
Regression Test Selection for TizenRT

Ahmet Celik
University of Texas at Austin (USA)

ahmetcelik@utexas.edu

Young Chul Lee
Samsung (South Korea)

yc207.lee@samsung.com

Milos Gligoric
University of Texas at Austin (USA)

gligoric@utexas.edu

ABSTRACT

Regression testing ś running tests after code modifications ś is

widely practiced in industry, including at Samsung. Regression Test

Selection (RTS) optimizes regression testing by skipping tests that

are not affected by recent code changes. Recent work has developed

robust RTS tools, which mostly target managed languages, e.g., Java

and C#, and thus are not applicable to large C projects, e.g., TizenRT,

a lightweight RTOS-based platform.

We present Selfection, an RTS tool for projects written in

C; we discuss the key challenges to develop Selfection and our

design decisions. Selfection uses the objdump and readelf tools

to statically build a dependency graph of functions from binaries

and detect modified code elements. We integrated Selfection in

TizenRT and evaluated its benefits if tests are run in an emulator

and on a supported hardware platform (ARTIK 053). We used the

latest 150 revisions of TizenRT available on GitHub. We measured

the benefits of Selfection as the reduction in the number of tests

and reduction in test execution time over running all tests at each

revision (i.e., RetestAll). Our results show that Selfection can

reduce, on average, the number of tests to 4.95% and end-to-end

execution time to 7.04% when tests are executed in the emulator,

and to 5.74% and 26.82% when tests are executed on the actual

hardware. Our results also show that the time taken to maintain

the dependency graph and detect modified functions is negligible.

CCS CONCEPTS

· Software and its engineering→ Software evolution;

KEYWORDS

Regression test selection, TizenRT, static dependency analysis

ACM Reference Format:

Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test

Selection for TizenRT. In Proceedings of the 26th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’18), November 4ś9, 2018, Lake Buena Vista, FL, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3236024.3275527

1 INTRODUCTION

Regression testing ś running available tests to check correctness of

recent code changes ś is widely practiced in industry, including at

Samsung. Despite the widespread use, regression testing is costly

due to a large number of tests and large number of changes [1, 2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275527

The high cost of regression testing impacts developers’ productivity,

and developers may miss bugs if they manually select to run only

a subset of available tests [7, 15].

Regression test selection (RTS) techniques optimize regression

testing by automatically detecting and skipping to rerun a subset of

tests whose behavior is not affected by recent code changes [10, 21,

22, 31]. Traditionally, RTS techniques track dependencies, for each

test, on code elements (e.g., statements, basic blocks, functions, or

files) and skip from the run (in a new project revision) those tests

that do not depend on any of the modified code elements.

RTS has been studied for over three decades, and researchers and

practitioners have developed RTS techniques for various program-

ming languages, including C/C++ [9, 22], Java [14, 19, 32], C# [30],

etc. However, there are only a few RTS tools available that imple-

ment these techniques. Most of the available tools target managed

code, i.e., languages that compile to Java bytecode [14, 19] or .NET

CLR [30]. Our work is mainly motivated by the lack of an RTS tool

for the C programming language and numerous questions about

potential benefits that such tools could provide.

We present the design, implementation, and evaluation of Sel-

fection, a novel RTS tool for projects written in C, which are

compiled to ARM ELF. Selfection uses static analysis to collect de-

pendencies for each test by utilizing the call graph, i.e., each test de-

pends on functions that might be transitively invoked from the test.

In a new project revision, Selfection detects modified functions,

by comparing the current checksum with the old checksum for

each function, and propagates the information about non-modified

functions to identify tests to skip. Selfection performs the analysis

on an executable image by extending objdump and readelf tools.

To evaluate the benefits of Selfection, we integrated the tool

in TizenRT [27], a lightweight runtime operating system developed

by Samsung. We used the latest 150 revisions and replayed the code

changes. We measured the benefits of Selfection as the reduction

in the number of executed tests, as well as the reduction in end-

to-end execution time compared to RetestAll (i.e., running all tests

at each revision). To execute the tests we used two environments:

Qemu emulator and an actual hardware board; these environments

are used by TizenRT developers, and the set of tests that can run in

each environment differs, e.g., network tests only run on the board.

