
piCoq: Parallel Regression Proving
for Large-Scale Verification Projects

Karl Palmskog
University of Texas at Austin, USA

palmskog@acm.org

Ahmet Celik
University of Texas at Austin, USA

ahmetcelik@utexas.edu

Milos Gligoric
University of Texas at Austin, USA

gligoric@utexas.edu

ABSTRACT

Large-scale verification projects using proof assistants typically
contain many proofs that must be checked at each new project
revision. While proof checking can sometimes be parallelized at
the coarse-grained file level to save time, recent changes in some
proof assistant in the LCF family, such as Coq, enable fine-grained
parallelism at the level of proofs. However, these parallel techniques
are not currently integrated with regression proof selection, a tech-
nique that checks only the subset of proofs affected by a change. We
present techniques that blend the power of parallel proof checking
and selection to speed up regression proving in verification projects,
suitable for use both on users’ own machines and in workflows
involving continuous integration services. We implemented the
techniques in a tool, piCoq, which supports Coq projects. piCoq
can track dependencies between files, definitions, and lemmas and
perform parallel checking of only those files or proofs affected
by changes between two project revisions. We applied piCoq to
perform regression proving over many revisions of several large
open source projects and measured the proof checking time. While
gains from using proof-level parallelism and file selection can be
considerable, our results indicate that proof-level parallelism and
proof selection is consistently much faster than both sequential
checking from scratch and sequential checking with proof selection.
In particular, 4-way parallelization is up to 28.6 times faster than
the former, and up to 2.8 times faster than the latter.

CCS CONCEPTS

· Theory of computation → Logic and verification; · Software

and its engineering→ Software evolution;

KEYWORDS

Proof assistants, verification, parallelism, proof engineering, Coq

ACM Reference Format:

Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2018. piCoq: Parallel
Regression Proving for Large-Scale Verification Projects. In Proceedings

of 27th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA’18). ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3213846.3213877

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213877

1 INTRODUCTION

Many large-scale verification projects rely on proof assistants to
construct and check formal proofs [25]. Representative projects
target critical software domains, e.g., compilers [36], operating
systems [32], file systems [16], and distributed systems [37, 61], or
formalize mathematical theories [10, 28].

Results certified by proof assistants are highly trustworthy, but
establishing properties demands significant time investment by
sophisticated users to guide the proof effort. When such projects
are modified, previously proven properties must be reestablished,
since even small changes can break a critical step in a proofÐthis
process of regression proving may take anywhere from seconds to
tens of minutes [13], and in extreme cases, several days [30].

Analogously to when building and testing software engineering
projects, productivity suffers in verification projects when regres-
sion proving takes an inordinate amount of time. One important
technique for speeding up software builds and tests on commodity
multi-core hardware is parallelization [8, 12, 33]. Due to recent
changes in popular proof assistants in the LCF family, such as
Coq [5] and Isabelle/HOL [57], parallelization of proof checking is
now possible not only at the coarse-grained level of files (via build
systems such as make) but also at the fine-grained level of individual
proofs. As we have argued in previous work [13], a formal proof
of some program property can be viewed as representing many
(possibly an infinite number of) tests. Based on this analogy, coarse-
grained parallel proof checking intuitively corresponds to test suite
parallelization at the test class level in Java-like languages, while
fine-grained parallel proof checking corresponds to parallelization
at the test method level.

Coarse-grained parallel proof checking is used in many Coq ver-
ification projects, e.g., when building such projects via the OCaml
Package Manager (OPAM) [19, 41]. One important reason for wide-
spread use of coarse-grained parallelism is that proof checking
using proof assistants in the LCF family is deterministic and occurs
in a predictable runtime environment. Additionally, when survey-
ing 260 publicly available Coq projects on GitHub, each with more
than 10k lines of code (LOC), we found that ∼20% of these projects
can also leverage fine-grained parallel proof checking, two years
after support was added to Coq.

Regression proof selection [13], a technique that avoids checking
proofs unaffected by changes as a project evolves, is orthogonal to
parallel proof checking. Unfortunately, at present, regression proof
selection is not integrated with parallel proof checking. This means
that large-scale projects must generally perform regression proving
from scratch, in particular when using (as they often do) continu-
ous integration services (CISs) such as Travis CI [54]. Even with
parallelism using many cores, the resulting long proof checking
time can be a burden to users.

344

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Karl Palmskog, Ahmet Celik, and Milos Gligoric

In this paper, we describe techniques that blend proof checking
parallelization and selection to speed up regression proving in large-
scale verification projects. As we demonstrate in our evaluation,
these novel techniques are superior to legacy (state-of-the-art) tech-
niques even on users’ own machines, but are particularly effective
when used in CISs. We believe that our techniques can alleviate
the cost to productivity and trust in evolving large-scale verifica-
tion projects caused by long proof checking times [1], and release
untapped potential in multi-core hardware for regression proving.

This paper makes the following contributions:

⋆ Techniques: We propose novel techniques that integrate paral-
lel proof checking and selection to speed up regression proving in
evolving verification projects using proof assistants. Along one
axis, we consider coarse-grained and fine-grained proof checking
parallelism. Along the other axis, we consider selection at both
the file and proof levels, i.e., we check only those files or proofs
that are affected by changes. The result is a taxonomy of regres-
sion proving techniques that also includes legacy techniques.

⋆ Tool: We implemented our techniques in a tool, dubbed piCoq,
which supports Coq projects. piCoq relies on a collection of
extensions to the Coq proof checking toolchain, several of which
originate in the iCoq tool [14]. We provide a version of piCoq
on the following URL: http://cozy.ece.utexas.edu/icoq.

⋆ Evaluation: We performed an empirical study to measure the
effectiveness of our regression proving techniques using piCoq.
We used many revisions of several large-scale open source Coq
projects, and measured the proof checking times for our tech-
niques and legacy techniques. Our results show that speedups
can be substantial from adopting proof-level parallelism and file
selection, but that improvements vary significantly across proj-
ects, and may even be absent. However, combined proof-level
parallelism and proof selection is consistently much faster than
both sequential checking from scratch (legacy) and sequential
checking with proof selection (iCoq). Specifically, in a CIS envi-
ronment, we obtain a speedup of up to 28.6× with 4-way fine-
grained parallelism and proof selection compared to the former,
while the speedup compared to the latter is up to 2.8×.

2 COQ BACKGROUND

The Coq proof assistant consists of, on the one hand, an imple-
mentation of a small and powerful purely functional programming
language, and on the other hand, a system for specifying properties
about programs and proving them. Coq is based on a type theory
called the Calculus of Inductive Constructions [44], where both
programs and propositions about programs are types inhabited
by terms. In effect, this property puts program development and
proving on the same footing for Coq users.

