uses dependencies, which were saved on line 2, to find what

tests are (not) affected by the refactoring task. On line 17 we store

the results of Reks analysis, which we post-process to compute

Sr ef . Finally, we undo (using git clean -xfd; git reset --hard)

the effects of the latest refactoring task (line 18), to prepare for the

next iteration of the loop.

5.2.2 Projects. We briefly describe projects under study; these

are the projects that we pass (one at a time) as the second argument

to our procedure in Figure 12. Table 1 shows the list of the projects

used in our study; we chose the projects that were used frequently

in recent studies on regression testing. For each project, we show a

name; a short description; repository URL from which we cloned

the project; and the latest revision (SHA) of the project at the time of

our study. Additionally, Table 1 shows the number of lines of code

(LOC) measured with sloccount [65]; the number of test classes; and

instruction, branch, and class coverages obtained with JaCoCo [35].

The last two rows show the total (
∑
) and average (Avg) numbers

for the LOC, test classes, and code coverage.

5.2.3 Refactoring Setup. Although various tools/IDEs may offer

different refactorings [17, 34, 50, 53], we focus on 27 (i.e., all avail-

able) refactorings of the Eclipse JDT [17, 37]. We selected Eclipse

because it is one of the most widely used tools and offers a rich set

of refactorings. We do not include a description of each refactor-

ing in this paper, but many resources are available in the existing

literature [24, 36, 58].

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

Table 1: Projects Used in the Evaluation with Systematically Performed Refactorings.

Project Description URL SHA LOC
#Test

classes

Coverage

instr. branch class

Coll Extension of Java Collections apache/commons-collections c87eeaa4 60251 159 83 77 95

Config Generic Configuration Interface apache/commons-configuration 8dddebf1 64341 163 87 83 98

DBCP DB Connection Support apache/commons-dbcp 784fb496 20547 30 45 56 95

IO Library to Assist IO apache/commons-io 9990c666 29159 100 86 82 100

JClassmate Introspecting Generic Type Info FasterXML/java-classmate ef2fb7cd 6797 34 94 89 100

JObjectDiff Diff and Merge Java Objects SQiShER/java-object-diff 751574b8 9976 61 89 84 94

Lang Manipulation of Java Classes apache/commons-lang 17a6d163 69014 134 94 89 100

Net Basic Internet Protocols apache/commons-net 4450add7 26928 42 32 26 38

Pebble Templating Engine Inspired by Twig PebbleTemplates/pebble f8e2e7b0 13375 30 86 79 96

Stateless4J Lightweight Java State Machine oxo42/stateless4j 4f12a5cb 1702 9 53 43 64
∑

N/A N/A N/A 302090 761 N/A N/A N/A

Avg N/A N/A N/A 30209.0 76.1 74.9 70.8 88.5

Each refactoring type accepts a set of (property, value) pairs that

define the configuration of the refactoring task. For example, for

Extract Method the parameters include: (1) new name, which

specifies the name of the newly created method, (2) visibility, which

specifies the access modifier of the newly created method, and

(3) replace duplicate, which replaces duplicate code in the same

class with the invocation of the newly created method. The values

used in our study closely follow prior work on systematic testing

of refactoring engines [27].

Table 2: Percent of Test Classes Not

Run Due to Reks (Sr ef) Per Project

for Systematically Performed Refac-

toring Changes.

Project
Sr ef

Max Med Avg STD

Coll 48.43 1.26 3.29 6.45

Config 72.39 4.29 13.75 18.02

DBCP 89.66 20.69 26.57 22.29

IO 63.00 9.00 10.88 10.07

JClassmate 85.29 32.35 37.07 25.51

JObjectDiff 85.25 8.20 21.37 23.48

Lang 52.24 1.49 4.59 7.09

Net 38.10 2.38 4.25 7.37

Pebble 96.67 96.67 67.30 40.40

Stateless4J 77.78 11.11 22.81 19.89

Max 96.67 96.67 67.30 40.40

Avg 70.88 N/A 21.19 N/A

5.2.4 Implementa-

tion. We implemented

the procedure from

Figure 12 as an Eclipse

plugin [18] that sup-

ports all refactorings

available in Eclipse

JDT. We build on top

of an existing plugin,

called RTR [27]. The

key changes are re-

lated to Reks invo-

cations at appropri-

ate places and storing

the results of Reks

analysis. We invoke

Reks as a separate

Java process using

ProcessBuilder. As the

result of each Reks

analysis invocation, we save three separate outputs: (1) build output

(recall that we need to compile the project before we invoke Reks),

(2) refactoring task details, and (3) the list of affected tests as re-

ported by Reks analysis. We save the output of the build to check if

the compilation and build were successful. We save the refactoring

task details to inspect the outputs and confirm the correctness of

our implementation.

