
Complexity of Unordered CNF Games

Md Lutfar Rahman

The University of Memphis, Memphis, TN, USA

mrahman9@memphis.edu

Thomas Watson

The University of Memphis, Memphis, TN, USA

Thomas.Watson@memphis.edu

Abstract

The classic TQBF problem is to determine who has a winning strategy in a game played on a

given CNF formula, where the two players alternate turns picking truth values for the variables

in a given order, and the winner is determined by whether the CNF gets satisfied. We study

variants of this game in which the variables may be played in any order, and each turn consists

of picking a remaining variable and a truth value for it.

For the version where the set of variables is partitioned into two halves and each player

may only pick variables from his/her half, we prove that the problem is PSPACE-complete

for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for

unbounded-width CNFs (Schaefer, STOC 1976).

For the general unordered version (where each variable can be picked by either player), we

also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously,

it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and

PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).

2012 ACM Subject Classification Theory of computation Ñ Computational complexity and

cryptography, Theory of computation Ñ Problems, reductions and completeness, Theory of

computation

Keywords and phrases CNF, Games, PSPACE-complete, SAT, Linear Time

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.9

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/

report/2018/039/.

Funding This work was supported by NSF grant CCF-1657377.

1 Introduction

Conjunctive normal form formulas (CNFs) are among the most prevalent representations of

boolean functions. All sorts of computational problems concerning CNFs – such as satisfying

them, minimizing them, learning them, refuting them, fooling them, and playing games on

them – play central roles in complexity theory. A CNF is a conjunction of clauses, where

each clause is a disjunction of literals; a w-CNF has at most w literals per clause. The width

w is often the most important parameter governing the complexity of problems concerning

CNFs. The following are three classical games played on a CNF ϕpx1, . . . , xnq:

In the ordered game, player 1 assigns a bit value for x1, then player 2 assigns x2, then

player 1 assigns x3, and so on, and the winner is determined by whether ϕ gets satisfied.

Note that the variables must be played in the prescribed order x1, x2, x3, Deciding

© Md. Lutfar Rahman and Thomas Watson;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

9:2 Complexity of Unordered CNF Games

who has a winning strategy – better known as TQBF or QSAT – is PSPACE-complete for

3-CNFs [11] and in P for 2-CNFs [2, 6]. Many PSPACE-completeness results have been

shown by reducing from the ordered 3-CNF game.

In the unordered game, each player is allowed to pick which remaining variable to play next

(as well as which bit value to assign it), and again the winner is determined by whether ϕ

gets satisfied. Deciding who has a winning strategy is PSPACE-complete for 6-CNFs [1]

and for 11-CNFs with only positive literals [9, 10]. The unordered game on positive CNFs

is also known as the maker–breaker game, and a simplified proof of PSPACE-completeness

for unbounded-width positive CNFs appears in [5]. Many PSPACE-completeness results

have been proven by reducing from the unordered positive CNF game [7, 5, 8]. For

the general unordered CNF game, nothing was known for width ă 6; in particular, the

complexity of the unordered 2-CNF game was not studied in the literature before.

In the partitioned game, the set of variables is partitioned into two halves and each player

may only pick variables from his/her half. This is, in a sense, intermediate between

ordered and unordered: the ordered game restricts the set of variables available to

each player and the order they must be played; the unordered game restricts neither;

the partitioned game restricts only the former. Deciding who has a winning strategy

was shown to be PSPACE-complete for unbounded-width CNFs in [9, 10], where it was

explicitly posed as an open problem to show PSPACE-completeness with any constant

bound on the width. This game has been used for PSPACE-completeness reductions [3],

and a variant with a matching between the two players’ variables has also been studied

[4]. The partitioned 2-CNF game was not studied in the literature before.

We prove that the unordered and partitioned games are both PSPACE-complete for 5-

CNFs; the former improves the width 6 bound from [1], and the latter resolves the 42-year-old

open problem from [9, 10]. We also prove that the unordered and partitioned games are

both in P for 2-CNFs. The complexity for width 3 and 4 remains open. In the following

section we give the precise definitions and theorem statements.

1.1 Statement of results

The unordered CNF game is defined as follows. There are two players, denoted T (for “true”)

and F (for “false”). The input consists of a CNF ϕ, a set of variables X “ tx1, . . . , xnu

containing all the variables that appear in ϕ (and possibly more), and a specification of which

player goes first. The players alternate turns, and each turn consists of picking a remaining

variable from X and assigning it a value 0 or 1. Once all variables have been assigned, the

game ends and T wins if ϕ is satisfied, and F wins if it is not. We let G (for “game”) denote

the problem of deciding which player has a winning strategy, given ϕ, X, and who goes first.