In a typical workflow for a Coq-based project, users interactively
construct tentative proof terms for propositions using operations
called tactics. Propositions are only accepted as proven after Coq’s
type checker has been run successfully on a proof term. Absent
inconsistent axioms and frontend issues, the user need only trust
that the comparatively small type checking kernel is correctly im-
plemented and compiled to trust that proven propositions really
hold. Figure 1 illustrates the interactive proof development process.

user logic engine type checker

Coq
tactics

subgoals

proof term

Figure 1: Coq interactive proof development overview.

2.1 Coq Proof Checking Toolchain

Definitions of functions and propositions processed by Coq are
written in the Gallina language, and reside in files ending in .v. The
Coq batch proof checking (compilation) tool, coqc, takes a .v file as
input and, by default, produces a .vo file as output that contains full
binary representations of processed Gallina constructs, including
proofs. Since files may depend on other files, checking all proofs in
a Coq project requires some form of dependency analysis. The stan-
dard coq_makefile tool generates a Makefile which, by default,
calls the coqdep tool for this purpose [53]. coqdep builds a depen-
dency graph for all input .v files based on simple syntactic analysis
of Require commands in files (similar to import statements in
Java), which indicate direct dependency at the file level. When
proof checking is performed via the generated Makefile, the depen-
dency graph is used to process .v files with coqc in some allowed
order. The Makefile also enables timestamp-based incremental re-
gression proving in a Coq project, as well as spawning of parallel
proof-checking processes. Note that such proof-checking paral-
lelism is fundamentally restricted by the file dependency graph; for
example, if this graph is a path (has no branches) there will be no
parallel checking at all.

2.2 Asynchronous Proof Checking in Coq

Coq version 8.5, the first stable release to include architectural
changes to support a document-oriented interaction model [5], intro-
duced the option to quick-compile .v files to the binary .vio format,
a process which avoids checking (and emitting representations of)
proofs that are indicated as opaque by ending with Qed. Figure 2
illustrates the new .vio proof checking workflow made possible by
Coq’s document-oriented model. Only the type (proposition) of an
opaque lemma, i.e., not the body proof term, can be referenced in
other parts of a Coq development, whence type checking of all such
terms can normally be performed in complete isolation, and thus in
parallel. Specifically, .vio files contain proof-checking tasks, which
can be performed individually by issuing a coqc command refer-
encing the task identifier. A Coq user can depend on more rapidly
produced .vio files in lieu of .vo files in most developments, but
must then assume that all proofs are correct.

Asynchronous proof checking has two important applications in
large-scale Coq projects. First, it enables regression proof selection,
i.e., the possibility of checking only affected proofs after each new
project revision [13, 22]. Second, it enables fine-grained parallel
proof checking that can make better use of commodity multi-core
hardware than file-level parallel checking [5, 57]. Specifically, coqc
includes the option -schedule-vio-checking, which takes as ar-
guments (i) an upper bound on the number of parallel processes,
and (ii) a list of .vio files whose proof tasks to check in parallel.
However, note that there is no way to specify subsets of proof tasks
in files to check in parallel. In contrast to purely Makefile-based task

345

piCoq : Parallel Regression Proving for Large-Scale Verification Projects ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

.v file coqc -quick

.vio file coqc -check-vio-tasks

proof scripts

proof tasks

Figure 2: Coq asynchronous proof checking workflow.

parallelism, which often fails to utilize the requested number of par-
allel processes throughout proof checking due to file dependency
restrictions, the degree of parallelism for fine-grained checking
depends directly on how checking of individual proofs is scheduled
on the parallel operating system processes.

Coq uses a notion of sections to organize common assumptions
made in a collection of lemmas, say, that equality on a type A is
decidable (A_eq_dec). A lemma may reference one or more such
assumptions, which then become quantified variables that must be
instantiated when the lemma is referenced outside of the section.
However, by default, Coq only determines the used section variables
of a lemma when the end of the section is reached. This means that
the final type (assertion) of the section lemma is not known when
considered in isolation, whence its proof cannot be immediately
checked as an asynchronous task. To get around this problem, Coq
allows section lemmas to be annotated with the assumptions they
use (e.g., Proof using A_eq_dec). The required annotations can
be derived from metadata produced by Coq during compilation of
source files to .vo files [52], and then inserted back into the source
files. In the evaluation of our techniques (Section 6), we used this
approach to automatically add annotations to all revisions of the
projects under study.

2.3 iCoq and Regression Proof Selection

iCoq is a tool for (sequential) regression proof selection in Coq [13,
14]. iCoq tracks dependencies among both files and proofs in or-
der to check only those proofs affected by changes to a project,
potentially saving significant time in comparison to checking ev-
erything from scratch. iCoq processes Coq projects in three phases
(each similar to the corresponding phase in regression test selec-
tion tools [26, 43, 47]): analysis, proof checking, and dependency

collection. In the analysis phase, iCoq detects files and proofs that
are affected by changes made since the last run of iCoq. In the
proof checking phase, iCoq uses Coq’s toolchain for asynchronous
processing to check the proofs selected in the analysis phase (but
not other proofs). Finally, in the collection phase, iCoq obtains the
new dependencies that will be used in the next run of the analysis.

3 RUNNING EXAMPLE

We use the small Coq library of list functions and lemmas shown
in Figure 3 to illustrate our techniques; code is extracted from
the StructTact project [51]. The Coq standard library contains a
function remove that, when given a decision procedure for equality
for a type A, removes a single element from a list of that type. The
file ListUtil.v contains two lemmas about the remove function.
Dedup.v defines a function dedup that omits any duplicates from
the argument list, and a lemma about this function. RemoveAll.v
defines a function remove_all that removes all elements identical
to the given element from a list, and two lemmas about this function.

Require Import List. Import ListNotations.

Lemma remove_preserve : ∀ (A : Type) A_eq_dec (x y : A) xs,

x , y → In y xs → In y (remove A_eq_dec x xs).

Proof.

induction xs; simpl; intros.

- intuition.

- case A_eq_dec; intros.

* apply IHxs; subst; intuition.

* intuition; subst; left; auto.

Qed.

Lemma in_remove : ∀ (A : Type) A_eq_dec (x y : A) xs,

In y (remove A_eq_dec x xs) → In y xs.

Proof.

induction xs; simpl; intros; auto.

destruct A_eq_dec; simpl in *; intuition.

Qed.

ListUtil.v

Require Import List ListUtil. Import ListNotations.

Fixpoint dedup (A : Type) A_eq_dec (xs : list A) : list A :=

match xs with

| [] ⇒ []

| x :: xs ⇒

if in_dec A_eq_dec x xs then dedup A A_eq_dec xs

else x :: dedup A A_eq_dec xs

end.

Lemma remove_dedup : ∀ A A_eq_dec (x : A) xs,

remove A_eq_dec x (dedup A A_eq_dec xs) =

dedup A A_eq_dec (remove A_eq_dec x xs).

Proof.

induction xs; intros; auto; simpl.

repeat (try case in_dec; try case A_eq_dec; simpl; intuition);

auto using f_equal.

- exfalso. apply n0. apply remove_preserve; auto.

- exfalso. apply n. apply in_remove in i; intuition.

Qed.