We apply refactoring tasks only on non-test classes to properly

measure the impact of refactorings. Note that dependencies on test

classes are rare [28], which means that applying refactoring tasks

on a test class would modify only that single class.

We have checked the correctness of the implementation, on a

number of examples, by comparing the sets of dependencies after

applying the Reks update rules and sets of dependencies collected

by Ekstazi. We found that the Reks rules give the expected results.

5.2.5 Collected Numbers. We ran experiments on an Intel Xeon

CPU @ 2.60GHz with 16GB of RAM, running Ubuntu 16.04LTS.

Following our procedure in Figure 12, for each project and refac-

toring pair, we collected the number of refactoring tasks, time to

execute the procedure, and average Sr ef . In sum, we ran a total

of 74,160 refactoring tasks in over 964 hours. We observed that a

few refactoring tasks led to exceptions or compilation errors (∼5%),

which is slightly higher than reported in prior studies on testing

refactorings [27]. Note that these cases (i.e., bugs in the refactoring

engine that lead to non-compilable code) do not impact safety of

our technique, because a user would not run the tests in a project

that does not compile. In Section 5.2.9, we discuss bugs that change

the program behavior.

5.2.6 RQ2: How many tests does Reks skip on average if refactor-

ings are systematically performed? Table 2 shows the max, median,

average, and standard deviation of Sr ef per project (measured across

all refactoring types). For example, we can see that max, median,

and average Sr ef for DBCP are 90%, 21%, and 27%, respectively. The

average across all refactoring tasks is 16% (not shown in the table).

We find that the impact of refactorings on each project can be sub-

stantial with max Sr ef of 97%. Note that our experiments perform

one refactoring at a time, and the impact of multiple refactorings is

likely to be higher because they are likely to modify more classes.

5.2.7 RQ3: Howmany tests does Reks skip on average for various

refactoring types if refactorings are systematically performed? We

measured the average Sr ef per refactoring type (across all projects)

for all refactoring types available in Eclipse IDE. Table 3 shows the

numbers for each refactoring type. (Max values are similar because

many refactoring types impact many tests in Pebble.) Introduce

Param. Obj., on average, has the biggest impact on regression

tests (with Sr ef of 27%, followed by Change Signature (24%) and

Introduce Indirection (24%). On the other side, we find that

Infer Generic Type Args has the smallest impact on regression

testing (with Sr ef of 0.05%), followed by Rename Local (0.70%);

Towards Refactoring-Aware Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Percent of Test Classes Not Run Due to Reks Per

Refactoring Type (Systematically Performed Refactorings).

Refactoring
Sr ef

Max Med Avg STD

1 Rename Field 96.67 3.73 13.04 20.42

2 Rename Method 96.67 10.00 22.32 27.12

3 Rename Local 96.67 0.00 0.70 2.91

4 Move Method 96.67 7.46 13.69 13.90

5 Change Signature 96.67 10.00 23.65 29.11

6 Extract Method 96.67 10.00 19.27 24.07

7 Extract Local 96.67 9.43 18.01 22.51

8 Extract Constant 96.67 7.98 15.00 21.22

9 Inline Constant 96.67 3.00 9.16 15.96

10 Inline Method 96.67 2.52 11.95 20.87

11 Inline Local 96.67 4.48 18.48 28.08

12 Convert Local to Field 96.67 4.00 18.11 27.95

13 Convert Anonymous 96.67 7.46 22.21 28.78

14 Move Type to New File 72.13 2.99 9.17 14.71

15 Extract Superclass 96.67 8.82 16.85 24.35

16 Extract Interface 96.67 2.38 9.59 18.55

17 Use Supertype 96.67 0.00 2.50 11.86

18 Push Down 96.67 0.00 2.15 10.71

19 Pull Up 96.67 14.29 21.10 23.55

20 Extract Class 96.67 5.00 18.97 26.34

21 Introduce Param. Obj. 96.67 10.34 27.01 32.42

22 Introduce Indirection 96.67 9.52 23.61 27.68

23 Introduce Factory 96.67 2.52 15.01 25.90

24 Introduce Parameter 96.67 2.38 9.29 18.33

25 Encapsulate Field 96.67 2.38 12.04 21.60

26 Generalize Type 96.67 3.00 15.75 25.24

27 Infer Generic Type Args 12.58 0.00 0.05 0.60

Max 96.67 14.29 27.01 32.42

Avg 92.64 N/A 14.40 N/A

Table 4: Execution Time for Reks, RetestAll, and Ekstazi.