The partitioned CNF game is similar to the unordered CNF game, except that X is

partitioned into two halves XT and XF, and each player may only pick variables from his/her

half. If n is even we require |XT| “ |XF|, and if n is odd we require |XT| “ |XF| ` 1 if T

goes first, and |XF| “ |XT| ` 1 if F goes first. We let G% denote the problem of deciding

which player has a winning strategy, given ϕ, the partition X “ XT Y XF, and who goes

first.

We let Gw and G%
w denote the restrictions of G and G%, respectively, to instances where

ϕ has width w, i.e., each clause has at most w literals. Now, we state our results as the

following theorems:

I Theorem 1. G5 is PSPACE-complete.

M. L. Rahman and T. Watson 9:3

I Theorem 2. G%
5 is PSPACE-complete.

I Theorem 3. G2 is in P, in fact, in Linear Time.

I Theorem 4. G%
2 is in P, in fact, in Linear Time.

We prove Theorem 1 and Theorem 2 in Section 2 by showing reductions from the PSPACE-

complete games G and G% respectively. For Theorem 3 and Theorem 4 in Section 3 we prove

characterizations in terms of the graph representation from the classical 2-SAT algorithm –

who has a winning strategy in terms of certain graph properties – and we design linear time

algorithms to check these properties.1

In the proofs, it is helpful to distinguish four patterns for “who goes first” and “who goes

last”, we introduce new subscripts. For a, b P tT,Fu, the subscript a ¨ ¨ ¨ b means player a

goes first and player b goes last, a ¨ ¨ ¨ means a goes first, and ¨ ¨ ¨ b means b goes last. These

may be combined with the width w subscript. For example, G%
T¨¨¨F (which was denoted

G% freepCNFq in [9, 10], by the way) corresponds to the partitioned game where T goes first

and F goes last (so n “ |X| must be even), and G5,¨¨¨T corresponds to the unordered game

with width 5 where T goes last (so either n is even and F goes first, or n is odd and T goes

first).

2 5-CNF

We prove Theorem 1 in Section 2.1 and Theorem 2 in Section 2.2.

2.1 G5

In this section we prove Theorem 1. It is trivial to argue that G5 P PSPACE. We prove

PSPACE-hardness by showing a reduction GT¨¨¨F ď G5,T¨¨¨F in Section 2.1.2. GT¨¨¨F is already

known to be PSPACE-complete [9, 10, 5, 1]. We will talk about the other three patterns

GF¨¨¨F, GT¨¨¨T, GF¨¨¨T in the full version. Before the formal proof we develop the intuition in

Section 2.1.1.

2.1.1 Intuition

In NP-completeness, recall the following simple reduction from SAT with unbounded width to

3-SAT. Suppose a SAT instance is given by ϕ over set of variables X. If p`1 _`2 _`3 _¨ ¨ ¨_`kq

is a clause in ϕ with width k ą 3, then the reduction introduces fresh variables z1, z2, . . . , zk´1

and generates a chain of clauses in ϕ1 as follows:

p`1 _ z1q ^ pz1 _ `2 _ z2q ^ ¨ ¨ ¨ ^ pzi´1 _ `i _ ziq ^ ¨ ¨ ¨ ^ pzk´2 _ `k´1 _ zk´1q ^ pzk´1 _ `kq

Each clause of ϕ gets a separate set of fresh variables for its chain, and we let Z “ tz1, z2, . . .u

be the set of all fresh variables for all chains. The reduction claims that ϕ is satisfiable if

and only if ϕ1 is satisfiable. We are going to have a stronger property in Claim 1.

I Claim 1. For every assignment x to X: ϕpxq is satisfied iff there exists an assignment z

to Z such that ϕ1px, zq is satisfied.

1 We remark that it is not automatic that two-player games on 2-CNFs are solvable in polynomial time;
e.g., the game played on a 2-CNF with only negative literals in which players alternate turns assigning
variables of their choice to 0 and where the loser is the first to falsify the 2-CNF, as well as the partitioned
variant of this game, are PSPACE-complete [9, 10].

ISAAC 2018

9:4 Complexity of Unordered CNF Games

Proof. Suppose x satisfies ϕ. If x satisfies p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq in ϕ by `i “ 1, then in

the corresponding chain of clauses in ϕ1, the clause having `i also gets satisfied by `i “ 1

and the rest of the clauses in that chain can get satisfied by assigning all z’s on the left side

of `i as 1 and right side of `i as 0.

