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Abstract

The complexity class ZPP
NP[1] (corresponding to zero-error randomized algorithms with access to

one NP oracle query) is known to have a number of curious properties. We further explore this class

in the settings of time complexity, query complexity, and communication complexity.

For starters, we provide a new characterization: ZPP
NP[1] equals the restriction of BPP

NP[1] where

the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query.

Using the above characterization, we prove a query-to-communication lifting theorem, which

translates any ZPP
NP[1] decision tree lower bound for a function f into a ZPP

NP[1] communication

lower bound for a two-party version of f .

As an application, we use the above lifting theorem to prove that the ZPP
NP[1] communication

lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is not tight. We

also provide a “primal” characterization of this lower bound technique as a complexity class.
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1 Introduction

Query-to-communication lifting is a paradigm for proving lower bounds in communication

complexity [30, 26, 34] using lower bounds in query complexity (a.k.a. decision tree complexity)

[40, 9, 26]. This technique has yielded a wide array of applications, including lower bounds

for the Clique vs. Independent Set communication game and the related Alon–Saks–Seymour

conjecture in graph theory [15, 6], separations between communication complexity and

partition number [20, 3, 16, 4, 22], lower bounds for monotone circuits, monotone span

programs, and proof complexity [35, 7, 25, 19, 14, 36, 33], new and unified proofs of quantum

communication lower bounds [38] and of separations between randomized and quantum

communication complexity [22, 1, 2], lower bounds for LP and SDP relaxations of CSPs

[12, 31, 29], separations between communication complexity classes [10, 28, 18, 21, 17, 8],

and lower bounds for finding Nash equilibria [37, 5].

The basic format of the technique is a two-step approach in which a relatively simple

problem-specific argument is combined with fairly heavy-duty general-purpose machinery for

handling communication protocols. More specifically:
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Class Reference

P [35, 20]

NP [18, 15]

BPP [22]

P
NP [17]

ZPP
NP[1] Theorem 2

SBP [18]

AWPP [38]

PostBPP [18]

PP [38]
P

NP BPP

PNP ZPPNP[1] SBP AWPP

PostBPP

PP

Figure 1 Classes with a known query-to-communication lifting theorem. C1 → C2 denotes

C1 ⊆ C2.

(1) Capture the combinatorial core of the desired communication complexity lower bound

by proving an analogous query complexity lower bound.

(2) Apply a lifting theorem showing that the query complexity of any boolean function f is

essentially the same as the communication complexity of a two-party version of f .

The availability of a lifting theorem greatly eases the burden on the lower bound prover, since

query lower bounds are generally much easier to prove than communication lower bounds.

The lifting theorem is with respect to a particular model of computation: deterministic,

randomized, nondeterministic, and so on; it is convenient to associate these models with

their corresponding classical time-bounded complexity classes: P, BPP, NP, and so on. This

idea has led to an ongoing project: prove lifting theorems for the query/communication

analogues of various classical complexity classes. Figure 1 shows the main classes for which a

lifting theorem is known, along with primary references. Even the less well-known classes

sometimes correspond to standard measures in the query/communication settings; e.g.,

AWPP corresponds to approximate polynomial degree in query complexity and to log of

approximate rank in communication complexity. Some notable classes for which a lifting

theorem is not known include BQP, UP, and MA. Proving a lifting theorem for AM would

be a breakthrough, as it is notoriously open to prove any strong AM-type communication

lower bound for an explicit function, but is trivial to do so in the query complexity setting.

Our central contribution is a lifting theorem for the slightly exotic class ZPPNP[1], which

corresponds to randomized algorithms that can make one call to an NP oracle, output the

correct answer with probability ≥ 3/4, and output ⊥ with the remaining probability. This

model is interesting partly because it has so many curious properties, one of which is that it

is robust with respect to the success probability threshold: by [13], the success probability

can be efficiently amplified as long as it is > 1/2 (which is nontrivial since the standard

method for amplification would use multiple independent trials, resulting in multiple NP

oracle queries). In terms of relations to other classes, ZPPNP[1] contains BPP [11] and is

contained in S2P [11] and in PostBPP (a.k.a. BPPpath) [21]. If we generalized ZPPNP[1] to

allow success probability slightly < 1/2, or to allow two nonadaptive NP oracle calls, either

way the class would contain AM ∩ coAM, and hence proving explicit lower bounds for the

communication version would yield breakthrough AM communication lower bounds; in this

sense, ZPPNP[1] is just shy of the communication lower bound frontier. ZPPNP[1] also shows

up frequently in the literature on the “two queries problem” [39].
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Our starting point is to uncover another curious property of ZPPNP[1]: we prove it

is equivalent (in time, query, and communication complexities) to a new model we dub