Project R
¯
eks [s] A

¯
ll [s] Ekstazi [s] R

¯
/A
¯
[%]

Coll 22.95 59.01 34.57 38.90

Config 14.32 54.14 33.80 26.46

DBCP 6.88 86.71 35.77 7.93

IO 4.34 132.69 11.92 3.27

JClassmate 2.85 3.45 4.15 82.80

JObjectDiff 19.93 35.62 35.67 55.95

Lang 14.85 43.45 17.85 34.17

Net 3.87 63.07 4.93 6.13

Pebble 1.20 6.20 5.90 19.42

Stateless4J 1.77 2.24 2.75 79.03

Max 22.95 132.69 35.77 82.80

Avg 9.30 48.66 18.73 35.41

renaming a local variable rarely (only if used in an anonymous class)

modifies classfiles, which are collected by Reks as dependencies.

5.2.8 RQ4: What is the cost of the Reks update rules and how

does this cost compare to the test execution time? We measured (Ta-

ble 4) the update time for refactoring types that recompute cksum

of dependencies. To measure the time, we altered the procedure in

Figure 12 to invoke the update rules during Maven build on line 16.

Specifically, we compare the time to build project with Maven that

invokes update rules (second column) with the time to run all tests

during the Maven build, i.e., RetestAll (third column), and time to

build project with Maven with Ekstazi (fourth column). Update

rules take ∼1sec for all projects and the rest is taken by Maven. The

table also shows the ratio of Reks and RetestAll (the last column).

5.2.9 RQ5: How many test methods fail, on average, due to refac-

toring tasks (performed by the Eclipse refactoring engine)? We pro-

posed (see Section 1) that Reks should be a part of the pre-submit

testing phase, because we are aware that the existing refactoring

engines do not always preserve program behavior [27, 38, 39, 66].

We measured the average percent of failing test methods as the

number of failing test methods / total number of test methods. To

obtain this measure we modified line 16 in Figure 12 to run the tests

(rather than to invoke the analysis). The average percent of failing

test methods was only 0.47%; we first computed the value for each

project and then the average across all projects. In the future, we

believe that formally proven refactoring transformations [7, 14, 62]

will enable the use of Reks in the post-submit phase.

6 DISCUSSION

RTS granularity. Reks rules are applicable only to RTS techniques

that collect dependencies on classes [28, 41, 42, 55, 64]. The rules

for RTS techniques with different selection granularity would differ.

Consider TestTube [13], an RTS techniques that collect dependen-

cies on methods [55]. The modification rules for TestTube can be

more precise than the rules for Ekstazi, e.g., if a method being

moved from one class (ĉ) to another (ĉ ′) is the only method used

by a test, then there is no reason for the test to depend on ĉ after

the refactoring task. At the same time, rules for some refactoring

types would be more complex. Consider an invocation of Extract

Method on code inside a method m to a newmethod n. The rules for

TestTube would have to add method n in the set of dependencies for

tests that already depend on m, because TestTube does not know if

the extracted code was executed by a test. This overapproximation

is similar toMove Method refactoring in Reks. We plan to explore

the update rules for other RTS techniques in the future.

Open-source vs. systematic refactorings. The difference in av-

erage savings is due to the difference in the set of refactoring types.

Some refactoring types that are performed only systematically (e.g.,

Infer Generic Type Args) have low impact on tests, and some

refactoring types (e.g., rename class), which have big impact on

tests, are only performed in open-source projects.

Safety. The Reks technique is based on two assumptions: refactor-

ing transformations are behavior-preserving and Ekstazi is safe. We

discussed the former in detail in Section 1. As for the latter, a few

researchers semi-formally proved safety of RTS techniques [64].