Dedup.v

Require Import List ListUtil. Import ListNotations.

Fixpoint remove_all A A_eq_dec (to_delete l : list A) : list A :=

match to_delete with

| [] ⇒ l

| d :: ds ⇒ remove_all A A_eq_dec ds (remove A_eq_dec d l)

end.

Lemma remove_all_in : ∀ A A_eq_dec ds l x,

In x (remove_all A A_eq_dec ds l) → In x l.

Proof.

induction ds; simpl; intros; intuition.

eauto using in_remove.

Qed.

Lemma remove_all_preserve : ∀ A A_eq_dec ds l x,

¬ In x ds → In x l → In x (remove_all A A_eq_dec ds l).

Proof.

induction ds; simpl; intros; intuition auto using remove_preserve.

Qed.

RemoveAll.v

Figure 3: Example Coq project.

As indicated by the Require commands and by direct references
inside proof scripts in Dedup.v and RemoveAll.v, the proofs of
lemmas in these files depend on lemmas in ListUtil.v. For ex-
ample, the proof of the lemma remove_all_in in RemoveAll.v

depends on the lemma in_remove in ListUtil.v. Figure 4 shows
both the file-level and proof-level dependencies of the project. File
dependencies are illustrated by solid line arrows, and dependen-
cies among definitions, lemmas, and proofs by dashed arrows. As

346

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Karl Palmskog, Ahmet Celik, and Milos Gligoric

ListUtil.v

remove_preserve in_remove

Dedup.v

dedup remove_dedup

RemoveAll.v

remove_all_preserve

remove_all_inremove_all

Figure 4: Dependencies in the Coq project in Figure 3.

Lemma in_remove : ∀ (A : Type) A_eq_dec (x y : A) xs,

In x (remove A_eq_dec y xs) → In x xs.

Proof.

induction ys; simpl; intros; auto.

destruct A_eq_dec; simpl in *; intuition.

Qed.

Figure 5: Revised version of lemma in_remove in the file

ListUtil.v in Figure 3, with changed line highlighted.

Fixpoint dedup (A : Type) A_eq_dec (xs : list A) : list A :=

match xs with

| [] ⇒ []

| x :: xs ⇒

let tail := dedup A A_eq_dec xs in

if in_dec A_eq_dec x xs then tail else x :: tail

end.

Figure 6: Revised version of function dedup in the file

Dedup.v in Figure 3, with changed lines highlighted.

indicated in the figure, the proofs of lemmas in both Dedup.v and
RemoveAll.v depend on the utility lemmas in ListUtil.v, but not
all of the former depend on all of the latter. Nevertheless, the default
Coq proof-checking toolchain checks all proofs and writes .vo files
whenever a change is made to some utility lemma in ListUtil.v.

In contrast, the asynchronous proof-checking toolchain, comple-
mented by a tool such as iCoq, allows avoiding many instances of
proof checking when making changes to ListUtil.v. For example,
suppose the maintainers of the project change the definition of the
lemma in_remove to the one in Figure 5 where variables x and y

are swapped (highlighted). To ensure that all previously proven
properties in the library hold, the proofs of remove_dedup and
remove_all_in both need to be checked in addition to in_remove.
To perform these tasks, we first compile the .v files to .vio files
(which elides checking of all lemmas ending in Qed). Then, we is-
sue individual proof-checking commands separately for the three
lemmas, which reveals that their proofs can be reestablished.

As another example, consider the proposed change (highlighted)
to the dedup function in Figure 6. Intuitively, the change only re-
moves some code duplication by using a let expression to encapsu-
late the recursive call, i.e., the meaning of the function is preserved.
Since this change only affects Dedup.v, this is the only file that
we need to recompile to a .vo file when relying on the default
toolchain (assuming a recent ListUtil.vo file is available). With
the asynchronous proof-checking toolchain, we need to recompile
Dedup.v to a .vio file, and then issue a proof checking command
for the lemma remove_dedup.

Table 1: Modes for Regression Proving in Coq.

Parallelization Selection

Granularity None Files Proofs

File level f·none f·file n/a
Proof level p·none p·file p·icoq

Table 2: f·noneMode for Coq Project in Figure 3; Same-Phase

Tasks Can Run in Parallel.

Phase Task Definitions and Lemmas

1 ListUtil.vo remove_preserve, in_remove

2 Dedup.vo dedup, remove_dedup
2 RemoveAll.vo remove_all, remove_all_in, remove_all_preserve

4 TECHNIQUES

This section describes our taxonomy of regression proving tech-
niques, which includes both legacy techniques and our proposed
novel techniques. To concretize the presentation, we describe the
techniques as proof checking modes for Coq, as defined in Table 1.

A fundamental choice when checking Coq proofs is whether to
use default compilation or quick-compilation of source files. Opt-
ing for default compilation means that all proof-checking must
be performed top-down according to the file-level dependency
graph, which also restricts the (file-level) parallelism according to
this graph. With default compilation, a user can either perform
no selection (f·none), i.e., check the whole project from scratch, or
coarse-grained file-level selection (f·file), where only proofs in files
affected by actual changes are checked. With quick-compilation,
the previous two forms of selection (p·none and p·file) are comple-
mented by fine-grained proof-level selection, where only individual
proofs affected by changes are checked (p·icoq).

We consider two execution environments for each proof check-
ing mode: CI-Env and LO-Env. CI-Env describes an environment
that uses a Continuous Integration Service (CIS) [31], e.g., Travis CI,
to check proofs. Note that a CIS checks proofs in a clean environ-
ment for each revision. LO-Env describes an environment where
developers use their local machines to check proofs. Note that file
timestamps and generated files, not present in version control, are
preserved in LO-Env, but not in CI-Env.

We next describe the details of each mode and discuss variants
of each mode for CI-Env and LO-Env.

f·none: This legacymode embodies the approach used in the default
Coq proof-checking toolchain with coq_makefile. Since all files
are fully checked for every revision, there is no difference between
running this mode in LO-Env and CI-Env. Many large-scale projects
on GitHub use this mode in their Travis CI jobs, e.g., Verdi [61];
we therefore used it as the CIS baseline when investigating the
speedup from sequential proof selection using iCoq [13].

On one hand, this mode has no overhead from proof checking
task management and tracking dependencies across revisions. On
the other hand, parallelism is restricted by the file dependency
graph, and there is overhead from writing (possibly large) .vo files
to disk. Table 2 illustrates how parallel checking can be performed
using the f·none mode for the example project in Figure 3.

347

piCoq : Parallel Regression Proving for Large-Scale Verification Projects ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 3: p·noneMode for Coq Project in Figure 3; Same-Phase

Tasks Can Run in Parallel and Proof Tasks (to be Run in a

Later Phase) are in Bold.