CautiousBPPNP[1], which corresponds to randomized algorithms that can make one call to an

NP oracle, output the correct answer with probability ≥ 3/4, and are only allowed to err

when they choose not to call the NP oracle. This equivalence plays a crucial role in our proof

of the lifting theorem for ZPPNP[1].

Once we have the lifting theorem, the natural application domain is to prove new ZPPNP[1]-

type communication lower bounds. [21] developed a technique for proving such lower bounds,

and we use our lifting theorem to derive new separations, which imply that the technique

from [21] is not tight. This is analogous to the main application from [17], in which a PNP

lifting theorem was used to show that the PNP-type communication lower bound technique

from [24, 32] is not tight. For context, we note that certain other communication complexity

classes have similar lower bound techniques that are tight; e.g., the discrepancy bound

captures PP communication [27], and the corruption bound captures SBP communication

[23]. So for what class is the lower bound technique from [21] tight, if not ZPPNP[1]? We

also answer this question in the full version of this paper. The class did not have a standard

name, but it turns out to have a reasonably simple definition.

1.1 Statement of results

We formally define ZPPNP[1] and CautiousBPPNP[1] and their query/communication analogues

in Section 2. For any model C (such as ZPPNP[1] or CautiousBPPNP[1]) we use C for the

polynomial time complexity class, Cdt and Ccc for the polylog query and communication

complexity classes, and Cdt(f) and Ccc(F ) for the corresponding query and communication

complexities of a partial function f : {0, 1}n → {0, 1} and a partial two-party function

F : {0, 1}n × {0, 1}n → {0, 1} (we also consider F ’s where Alice and Bob have unequal but

polynomially-related input lengths). We use Θ̃ to hide polylog(n) factors. We prove the

following characterization in Section 3.

I Theorem 1.

(i) ZPPNP[1] = CautiousBPPNP[1].

(ii) ZPPNP[1]dt(f) = Θ̃(CautiousBPPNP[1]dt(f)) for all f .

(iii) ZPPNP[1]cc(F ) = Θ̃(CautiousBPPNP[1]cc(F )) for all F .

We now prepare to state the lifting theorem. For f : {0, 1}n → {0, 1} (called the outer

function) and g : X × Y → {0, 1} (called the gadget), their composition f ◦ gn : X n ×

Yn → {0, 1} is the two-party function where Alice gets x = (x1, . . . , xn) ∈ X n, Bob gets

y = (y1, . . . , yn) ∈ Yn, and the goal is to evaluate (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Note that any deterministic (P-type) decision tree for f can be turned into a deterministic

protocol for f ◦ gn where Alice and Bob communicate to evaluate g(xi, yi) whenever the

decision tree queries the ith input bit of f . A similar thing can be done in other models

besides deterministic. The essence of a lifting theorem is to go in the other direction: convert

a protocol for f ◦ gn into a comparable-cost decision tree for f . In other words, if g is

sufficiently complicated, then it hides the input bits to f so well that a communication

protocol cannot do any better than just running a decision tree for f .

We use the index gadget Indm : [m] × {0, 1}m → {0, 1} mapping (x, y) 7→ yx, where m is

a sufficiently large polynomial in n. This gadget has previously been used for the P, BPP,

and PNP lifting theorems. (In some cases, lifting theorems with simpler gadgets are known,

but for many applications the index gadget is fine.)

STACS 2019
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I Theorem 2. Let m = m(n) := nC for a large enough constant C. For every f : {0, 1}n →

{0, 1},

(i) ZPPNP[1]cc(f ◦ Ind
n
m) = Θ̃(ZPPNP[1]dt(f)),

(ii) CautiousBPPNP[1]cc(f ◦ Ind
n
m) = Θ(CautiousBPPNP[1]dt(f) · log n).

