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—— Abstract

The classic TQBF problem is to determine who has a winning strategy in a game played on a
given CNF formula, where the two players alternate turns picking truth values for the variables
in a given order, and the winner is determined by whether the CNF gets satisfied. We study

variants of this game in which the variables may be played in any order, and each turn consists
of picking a remaining variable and a truth value for it.
For the version where the set of variables is partitioned into two halves and each player
may only pick variables from his/her half, we prove that the problem is PSPACE-complete
for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for
unbounded-width CNFs (Schaefer, STOC 1976).
For the general unordered version (where each variable can be picked by either player), we
also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously,
it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and
PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).
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1 Introduction

Conjunctive normal form formulas (CNFs) are among the most prevalent representations of
boolean functions. All sorts of computational problems concerning CNFs — such as satisfying
them, minimizing them, learning them, refuting them, fooling them, and playing games on
them — play central roles in complexity theory. A CNF is a conjunction of clauses, where
each clause is a disjunction of literals; a w-CNF has at most w literals per clause. The width
w is often the most important parameter governing the complexity of problems concerning
CNFs. The following are three classical games played on a CNF (1, ...,z,):

In the ordered game, player 1 assigns a bit value for x1, then player 2 assigns o, then

player 1 assigns x3, and so on, and the winner is determined by whether ¢ gets satisfied.

Note that the variables must be played in the prescribed order x1, x2, x3,.... Deciding
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who has a winning strategy — better known as TQBF or QSAT — is PSPACE-complete for
3-CNFs [11] and in P for 2-CNFs [2, 6]. Many PSPACE-completeness results have been
shown by reducing from the ordered 3-CNF game.

In the unordered game, each player is allowed to pick which remaining variable to play next
(as well as which bit value to assign it), and again the winner is determined by whether ¢
gets satisfied. Deciding who has a winning strategy is PSPACE-complete for 6-CNFs [1]
and for 11-CNFs with only positive literals [9, 10]. The unordered game on positive CNFs
is also known as the maker—breaker game, and a simplified proof of PSPACE-completeness
for unbounded-width positive CNFs appears in [5]. Many PSPACE-completeness results
have been proven by reducing from the unordered positive CNF game [7, 5, 8]. For
the general unordered CNF game, nothing was known for width < 6; in particular, the
complexity of the unordered 2-CNF game was not studied in the literature before.

In the partitioned game, the set of variables is partitioned into two halves and each player
may only pick variables from his/her half. This is, in a sense, intermediate between
ordered and unordered: the ordered game restricts the set of variables available to
each player and the order they must be played; the unordered game restricts neither;
the partitioned game restricts only the former. Deciding who has a winning strategy
was shown to be PSPACE-complete for unbounded-width CNFs in [9, 10], where it was
explicitly posed as an open problem to show PSPACE-completeness with any constant
bound on the width. This game has been used for PSPACE-completeness reductions [3],
and a variant with a matching between the two players’ variables has also been studied
[4]. The partitioned 2-CNF game was not studied in the literature before.

We prove that the unordered and partitioned games are both PSPACE-complete for 5-
CNFs; the former improves the width 6 bound from [1], and the latter resolves the 42-year-old
open problem from [9, 10]. We also prove that the unordered and partitioned games are
both in P for 2-CNFs. The complexity for width 3 and 4 remains open. In the following
section we give the precise definitions and theorem statements.

1.1 Statement of results

The unordered CNF game is defined as follows. There are two players, denoted T (for “true”)
and F (for “false”). The input consists of a CNF ¢, a set of variables X = {x1,...,2,}
containing all the variables that appear in ¢ (and possibly more), and a specification of which
player goes first. The players alternate turns, and each turn consists of picking a remaining
variable from X and assigning it a value 0 or 1. Once all variables have been assigned, the
game ends and T wins if ¢ is satisfied, and F wins if it is not. We let G (for “game”) denote
the problem of deciding which player has a winning strategy, given ¢, X, and who goes first.