Phase Task Definitions and Lemmas

1 ListUtil.vio remove_preserve, in_remove

2 Dedup.vio dedup, remove_dedup
2 RemoveAll.vio remove_all, remove_all_in, remove_all_preserve

3 checking remove_preserve

3 checking in_remove

3 checking remove_dedup

3 checking remove_all_in

3 checking remove_all_preserve

p·none: This legacy mode embodies the approach used in the asyn-
chronous proof-checking toolchain introduced by Barras et al. [5].
As in f·none, which is the closest comparable alternative, there is
no difference between running the mode in LO-Env and CI-Env. Al-
though coq_makefile generates tasks to use this mode, we found
that ∼20% of 260 projects on GitHub that we analyzed (with more
than 10k LOC each) can use p·none properly without modification.
The reason for this percentage not being higher is the requirement
to annotate proofs inside sections, as explained in Section 2.

On one hand, proof checking in p·none is not restricted by the
file dependency graph, and there is no overhead from writing proof
terms to disk or tracking dependencies across revisions. On the
other hand, this mode requires .vio file compilation of (annotated)
.v files according to the file dependency graph, and has overhead
from managing individual proof checking tasks. Table 3 illustrates
the maximum possible parallelism of this mode for the project
in Figure 3. In the table, lemmas whose proofs are exempt from
checking in a task are marked in bold. Note that the possible degree
of parallelism is greater than for f·none due to isolated checking of
proofs. The degree of parallelism can be adjusted downwards by
moving proofs from one checking task to another.

f·file: This novel mode adds file-level selection to f·none by only
compiling affected .v files to .vo files between revisions, with
directly modified files determined by comparing current file check-
sums to previous checksums. As such, f·file suffers from the
overhead of maintaining a file dependency graph using coqdep,
but not from managing proof-checking tasks. In LO-Env, this mode
corresponds to the baseline we compared sequential proof selection
against in previous work using iCoq [13], which modeled devel-
opers incrementally checking projects on their local machines. In
CI-Env, dependency graph and file checksum metadata must be
explicitly persisted. Moreover, additional .vo files (those on which
modified files depend) may have to be compiled in CI-Env com-
pared to LO-Env for the same change to a project, since previously
compiled .vo files are not available. Same as for f·none, the degree
of parallelism is restricted by project file dependencies, and all proof
terms in selected files are written to disk.

Suppose we are working with the project in Figure 3 and perform
the change indicated in Figure 5. In f·file for both LO-Env and CI-
Env, regression proving would then entail (re)compiling all .v files
to .vo files, with parallelism as in Table 2. If we instead perform the
change in Figure 6, f·file in LO-Env only recompiles Dedup.v into
Dedup.vo, without any possibility of parallelism. In CI-Env, both
ListUtil.v and Dedup.v are compiled into .vo files (sequentially).

file dep.
graph

.v files

proof dep.
graph

Analysis

compilation
commands

.vio files

affected
proofs

Checking

proof
dependencies

proof-
checking
commands

Collection

new dep.
graphs

storage

Figure 7: p·icoq workflow/phases with 4-way parallelism.

Table 4: p·icoq Mode for Change in Figure 5 to Project in

Figure 3; Same-Phase Tasks Can Run in Parallel, and Proof

Tasks (to be Run in a Later Phase) are in Bold.

Phase Task Definitions and Lemmas

1 ListUtil.vio remove_preserve, in_remove

2 Dedup.vio dedup, remove_dedup
2 RemoveAll.vio remove_all, remove_all_in, remove_all_preserve

3 checking in_remove

3 checking remove_dedup

3 checking remove_all_in

p·file: This novel mode adds file-level selection to p·none, using
the same analysis of file changes and file dependencies as in f·file.
Consequently, p·file has overhead both from maintaining a file
dependency graph and for management of proof-checking tasks,
but is not restricted by file dependency graph for proof-checking
parallelization. After determining and quick-compiling the neces-
sary files (using file checksums), the mode uses the coqc command
-schedule-vio-checking described in Section 2.2. Running this
command will typically check many unaffected proofs needlessly.
However, p·file does not write proof terms to disk.

Suppose we are working with the project in Figure 3 and perform
the change indicated in Figure 5. In p·file for both LO-Env and
CI-Env, regression proving would then entail recompiling all .v
files to .vio files and then reestablishing all lemmas in all .vio files,
via the same parallelism as in Table 3. If we instead perform the
change in Figure 6, p·file in LO-Env entails recompiling Dedup.v
into Dedup.vio, and then checking all proof tasks in that file, i.e.,
checking remove_dedup asynchronously. p·file in CI-Env needs
to compile both ListUtil.v and Dedup.v into .vio files, but runs
the same coqc command to check remove_dedup.

p·icoq: This novel mode, which is the most sophisticated one in our
taxonomy, combines fine-grained parallelism with proof selection,
and corresponds to iCoq [13] when used sequentially (i.e., with
one proof-checking process). The mode incurs overhead both from
proof task management and from tracking of proof-level dependen-
cies. However, it features proof checking parallelism unrestricted
by file dependencies and can elide checking unaffected proofs re-
gardless of their location in a file. Moreover, no proof terms are
written to disk. In both LO-Env and CI-Env, p·icoq relies on file
checksumming to first locate changed files, which are then subject
to more detailed impact analysis at the level of proofs. Figure 7
illustrates the workflow for p·icoq in the case of four parallel jobs
for quick-compilation and fine-grained proof checking.

348

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Karl Palmskog, Ahmet Celik, and Milos Gligoric

Table 5: Projects Used in the Evaluation.

Project URL SHA LOC #Revs. #Files #Proof Tasks

Coquelicot https://scm.gforge.inria.fr/anonscm/git/coquelicot/coquelicot 680ca587 38260 24 29 1660
Finmap https://github.com/math-comp/finmap baec7ba0 5661 23 4 959
Flocq https://scm.gforge.inria.fr/anonscm/git/flocq/flocq 4161c990 24786 23 40 943
Fomegac https://github.com/skeuchel/fomegac 7a654d7c 2637 14 13 156
Surface Effects https://github.com/esmifro/surfaceeffects 3450e4b7 9621 24 15 289
Verdi https://github.com/uwplse/verdi 15be6f61 56147 24 222 2756
∑

n/a n/a 137112 132 323 6763
Avg. n/a n/a 22852.00 22.00 53.83 1127.16

Suppose we are working with the project in Figure 3 and per-
form the change indicated in Figure 5. In p·icoq for both LO-
Env and CI-Env, regression proving would first entail recompil-
ing all .v files to .vio files, and then proving asynchronously
in_remove, remove_dedup, and remove_all_in (skipping the un-
affected remove_preserve and remove_all_preserve). Parallelism
for this case is illustrated in Table 4. If we instead perform the
change in Figure 6, p·icoq in LO-Env entails recompiling Dedup.v
into Dedup.vio, and then checking remove_dedup asynchronously.
In contrast, CI-Env regression proving requires quick-compiling
both ListUtil.v and Dedup.v, and then checking remove_dedup.