Note that part (i) of Theorem 2 is a corollary of part (ii), since by Theorem 1,

ZPPNP[1]cc(f ◦ Ind
n
m) = Θ̃(CautiousBPPNP[1]cc(f ◦ Ind

n
m))

= Θ̃(CautiousBPPNP[1]dt(f)) = Θ̃(ZPPNP[1]dt(f)).

We are not aware of a way to prove part (i) directly, without going through Theorem 1. To

prove part (ii) (in Section 4), we combine tools and techniques from the proofs of lifting

theorems for BPP [22], NP [18, 15], and PNP [17], along with some new technical contributions.

Two of the main results in [21] are MAcc 6⊆ ZPPNP[1]cc and UScc 6⊆ ZPPNP[1]cc, where

MA and US are the classes associated with “Merlin–Arthur games” and “unique witnesses”

respectively (more precise definitions are deferred to Section 5). The proofs introduced a

certain lower bound technique – let us use Bcc(F ) for the largest bound attainable for F

using this technique, and Bcc for the class of all F ’s with Bcc(F ) ≤ polylog(n) – and showed

that MAcc 6⊆ Bcc, UScc 6⊆ Bcc, and ZPPNP[1]cc ⊆ Bcc. The definition of Bcc is not important

for now, but we provide it in the full version of this paper, where we show that it can be

characterized as a more natural complexity class.

Since ZPPNP[1]cc is closed under complement (whereas Bcc is not), we have ZPPNP[1]cc ⊆

Bcc ∩ coBcc. A natural question is whether the latter is actually an equality, i.e., whether the

lower bound technique of [21] for ZPPNP[1]cc is tight. Since [21] observed that MAcc, UScc ⊆

coBcc, we have MAcc ∩ coMAcc, UScc ∩ coUScc ⊆ Bcc ∩ coBcc, and thus the following result

(proven in Section 5 using Theorem 2) answers this question in the negative (in two different

ways).

I Theorem 3.

(i) MAcc ∩ coMAcc 6⊆ ZPPNP[1]cc.

(ii) UScc ∩ coUScc 6⊆ ZPPNP[1]cc.

2 Definitions

We set up notation and provide the formal definitions of ZPPNP[1] and CautiousBPPNP[1]. For

the query and communication complexity versions, we follow the convention of using the

complexity class names as complexity measures. That is, Cdt(f) denotes the minimum cost of

any correct C-type decision tree for f , and Cdt also denotes the class of families of partial f ’s

with Cdt(f) ≤ polylog(n); similarly, Ccc(F ) denotes the minimum cost of any correct C-type

communication protocol for F , and Ccc also denotes the class of families of partial F ’s with

Ccc(F ) ≤ polylog(n) (assuming Alice and Bob have polynomially-related input lengths).

In the query complexity setting, “query” actually has two meanings for us: a decision

tree makes queries to individual input bits, then it forms an NP-type (DNF) oracle query.

We think of a randomized algorithm M as taking a uniformly random string s ∈ {0, 1}r

(for some number of coins r that depends on the input length); we let Ms(x) denote M

running on input x with outcome s. Similarly, we think of a randomized (in our case,

ZPPNP[1]-type or CautiousBPPNP[1]-type) decision tree T or communication protocol Π as the

uniform distribution over a multiset of corresponding non-randomized Ts’s or Πs’s indexed

by s ∈ {0, 1}r; we denote this as T ∼
{

Ts : s ∈ {0, 1}r
}

or Π ∼
{

Πs : s ∈ {0, 1}r
}

.
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2.1 ZPPNP[1]

ZPPNP[1] consists of all languages L for which there is a polynomial-time randomized algorithm

M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that the following

hold.

Syntax: The computation of Ms(x) produces an oracle query q and a function out : {0, 1}

→ {0, 1, ⊥}; the output is then out(L′(q)).

Correctness: The output is always L(x) or ⊥, and is L(x) with probability ≥ 3/4.