Now suppose x does not satisfy ϕ. Then at least one of the clauses of ϕ has all literals

assigned as 0. The corresponding chain of clauses in ϕ1 essentially becomes:

pz1q ^ pz1 _ z2q ^ ¨ ¨ ¨ ^ pzi´1 _ ziq ^ ¨ ¨ ¨ ^ pzk´2 _ zk´1q ^ pzk´1q

In order to satisfy the above chain, z1 “ 1 and zk´1 “ 0. It also introduces the following

chain of implications: z1 ñ z2 ñ z3 ñ ¨ ¨ ¨ ñ zk´1. Following the chain we get (z1 ñ zk´1)

= (1 ñ 0). Therefore, we conclude that ϕ1px, zq cannot be satisfied for any assignment z. J

Now this reduction does not show GT¨¨¨F ď G3,T¨¨¨F since the games on ϕ and ϕ1 are not

equivalent. We show a simple example to make our point. Consider the following GT¨¨¨F

game over variables tx0, x1, . . . , xku.

ϕ “ x0 ^ px1 _ x2 _ x3 _ ¨ ¨ ¨ _ xkq, where k ą 1

In the above GT¨¨¨F game, T has a winning strategy: On the first move T plays x0 “ 1. Then

whatever F plays, T plays one of the k ´ 1 many unassigned xi from tx1, x2, . . . , xku as 1. T

wins.

But if we introduce fresh variables tz1, z2, z3, . . .u as in the NP-completeness reduction

then we get a game over variables tx0, x1, x2, . . . , xku Y tz1, . . . , zk´1u:

ϕ1 “ x0 ^ px1 _ z1q ^ ¨ ¨ ¨ ^ pzi´1 _ xi _ ziq ^ ¨ ¨ ¨ ^ pzk´1 _ xkq

In the above G3,T¨¨¨F game, F has a winning strategy: On the first move T must play x0 “ 1,

otherwise F wins by x0 “ 0. Then F plays x1 “ 0 and T must reply by z1 “ 1, otherwise

F wins by z1 “ 0. Then F plays x2 “ 0 and T must reply by z2 “ 1, otherwise F wins by

z2 “ 0. The strategy goes on like this until the last clause and F wins by xk “ 0.

The G3,T¨¨¨F game is disadvantageous for T compared to the GT¨¨¨F game. The disadvant-

age arises from F having the beginning move in a fresh chain of clauses.

Now the intuition is to design a game version of the NP-completeness reduction by fixing

the imbalance. We design ψ in such a way that the games on ϕ and ψ stay equivalent. In

order to counter the unfairness for T due to fresh variables tz1, z2, z3, . . .u, we replace zi

by a pair of variables (ai, bi) which gives T more opportunities to satisfy the clauses. The

construction of a chain of clauses in ψ from a clause p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq in ϕ goes as

follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

We just constructed a 5-CNF ψ. Let us consider the G5,T¨¨¨F game on ψ. In an optimal

gameplay, no player should play a’s or b’s before playing x’s. Intuitively, this is because, if F

plays any ai or bi, then T can reply by making ai ‰ bi and both clauses involving ai and bi

will be satisfied, which benefits T. If T plays any ai or bi, F can reply by making ai “ bi,

which satisfies one clause involving ai and bi but the other clause gets two 0 literals. Since

only one of the two clauses gets satisfied by ai, bi, T would like to wait for more information

before deciding which one to satisfy with ai, bi: it depends on whether they are on the right

side or left side of a satisfied `i in a chain, which in turn depends on the assignment x.

M. L. Rahman and T. Watson 9:5

So, an optimal gameplay consists of two phases. In the first phase, players should play

only x’s. Whoever deviates from this optimal strategy does not have the upper hand. The

second phase begins when all the x’s have been played and someone must start playing a’s

and b’s. Since the number of fresh variables is even (2|Z|) and F plays last, T must be the

one to start the second phase, which is essential since if F started the second phase then T

could satisfy all the clauses regardless of what happened in the first phase. This observation

also allows us to show PSPACE-completeness of G5,F¨¨¨F, discussed in the full version.

In the second phase, after T plays any ai or bi, it is optimal for F to reply by making

ai “ bi. Assuming this optimal gameplay by F, we can consider a pair (ai,bi) as a single

variable zi which can be assigned only by T. Effectively, the second phase just consists of

T choosing an assignment z to ϕ1 from the NP-completeness reduction. Thus ψpx, a, bq is

satisfied iff ϕ1px, zq is satisfied, which by Claim 1 is possible iff ϕpxq is satisfied, where x is

the assignment from the first phase.