5 IMPLEMENTATION

We implemented the modes described in Section 4 in a tool dubbed
piCoq, written in OCaml, Java, and bash. Since Coq developments
are not upwards or downwards compatible in general, we target
Coq version 8.5 to support the largest range of project revision his-
tories susceptible to asynchronous proof checking and fine-grained
parallelism; we expect no fundamental issues with supporting the
latest (8.8) and future Coq versions.

We extended coqc (the official Coq compiler) with the new op-
tion -schedule-vio-task-depends-checking. As first argument,
it takes an upper bound on the number of parallel processes, and
then a list of proof task definitions (pairs of .vio file names and task
identifiers). coqc with -schedule-vio-task-depends-checking

performs parallel proof checking of all indicated tasks in the same
way as the official -schedule-vio-checking option (which only
takes whole files as arguments), but also outputs the dependencies
of each processed proof individually. This dependency data can
then be used by piCoq to select affected proofs in the next revision.

We rely on the same Coq plugins and extensions as iCoq [13, 14],
adapted for parallel checking. We also use the graph-based analysis
from iCoq to find affected files and proofs across revisions, which
is similar to the approach used in build systems such as Bazel [6]
and CloudMake [21]. We use Java’s task executor facilities [27] for
parallel compilation of .vo and .vio files via coqc commands.

6 EVALUATION

To assess the efficacy of our proposed techniques on large, evolving
verification projects, we answer the following research questions:

RQ1: How effective, in terms of proof checking time, is coarse-
grained parallel regression proving (file-level parallelism) without
any selection, i.e., f·none?

RQ2: How effective, in terms of proof checking time, is fine-grained
parallel regression proving (proof-level parallelism) without any
selection, i.e., p·none?

RQ3: How effective, in terms of proof checking time, is coarse-
grained parallel regression proving with selection at the level of
files using piCoq, in CISs and on developers’ own machines, i.e.,
f·file in CI-Env and LO-Env?

RQ4: How effective, in terms of proof checking time, is fine-grained
parallel regression proving with selection at the level of files using
piCoq, in CISs and on developers’ own machines, i.e., p·file in
CI-Env and LO-Env?

RQ5: How effective, in terms of proof checking time, is fine-grained
parallel regression proving with selection at both the level of files
and individual proofs using piCoq, in CISs and on developers’ own
machines, i.e., p·icoq in CI-Env in LO-Env?

We run all experiments on a 4-core Intel Core i7-6700 CPU @
3.40GHz machine with 16GB of RAM, running Ubuntu 17.04. We
limit the number of parallel processes to be at or below the number
of physical cores; this avoids the problem of drawing clear conclu-
sions about speedups when using virtual cores (hyper-threading).

6.1 Verification Projects Under Study

Table 5 shows the list of Coq projects used in our study; all proj-
ects are publicly available. We selected projects based on (a) public
availability of their revision history during principal development,
(b) compatibility of their revision history with Coq version 8.5,
(c) their size and popularity, and (d) tractability of their build pro-
cess; the latter was necessary for a successful experimental setup.
For each project, we show the name, the repository URL, the last
revision/SHA we used for our experiments, and the number of lines
of Coq code (LOC) for the last revision, as reported by cloc [18].
Note that since Coq projects have different development paces and
added support for Coq 8.5 at different points in time, our revision
ranges are not all from the same time period.
Coquelicot: Coquelicot is a library for real number analysis [10],
containing results about limits, derivatives, integrals, etc.
Finmap: Finmap is a library of definitions and results about finite
sets and finite maps [17], based on the Mathematical Components
library [20, 29].
Flocq: Flocq is a library that formalizes floating-point arithmetic
in several representations [11], e.g., as described in the IEEE-754
standard. Flocq is used in the CompCert verified C compiler to
reason about programs which use floating-point operations [9].

349

piCoq : Parallel Regression Proving for Large-Scale Verification Projects ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Require: P a project under study
Require: κ the number of revisions
Require: ε a development environment
Require: η range of number of parallel jobs
1: procedure ExperimentProcedure(P,κ,η, ε)
2: Clone(P.url)
3: for all ι ∈ {1, . . . ,η} do
4: for all ρ ∈ LatestRevisions(κ,P) do

5: Checkout(ρ)

6: Configure(P, ε, ι)

7: SelectAndCheck(P)

8: end for

9: end for

10: end procedure

Figure 8: Experiment procedure.

Fomegac: This project contains a formalization of a version of the
formal system Fω and the corresponding metatheory, such as type
safety results [23].
Surface Effects: This project formalizes a functional programming
language of łsurface effectsž with operations on mutable state [46],
including its operational semantics and metatheory (typability, ef-
fect soundness and correctness).
Verdi and Verdi Raft: Verdi is a framework for verification of
implementations of distributed systems [60]. While the framework
is not currently tied to any one particular verification project, it
was initially bundled with a verified implementation of the Raft
distributed consensus protocol [61]. Each revision comprises over
50k LOC,making Verdi one of the largest publicly available software
verification projects.

6.2 Variables

We manipulate three independent variables in our experiments:
proof checking mode, development environment, and (maximum)
number of parallel jobs. The proof checking modes and environ-
ments are as described in Section 4. The number of parallel jobs
ranges from 1 to 4. As a dependent variable we consider only the
proof checking time.

6.3 Experiment Procedure

Figure 8 shows our experiment procedure for collecting the data
necessary to answer our research questions. The inputs to the pro-
cedure include one of the projects used in the study, number of
revisions to use in the experiment, a development environment,
and a range of number of parallel jobs. In the initial step (line 2),
the procedure clones the project repository from the URL in Table 5.
Next, the procedure iterates over the range of parallel jobs, start-
ing from one, until the upper bound η is reached. For a particular
number of parallel jobs, the procedure iterates over κ revisions,
from the oldest to the newest revision. In each iteration of the inner
loop, the procedure (a) obtains a copy of the project for the cur-
rent revision (line 5), (b) configures the project (in preparation for
proof checking), and (c) selects proofs or files that are affected by
changes and checks them. While executing the procedure, we log
the time for each step of the procedure and the number of executed

proofs; we report the former in this paper and use the latter to
check correctness of our experiments.

It is important to observe that some piCoq modes require per-
sisting dependency metadata files between each revision. One way
to do this in a CIS is to use built-in caching facilities [49]. Since the
dependency data is small, we do not associate any overhead with
persisting these files, even in CI-Env.

6.4 Results

We illustrate some of the data collected with our procedure in
Figure 9. The plots (for Coquelicot and Fomegac) show, for every
revision of the projects, the proof checking time in all modes when
using 4 cores; we do not show similar plots for other projects due
to space limitations.

Table 6 lists the total proof checking times for all projects and
modes. The first column shows the name of the project, and the
second column shows the name of the mode. Columns three to six
show the results for each number of parallel jobs. Recall that parallel
checking does not necessarily use all available parallel processes
all the time, since tasks may depend on other tasks.