We define a ZPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{

Ts : s ∈ {0, 1}r
}

where each Ts makes queries to the bits of x until it reaches

a leaf, which is labeled with a DNF D and a function out : {0, 1} → {0, 1, ⊥}; the output

is then out(D(x)).

Correctness: The output is always f(x) or ⊥, and is f(x) with probability ≥ 3/4.

Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a

leaf.

We define a ZPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}

where each Πs communicates until it reaches a leaf,

which is labeled with a multiset of rectangles
{

Rw : w ∈ {0, 1}k
}

(for some k) and

a function out : {0, 1} → {0, 1, ⊥}; the output is then out applied to the indicator of

whether (x, y) ∈
⋃

w Rw.

Correctness: The output is always F (x, y) or ⊥, and is F (x, y) with probability ≥ 3/4.

Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

A priori, the value 3/4 seems arbitrary since it is not clear whether ZPPNP[1] is amenable

to amplification of the success probability (naively doing repeated trials would increase the

number of NP queries). However, [13] showed that amplification is actually possible, so we

may use any constant > 1/2 for the success probability in the definition of ZPPNP[1] (while

affecting the measures ZPPNP[1]dt(f) and ZPPNP[1]cc(F ) by only constant factors).

2.2 CautiousBPPNP[1]

CautiousBPPNP[1] consists of all languages L for which there is a polynomial-time randomized

algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that

the following hold.

Syntax: The computation of Ms(x) either directly outputs a bit (without invoking the oracle)

or produces an oracle query q and a nonconstant function out : {0, 1} → {0, 1}; in the

latter case the output is then out(L′(q)).

Correctness: The output is L(x) with probability ≥ 3/4, and is L(x) for all s such that

Ms(x) makes an oracle query.

We define a CautiousBPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{

Ts : s ∈ {0, 1}r
}

where each Ts makes queries to the bits of x until it reaches

a leaf, which is labeled with either an output bit, or a DNF D and a nonconstant function

out : {0, 1} → {0, 1}; in the latter case the output is then out(D(x)).

Correctness: The output is f(x) with probability ≥ 3/4, and is f(x) for all s such that Ts(x)

makes a DNF query.

Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a

leaf.

STACS 2019
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We define a CautiousBPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}

where each Πs communicates until it reaches a leaf, which

is labeled with either an output bit, or a multiset of rectangles
{

Rw : w ∈ {0, 1}k
}

(for

some k) and a nonconstant function out : {0, 1} → {0, 1}; in the latter case the output is

then out applied to the indicator of whether (x, y) ∈
⋃

w Rw.

Correctness: The output is F (x, y) with probability ≥ 3/4, and is F (x, y) for all s such that

Πs(x, y) makes a “union of rectangles” query.

Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

The success probability of any CautiousBPPNP[1]-type computation can be amplified by taking

the majority vote of multiple independent trials – except if at least one trial results in an

NP-type oracle query then (to avoid multiple oracle queries) we just use the output of one

such trial since we know it will be correct. Thus just like for BPP-type computations, success

probability 1/2 + ε can be amplified to 1 − δ with a O( 1
ε2 log 1

δ ) factor overhead in cost.

3 ZPPNP[1] = CautiousBPPNP[1]

We now prove Theorem 1, starting with part (i). First assume L ∈ ZPPNP[1], witnessed by a

randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and L′ ∈ NP. To see

that L ∈ CautiousBPPNP[1], consider this randomized algorithm with oracle access to L′:

1. Sample s ∈ {0, 1}r and run Ms(x) until it produces q and out.

2. If out(0) = out(1) then output this common bit, or an arbitrary bit if out(0) = out(1) = ⊥.

3. Else if one of out(0), out(1) is ⊥ then output whichever is not ⊥.

4. Else invoke the oracle on q and output out(L′(q)).

Consider any s for which this algorithm outputs the wrong bit: then it did not make an oracle

query (since M never outputs the wrong bit), and Ms(x) would have output ⊥ (because of

either line 2, or line 3 with out(L′(q)) = ⊥ and out(1 − L′(q)) 6= L(x)). Hence this algorithm

correctly solves L, with error probability at most that of M .