The partitioned CNF game is similar to the unordered CNF game, except that X is
partitioned into two halves X7 and Xr, and each player may only pick variables from his/her
half. If n is even we require |Xr| = | Xp|, and if n is odd we require |Xt| = |Xp| + 1 if T
goes first, and | Xg| = | Xr| + 1 if F goes first. We let G” denote the problem of deciding
which player has a winning strategy, given ¢, the partition X = Xt u X, and who goes
first.

We let G, and GZ? denote the restrictions of G and G%, respectively, to instances where
¢ has width w, i.e., each clause has at most w literals. Now, we state our results as the
following theorems:

» Theorem 1. G5 is PSPACE-complete.
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» Theorem 2. G?’ is PSPACE-complete.
» Theorem 3. G, is in P, in fact, in Linear Time.
» Theorem 4. G is in P, in fact, in Linear Time.

We prove Theorem 1 and Theorem 2 in Section 2 by showing reductions from the PSPACE-
complete games G and G% respectively. For Theorem 3 and Theorem 4 in Section 3 we prove
characterizations in terms of the graph representation from the classical 2-SAT algorithm —
who has a winning strategy in terms of certain graph properties — and we design linear time
algorithms to check these properties.!

In the proofs, it is helpful to distinguish four patterns for “who goes first” and “who goes
last”, we introduce new subscripts. For a,b € {T,F}, the subscript a---b means player a
goes first and player b goes last, a - -+ means a goes first, and ---b means b goes last. These
may be combined with the width w subscript. For example, G%’_”F (which was denoted
G% tree (CNF) in [9, 10], by the way) corresponds to the partitioned game where T goes first
and F goes last (so n = | X| must be even), and Gy ...r corresponds to the unordered game
with width 5 where T goes last (so either n is even and F goes first, or n is odd and T goes
first).

2 5-CNF

We prove Theorem 1 in Section 2.1 and Theorem 2 in Section 2.2.

21 Gs

In this section we prove Theorem 1. It is trivial to argue that G € PSPACE. We prove
PSPACE-hardness by showing a reduction Gr..p < Gg 7...F in Section 2.1.2. Gr...p is already
known to be PSPACE-complete [9, 10, 5, 1]. We will talk about the other three patterns
Gr...r, Gr...7, Gp...7 in the full version. Before the formal proof we develop the intuition in
Section 2.1.1.

2.1.1 Intuition

In NP-completeness, recall the following simple reduction from SAT with unbounded width to
3-SAT. Suppose a SAT instance is given by ¢ over set of variables X. If ({1 vy v v ---v {y)
is a clause in ¢ with width k& > 3, then the reduction introduces fresh variables 21, 22, ..., 2x_1
and generates a chain of clauses in ¢’ as follows:

(lava))n(GEivilavz) A AZicavlivz) A AZr—2VLle—1V 2p-1) A (Zp—1 Vv k)

Each clause of ¢ gets a separate set of fresh variables for its chain, and we let Z = {21, 29, ...}
be the set of all fresh variables for all chains. The reduction claims that ¢ is satisfiable if
and only if ¢’ is satisfiable. We are going to have a stronger property in Claim 1.

» Claim 1. For every assignment x to X : ¢(x) is salisfied iff there exists an assignment z
to Z such that ¢'(z, z) is satisfied.

! We remark that it is not automatic that two-player games on 2-CNFs are solvable in polynomial time;
e.g., the game played on a 2-CNF with only negative literals in which players alternate turns assigning
variables of their choice to 0 and where the loser is the first to falsify the 2-CNF, as well as the partitioned
variant of this game, are PSPACE-complete [9, 10].

9:3
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Proof. Suppose z satisfies . If x satisfies (€1 v €o v €3 v -+ v ;) in ¢ by £; = 1, then in
the corresponding chain of clauses in ¢’, the clause having ¢; also gets satisfied by ¢; = 1
and the rest of the clauses in that chain can get satisfied by assigning all z’s on the left side
of ¢; as 1 and right side of ¢; as 0.