RQ1: For Verdi in f·none, going from sequential to 4-way parallel
coarse-grained checking jobs brings a speedup of 3.3×. The same
speedups for Coquelicot, Finmap, Flocq, Fomegac, and Surface Ef-
fects are 1.5×, 1.2×, 1.7×, 1.1×, and 1.0×, respectively. These latter
modest improvements may be due to restrictions in project file
dependency graphs; yet, having two parallel jobs nearly always
gives a sizable speedup compared to sequential checking.

RQ2: For Verdi in p·none, going from sequential to 4-way parallel
fine-grained checking brings a speedup of 3.2×. The same speedups
for Coquelicot, Finmap, Flocq, Fomegac, and Surface Effects are 2.0×,
1.8×, 2.0×, 1.5×, and 2.2×, respectively, indicating greater potential
for improvements per core than f·none. Speedups compared to
4-way parallelism via f·none are noteworthy for some projects, e.g.,
Fomegac (1.4×) and Surface Effects (2.2×). However, Finmap and
Flocq are consistently slower to check with p·none than f·none;
this may be due to both projects having many short-running proofs.

RQ3: For Verdi in f·file-CI, going from sequential to 4-way par-
allel coarse-grained checking brings a speedup of 3.0×. The same
speedups for Coquelicot, Finmap, Flocq, Fomegac, and Surface Ef-
fects are 1.5×, 1.0×, 1.7×, 1.0×, and 1.0×, respectively. The corre-
sponding speedups in LO-Env are essentially the same for most proj-
ects. Compared to f·none with 4-way parallelization, the speedup
for Verdi in CI-Env is 4.3×. The same speedups for Coquelicot,
Finmap, Flocq, Fomegac, and Surface Effects are 1.1×, 2.0×, 2.3×,
1.2×, and 1.0×, respectively. This indicates that f·file can be an
improvement over f·none in CISs.

RQ4: For Verdi in p·file-CI, going from sequential to 4-way par-
allel coarse-grained checking brings a speedup of 3.2×. The same
speedups for Coquelicot, Finmap, Flocq, Fomegac, and Surface Ef-
fects are 1.8×, 2.3×, 1.9×, 1.5×, and 2.0×, respectively. LO-Env gives
essentially similar speedups. Compared to p·none with 4-way par-
allelization, the speedup for Verdi in CI-Env is 4.7×. The same
speedups for Coquelicot, Finmap, Flocq, Fomegac, and Surface Ef-
fects are 1.5×, 3.7×, 2.5×, 1.3×, and 1.0×, respectively.

350

piCoq : Parallel Regression Proving for Large-Scale Verification Projects ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 6: Total Execution Time in Seconds for All Modes and Projects for Different Number of Jobs.

Project Mode Time [jobs=1] Time [jobs=2] Time [jobs=3] Time [jobs=4]

Coquelicot

f·none 1807.49 1226.33 1186.49 1187.29
p·none 2319.39 1400.08 1260.69 1150.87

f·file-LO 1043.01 745.41 724.32 725.55
p·file-LO 1221.63 814.89 747.11 708.50
p·icoq-LO 552.05 407.84 396.55 384.43
f·file-CI 1587.52 1086.38 1049.53 1051.73
p·file-CI 1405.10 885.67 802.13 786.88
p·icoq-CI 732.60 528.78 505.49 479.79

Finmap

f·none 646.77 549.91 549.50 549.62
p·none 1377.30 800.71 766.60 758.22

f·file-LO 236.77 232.74 232.64 232.08
p·file-LO 459.30 334.14 225.59 196.15
p·icoq-LO 227.31 179.55 153.42 148.11
f·file-CI 279.04 274.72 274.09 274.29
p·file-CI 473.59 346.19 234.34 205.13
p·icoq-CI 258.72 191.73 164.81 159.54

Flocq

f·none 892.54 525.44 516.65 512.46
p·none 1173.08 702.60 614.19 579.45

f·file-LO 319.22 197.82 190.47 189.68
p·file-LO 390.66 244.64 227.00 216.38
p·icoq-LO 274.63 194.55 183.71 175.62
f·file-CI 370.22 230.27 223.21 221.15
p·file-CI 430.79 260.61 233.30 231.80
p·icoq-CI 320.37 216.64 206.25 196.08

Fomegac

f·none 278.31 261.13 261.37 261.66
p·none 293.33 222.66 199.18 191.88

f·file-LO 171.80 165.41 165.32 165.44
p·file-LO 176.15 135.29 117.64 109.17
p·icoq-LO 153.69 121.88 109.95 101.33
f·file-CI 228.11 220.48 220.31 220.50
p·file-CI 210.82 168.78 151.20 142.48
p·icoq-CI 188.18 155.84 142.80 134.75

Surface Effects

f·none 8712.55 8633.68 8627.13 8629.28
p·none 8465.24 4863.77 4067.83 3902.42

f·file-LO 7820.60 7796.43 7781.69 7787.54
p·file-LO 7599.11 4408.28 3432.82 3237.19
p·icoq-LO 3669.35 2288.69 2033.12 2014.79
f·file-CI 8714.85 8652.68 8651.51 8656.17
p·file-CI 7695.15 4595.89 4047.15 3769.91
p·icoq-CI 4116.04 2723.55 2404.59 2351.96

Verdi

f·none 35713.55 19157.52 13449.78 10947.00
p·none 33032.34 17675.38 12692.18 10275.42

f·file-LO 7405.04 4009.03 3007.21 2473.82
p·file-LO 6917.62 3633.05 2564.76 2059.44
p·icoq-LO 3339.82 1866.04 1370.73 1160.28
f·file-CI 7577.00 4127.27 3059.70 2536.91
p·file-CI 7040.39 3781.12 2704.12 2203.67
p·icoq-CI 3542.08 1990.56 1478.36 1247.65

352

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Karl Palmskog, Ahmet Celik, and Milos Gligoric

latest revisions of each project that could be built with Coq version
8.5 (the version supported by the implementation of iCoq, which
piCoq extends). Although several projects have long histories, we
faced issues similar to those frequently facedwhen building projects
written in other languages [55], e.g., code that cannot be compiled.

Internal: Our implementation of piCoq, as well as our evaluation
infrastructure, may contain bugs. To mitigate this, we tested it on
changes to small example projects where the expected regression
proving outcome was easy to check manually.

The mode for checking that relies on proof selection (p·icoq) is
subject to the same limitations as iCoq, e.g., with respect to tactic
language dependencies and parameterized modules (functors). To
trust the results of p·icoq, a user must trust Coq’s asynchronous
proof-checking toolchain as well as the iCoq technique and its
implementation in terms of Coq plugins, extensions to coqc, and
the iCoq proof-level dependency graph analysis.

Construct: We implemented parallel regression proving with se-
lection only for a single proof assistant. Although our techniques
and taxonomy should be applicable to other proof assistants (e.g.,
Isabelle/HOL [40]), future work should confirm the applicability.