For the converse direction, we generalize the argument from [11] that BPP ⊆ ZPPNP[1].

Assume L ∈ CautiousBPPNP[1], witnessed by a randomized algorithm M (taking input x and

coin tosses s ∈ {0, 1}r) and L′ ∈ NP. Assume that this has already been amplified so the

error probability is < 1/4r (by the remark at the end of Section 2.2). For a fixed input x

and b ∈ {0, 1}, let

Sb :=
{

s ∈ {0, 1}r : Ms(x) outputs b without invoking the oracle
}

.

To see that L ∈ ZPPNP[1], consider the following randomized algorithm:

1. Sample s ∈ {0, 1}r and run Ms(x) until it produces either an output b (so s ∈ Sb) or q

and out.

2. If it produced q and out then ask the NP oracle for the value of L′(q) and output

out(L′(q)).

3. Else sample independent strings s1, . . . , s4r ∈ {0, 1}r and ask the NP oracle whether
⋃

i(Sb ⊕ si) 6= {0, 1}r (i.e., whether there exists an s′ such that for every i, s′ ⊕ si 6∈ Sb);

output ⊥ if so and b if not.

Note that this algorithm never outputs the wrong bit: if s ∈ Sb for b = 1 − L(x), then

|Sb| < 2r/4r so by a union bound,
∣

∣

⋃

i(Sb ⊕ si)
∣

∣ < 4r · (2r/4r) = 2r and hence the NP oracle

returns 1 on line 3 and the algorithm outputs ⊥. For the success probability, consider two cases.

If |S0 ∪ S1| ≤ 2r/4, then line 2 executes (guaranteeing correct output) with probability ≥ 3/4.

Otherwise, since |S1−L(x)| < 2r/4r, we must have |SL(x)| > 2r/4 − 2r/4r > 2r/5 (we may
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assume r is at least a large enough constant), so by a union bound over all s′ ∈ {0, 1}r, the

probability over s1, . . . , s4r that
⋃

i(SL(x) ⊕ si) 6= {0, 1}r is < 2r · (4/5)4r ≤ (5/6)r ≤ 1/5. In

this latter case, the probability of outputting ⊥ is

P[b = 1 − L(x)] + P
[
⋃

i(Sb ⊕ si) 6= {0, 1}r
∣

∣ b = L(x)
]

· P[b = L(x)]

≤ 1/4r + (1/5) · |SL(x)|/2r ≤ 1/4.

In both cases the success probability is ≥ 3/4.

Parts (ii) and (iii) are proved in the same way as part (i), but we must carefully analyze the

cost. We summarize the differences. For the ZPPNP[1] ⊆ CautiousBPPNP[1] direction, exactly

the same argument works but using Ts or Πs in place of Ms, and making the same DNF

query or “union of rectangles” query rather than the same NP oracle query on line 4. This

shows CautiousBPPNP[1]dt(f) ≤ ZPPNP[1]dt(f) and CautiousBPPNP[1]cc(F ) ≤ ZPPNP[1]cc(F ).

Now consider the CautiousBPPNP[1] ⊆ ZPPNP[1] direction for parts (ii) and (iii). By

standard sparsification of the randomness, we may assume T or Π uses only O(log n) coin

tosses (while affecting the success probability by only ±o(1)). Then as noted at the end of

Section 2.2, we may amplify with O(log log n) repetitions so r becomes O(log n · log log n) and

the error probability becomes ≤ 1/ log2 n < 1/4r. As above, we use Ts or Πs in place of Ms,

and make the same DNF query or “union of rectangles” query rather than the same NP oracle

query on line 2. For line 3, we note that the predicate
⋃

i(Sb⊕si) 6= {0, 1}r, as a function of the

input x or (x, y), can be computed by nondeterministically guessing s′ and running Ts′⊕si(x) or

Πs′⊕si(x, y) for each i ∈ [4r]; this can be expressed as a DNF of width 4r·(cost of amplified T ),

or as a union of 2k rectangles with k = r + 4r · (cost of amplified Π). Thus, the overall cost is

O(r · (cost of amplified T or Π)) ≤ O((cost of original T or Π) · log n · log2 log n). This shows

the following, finishing the proof of Theorem 1:

ZPPNP[1]dt(f) ≤ O
(

CautiousBPPNP[1]dt(f) · log n · log2 log n
)

,

ZPPNP[1]cc(F ) ≤ O
(

CautiousBPPNP[1]cc(F ) · log n · log2 log n
)

.