Our results for runs with the Qemu emulator show that Sel-

fection reduces, on average, the number of executed tests and

test execution time to 4.95% and 7.04%, respectively. Our results

for runs on the board show that Selfection reduces, on average,

the number of executed tests and test execution time to 5.74% and

26.82%, respectively. Finally, our results show that time taken to

maintain the dependency graph and select tests is negligible.

2 SELFECTION

Selfection follows traditional RTS tools, most notably TestTube [9],

and includes three phases: analysis, execution, and collection. We

845

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Ahmet Celik, Young Chul Lee, and Milos Gligoric

describe the task of each phase, the way we implement these phases,

and the reasoning behind our implementation decisions.

2.1 Phases
Analysis phase (A-Phase). The goal of the analysis phase is to

select tests to be run in a new project revision. In other words, the

goal is to detect tests that are affected by recent code changes. To

detect affected tests, Selfection analyzes the executable image,

extracts functions, and computes the checksum of each function;

our current implementation uses Adler32 algorithm to compute

the checksum, but any other algorithm can be used. Once modified

functions are detected, Selfection computes the transitive closure

using a dependency graph collected in prior C-Phase (see below)

to find affected tests. Selfection uses symbols instead of absolute

addresses for function calls and global variables referenced in a

function body, and relative addresses for branches inside a function.

If these absolute addresses were not ignored, even a simple change,

e.g., adding a line of code could change checksum of every function.

Execution phase (E-Phase). The goal of the execution phase is

simply to run selected tests. Although this step is rather trivial for

projects that use testing frameworks, such as JUnit, xUnit, or similar,

because those frameworks support test filtering (i.e., excluding a

subset of tests), there is no straightforward way to exclude some

tests in C projects, as those tests are frequently explicitly invoked

from themain function. To enable selection of some tests we pass, as

arguments to main, the list of test functions that should be skipped.

This approach ensures that newly added tests are always run. Any

project that would like to utilize Selfection would have to adjust

its test code to invoke our filtering library instead of invoking tests

directly. We automatically modified TizenRT test code to include

necessary invocations for the sake of evaluation; we describe the

details of our experiment setup in Section 3.

Collection phase (C-Phase). The goal of the C-Phase is to collect

dependencies for each test, which will be used in the next test run

(and next A-Phase). To collect dependencies, Selfection statically

analyzes the executable image and builds a function call graph,

which is then used to find transitive dependencies for each test.

Selfection uses objdump and readelf tools to build the call graph.

The dependency data is maintained in the root directory of the

project. If Selfection is integrated in a continuous integration

service, e.g., TravisCI, the dependency data could be kept either in

the cache or as an external repository on GitHub. In the dependency

data, we associate checksum with each function. The persisted data

is used in the A-Phase for the next revision.

2.2 Design/Implementation Decisions
Source vs. binary analysis. Selfection, as mentioned earlier, an-

alyzes an executable image in A-Phase and C-Phase. An alternative

approach would be to analyze source code of the project, e.g., via a

compiler plugin, to build the call graph and dependencies for tests.

Both approaches have advantages and disadvantages. Binary analy-

sis may be seen as more generic, because any language (e.g., OCaml)

that compiles to the same executable format would be supported.

However, depending on the architecture and compiler used, the

binaries frequently differ. On the other hand, analyzing source code

would require dependencies on a specific compiler platform. Al-

though our preference would be a compiler plugin, because it would

Table 1: Test Suites Available in TizenRT, Execution Time

of each Test Suite on ARTIK 053, and Number of Tests in

each Test Suite; Note That the Execution Time Depends on

Platform/Environment and can be Much Longer

Test Suite Time [s] #Test

Arastorage I-Tests 2.02 54

Arastorage U-Tests 1.01 46

Drivers Tests 3.02 26

Filesystem Tests 23.21 76

Sys IO U-Tests 4.04 90

Network Tests 2.02 180

Kernel Tests 136.26 405
∑

171.58 877

simplify the implementation, we chose to analyze binaries simply

because the compiler used to compile TizenRT (gcc-arm-none-eabi-

4_9-2015q3) does not support compiler plugins. Additionally, GCC

compiler plugin infrastructure, in general, is poorly documented.