2.1.2 Formal Proof

We show GT¨¨¨F ď G5,T¨¨¨F. Suppose an instance of GT¨¨¨F is given by pϕ,Xq where ϕ is a

CNF with unbounded width over set of variables X. We show how to construct an instance

pψ, Y q for G5,T¨¨¨F where ψ is a 5-CNF over set of variables Y . Suppose p`1 _`2 _`3 _¨ ¨ ¨_`kq

is a clause in ϕ. If k ď 3, the same clause remains in ψ. If k ą 3, we show how to construct

a chain of clauses in ψ. We introduce two sets of fresh variables ta1, a2, a3, . . . , ak´1u and

tb1, b2, b3, . . . , bk´1u as follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

Each clause of ϕ gets separate sets of fresh variables for its chain, and we let A “

ta1, a2, a3, . . .u and B “ tb1, b2, b3, . . .u be the sets of all fresh variables for all chains. Finally

we get a 5-CNF ψ over set of variables Y “ X YAYB.

We claim that T has a winning strategy in pϕ,Xq iff T has a winning strategy in pψ, Y q.

Suppose T has a winning strategy in pϕ,Xq. We describe T’s winning strategy in pψ, Y q

as Algorithm 1. To see that the strategy works, note that the winning strategy in pϕ,Xq

ensures that ϕpxq is satisfied by the assignment x to X in the first phase, so according to 1,

there is an assignment z to Z such that ϕ1px, zq is satisfied. T can ensure that for each i,

either ai “ zi or bi “ zi (since ai “ zi or bi “ zi due to line 8, or ai ‰ bi due to line 4 or line

7) and thus ψpx, a, bq gets satisfied, since ϕ1px, zq is satisfied and each clause of ψ is identical

to a clause from ϕ1 but with each zi replaced with ai _ bi and zi replaced with ai _ bi.

Suppose F has a winning strategy in pϕ,Xq. We describe F’s winning strategy in pψ, Y q

as Algorithm 2. To see that the strategy works, note that the winning strategy in pϕ,Xq

ensures that ϕpxq is unsatisfied by the assignment x to X, so according to Claim 1, for

all assignments z to Z, ϕ1px, zq is unsatisfied. F can ensure that for each i, ai “ bi; let us

call this common value zi. Thus ψpx, a, bq is unsatisfied, since ϕ1px, zq is unsatisfied and

ψpx, a, bq “ ϕ1px, zq.

2.2 G
%

5

In this section we prove Theorem 2. It is trivial to argue that G%
5 P PSPACE. We prove

PSPACE-hardness by showing a reduction G%
T¨¨¨F ď G%

5,T¨¨¨F in Section 2.2.2. G%
T¨¨¨F is already

known to be PSPACE-complete [9, 10]. We will talk about the other three patterns G%
F¨¨¨F,

G%
T¨¨¨T, G%

F¨¨¨T in the full version. Before the formal proof we develop the intuition in

Section 2.2.1.

ISAAC 2018

9:6 Complexity of Unordered CNF Games

Algorithm 1: T’s winning strategy in pψ, Y q when T has a winning strategy in

pϕ,Xq.

1 while there is a remaining X-variable do

2 if (first move) or (F played an X-variable in the previous move) then

3 play according to the same winning strategy as in pϕ,Xq

4 else if F played ai or bi in the previous move then play the other one to make

ai ‰ bi

5 while there is a remaining A-variable or B-variable do

6 if (F played ai or bi in the previous move) and (one of ai or bi remains unplayed)

then

7 play the other one to make ai ‰ bi

8 else pick a remaining ai or bi and assign it zi’s value from Claim 1

Algorithm 2: F’s winning strategy in pψ, Y q when F has a winning strategy in

pϕ,Xq.

1 while there is a remaining variable do

2 if T played an X-variable in the previous move then

3 play according to the same winning strategy as in pϕ,Xq

4 else if T played ai or bi in the previous move then play the other one to make

ai “ bi

2.2.1 Intuition

This intution is a continuation of Section 2.1.1. The reduction is the same as GT¨¨¨F ď G5,T¨¨¨F

reduction except giving A-variables to T and B-variables to F. In the general unordered

game if any player plays ai or bi, then the other player can immediately play the other one

from ai, bi in a certain advantageous way. In the partitioned version they can do the same

thing if ai belongs to T and bi belongs to F.

2.2.2 Formal Proof

We show G%
T¨¨¨F ď G%

5,T¨¨¨F. Suppose an instance of G%
T¨¨¨F is given by pϕ,XT, XFq where ϕ is

a CNF with unbounded width over sets of variables XT and XF. We show how to construct

an instance pψ, YT, YFq for G%
5,T¨¨¨F where ψ is a 5-CNF over sets of variables YT and YF.