9 RELATED WORK

Candido et al. [12] investigated the prevalence of test suite paral-
lelization in open-source Java projects, and found that uncertainty
about outcomes (e.g., due to flaky tests [7, 8, 38, 39]) sometimes
prevented adoption. In contrast to a unit test, whether a proposed
proof passes or fails checking is deterministic. Gambi et al. [24] in-
troduced a tool, named CUT, for automatic cloud-based unit testing.
They also introduced a tool named O!Snap for generating test plans
to optimize cloud-based test execution. Chakraborty and Shah [15]
proposed an approach to derive a test execution plan, based on avail-
able resources and test dependencies. Unlike work on distributing
test execution, piCoq combines proof selection and parallelization
on a single machine. Distributing proof checking is an interesting
future direction.

Regression proof selection was inspired by regression test selec-
tion (RTS) techniques [43, 47, 62]. Although initial work on RTS
was mostly focused on fine-grained dependencies (e.g., statements,
basic blocks, and methods) [47, 50, 63], recent work has shown that
coarse-grained dependencies (e.g., files and classes) may provide
more savings in terms of end-to-end execution time (due to a light-
weight program analysis) [26, 34, 42]. Interestingly, and opposite
to findings for RTS, we find that fine-grained proof selection and
parallelization provides the most savings for proof checking; com-
bining coarse-grained and fine-grained selection for proof checking
is a future direction.

Coq’s 1970s precursor LCF was based on synchronous, sequen-
tial interaction between a user and the proof tool [58]. This legacy is
reflected in Coq’s read-eval-print loop, and by extension, in the top-
down interaction with Coq files in classic interfaces such as Proof
General [3]. Architectural changes in Isabelle towards a document-
oriented asynchronous interaction model were pioneered by Wen-
zel [58]. Efforts to bring asynchronous interaction to Coq were
initiated by Wenzel [56] and Barras et al. [4], resulting in a new
Isabelle-inspired document-oriented interaction model and support
for asynchronous proof processing in Coq 8.5 [5].

Support for parallelism in construction and checking of proofs
to exploit multi-core hardware has been studied previously in sev-
eral proof assistants, notably Isabelle [57] and ACL2 [45]. Isabelle
leverages the support for threads in its łhostž compiler, Poly/ML, to
spawn proof checking tasks processed by parallel workers. Using a
notion of proof promises, proofs that require previous unfinished re-
sult can proceed normally and become finalized when extant tasks
terminate. Isabelle also includes a build system with integrated sup-
port for checking of proofs and management of parallel workers.
ACL2 uses the support for thread-based parallelism in LISP systems
to, e.g., perform parallel proof discovery and fine-grained proof
case checking. The lack of native threads in Coq’s host language,
OCaml, prevents similar low-cost fine-grained parallelism [57].

Our approach to proof selection builds closely on previous work
on iCoq [13, 14] which, however, did not consider any form of
parallelism and only selection of individual proofsÐnot of files.
Wenzel [59] describes how to scale Isabelle for batch processing of
long-running large proofs using both parallelism and other features.

In many Coq projects, the default build process is via a Makefile
that sometimes supports file-level parallelism. When projects are
packaged via OPAM [19, 41], this parallelism is typically exposed
and is leveraged whenever a user installs the package. piCoq offers
similar parallelism both in LO-Env and CI-Env, and in contrast
to OPAM, supports incremental checking of projects. In addition,
piCoq exposes fine-grained parallel proof checking.

Barras et al. [5] investigated the speedup of fine-grained par-
allel proof checking compared to coarse-grained file-based proof
checking for a single Coq project when building one revision from
scratch. piCoq combines their approach with several forms of se-
lection in regression proving, and we evaluate speedups for a wide
range of projects with many revisions.

10 CONCLUSION

We presented a taxonomy comprising both state-of-the-art and
novel techniques for parallel, incremental regression proving in
large-scale verification projects, and their implementation for the
Coq proof assistant in the tool piCoq. In particular, piCoq is suit-
able for use in continuous integration systems running on multi-
core hardware to quickly verify a project or find failing proofs. By
tracking dependencies, piCoq can avoid checking unaffected files
or proofs as changes are made, and check the remaining affected
proofs in parallel.

Our evaluation shows that switching from sequential checking in
a CIS environment (commonly using Travis CI) to 4-way proof-level
parallelization and proof selection with piCoq can lead to speedups
of up to 28.6×. Compared to previous work on sequential proof
checking with proof selection in a CIS environment with iCoq,
4-way proof-level parallelization using piCoq yields speedups of
up to 2.8×. These results indicate the potential of our techniques
and piCoq to increase the productivity of proof engineers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and Tevfik
Bultan for shepherding this paper; Pengyu Nie, Chenguang Zhu,
and Zachary Tatlock for their feedback on this work. This work
was partially supported by the US National Science Foundation
under Grants Nos. CCF-1566363 and CCF-1652517.

353

piCoq : Parallel Regression Proving for Large-Scale Verification Projects ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256.

Trans. Program. Lang. Syst. 37, 2 (2015), 7:1ś7:31.
[2] Andrew W. Appel and David B. MacQueen. 1994. Separate Compilation for

StandardML. In Conference on Programming Language Design and Implementation.
13ś23.

[3] David Aspinall. 2000. Proof General: A Generic Tool for Proof Development. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. 38ś43.

[4] Bruno Barras, Lourdes del Carmen González Huesca, Hugo Herbelin, Yann Régis-
Gianas, Enrico Tassi, Makarius Wenzel, and Burkhart Wolff. 2013. Pervasive
Parallelism in Highly-Trustable Interactive Theorem Proving Systems. In Intelli-
gent Computer Mathematics. 359ś363.

[5] Bruno Barras, Carst Tankink, and Enrico Tassi. 2015. Asynchronous Processing
of Coq Documents: From the Kernel up to the User Interface. In International
Conference on Interactive Theorem Proving. 51ś66.

[6] BazelBlogWebPage 2018. Bazel - Blog. (2018). https://bazel.io/blog/.
[7] Jonathan Bell and Gail E. Kaiser. 2014. Unit test virtualization with VMVM. In

International Conference on Software Engineering. 550ś561.
[8] Jonathan Bell, Gail E. Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Effi-

cient Dependency Detection for Safe Java Test Acceleration. In International
Symposium on Foundations of Software Engineering. 770ś781.

[9] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond.
2013. A Formally-Verified C Compiler Supporting Floating-Point Arithmetic. In
Symposium on Computer Arithmetic. 107ś115.

[10] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A
User-Friendly Library of Real Analysis for Coq. Mathematics in Computer Science
9, 1 (2015), 41ś62.

[11] Sylvie Boldo and GuillaumeMelquiond. 2011. Flocq: A Unified Library for Proving
Floating-Point Algorithms in Coq. In Symposium on Computer Arithmetic. 243ś
252.

[12] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. 2017. Test Suite Paral-
lelization in Open-Source Projects: A Study on Its Usage and Impact. InAutomated
Software Engineering. 838ś848.

[13] Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. iCoq: Regression Proof
Selection for Large-Scale Verification Projects. InAutomated Software Engineering.
171ś182.