Static vs. dynamic analysis. Selfection statically analyzes bina-

ries in A-Phase and C-Phase; static analysis overapproximates the

set of dependencies [19]. An alternative would be to dynamically

collect dependencies for each test. In other words, while a test is

running, we could collect dependencies on functions that are ex-

ecuted, which would improve precision of the technique, i.e., test

would depend only on functions that are actually used. There are

several (technical) reasons why we chose static analysis. First, dy-

namic approach would require code instrumentation. Considering

that our target project ś TizenRT ś is run in restricted environment,

using standard instrumentation frameworks, e.g., Dyninst, would

not be feasible. Second, dynamic instrumentation would require

extra memory to maintain dependencies and store those dependen-

cies to disk. Extra memory for keeping dependencies could be too

large for the environment used to run TizenRT tests (e.g., ARTIK

053). Finally, transferring collected dependencies from a board (and

even from an emulator) at the end of each test run would introduce

additional technical challenges and cost.

3 CASE STUDY

To assess the benefits of Selfection, we answer the following

research questions:

RQ1: How many tests does Selfection skip on average across a

large number of revisions?

RQ2:What is the reduction, on average, in end-to-end test execu-

tion time across a large number of revisions?

RQ3: How does time for A-Phase, E-Phase, and C-Phase compare

to other build steps?

We first describe the subject used in our case study, the experi-

ment setup, and then answer the research questions.

3.1 Subject

We use TizenRT [27] developed by Samsung as the main case study.

At the latest revision (0a3d2deb), available at the time of our study,

TizenRT has 5049 functions and 877 test functions/cases. Table 1

shows, for each test suite, the number of test cases and execution

time. Note that a set of test suites differs for various platforms, and

846

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Ahmet Celik, Young Chul Lee, and Milos Gligoric

there has been substantial effort to enable RTS with coarse-grained

dependencies to work with managed languages and perform large

scale evaluations. Gligoric et al. [14] presented Ekstazi, an RTS

tool for projects that compile to Java bytecode. Ekstazi tracks dy-

namic dependencies on class level [25]. Several studies have shown

that Ekstazi can reduce end-to-end time by over 50%, and several

companies and open-source projects adopted the tool. Work by

Legunsen et al. [19] implemented and evaluated RTS with static

class dependencies. Their results showed similar savings to Ekstazi,

with small negative impact on safety of the technique. The idea

behind Ekstazi was reimplemented for .NET and evaluated together

with Microsoft developers [30]. Unlike most of the recent work on

RTS, our focus was on C projects and specifically on evaluating

RTS for TizenRT.

Regression testing tools in practice. Srivastava and Thiagara-

jan [26] implemented Echelon, a test case prioritization tool that

analyzes binaries and prioritizes tests based on the number of basic

blocks that they cover. Elbaum et al. [10] proposed an approach to

perform (unsafe) RTS in the pre-submit phase; this RTS selects a

set of tests that failed in the given time window. Herzig et al. [17]

introduce THEO, a tool for accelerating testing process based on

a cost model. Our work differs, as our goal was to make a step

towards an RTS technique for C.

Build systems and continuous integration systems. Manymod-

ern build systems, e.g., Bazel [4], Condor [13], etc., compute static

(file) dependencies for each target (or those dependencies are explic-

itly provided by developers). As these systems keep dependencies

for each target, they are commonly imprecise, i.e., they may run

more tests than necessary. Our work improves precision for C

projects, as we detect changes on function level. Hilton et al. [18]

studied usage, cost, and benefits for continuous integration (CI).

We plan to integrate Selfection in TizenRT to run as part of CI.