Suppose p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq is a clause in ϕ. If k ď 3, the same clause remains in ψ.

If k ą 3, we show how to construct a chain of clauses in ψ. We introduce two sets of fresh

variables ta1, a2, a3, . . . , ak´1u for T and tb1, b2, b3, . . . , bk´1u for F as follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

Each clause of ϕ gets separate sets of fresh variables for its chain, and we let A “

ta1, a2, a3, . . .u for T and B “ tb1, b2, b3, . . .u for F be the sets of all fresh variables for

all chains. Finally we get a 5-CNF ψ over sets of variables YT “ XT YA and YF “ XF YB.

We claim that T has a winning strategy in pϕ,XT, XFq iff T has a winning strategy in

pψ, YT, YFq.

M. L. Rahman and T. Watson 9:7

Algorithm 3: T’s winning strategy in pψ, YT, YFq when T has a winning strategy

in pϕ,XT, XFq.

1 while there is a remaining XT-variable do

2 if (first move) or (F played an XF-variable in the previous move) then

3 play according to the same winning strategy as in pϕ,XT, XFq

4 else if F played bi in the previous move then play ai to make ai ‰ bi

5 while there is a remaining A-variable do

6 if (F played bi in the previous move) and (ai remains unplayed) then

7 play ai to make ai ‰ bi

8 else pick a remaining ai and assign it zi’s value from Claim 1

Algorithm 4: F’s winning strategy in pψ, YT, YFq when F has a winning strategy

in pϕ,XT, XFq.

1 while there is a remaining variable do

2 if T played an XT-variable in the previous move then

3 play according to the same winning strategy as in pϕ,XT, XFq

4 else if T played ai in the previous move then play bi to make ai “ bi

Suppose T has a winning strategy in pϕ,XT, XFq. We describe T’s winning strategy in

pψ, YT, YFq as Algorithm 3. To see that the strategy works, note that the winning strategy in

pϕ,XT, XFq ensures that ϕpxq is satisfied by the assignment x to XT YXF in the first phase,

so according to Claim 1, there is an assignment z to Z such that ϕ1px, zq is satisfied. T can

ensure that for each i, either ai “ zi or bi “ zi (since ai “ zi due to line 8, or ai ‰ bi due to

line 4 or line 7) and thus ψpx, a, bq gets satisfied, since ϕ1px, zq is satisfied and each clause of

ψ is identical to a clause from ϕ1 but with each zi replaced with ai _ bi and zi replaced with

ai _ bi.

Suppose F has a winning strategy in pϕ,XT, XFq. We describe F’s winning strategy in

pψ, YT, YFq as Algorithm 4. To see that the strategy works, note that the winning strategy in

pϕ,XT, XFq ensures that ϕpxq is unsatisfied by the assignment x to XT YXF, so according

to Claim 1, for all assignments z to Z, ϕ1px, zq is unsatisfied. F can ensure that for each

i, ai “ bi; let us call this common value zi. Thus ψpx, a, bq is unsatisfied, since ϕ1px, zq is

unsatisfied and ψpx, a, bq “ ϕ1px, zq.

3 2-CNF

In order to analyze the complexity of the games G2 and G%
2 , we construct a directed graph

gpϕ,Xq by the classical technique for 2-SAT:

For each variable xi P X, form two nodes xi and xi. Let `i refer to either xi or xi.
2

For each clause p`i _ `jq, add two directed edges `i Ñ `j and `i Ð `j . In case of a single

variable clause p`iq, consider the clause as p`i _ `iq and add one directed edge `i Ñ `i.

2 In Section 2, `i represented an arbitrary literal; in Section 3, `i always represents either xi or xi.

ISAAC 2018

9:8 Complexity of Unordered CNF Games

In the graph, every path `i ù `j has a mirror path `i ø `j . If there exist two paths

`i ù `j and `i ø `j , we express this as `i ú `j . We are interested in strongly connected

components, which we call strong components for short.

The 2-CNF game analogy on this graph is, if any variable xi is assigned a bit value in

ϕ, then in the graph both nodes xi and xi are assigned. Conversely, if say a player assigns

a bit value to a node `i, then the complement node `i simultaneously gets assigned the

opposite value. If `i refers to xi, then xi gets assigned the same value as `i and similarly for

`i referring to xi. Thus we can describe strategies as assigning bit values to nodes in the

graph.

In a satisfying assignment for ϕ, there must not exist any false implication edge (1 Ñ 0)

in the graph. In fact, the graph must not have any path (1 ù 0) since the path will contain

at least one (1 Ñ 0) edge. Player F’s goal is to create a false implication and player T will

try to make all implications true.