Now suppose x does not satisfy ¢. Then at least one of the clauses of ¢ has all literals
assigned as 0. The corresponding chain of clauses in ¢’ essentially becomes:

(21) A (21 \% 22) A A (Ei—l \% Zz) A A (Ek_z \% Zk—l) A (zk—l)

In order to satisfy the above chain, z; = 1 and 21 = 0. It also introduces the following
chain of implications: z1 = 23 = 23 = -+ = z;_1. Following the chain we get (21 = z_1)
= (1 = 0). Therefore, we conclude that ¢'(x, z) cannot be satisfied for any assignment z. <

Now this reduction does not show Gr..p < Gs 1.5 since the games on ¢ and ¢’ are not
equivalent. We show a simple example to make our point. Consider the following Gr..p
game over variables {xg,z1,..., 2}

p=x0A(x1 VIaVv I3V -V, where k > 1

In the above Gr...r game, T has a winning strategy: On the first move T plays g = 1. Then

whatever F plays, T plays one of the k¥ — 1 many unassigned z; from {z1,zs,..., 25} as 1. T
wins.

But if we introduce fresh variables {z1, 29, 23, ...} as in the NP-completeness reduction
then we get a game over variables {zg, z1,22,..., 2k} U {z1,..., 2k—1}:

O =xon(@va)A-AEZiavaivz) A A (Zr1 Vv Tk)

In the above G3 7...r game, F has a winning strategy: On the first move T must play o = 1,
otherwise F wins by xg = 0. Then F plays 1 = 0 and T must reply by z; = 1, otherwise
F wins by z; = 0. Then F plays zo = 0 and T must reply by z2 = 1, otherwise F wins by
zo = 0. The strategy goes on like this until the last clause and F wins by zj = 0.

The G3 1..r game is disadvantageous for T compared to the Gr..r game. The disadvant-
age arises from F having the beginning move in a fresh chain of clauses.

Now the intuition is to design a game version of the NP-completeness reduction by fixing
the imbalance. We design v in such a way that the games on ¢ and v stay equivalent. In
order to counter the unfairness for T due to fresh variables {z1, 22, 23, ...}, we replace z;
by a pair of variables (a;,b;) which gives T more opportunities to satisfy the clauses. The
construction of a chain of clauses in ¢ from a clause ({1 v €3 v €3 v -+ v {}) in @ goes as
follows:

(élvalvbl)/\---/\(ai,l V5i71 v&vaivbi)/\---A(Ek,l \/Ekfl\/gk)

We just constructed a 5-CNF ). Let us consider the G5 7...r game on . In an optimal
gameplay, no player should play a’s or b’s before playing x’s. Intuitively, this is because, if F
plays any a; or b;, then T can reply by making a; # b; and both clauses involving a; and b;
will be satisfied, which benefits T. If T plays any a; or b;, F can reply by making a; = b;,
which satisfies one clause involving a; and b; but the other clause gets two 0 literals. Since
only one of the two clauses gets satisfied by a;,b;, T would like to wait for more information
before deciding which one to satisfy with a;, b;: it depends on whether they are on the right
side or left side of a satisfied ¢; in a chain, which in turn depends on the assignment z.
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So, an optimal gameplay consists of two phases. In the first phase, players should play
only x’s. Whoever deviates from this optimal strategy does not have the upper hand. The
second phase begins when all the x’s have been played and someone must start playing a’s
and b’s. Since the number of fresh variables is even (2|Z|) and F plays last, T must be the
one to start the second phase, which is essential since if F started the second phase then T
could satisfy all the clauses regardless of what happened in the first phase. This observation
also allows us to show PSPACE-completeness of Gs y...r, discussed in the full version.

In the second phase, after T plays any a; or b;, it is optimal for F to reply by making
a; = b;. Assuming this optimal gameplay by F, we can consider a pair (a;,b;) as a single
variable z; which can be assigned only by T. Effectively, the second phase just consists of
T choosing an assignment z to ¢’ from the NP-completeness reduction. Thus 1(z, a,b) is
satisfied iff ¢'(x, 2) is satisfied, which by Claim 1 is possible iff ¢(x) is satisfied, where x is
the assignment from the first phase.