4 Proof of the Lifting Theorem

We now prove Theorem 2. As noted in Section 1.1, we just need to show part (ii). It is

straightforward to see that for all f ,

CautiousBPPNP[1]cc(f ◦ Ind
n
m) ≤ O(CautiousBPPNP[1]dt(f) · log n)

since we can have the communication protocol run the optimal decision tree for f , commu-

nicating O(log n) bits to evaluate Indm(xi, yi) whenever this bit is queried, and if a width-w

DNF oracle query is formed then we can convert each of its ≤ nw conjunctions into ≤ mw

rectangles, resulting in a “union of rectangles” oracle query that contributes k = O(w log n)

to the cost. Thus, the bulk of the proof is to show that for all f ,

CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦ Ind
n
m)/ log n). (1)

In Section 4.1 we provide relevant technical background from the proofs of earlier lifting

theorems (mainly the one for BPP [22]). In Section 4.2 we describe how to simulate the

communication protocol with a decision tree. In Section 4.3 we prove a key technical lemma.

STACS 2019
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4.1 Background

Abbreviate G := Ind
n
m. We consider deterministic communication protocols on G’s input

domain [m]n × ({0, 1}m)n, which we view as partitioned into slices G−1(z) = {(x, y) :

G(x, y) = z}, one for each z ∈ {0, 1}n. We let |Π| denote the worst-case number of bits

communicated by a deterministic protocol Π. We use boldface letters for random variables.

Let H∞(x) := minx log(1/P[x = x]) denote the usual min-entropy of a random variable

x. Supposing x is distributed over a set X, we define the deficiency of x as the nonnegative

quantity D∞(x) := log |X| − H∞(x). A basic property is that if X is a Cartesian product

then marginalizing x to some coordinates cannot increase the deficiency. For a set X we let

X denote a random variable uniformly distributed on X.

The following definition and claim originate in the proof of the lifting theorems for NP,

SBP, and PostBPP [18, 15]. They describe an invariant that Alice maintains throughout

the simulation, and how to restore it (by fixing some coordinates, which will correspond to

querying those input bits of f) when it gets violated.

I Definition 4. A random variable x ∈ [m]J (where J ⊆ [n] is some index set) is called

δ-dense if for every nonempty I ⊆ J , the coordinates xI (marginally distributed over [m]I)

have min-entropy rate at least δ, i.e., H∞(xI) ≥ δ · |I| log m.

B Claim 5. If A ⊆ [m]J then there exist an I ⊆ J of size |I| ≤ O(D∞(A)/ log n) and a

nonempty A′ ⊆ A such that A′ is fixed on I and 0.9-dense on J r I.

It is simple to check that all 2n slices of G’s input domain have the same size, and that

the uniform distribution over any slice is marginally nearly-uniform on both Alice’s input

and Bob’s input. The following lemma from [22] provides a sufficient condition for similar

properties to hold even after we have queried some of the input bits of f .

I Definition 6. For a partial assignment ρ ∈ {0, 1, ∗}n, define its free positions as free ρ :=

ρ−1(∗) ⊆ [n], and its fixed positions as fix ρ := [n] r free ρ. A rectangle X × Y is called

ρ-structured if Xfree ρ is 0.9-dense, Xfix ρ is fixed, and each element of G(X × Y ) ⊆ {0, 1}n

is consistent with ρ.

I Definition 7. A distribution D1 is said to be ε-pointwise-close to a distribution D2 if for

every outcome, the probability under D1 is within a factor 1 ± ε of the probability under D2.

The distributions are said to be ε-close if the statistical (total variation) distance is ≤ ε.

I Lemma 8 ([22]). Suppose X × Y is ρ-structured and D∞(Y ) ≤ n3. Then:

(i) For any z ∈ {0, 1}n consistent with ρ, the uniform distribution on G−1(z) ∩ X × Y

(which is nonempty) has both of its marginal distributions o(1)-close to X and Y ,

respectively.