We prove Theorem 3 in Section 3.1 and Theorem 4 in the full version.

3.1 G2

G2 is the unordered analogue of the 2-TQBF game. We prove Theorem 3 by separately

considering the cases G2,F¨¨¨F in Section 3.1.1, G2,F¨¨¨T in Section 3.1.2, and G2,T¨¨¨ in Sec-

tion 3.1.3.

3.1.1 G2,F¨¨¨F P Linear Time

I Lemma 5. F has a winning strategy in G2,F¨¨¨F iff at least one of the following statements

holds in the graph gpϕ,Xq:

(1) There exists a node `i such that `i ù `i.

(2) There exist three nodes `i, `j, `k such that `j ù `i ø `k.

(3) There exist two nodes `i, `j such that `i ú `j.

Proof. Suppose at least one of the statements holds.

If statement (1) holds, F can win by `i “ 0 as the very first move.

If statement (2) holds but statement (1) does not, there can be two cases:

In the first case, `i, `j , `k represent three distinct variables. At the beginning, F can play

`i “ 0, then whatever T plays, F still has at least one of `j or `k to play. F can assign `j

or `k as 1 and wins.

In the second case, `i, `j , `k do not represent three distinct variables. The only possibility

is that `k is `j , i.e., `j ù `i ø `j . F can play `i “ 0, then whatever the value of `j , F

wins.

If statement (3) holds but statement (1) does not, F can wait by playing variables other

than xi, xj with arbitrary values until T plays xi or xj . Then F can immediately respond

by making `i ‰ `j and win. As F moves last, he/she can always wait for that opportunity.

Conversely, suppose none of the statements hold. Then we claim the graph has no two

edges that share an endpoint. Otherwise, two edges that share an endpoint would cause

statement (2) or statement (3) to be satisfied. We show this by considering all possible ways

of two edges sharing an endpoint:

`i Ø `j : Satisfies statement (3).

`j Ñ `i Ð `k or its mirror `j Ð `i Ñ `k: Satisfies statement (2).

`k Ñ `j Ñ `i: Satisfies statement (2).

M. L. Rahman and T. Watson 9:9

x1

x1

x2 x3

x2 x3

x4 x5

x4 x5

Figure 1 T has a winning strategy in G2,F¨¨¨F for px2 _ x3q ^ px4 _ x5q.

Algorithm 5: Linear Time Algorithm for G2,F¨¨¨F.

1 construct gpϕ,Xq

2 foreach xi P X do

3 if (xi Ñ xi) or (xi Ð xi) or (xi has at least two incident edges) then output F

4 output T

So, the graph can only have some isolated nodes and isolated edges. Since statement (1)

does not hold, there are no edges between complementary nodes. An example of such a graph

looks like Figure 1. Conversely, in any such graph (like Figure 1) none of statements (1), (2),

(3) holds.

Now, we describe a winning strategy for T on such a graph. If F plays `i or `j of any

fresh (both endpoints unassigned) edge `i Ñ `j , T plays in the same edge by the same bit

value for the other node, i.e., making `i “ `j . Otherwise, T picks any remaining node `i. If

`i is isolated, T assigns any arbitrary bit value. If `i has an incoming edge, T plays `i “ 1.

If `i has an outgoing edge, T plays `i “ 0.

The strategy works, since all the edges `i Ñ `j will be satisfied, by either `i “ `j or `i “ 0

or `j “ 1. J

The characterization of such a graph in the proof of Lemma 5 can be verified in linear

time, and that yields a Linear Time algorithm for G2,F¨¨¨F. Details of the idea have been

described as Algorithm 5.

3.1.2 G2,F¨¨¨T P Linear Time

The characterization is the same as for G2,F¨¨¨F but without statement (3).

I Lemma 6. F has a winning strategy in G2,F¨¨¨T iff at least one of the following statements

holds in the graph gpϕ,Xq:

(1) There exists a node `i such that `i ù `i.

(2) There exist three nodes `i, `j, `k such that `j ù `i ø `k.

Proof. Suppose one of the statements holds. In Lemma 5, we have already seen that

statement (1) and statement (2) allow player F to win at the beginning.

Conversely, suppose none of the statements hold. The graph can have strong components

of size 2. Other than that, there are no two edges sharing an endpoint because statement (2)

does not hold. So, the graph can only have some isolated nodes, isolated edges, and isolated

strong components of size 2. Since statement (1) does not hold, there are no edges between

complementary nodes. An example of such a graph looks like Figure 2. Conversely, in any

such graph (like Figure 2) none of statements (1), (2) holds.