2.1.2 Formal Proof

We show Gr..p < G5 7...p. Suppose an instance of Gr..p is given by (¢, X) where ¢ is a
CNF with unbounded width over set of variables X. We show how to construct an instance
(1,Y) for Gs 1..r where 1 is a 5-CNF over set of variables Y. Suppose (€1 v o v v - v ly)
is a clause in . If k < 3, the same clause remains in . If £ > 3, we show how to construct
a chain of clauses in ¢. We introduce two sets of fresh variables {a;,as,as,...,ar—1} and
{b1,ba,b3,...,bx_1} as follows:

(Elvalvbl)A'u/\(Ei_l VBi_l \/fi\/ai\/bi)/\"'/\(ak_l \/Ek_lvﬁk)

Fach clause of ¢ gets separate sets of fresh variables for its chain, and we let A =
{a1,as2,as3,...} and B = {b1,ba,bs, ...} be the sets of all fresh variables for all chains. Finally
we get a 5-CNF 1) over set of variables Y = X U A U B.

We claim that T has a winning strategy in (¢, X) iff T has a winning strategy in (¢,Y).

Suppose T has a winning strategy in (¢, X). We describe T’s winning strategy in (¢, Y)
as Algorithm 1. To see that the strategy works, note that the winning strategy in (¢, X)
ensures that ¢(x) is satisfied by the assignment = to X in the first phase, so according to 1,
there is an assignment z to Z such that ¢'(z, z) is satisfied. T can ensure that for each i,
either a; = z; or b; = z; (since a; = z; or b; = z; due to line 8, or a; # b; due to line 4 or line
7) and thus ¢ (z, a,b) gets satisfied, since ¢'(x, z) is satisfied and each clause of v is identical
to a clause from ¢’ but with each z; replaced with a; v b; and z; replaced with @; v b;.

Suppose F has a winning strategy in (p, X). We describe F’s winning strategy in (¢,Y)
as Algorithm 2. To see that the strategy works, note that the winning strategy in (¢, X)
ensures that p(z) is unsatisfied by the assignment z to X, so according to Claim 1, for
all assignments z to Z, ¢/(z, z) is unsatisfied. F can ensure that for each i, a; = b;; let us
call this common value z;. Thus 9(z,a,b) is unsatisfied, since ¢'(x, z) is unsatisfied and

Uv(x,a,b) = ¢'(x,2).

22 GF

In this section we prove Theorem 2. It is trivial to argue that G5° € PSPACE. We prove
PSPACE-hardness by showing a reduction G?“F < G?T,,,F in Section 2.2.2. G?..F is already
known to be PSPACE-complete [9, 10]. We will talk about the other three patterns G{Z"MF,
G?“T, G?“T in the full version. Before the formal proof we develop the intuition in
Section 2.2.1.

9:5
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Algorithm 1: T’s winning strategy in (¢,Y) when T has a winning strategy in

(¢, X).

1 while there is a remaining X-variable do

2 if (first move) or (F played an X-variable in the previous move) then

3 L play according to the same winning strategy as in (¢, X)

4 else if F played a; or b; in the previous move then play the other one to make
| a; # b1

5 while there is a remaining A-variable or B-variable do

6 if (F played a; or b; in the previous move) and (one of a; or b; remains unplayed)

then

7 L play the other one to make a; # b;

8 else pick a remaining a; or b; and assign it z;’s value from Claim 1

Algorithm 2: F’s winning strategy in (¢,Y) when F has a winning strategy in
(9, X).