Future work should formally prove correctness of RTS techniques

and develop a testing framework to check safety of RTS tools.

7 THREATS TO VALIDITY

External. Our results might not generalize beyond the projects

used in the study. To mitigate this threat, we used projects of dif-

ferent sizes, which are also used in different application domains.

We also evaluated the impact of refactorings on regression testing

using a large number of refactorings in open-source projects.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

We have evaluated our rules on the refactoring types that are

available in the Eclipse JDT. However, many popular refactoring

types (e.g., rename) are shared among all IDEs, so our rules should

be directly applicable. In the future, we plan to study if Reks is

applicable on refactorings that are unique to other IDEs.

Internal. Reks and our scripts may contain bugs, which may im-

pact our conclusions. We used meta information collected during

our procedure (Figure 12) to manually check the results for a large

number of refactorings. With unit tests, we confirmed that Reks

and Ekstazi behave the same for non-refactoring changes.

Construct. When systematically applying refactorings, we mea-

sured the impact of one refactoring at a time. Our goal was to eval-

uate the impact of each refactoring separately, but evaluating the

impact of the combination of refactorings is an interesting future

research direction. We also limit the number of code elements that

we use in each compilation unit to make the experiment feasible.

8 RELATED WORK

There has been a lot of work on regression test selection [6, 21–

23, 28, 44, 49, 54, 55, 59, 60, 68, 70, 77–80] and refactorings [24,

51, 52, 73]. However, prior work mostly explored these two topics

independently.We discuss work on (1) combining regression testing

and refactorings [57], (2) testing refactorings [16, 27, 47, 66], (3) RTS

techniques, and (4) refactorings.

Regression testing guided by refactorings. Rachatasumrit and

Kim [57] found that existing regression tests are inadequate to

validate the correctness of refactorings. They evaluated the qual-

ity of regression tests for three real-world Java applications. The

results showed that only 22% of changes are covered by the tests.

Additionally, the results showed that only 38% of regression tests

cover at least one refactoring change. Mongiovi et al. [46] proposed

an approach to improve regression test suites via automated test

generation. Their technique is guided by the coverage of refactored

changes. They developed two tools—Safira, which identifies the

changes in program elements, and SafeRefactorImpact, which gen-

erates random tests using Randoop [56]—with the goal to exercise

the changed elements. In a follow-up work, Soares et al. [67] imple-

mented a prototype tool that runs concurrently with an IDE and

generates tests to cover the changed code, while the code is being

edited. Recently, Alves et al. [1], presented a test suite prioritization

technique to faster detect bugs introduced by refactorings.

Unlike prior work, we systematically evaluated the impact of

refactorings on RTS and proposed update rules to modify the de-

pendencies for each test class, with the goal to avoid unnecessary

test executions for behavior-preserving transformations [14, 62].

Testing manual and automated refactorings. Alves et al. [2]

implemented a code review tool called RefDistiller (which consists

of RefChecker and RefSeparator) that detects anomalies introduced

by manual refactoring edits. GhostFactor [26] is similar to RefDis-

tiller in that it aims to check the correctness of manual refactorings

automatically using a set of predefined conditions. Our work targets

automated transformations and speeds up regression testing.

A lot of work was done on automated testing of refactoring

engines. Daniel et al. [16] proposed a syntax tree generator, called

ASTGen, which systematically generates a large number of Java

programs based on the given imperative description. Gligoric et

al. [27] introduced RTR, which systematically applies refactorings

on the given set of applications. The results showed that the failure

rate for the Eclipse refactoring engine (due to compilation errors)

was 1.4% for JDT. Soares et al. [66] followed a similar approach with

ASTGen to generate a set of test inputs exhaustively to detect bugs

that modify the program behavior.

Reks differs from the prior work as the main purpose of Reks is

to speed up regression testing by skipping tests that are affected

only by refactorings. In cases when an automated refactoring intro-

duce a compilation error or a refactoring task throws an exception,

the developer would not run the tests and Reks does not update

dependencies. Because of changes that modify program behavior,

we suggest to integrate Reks in the pre-submit testing phase [20].

Regression test selection. There has been several decades of re-

search on RTS. Several surveys nicely describe various aspects of

RTS [6, 22, 79]. Most of the RTS techniques differ in the granularity

on which they collect dependencies. Google TAP [10] keeps de-

pendencies among projects. Ekstazi [28] collects dependencies on

files. FaultTracer [80] and TestTube [13] collect dependencies on

methods, Echelon [68] collects dependencies on basic blocks, etc.