[14] Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2018. A Regression Proof
Selection Tool For Coq. In International Conference on Software Engineering,
Demo. 117ś120.

[15] Soham Sundar Chakraborty and Vipul Shah. 2011. Towards an Approach and
Framework for Test-execution Plan Derivation. In Automated Software Engineer-
ing. 488ś491.

[16] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam
Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017. Verifying a High-
performance Crash-safe File System Using a Tree Specification. In Symposium
on Operating Systems Principles. 270ś286.

[17] Cyril Cohen. 2017. finmap. (2017). https://github.com/math-comp/finmap.
[18] Al Danial. 2017. cloc - counts blank lines, comment lines, and physical lines

of source code in many programming languages. (2017). https://github.com/
AlDanial/cloc.

[19] Coq development team. 2018. Coq Package Index. (2018). https://coq.inria.fr/
opam/www/.

[20] MathComp development team. 2018. Mathematical Components Project. (2018).
https://math-comp.github.io/math-comp/

[21] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In International Conference
on Software Engineering, Software Engineering in Practice. 11ś20.

[22] Alexander Faithfull, Jesper Bengtson, Enrico Tassi, and Carst Tankink. 2016.
Coqoon. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. 316ś331.

[23] FomegacGit 2016. Fomegac Git repository. (2016). https://github.com/skeuchel/
fomegac.git.

[24] Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas Zeller. 2017.
CUT: Automatic Unit Testing in the Cloud. In International Symposium on Soft-
ware Testing and Analysis. 364ś367.

[25] Herman Geuvers. 2009. Proof assistants: History, ideas and future. Sadhana 34, 1
(2009), 3ś25.

[26] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211ś222.

[27] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. 2006. Java Concurrency in Practice. Addison-Wesley.

[28] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi
Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and

Laurent Théry. 2013. A Machine-Checked Proof of the Odd Order Theorem. In
International Conference on Interactive Theorem Proving. 163ś179.

[29] Georges Gonthier and Assia Mahboubi. 2010. An introduction to small scale
reflection in Coq. Journal of Formalized Reasoning 3, 2 (2010), 95ś152.

[30] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison,
Le Truong Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang
Nguyen, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso,
Jason Rute, Alexey Solovyev, Thi Hoai An Ta, Nam Trung Tran, Thi Diep Trieu,
Josef Urban, Ky Vu, and Roland Zumkeller. 2017. A Formal Proof of the Kepler
Conjecture. Forum of Mathematics, Pi 5 (2017).

[31] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Automated Software Engineering. 426ś437.

[32] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Symposium on Operating Systems Principles.
207ś220.

[33] Colin J. W. Kushneryk and Paul D. Barnett. 2010. Parallel Test Execution. (2010).
https://patents.google.com/patent/US20120102462A1/en.

[34] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583ś594.

[35] Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In
Symposium on Principles of Programming Languages. 109ś122.

[36] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (2009), 107ś115.

[37] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified
Causally Consistent Distributed Key-value Stores. In Symposium on Principles of
Programming Languages. 357ś370.

[38] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering. 643ś653.

[39] A. Memon, Zebao Gao, Bao Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J.
Micco. 2017. Taming Google-scale continuous testing. In International Conference
on Software Engineering, Software Engineering in Practice. 233ś242.

[40] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL Ð
A Proof Assistant for Higher-Order Logic. Springer.

[41] OPAM 2018. OCaml Package Manager. (2018). https://opam.ocaml.org.
[42] Jesper Öqvist, Görel Hedin, and Boris Magnusson. 2016. Extraction-based re-

gression test selection. In International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools. 1ś10.

[43] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations of
Software Engineering. 241ś251.

[44] Frank Pfenning and Christine Paulin-Mohring. 1990. Inductively defined types
in the Calculus of Constructions. In International Conference on Mathematical
Foundations of Programming Semantics. 209ś228.

[45] David L. Rager, Warren A. Hunt, and Matt Kaufmann. 2013. A Parallelized
Theorem Prover for a Logic with Parallel Execution. In International Conference
on Interactive Theorem Proving. 435ś450.

[46] Vitor Rodrigues and Matthew Fluet. 2015. Surface Effects for Deterministic
Parallelism. In Symposium on Trends in Functional Programming. ftp://ftp-sop.
inria.fr/indes/TFP15/TFP2015_submission_5.pdf

[47] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. Transactions on Software Engineering 22, 8 (1996), 529ś551.

[48] Matthieu Sozeau and Nicolas Tabareau. 2014. Universe Polymorphism in Coq. In
International Conference on Interactive Theorem Proving. 499ś514.

[49] Speeding up the build 2018. Speeding up the build. (2018). http://docs.travis-ci.
com/user/speeding-up-the-build.

[50] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in
Development Environment. In International Symposium on Software Testing and
Analysis. 97ś106.

[51] StructTact 2018. StructTact library. (2018). https://github.com/uwplse/StructTact.
[52] Enrico Tassi. 2019. Coq Manual: Asynchronous and Parallel Proof Processing.

(2019). https://coq.inria.fr/refman/addendum/parallel-proof-processing.html.
[53] The Coq Development Team. 2018. Coq Manual: Utilities. (2018). https://coq.

inria.fr/refman/practical-tools/utilities.html.
[54] TravisCI 2018. Travis CI. (2018). https://travis-ci.org.
[55] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017).

[56] Makarius Wenzel. 2013. PIDE as front-end technology for Coq. CoRR
abs/1304.6626 (2013). http://arxiv.org/abs/1304.6626

[57] MakariusWenzel. 2013. Shared-MemoryMultiprocessing for Interactive Theorem
Proving. In International Conference on Interactive Theorem Proving. 418ś434.

354

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Karl Palmskog, Ahmet Celik, and Milos Gligoric

[58] Makarius Wenzel. 2014. Asynchronous User Interaction and Tool Integration in
Isabelle/PIDE. In International Conference on Interactive Theorem Proving. 515ś
530.

[59] Makarius Wenzel. 2017. Scaling Isabelle Proof Document Processing. (December
2017). http://sketis.net/wp-content/uploads/2017/12/Isabelle_Scaling_Dec-2017.
pdf.

[60] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework for Imple-
menting and Formally Verifying Distributed Systems. In Conference on Program-
ming Language Design and Implementation. 357ś368.

[61] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas Anderson. 2016. Planning for change in a formal verification of the
Raft consensus protocol. In Conference on Certified Programs and Proofs. 154ś165.

[62] Shin Yoo andMarkHarman. 2012. Regression TestingMinimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67ś120.

[63] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In International Confer-
ence on Software Maintenance. 23ś32.

355

	Abstract
	1 Introduction
	2 Coq Background
	2.1 Coq Proof Checking Toolchain
	2.2 Asynchronous Proof Checking in Coq
	2.3 iCoq and Regression Proof Selection

	3 Running Example
	4 Techniques
	5 Implementation
	6 Evaluation
	6.1 Verification Projects Under Study
	6.2 Variables
	6.3 Experiment Procedure
	6.4 Results

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References