1 while there is a remaining variable do
2 if T played an X-variable in the previous move then

3 L play according to the same winning strategy as in (¢, X)

4 else if T played a; or b; in the previous move then play the other one to make
a; = bl

2.2.1 Intuition

This intution is a continuation of Section 2.1.1. The reduction is the same as Gr..r < G5 7..F
reduction except giving A-variables to T and B-variables to F. In the general unordered
game if any player plays a; or b;, then the other player can immediately play the other one
from a;, b; in a certain advantageous way. In the partitioned version they can do the same
thing if a; belongs to T and b; belongs to F.

2.2.2 Formal Proof

We show G ¢ < G?T,_F. Suppose an instance of G4 1 is given by (¢, X7, Xp) where ¢ is
a CNF with unbounded width over sets of variables X1 and Xr. We show how to construct
an instance (¢, Y, Yr) for G?”T_,_F where 9 is a 5-CNF over sets of variables Y and Yr.
Suppose (€1 v by v €3 v -+ v £) is a clause in . If k < 3, the same clause remains in .
If £ > 3, we show how to construct a chain of clauses in 1. We introduce two sets of fresh
variables {a1,as,as,...,ar_1} for T and {by, ba, b3, ... ,bx_1} for F as follows:

(brvarvb) A A(@1vbigvelivaivb) - A (@1 Vbi1 Vv Llk)

Fach clause of ¢ gets separate sets of fresh variables for its chain, and we let A =
{a1,a2,a3,...} for T and B = {by,bs,bs,...} for F be the sets of all fresh variables for
all chains. Finally we get a 5-CNF 1) over sets of variables Yy = X1t U A and Yr = Xp U B.

We claim that T has a winning strategy in (¢, X7, Xr) iff T has a winning strategy in
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Algorithm 3: T’s winning strategy in (¢, Y7, Yr) when T has a winning strategy
in ((p, XT7 XF)

[uny

while there is a remaining Xr-variable do
2 if (first move) or (F played an Xp-variable in the previous move) then
3 L play according to the same winning strategy as in (¢, X1, Xr)

4 else if F played b; in the previous move then play a; to make a; # b;

5 while there is a remaining A-variable do
if (F played b; in the previous move) and (a; remains unplayed) then
7 L play a; to make a; # b;

8 else pick a remaining a; and assign it z;’s value from Claim 1

Algorithm 4: F’s winning strategy in (¢, Y7, Yr) when F has a winning strategy
in (¢, X7, XF).

1 while there is a remaining variable do

2 if T played an Xp-variable in the previous move then
3 L play according to the same winning strategy as in (¢, X1, Xr)
4 else if T played a; in the previous move then play b; to make a; = b;

Suppose T has a winning strategy in (¢, X, Xr). We describe T’s winning strategy in
(¥, Y1, Yr) as Algorithm 3. To see that the strategy works, note that the winning strategy in
(¢, X1, Xr) ensures that ¢(x) is satisfied by the assignment  to X1 u X in the first phase,
so according to Claim 1, there is an assignment z to Z such that ¢'(z, 2) is satisfied. T can
ensure that for each ¢, either a; = z; or b; = z; (since a; = z; due to line 8, or a; # b; due to
line 4 or line 7) and thus ¢ (z, a,b) gets satisfied, since ¢'(x, z) is satisfied and each clause of
1) is identical to a clause from ¢’ but with each z; replaced with a; v b; and z; replaced with
a; v Bl

Suppose F has a winning strategy in (¢, X1, Xr). We describe F’s winning strategy in
(1, Y1, Yr) as Algorithm 4. To see that the strategy works, note that the winning strategy in
(p, X1, XF) ensures that ¢(x) is unsatisfied by the assignment x to Xt U X, so according
to Claim 1, for all assignments z to Z, ¢'(x, z) is unsatisfied. F can ensure that for each
i, a; = by; let us call this common value z;. Thus ¥(x,a,b) is unsatisfied, since ¢'(x, z) is
unsatisfied and ¢ (x, a,b) = ¢'(z, 2).