To the best of our knowledge, Reks is the first refactoring-aware

RTS technique.

Refactorings. Similarly to RTS, there was a lot of work related to

refactorings. Researchers have explored refactorings for various

languages and domains [4, 5, 8, 9, 15, 32, 43, 45, 69, 76]. Closely

related is work by Kim et al. [40] that introduced RefFinder, a tool

to detect manual refactorings in code repositories. We evaluated

Reks on a large number of refactorings performed by open-source

developers. In the future, we can deploy RefFinder to help us detect

revisions of interest.

9 CONCLUSIONS

We presented the first step toward refactoring-aware RTS technique,

called Reks. Unlike the existing RTS techniques that run tests re-

gardless of a change, Reks specially treats code changes made by

automated behavior-preserving transformations (i.e., refactoring).

When a refactoring is performed, Reks updates the dependencies

for the affected tests and does not run any test. Based on our study

of refactorings performed by developers of open-source projects,

Reks does not run, on average, 33% of available tests (which would

be run with a refactoring-unaware technique). Also, based on our

systematic study on several popular open-source projects, we find

that Reks can avoid running up to 97% tests (16% on average). We

integrated Reks with Eclipse via a plugin, which helps develop-

ers to save regression testing time in the pre-submit testing phase.

Although we currently expect that developers run all tests in the

post-submit testing phase, our work present a way in which for-

mally proven refactorings and RTS could work in the future in all

testing phases.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments; Farah

Hariri, Sarfraz Khurshid, Owolabi Legunsen, Shirley Liu, Darko

Marinov, Aleksandar Milicevic, and August Shi for their feedback

on this work. This work was partially supported by the US Na-

tional Science Foundation under Grants Nos. CCF-1566363 and

CCF-1652517, and by a Google Faculty Research Award.

Towards Refactoring-Aware Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Everton L. G. Alves, Patrícia D. L. Machado, Tiago Massoni, and Miryung Kim.

2016. Prioritizing Test Cases for Early Detection of Refactoring Faults. Software
Testing, Verification and Reliability (2016), 402–426.

[2] Everton L. G. Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: A
Refactoring Aware Code Review Tool for Inspecting Manual Refactoring Edits.
In International Symposium on Foundations of Software Engineering. 751–754.

[3] Apache Camel - Building 2017. Building Apache Camel. (2017). http://camel.
apache.org/building.html.

[4] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine
Reilles. 2007. Tom: Piggybacking Rewriting on Java. In Rewriting Techniques and
Applications. 36–47.

[5] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. 2004. DMS: Program
Transformations for Practical Scalable Software Evolution. In International Con-
ference on Software Engineering. 625–634.

[6] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3 (2011), 289–321.

[7] Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio. 2004.
Algebraic Reasoning for Object-oriented Programming. Sci. Comput. Program.
52, 1-3 (2004), 53–100.

[8] Marat Boshernitsan and Susan L. Graham. 2004. iXj: Interactive Source-to-Source
Transformations for Java. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 212–213.

[9] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008.
Stratego/XT 0.17. A Language and Toolset for Program Transformation. Science
of Computer Programming 72, 1-2 (2008), 52–70.

[10] Build in the Cloud 2017. Build in the Cloud: How the Build Sys-
tem works. (2017). http://google-engtools.blogspot.com/2011/08/
build-in-cloud-how-build-system-works.html.

[11] Byte Buddy 2017. Byte Buddy. (2017). https://github.com/raphw/byte-buddy.
[12] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too.

Software 32, 2 (2015), 50–54.
[13] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A

System for Selective Regression Testing. In International Conference on Software
Engineering. 211–220.

[14] Julien Cohen. 2016. Renaming Global Variables in CMechanically Proved Correct.
In International Workshop on Verification and Program Transformation. 50–64.

[15] James R. Cordy. 2006. The TXL Source Transformation Language. Science of
Computer Programming 61, 3 (2006), 190–210.

[16] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Test-
ing of Refactoring Engines. In Fundamental Approaches to Software Engineering.
185–194.

[17] EclipseJDTWebPage 2017. Eclipse Java development tools (JDT). http://eclipse.
org/jdt. (2017).