7 CONCLUSIONS

We presented Selfection, a novel regression test selection (RTS)

tool for projects written in C. Selfection implements static function-

level RTS and analyzes binaries to collect dependencies and find

affected tests. To evaluate Selfection, we integrated the tool in the

latest 150 revisions of TizenRT, an open-source project developed by

Samsung. We measured savings in terms of the number of executed

tests and test execution time compared to RetestAll (i.e., running

all tests from scratch for each revision). We used two environments

to execute tests: Qemu emulator and the actual hardware board

(ARTIK 053). Our results for Qemu emulator show that Selfection

reduces the number of tests and end-to-end execution time to 4.95%

and 7.04%, on average, compared to RetestAll. Our results for AR-

TIK 053 show that Selfection reduces the number of tests and

time to 5.74% and 26.82%, on average, compared to RetestAll. We

are currently working closely with Samsung developers to deploy

Selfection at the company. We believe that extending Selfection

with support for other binary formats, or creating a variant that

works as a compiler plugin, can result in a valuable tool for many

other C developers.

Acknowledgments. We thank Owolabi Legunsen, Pengyu Nie,

Karl Palmskog, and Chenguang Zhu for their feedback on this

work. This work was partially supported by the US National Science

Foundation under Grants Nos. CCF-1566363, CCF-1652517, CCF-

1704790, and by a Samsung Global Research Outreach Award.

REFERENCES
[1] Testing at the speed and scale of Google. http://google-engtools.blogspot.com/

2011/06/testing-at-speed-and-scale-of-google.html.
[2] Tools for Continuous Integration at Google Scale. http://www.youtube.com/

watch?v=b52aXZ2yi08.
[3] Artik Home Page. Samsung ARTIK IoT Platform. https://www.artik.io/modules/

artik-05x.
[4] Bazel Home Page. Build and test software of any size, quickly and reliably.

https://bazel.build.
[5] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

Dependency Detection for Safe Java Test Acceleration. In FSE. 770ś781.
[6] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.

2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3 (2011), 289ś321.

[7] Vincent Blondeau, Anne Etien, Nicolas Anquetil, Sylvain Cresson, Pascal Croisy,
and Stéphane Ducasse. 2017. What are the Testing Habits of Developers? A Case
Study in a Large IT Company. In ICSME.

[8] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
System with Lazy Retrieval for Java Projects. In FSE. 643ś654.

[9] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A
System for Selective Regression Testing. In ICSE. 211ś220.

[10] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In FSE. 235ś245.

[11] Emelie Engström and Per Runeson. 2010. A Qualitative Survey of Regression
Testing Practices. In PROFES. 3ś16.

[12] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. IST 52, 1 (2010), 14ś30.

[13] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In ICSE, SEIP. 11ś20.

[14] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In ISSTA. 211ś222.

[15] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In ASE. 361ś372.

[16] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
detecting state-polluting tests to prevent test dependency. In ISSTA. 223ś233.

[17] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
Art of Testing Less without Sacrificing Quality. In ICSE. 483ś493.

[18] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in Continuous Integration: Assurance, Security, and Flexi-
bility. In FSE. 197ś207.

[19] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE. 583ś594.

[20] QemuHome Page. QEMU - the FAST! processor emulator. https://www.qemu.org.
[21] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.

Chianti: A tool for change impact analysis of Java programs. InOOPSLA. 432ś448.
[22] Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for

regression test selection. In ICSM. 358ś367.
[23] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test

Selection Techniques. TSE 22, 8 (1996), 529ś551.
[24] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. TOSEM 6, 2 (1997), 173ś210.
[25] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression Test

Selection by Removing the Class Firewall. IJSEKE 17, 3 (2007), 359ś378.
[26] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in

Development Environment. In ISSTA. 97ś106.
[27] TizenRT Home Page. TizenRT - Lightweight RTOS-based platform for low-end

IoT devices. https://github.com/Samsung/TizenRT.
[28] TizenRT Pull1368. Should deinitialize database after removing relations. https:

//github.com/Samsung/TizenRT/pull/1368.
[29] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and Back Again:
Can you Compile that Snapshot? JSEP (2017).

[30] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017. File-
Level vs. Module-Level Regression Test Selection for .NET. In FSE, industry track.
848ś853.

[31] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. STVR 22, 2 (2012), 67ś120.

[32] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In ICSM. 23ś32.

850

	Abstract
	1 Introduction
	2 Selfection
	2.1 Phases
	2.2 Design/Implementation Decisions

	3 Case Study
	3.1 Subject
	3.2 Experiment Setup
	3.3 Results

	4 Discussion
	5 Threats To Validity
	6 Related Work
	7 Conclusions
	References