3 2-CNF

In order to analyze the complexity of the games G and G?ﬂ we construct a directed graph
g(p, X) by the classical technique for 2-SAT:
For each variable z; € X, form two nodes x; and T;. Let ¢; refer to either z; or Z;.2

For each clause (¢; v £;), add two directed edges ¢; — ¢; and ¢; < ¢;. In case of a single
variable clause (£;), consider the clause as (¢; v ¢;) and add one directed edge £; — ;.

2 In Section 2, ¢; represented an arbitrary literal; in Section 3, ¢; always represents either z; or ;.
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In the graph, every path ¢; v~ ¢; has a mirror path U e Zj. If there exist two paths
£; v~ £ and €; «~ £, we express this as £; <~ £;. We are interested in strongly connected
components, which we call strong components for short.

The 2-CNF game analogy on this graph is, if any variable x; is assigned a bit value in
©, then in the graph both nodes z; and T; are assigned. Conversely, if say a player assigns
a bit value to a node /;, then the complement node /¢; simultaneously gets assigned the
opposite value. If ¢; refers to x;, then z; gets assigned the same value as ¢; and similarly for
{; referring to T;. Thus we can describe strategies as assigning bit values to nodes in the
graph.

In a satisfying assignment for ¢, there must not exist any false implication edge (1 — 0)
in the graph. In fact, the graph must not have any path (1 v~ 0) since the path will contain
at least one (1 — 0) edge. Player F’s goal is to create a false implication and player T will
try to make all implications true.

We prove Theorem 3 in Section 3.1 and Theorem 4 in the full version.

3.1 G

Go is the unordered analogue of the 2-TQBF game. We prove Theorem 3 by separately
considering the cases Gg p...r in Section 3.1.1, Gy g...7 in Section 3.1.2, and Gg ... in Sec-
tion 3.1.3.

3.1.1 Gyp.p € Linear Time

» Lemma 5. F has a winning strategy in Gor..r iff at least one of the following statements
holds in the graph g(v, X):

(1) There exists a node £; such that {; ~~ {;.

(2) There exist three nodes €;, £;, £ such that {; v £; «~~ U,

(3) There exist two nodes ¢;, ¢; such that {; <~ ;.

Proof. Suppose at least one of the statements holds.
If statement (1) holds, F can win by ¢; = 0 as the very first move.
If statement (2) holds but statement (1) does not, there can be two cases:
In the first case, ¢;, ¢;, ¢i represent three distinct variables. At the beginning, F' can play
¢; = 0, then whatever T plays, F still has at least one of ¢; or ¢ to play. F can assign ¢;
or /;, as 1 and wins.
In the second case, #;, ¢;, £, do not represent three distinct variables. The only possibility
is that £y, is ¢;, i.e., £; v £; e~ ;. F can play ¢; = 0, then whatever the value of ¢;, F
wins.

If statement (3) holds but statement (1) does not, F can wait by playing variables other
than x;, x; with arbitrary values until T plays z; or ;. Then I can immediately respond
by making ¢; # ¢; and win. As F moves last, he/she can always wait for that opportunity.

Conversely, suppose none of the statements hold. Then we claim the graph has no two
edges that share an endpoint. Otherwise, two edges that share an endpoint would cause
statement (2) or statement (3) to be satisfied. We show this by considering all possible ways
of two edges sharing an endpoint:

¢; < {;: Satisfies statement (3).

l; — l; — {} or its mirror Zj « l; — [}, Satisfies statement (2).

U, — £; — £;: Satisfies statement (2).
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OO OOWO
OO OOIRO

Figure 1 T has a winning strategy in Go p...r for (Z2 v 23) A (24 v Z5).

Algorithm 5: Linear Time Algorithm for Ga p...p.

1 construct g(p, X)
2 foreach z; € X do
3 L if (x; > T;) or (x; < T;) or (x; has at least two incident edges) then output F

4 output T

So, the graph can only have some isolated nodes and isolated edges. Since statement (1)
does not hold, there are no edges between complementary nodes. An example of such a graph
looks like Figure 1. Conversely, in any such graph (like Figure 1) none of statements (1), (2),
(%) holds.