[18] EclipseWebPage 2015. Eclipse Indigo. (2015). https://eclipse.org.
[19] Ekstazi 2017. Ekstazi: Lightweight Test Selection. (2017). http://www.ekstazi.org.
[20] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-

ing Regression Testing in Continuous Integration Development Environments.
In International Symposium on Foundations of Software Engineering. 235–245.

[21] Emelie Engström and Per Runeson. 2010. A Qualitative Survey of Regression
Testing Practices. In Product-Focused Software Process Improvement. 3–16.

[22] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14–30.

[23] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical Evaluations
of Regression Test Selection Techniques: A Systematic Review. In International
Symposium on Empirical Software Engineering and Measurement. 22–31.

[24] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring:
Improving the Design of Existing Code. Adison-Wesley.

[25] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang. 2015. Making System
User Interactive Tests Repeatable: When and What Should We Control?. In
International Conference on Software Engineering, Vol. 1. 55–65.

[26] Xi Ge and Emerson Murphy-Hill. 2014. Manual Refactoring Changes with Auto-
mated Refactoring Validation. In International Conference on Software Engineering.
1095–1105.

[27] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar Hafiz, and
DarkoMarinov. 2013. Systematic Testing of Refactoring Engines on Real Software
Projects. In European Conference on Object-Oriented Programming. 629–653.

[28] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211–222.

[29] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In Automated Software Engineering. 361–372.

[30] Jean Hartmann. 2007. Applying Selective Revalidation Techniques at Microsoft.
In Pacific Northwest Software Quality Conference. 255–265.

[31] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
Art of Testing Less without Sacrificing Quality. In International Conference on
Software Engineering. 483–493.

[32] Mark Hills, Paul Klint, and Jurgen J. Vinju. 2012. Scripting a Refactoring with
Rascal and Eclipse. In Workshop on Refactoring Tools. 40–49.

[33] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Automated Software Engineering. 426–437.

[34] IntelliJIdeaWebPage 2017. IntelliJ IDEA. http://www.jetbrains.com/idea. (2017).
[35] JaCoCoWebPage 2017. JaCoCo Java Code Coverage Library. (2017). http:

//eclemma.org/jacoco/.
[36] JDTRefactoringMenuWebPage 2017. Eclipse JDT Refactorings Menu.

http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%
2Freference%2Fref-menu-refactor.htm. (2017).

[37] JDTRefactoringWebPage 2017. Eclipse JDT Refactoring Support.
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%
2Fconcepts%2Fconcept-refactoring.htm. (2017).

[38] Jongwook Kim, Don Batory, and Danny Dig. 2015. Scripting Parametric Refactor-
ings in Java to Retrofit Design Patterns. In International Conference on Software
Maintenance and Evolution. 211–220.

[39] Jongwook Kim, Don Batory, Danny Dig, and Maider Azanza. 2016. Improving
Refactoring Speed by 10X. In International Conference on Software Engineering.
1145–1156.

[40] Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. 2010. Ref-
finder: a Refactoring Reconstruction Tool Based on Logic Query Templates. In
International Symposium on Foundations of Software Engineering. 371–372.

[41] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51–65.

[42] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583–594.

[43] Huiqing Li and Simon Thompson. 2012. A Domain-Specific Language for Script-
ing Refactorings in Erlang. In Fundamental Approaches to Software Engineering.
501–515.

[44] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in Real-
World Software Evolution?. In International Conference on Software Engineering.
535–546.

[45] TomMens and TomTourwe. 2001. A Declarative Evolution Framework for Object-
Oriented Design Patterns. In International Conference on Software Maintenance.
570–579.

[46] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo
Borba. 2014. Making Refactoring Safer Through Impact Analysis. Science of
Computer Programming 93 (2014), 39–64.

[47] Michael Mortensen, Sudipto Ghosh, and James M. Bieman. 2006. Testing During
Refactoring: Adding Aspects to Legacy Systems. In International Symposium on
Software Reliability Engineering. 221–230.

[48] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How We Refac-
tor, and How We Know It. In International Conference on Software Engineering.
287–297.

[49] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015.
Coverage-based Regression Test Case Selection, Minimization and Prioritization:
A Case Study on an Industrial System. Journal of Software Testing, Verification
and Reliability 25, 4 (2015), 371–396.