ISAAC 2018

9:10 Complexity of Unordered CNF Games

x1

x1

x2

x2

x3 x4

x3 x4

x5 x6

x5 x6

x7 x8

x7 x8

Figure 2 T has a winning strategy in G2,F¨¨¨T for px3 _ x4q ^ px5 _ x6q ^ px7 _ x8q ^ px7 _ x8q.

Algorithm 6: Linear Time Algorithm for G2,F¨¨¨T.

1 construct gpϕ,Xq

2 foreach xi P X do

3 if (xi Ñ xi) or (xi Ð xi) or (xi has at least two neighbors) then output F

4 output T

Now, we describe a winning strategy for T on such a graph. If F plays `i or `j of any

fresh (both endpoints unassigned) edge `i Ñ `j or strong component `i Ø `j , T plays in the

same edge or strong component by the same bit value for the other node, i.e., making `i “ `j .

Otherwise, T picks any remaining isolated node and gives it any arbitrary bit value. Since

|X| is even, T can always play such a node.

The strategy works, since all the edges `i Ñ `j will be satisfied by `i “ `j . J

The characterization of such a graph in the proof of Lemma 6 can be verified in linear

time, and that yields a Linear Time algorithm for G2,F¨¨¨T. Details of the idea have been

described as Algorithm 6.

3.1.3 G2,T¨¨¨
P Linear Time

In order to win G2,T¨¨¨, at the beginning T must locate a node `i such that after playing it,

the game is reduced to a G2,F¨¨¨ game such that T still has a winning strategy in it. So, T’s

success depends on finding such a node `i. On the other hand, F’s success depends on there

not existing such a node `i.

I Lemma 7. T has a winning strategy in G2,T¨¨¨ iff there exists an `i with no outgoing

edges such that after deleting `i, `i and their incident edges, in the rest of the graph T has a

winning strategy in G2,F¨¨¨.

Proof. Suppose T has a winning strategy in G2,T¨¨¨. Let T’s first move in the winning

strategy be `i “ 1 (or `i “ 0). Then `i must not have any outgoing edge, otherwise either

that edge goes to `i or F could play the other endpoint node of that edge as 0 and win.

Conversely, suppose there exists such an `i. At the beginning, T can play `i “ 1, and

all the incoming edges to `i and outgoing edges from `i get satisfied. Then T can continue

the game according to the winning strategy in G2,F¨¨¨ for the rest of the graph and win. For

example, in Figure 3, T’s winning strategy is to play `i “ 1 at the beginning then continue

the winning strategy for G2,F¨¨¨. J

We define L as the set of all nodes that have no outgoing edges. If |L| “ 0, then according

to Lemma 7, T has no winning strategy in G2,T¨¨¨. If |L| ą 0, then the trivial algorithm for

G2,T¨¨¨ is, checking for each node `i P L, whether or not after playing `i “ 1 the rest of the

graph becomes a winning graph for T in G2,F¨¨¨, i.e., running Algorithm 5 or Algorithm 6 for

Op|L|q times, which is a quadratic time algorithm. We argue that we can do better than that.

M. L. Rahman and T. Watson 9:11

`i

`i

T’s winning graph

in G2,F¨¨¨

Figure 3 T’s winning graph in G2,T¨¨¨
(all edges incident to `i or `i are optional).

We filter the possibilities in L and show that there are only three cases to consider:

There exists a node `i P L such that statement (1) from Lemma 5 and Lemma 6 holds.

We consider this case in Claim 2.

There exists a node `i P L such that statement (2) from Lemma 5 and Lemma 6 holds.

We consider this case in Claim 3.

There exists no node `i P L such that statement (1) or statement (2) from Lemma 5 and

Lemma 6 holds. We consider this case in Claim 4.

Then in Claim 5 and Claim 6 we analyze the efficiency of this approach. We will provide

proofs of Claim 2 to Claim 6 in the full version.

I Claim 2. If there exists `i P L such that `i ù `i and T has a winning strategy in G2,T¨¨¨,

then T’s first move must be `i “ 1.

I Claim 3. If there exists `i P L such that `j ù `i ø `k for two other nodes `j , `k and T

has a winning strategy in G2,T¨¨¨, then T’s first move must be `i “ 1 or `j “ 1 or `k “ 1.

I Claim 4. If there exists no `i P L such that `i ù `i or `j ù `i ø `k for two other

nodes `j , `k and T has a winning strategy in G2,T¨¨¨, then for all `i P L, T has a winning

strategy in G2,T¨¨¨ beginning with `i “ 1.