Now, we describe a winning strategy for T on such a graph. If F plays ¢; or ¢; of any
fresh (both endpoints unassigned) edge ¢; — ¢;, T plays in the same edge by the same bit
value for the other node, i.e., making ¢; = ¢;. Otherwise, T picks any remaining node ¢;. If

¢; is isolated, T assigns any arbitrary bit value. If ¢; has an incoming edge, T plays ¢; = 1.

If ¢; has an outgoing edge, T plays ¢; = 0.
The strategy works, since all the edges ¢; — ¢; will be satisfied, by either ¢; = ¢; or £; = 0
or {; = 1. |

The characterization of such a graph in the proof of Lemma 5 can be verified in linear
time, and that yields a Linear Time algorithm for Gy y..r. Details of the idea have been
described as Algorithm 5.

3.1.2 Ggyp..1 € Linear Time

The characterization is the same as for Go p...p but without statement (3).

» Lemma 6. F has a winning strategy in Gop...v iff at least one of the following statements
holds in the graph g(v, X):

(1) There exists a node £; such that €; v ;.

(2) There exist three nodes £;, ;, {y, such that £; v~ £; <~ L.

Proof. Suppose one of the statements holds. In Lemma 5, we have already seen that
statement (1) and statement (2) allow player F to win at the beginning.

Conversely, suppose none of the statements hold. The graph can have strong components
of size 2. Other than that, there are no two edges sharing an endpoint because statement (2)
does not hold. So, the graph can only have some isolated nodes, isolated edges, and isolated
strong components of size 2. Since statement (1) does not hold, there are no edges between
complementary nodes. An example of such a graph looks like Figure 2. Conversely, in any
such graph (like Figure 2) none of statements (1), (2) holds.
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Figure 2 T has a winning strategy in Gop...7 for (T3 v 1) A (x5 v x6) A (T7 v 28) A (T7 Vv Ts).

95
A

Algorithm 6: Linear Time Algorithm for Gy p...1.

1 construct g(p, X)
2 foreach z; € X do
3 L if (x; > T;) or (z; < Z;) or (z; has at least two neighbors) then output F

4 output T

Now, we describe a winning strategy for T on such a graph. If F plays ¢; or ¢; of any
fresh (both endpoints unassigned) edge ¢; — ¢; or strong component ¢; < ¢;, T plays in the
same edge or strong component by the same bit value for the other node, i.e., making ¢; = ¢;.
Otherwise, T picks any remaining isolated node and gives it any arbitrary bit value. Since
| X| is even, T can always play such a node.

The strategy works, since all the edges ¢; — ¢; will be satisfied by ¢; = ¢;. <

The characterization of such a graph in the proof of Lemma 6 can be verified in linear
time, and that yields a Linear Time algorithm for Gy p..7. Details of the idea have been
described as Algorithm 6.

3.1.3 Gy .. € Linear Time

In order to win Go r..., at the beginning T must locate a node ¢; such that after playing it,
the game is reduced to a G ... game such that T still has a winning strategy in it. So, T’s
success depends on finding such a node ¢;. On the other hand, F’s success depends on there
not existing such a node /¢;.

» Lemma 7. T has a winning strategy in Go .. iff there exists an {; with no outgoing

edges such that after deleting {;, {; and their incident edges, in the rest of the graph T has a
winning strategy in Ga p....

Proof. Suppose T has a winning strategy in Go ... Let T’s first move in the winning
strategy be ¢; = 1 (or £; = 0). Then ¢; must not have any outgoing edge, otherwise either
that edge goes to ¢; or F could play the other endpoint node of that edge as 0 and win.
Conversely, suppose there exists such an ¢;. At the beginning, T can play ¢; = 1, and
all the incoming edges to ¢; and outgoing edges from ¢; get satisfied. Then T can continue
the game according to the winning strategy in Gg p... for the rest of the graph and win. For
example, in Figure 3, T’s winning strategy is to play ¢; = 1 at the beginning then continue
the winning strategy for Go p.... |

We define L as the set of all nodes that have no outgoing edges. If |L| = 0, then according
to Lemma 7, T has no winning strategy in Go r.... If |L| > 0, then the trivial algorithm for
Gg ... is, checking for each node ¢; € L, whether or not after playing ¢; = 1 the rest of the
graph becomes a winning graph for T in Gg p..., i.e., running Algorithm 5 or Algorithm 6 for
O(|L]|) times, which is a quadratic time algorithm. We argue that we can do better than that.
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T’s winning graph
in GQ’F...