(ii) G(X, Y ) is o(1)-pointwise-close to the uniform distribution over the set of all z con-

sistent with ρ.

Now we come to the main part of the proof of the BPP lifting theorem from [22]. It

shows that, given query access to z, we can approximately sample the transcript that would

be generated by a communication protocol on a random input from z’s slice. In fact, this

simulation maintains some invariants, which we need to expose (in the “furthermore” part of

the lemma) for use in the subsequent “NP oracle query” phase of our simulation.

I Definition 9. A deterministic protocol Π is said to be a refinement of a deterministic

protocol Π if they have the same input domain and for every transcript rectangle X × Y of

Π, there exists a transcript rectangle of Π that contains X × Y .
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I Lemma 10 ([22]). For every deterministic protocol Π on G’s input domain with |Π| ≤

n log m, there exist a refinement Π and a randomized decision tree T of cost O(|Π|/ log n) that

on input z ∈ {0, 1}n outputs a transcript of Π or ⊥, such that the following two distributions

are o(1)-close:

t := output distribution of T on input z,

t′ := transcript generated by Π when run on a random input (x, y) ∼ G−1(z).

Furthermore, for every (non-⊥) transcript output by T on input z with positive probability,

the associated rectangle X × Y satisfies:

(i) X × Y is ρ-structured, where ρ corresponds to the results of the queries made by T

(and is hence consistent with z),

(ii) D∞(Y ) ≤ n2.5,

(iii) D∞(Xfree ρ) ≤ O(|Π|).

4.2 Simulation

I Lemma 11. Let X ×Y be a ρ-structured rectangle in G’s input domain such that D∞(Y ) ≤

n2.5. Suppose
{

Rw ⊆ X × Y : w ∈ {0, 1}k
}

is a collection of rectangles whose union covers

exactly G−1(f−1(1))∩X ×Y . Then f can be computed by a width-O((D∞(Xfree ρ)+k)/ log n)

DNF on the domain of inputs consistent with ρ.

Lemma 11 is our key tool for converting the NPcc oracle query to an NPdt oracle query.

The proof, which we give in Section 4.3, combines insights from the lifting theorem proofs

for NP [18, 15] and PNP [17] with new calculations. For now we use Lemma 11 to argue (1),

thus finishing the proof of Theorem 2.

Let Π ∼
{

Πs : s ∈ {0, 1}r
}

be a CautiousBPPNP[1]-type communication protocol for f ◦G

(and note WLOG the cost is ≤ n log m). Here is a CautiousBPPNP[1]-type decision tree for f

on input z:

1. Sample s ∈ {0, 1}r and (eliding the dependence on s) let Π and T be the refinement and

randomized decision tree from Lemma 10 applied to Πs.

2. Sample T ’s coin tosses s′ and run Ts′ on input z until it either outputs ⊥ (in which case

we halt and output an arbitrary bit) or produces a transcript t of Π.

3. Let X × Y be the rectangle associated with t, and let t∗ be the transcript of Πs whose

rectangle contains X × Y .

4. If t∗ outputs a bit, then we halt and output the same bit; otherwise let
{

Rw : w ∈ {0, 1}k
}

and out : {0, 1} → {0, 1} be the rectangles and nonconstant function associated with t∗.

5. Since X × Y satisfies properties (i), (ii), (iii) from Lemma 10, we may apply Lemma 11 to

the collection
{

Rw∩X×Y : w ∈ {0, 1}k
}

(whose union covers exactly G−1(f−1(out(1)))∩

X × Y by the correctness of Π), using f if out(1) = 1 or ¬f if out(1) = 0, to obtain a

width-O((|Πs| + k)/ log n) DNF D that computes f or ¬f (respectively) on all inputs

consistent with ρ.

6. Output out(D(z)).

Since T makes O(|Πs|/ log n) queries and the DNF on line 5 has width O((|Πs| + k)/ log n),

the above decision tree indeed has cost O((cost of Π)/ log n). If it reaches line 5 and makes a

DNF query, then the output is correct since z is consistent with ρ and hence out(D(z)) = f(z).