[50] NetBeansWebPage 2017. NetBeans. https://netbeans.org. (2017).
[51] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Disser-

tation. University of Illinois at Urbana-Champaign.
[52] William F. Opdyke and Ralph E. Johnson. 1990. Refactoring: An Aid In Designing

Application Frameworks and Evolving Object-Oriented Systems. In Symposium
on Object-Oriented Programming Emphasizing Practical Applications. 145–161.

[53] OracleJDeveloperWebPage 2017. Oracle JDeveloper. http://www.oracle.com/
technetwork/developer-tools/jdev. (2017).

[54] Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research
Travelogue (2000–2014). In Future of Software Engineering. 117–132.

[55] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations of
Software Engineering. 241–251.

[56] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In International Conference on Soft-
ware Engineering. 75–84.

[57] Napol Rachatasumrit and Miryung Kim. 2012. An Empirical Investigation into
the Impact of Refactoring on Regression Testing. In International Conference on
Software Maintenance. 357–366.

[58] RefactoringCatalogWebPage 2017. Catalog of Refactorings. http://refactoring.
com/catalog/. (2017).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Wang et al.

[59] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.
Chianti: A Tool for Change Impact Analysis of Java Programs. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 432–448.

[60] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. Transactions on Software Engineering 22, 8 (1996), 529–551.

[61] David Saff andMichael D. Ernst. 2004. An Experimental Evaluation of Continuous
Testing During Development. In International Symposium on Software Testing
and Analysis. 76–85.

[62] Max Schäfer, Torbjörn Ekman, and Oege de Moor. 2008. Challenge Proposal: Ver-
ification of Refactorings. In Workshop on Programming Languages Meets Program
Verification. 67–72.

[63] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In International Symposium on Founda-
tions of Software Engineering. 858–870.

[64] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal of Software
Engineering and Knowledge Engineering 17, 3 (2007), 359–378.

[65] SloccountWebPage 2017. SLOCCount. (2017). http://www.dwheeler.com/
sloccount.

[66] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. 2013. Automated Behavioral
Testing of Refactoring Engines. Transactions on Software Engineering 39 (2013),
147–162.

[67] Gustavo Soares, Emerson Murphy-Hill, and Rohit Gheyi. 2013. Live Feedback on
Behavioral Changes. In International Workshop on Live Programming. 23–26.

[68] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in
Development Environment. In International Symposium on Software Testing and
Analysis. 97–106.

[69] Friedrich Steimann, Christian Kollee, and Jens von Pilgrim. 2011. A Refactoring
Constraint Language and its Application to Eiffel. In European Conference on
Object-oriented Programming. 255–280.

[70] TestingAtSpeedAndScaleOfGoogleWeb 2011. Testing at the Speed and
Scale of Google. (2011). http://google-engtools.blogspot.com/2011/06/

testing-at-speed-and-scale-of-google.html.
[71] Frank Tip, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and

Bjorn De Sutter. 2011. Refactoring using type constraints. ACM Trans. Program.
Lang. Syst. 33, 3 (2011), 9:1–9:47.

[72] Frank Tip, Adam Kiezun, and Dirk Bäumer. 2003. Refactoring for Generalization
using Type Constraints. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 13–26.

[73] Lance Tokuda and Don Batory. 1999. Evolving Object-Oriented Designs with
Refactorings. In Automated Software Engineering. 174–181.

[74] ToolsForContinuousIntegrationAtGoogleScaleWeb 2011. Tools for Continu-
ous Integration at Google Scale. (2011). http://www.youtube.com/watch?v=
b52aXZ2yi08.

[75] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and Back Again:
Can you Compile that Snapshot? Journal of Software: Evolution and Process
(2017).

[76] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T.
Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J.
Visser. 2001. The ASF+SDF Meta-environment: A Component-Based Language
Development Environment. 365–370.

[77] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White. 2009. Dynamic
Regression Test Selection Based on a File Cache - An Industrial Evaluation. In
International Conference on Software Testing, Verification, and Validation. 299–302.

[78] Guoqing Xu and Atanas Rountev. 2007. Regression Test Selection for AspectJ
Software. In International Conference on Software Engineering. 65–74.

[79] Shin Yoo andMarkHarman. 2012. Regression TestingMinimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67–120.

[80] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing Failure-
Inducing Program Edits Based on Spectrum Information. In International Confer-
ence on Software Maintenance. 23–32.