- J

Figure 3 T’s winning graph in Ga r... (all edges incident to ¢; or ?; are optional).

We filter the possibilities in L and show that there are only three cases to consider:

There exists a node ¢; € L such that statement (1) from Lemma 5 and Lemma 6 holds.

We consider this case in Claim 2.

There exists a node ¢; € L such that statement (2) from Lemma 5 and Lemma 6 holds.

We consider this case in Claim 3.

There exists no node ¢; € L such that statement (1) or statement (2) from Lemma 5 and
Lemma 6 holds. We consider this case in Claim 4.
Then in Claim 5 and Claim 6 we analyze the efficiency of this approach. We will provide
proofs of Claim 2 to Claim 6 in the full version.

» Claim 2. If there exists {; € L such that £; ~~ £; and T has a winning strategy in Gao ...’
then T'’s first move must be £; = 1.

» Claim 3. If there ewists {; € L such that £; v {; «~ {}, for two other nodes {;, ¢, and T
has a winning strategy in Ga 1..., then T'’s first move must be {; = 1 or Zj =1orf =1.

» Claim 4. If there exists no £; € L such that {; ~~ {; or Ui v Ly e Ly for two other
nodes €;,0;, and T has a winning strategy in Go ..., then for all ¢; € L, T has a winning
strategy in Go ... beginning with ¢; = 1.

The overall idea is: If we can find an ¢; for which statement (1) or statement (2) from
Lemma 5 and Lemma 6 holds, then Claim 2 and Claim 3 allow us to narrow down T’s first
move to O(1) possibilities. If we cannot find such an ¢;, then Claim 4 allows T to play any
arbitrary ¢; € L as the first move because all of them are equivalent as the first move. We
define L* as the O(1) possibilities in L. Then we can run Algorithm 5 or Algorithm 6 for
|L*| = O(1) times.

In the following two claims, we show how we can efficiently verify whether or not there
exists such an ¢; for which statement (1) or statement (2) from Lemma 5 and Lemma 6 holds.

» Claim 5. There exists a constant-time algorithm for: given {;, find two other nodes £;, £,
such that £; v~ l; «~ f}, or determine they do not exist.

» Claim 6. There exists a constant-time algorithm for: given £; for which there are no {;,
U, as in Claim 5, decide whether there exists a path {; v {;.

Now combining the whole idea from Claim 2 to Claim 6 we can develop an algorithm for
Go 1.... Details of the idea have been described as Algorithm 7.
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Algorithm 7: Linear Time Algorithm for Gy r....

1 construct g(p, X)

2 let L={}, L* ={}

3 foreach node ¢; do

4 L if ¢; has no outgoing edges then L = L U {¢;}

5 if |L| = 0 then output F

6 foreach /; € L do

7 if ¢; v~ £ <~ £y, for two other nodes ¢, ¢, (using Claim 5) then

8 L L* = L~ {¢;,0;,0} (Claim 3), break loop

9 else if /; w {; (using Claim 6) then L* = {/;} (Claim 2), break loop

10 if |L*| = 0 then L* = {{;} for an arbitrary ¢; € L (Claim 4)

11 foreach ¢, € L* do

12 form graph ¢’ from g(p, X) by deleting nodes /;, ¢; and their incident edges
13 run Algorithm 5 or Algorithm 6 on ¢’ as the Ga p... game

14 if T has a winning strategy in Gy ... then output T

15 output F
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