The overall idea is: If we can find an `i for which statement (1) or statement (2) from

Lemma 5 and Lemma 6 holds, then Claim 2 and Claim 3 allow us to narrow down T’s first

move to Op1q possibilities. If we cannot find such an `i, then Claim 4 allows T to play any

arbitrary `i P L as the first move because all of them are equivalent as the first move. We

define L˚ as the Op1q possibilities in L. Then we can run Algorithm 5 or Algorithm 6 for

|L˚| “ Op1q times.

In the following two claims, we show how we can efficiently verify whether or not there

exists such an `i for which statement (1) or statement (2) from Lemma 5 and Lemma 6 holds.

I Claim 5. There exists a constant-time algorithm for: given `i, find two other nodes `j, `k

such that `j ù `i ø `k or determine they do not exist.

I Claim 6. There exists a constant-time algorithm for: given `i for which there are no `j,

`k as in Claim 5, decide whether there exists a path `i ù `i.

Now combining the whole idea from Claim 2 to Claim 6 we can develop an algorithm for

G2,T¨¨¨. Details of the idea have been described as Algorithm 7.

ISAAC 2018

9:12 Complexity of Unordered CNF Games

Algorithm 7: Linear Time Algorithm for G2,T¨¨¨.

1 construct gpϕ,Xq

2 let L “ tu, L˚ “ tu

3 foreach node `i do

4 if `i has no outgoing edges then L “ LY t`iu

5 if |L| “ 0 then output F

6 foreach `i P L do

7 if `j ù `i ø `k for two other nodes `j , `k (using Claim 5) then

8 L˚ “ LX t`i, `j , `ku (Claim 3), break loop

9 else if `i ù `i (using Claim 6) then L˚ “ t`iu (Claim 2), break loop

10 if |L˚| “ 0 then L˚ “ t`iu for an arbitrary `i P L (Claim 4)

11 foreach `i P L˚ do

12 form graph g1 from gpϕ,Xq by deleting nodes `i, `i and their incident edges

13 run Algorithm 5 or Algorithm 6 on g1 as the G2,F¨¨¨ game

14 if T has a winning strategy in G2,F¨¨¨ then output T

15 output F

References

1 Lauri Ahlroth and Pekka Orponen. Unordered Constraint Satisfaction Games. In Pro-

ceedings of the 37th International Symposium on Mathematical Foundations of Computer

Science (MFCS), pages 64–75. Springer, 2012.

2 Bengt Aspvall, Michael Plass, and Robert Tarjan. A Linear-Time Algorithm for Testing the

Truth of Certain Quantified Boolean Formulas. Information Processing Letters, 8(3):121–

123, 1979.

3 Kyle Burke, Erik Demaine, Harrison Gregg, Robert Hearn, Adam Hesterberg, Michael

Hoffmann, Hiro Ito, Irina Kostitsyna, Jody Leonard, Maarten Löffler, Aaron Santiago,

Christiane Schmidt, Ryuhei Uehara, Yushi Uno, and Aaron Williams. Single-Player and

Two-Player Buttons & Scissors Games. In Proceedings of the 18th Japan Conference on Dis-

crete and Computational Geometry and Graphs (JCDCGG), pages 60–72. Springer, 2015.

4 William Burley and Sandy Irani. On Algorithm Design for Metrical Task Systems. Al-

gorithmica, 18(4):461–485, 1997.

5 Jesper Byskov. Maker-Maker and Maker-Breaker Games Are PSPACE-Complete. Technical

Report RS-04-14, BRICS, Department of Computer Science, Aarhus University, 2004.

6 Chris Calabro. 2-TQBF Is in P, 2008. Unpublished. URL: https://cseweb.ucsd.edu/

~ccalabro/essays/complexity_of_2tqbf.pdf.

7 Aviezri Fraenkel and Elisheva Goldschmidt. PSPACE-hardness of some combinatorial

games. Journal of Combinatorial Theory, Series A, 46(1):21–38, 1987.

8 Robert Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete. In Games

of No Chance 3, Mathematical Sciences Research Institute Publications, pages 287–306.

Cambridge University Press, 2009.

9 Thomas Schaefer. Complexity of Decision Problems Based on Finite Two-Person Perfect-

Information Games. In Proceedings of the 8th Symposium on Theory of Computing (STOC),

pages 41–49. ACM, 1976.

10 Thomas Schaefer. On the Complexity of Some Two-Person Perfect-Information Games.

Journal of Computer and System Sciences, 16(2):185–225, 1978.

11 Larry Stockmeyer and Albert Meyer. Word Problems Requiring Exponential Time. In

Proceedings of the 5th Symposium on Theory of Computing (STOC), pages 1–9. ACM,

1973.