For the success probability, call t good if the corresponding t∗ either outputs f(z) directly

or makes a “union of rectangles” query, and note that if the above decision tree generates
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a good t then the output is correct (by the previous sentence). Hence, letting t, t′ be the

o(1)-close random variables from Lemma 10 applied to Πs (with (x, y) ∼ G−1(z)), we have

P[output is correct] ≥ Es

[

Ps′ [t is a good transcript]
]

≥ Es

[

Px,y[t′ is good] − o(1)
]

= Ex,y

[

Ps[t′ is good]
]

− o(1)

= Ex,y

[

Ps[Πs(x, y) outputs f(z)]
]

− o(1)

≥ Ex,y[3/4] − o(1)

= 3/4 − o(1).

We conclude that CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦ G)/ log n).1

4.3 Forming a DNF

We now prove Lemma 11. Fix any z ∈ f−1(1) consistent with ρ, and define J := free ρ. We

need to show that there exists a width-O((D∞(XJ) + k)/ log n) conjunction that accepts z

but does not accept any input in f−1(0) consistent with ρ.

For each rectangle Rw = Xw × Y w define the set of weighty rows as

Aw :=
{

x ∈ Xw : |Y w
x | ≥ 2nm−n3}

where Y w
x :=

{

y ∈ Y w : G(x, y) = z
}

.

B Claim 12. There exists a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1.

Proof. Suppose for contradiction this is not the case. Then by Lemma 8.(i) we have

∣

∣G−1(z) ∩
(
⋃

w Aw
)

× Y
∣

∣

|G−1(z) ∩ X × Y |
≤

|
⋃

w Aw|

|X|
+ o(1) ≤

2k · |X|/2k+1

|X|
+ o(1) < 3/4. (2)

On the other hand, since the Rw’s cover G−1(z) ∩ X × Y and since k ≤ n log m WLOG,

∣

∣G−1(z) ∩
(

X r
⋃

w Aw
)

× Y
∣

∣ ≤
∣

∣

⋃

w, x 6∈Aw Y w
x

∣

∣ ≤ 2k · |X| · 2nm−n3

≤ |X| · 2nm−n2.9

,

and by Lemma 8.(ii) and D∞(Y ) ≤ n2.5 ≤ n3 we have

|G−1(z)∩X×Y | ≥ |X|·|Y |·(1−o(1))/2|J| ≥ |X|·2nm−n2.5

·(1−o(1))/2n ≥ |X|·2nm−n2.6

,

and thus
∣

∣G−1(z) ∩
(

X r
⋃

w Aw
)

× Y
∣

∣

|G−1(z) ∩ X × Y |
≤

|X| · 2nm−n2.9

|X| · 2nm−n2.6
= 2n2.6−n2.9

< 1/4. (3)

Now (2) and (3) form a contradiction. This proves the claim. C

1 Let us summarize the fundamental reason we are unable to make this proof work directly for ZPP
NP[1]

(instead of CautiousBPP
NP[1]) without going through Theorem 1. Suppose we reach line 5 with out(1) = ⊥

and out(0) 6= ⊥. We would like to form a DNF that accepts those z’s consistent with ρ where

G−1(z) ∩ X × Y is covered by the union of
{

Rw ∩ X × Y : w ∈ {0, 1}k
}

– and then output ⊥ if the

DNF accepts and output out(0) if it rejects. The issue is that there may be some z’s consistent with
ρ such that f(z) = out(0) but G−1(z) ∩ X × Y is partially covered by the union – even a fairly small
coverage might result in the DNF accepting z. This could cause the overall probability of outputting ⊥
on z to be much higher in the decision tree than in the communication protocol.
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Now fix a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1 and hence D∞(Aw
J ) ≤ D∞(XJ ) + k + 1.

Applying Claim 5 to Aw
J , we can obtain an I ⊆ J of size |I| ≤ O((D∞(XJ ) + k)/ log n) and

a nonempty A′ ⊆ Aw such that A′ is fixed on I ∪ fix ρ and 0.9-dense on J r I. Consider the

conjunction that accepts iff the I coordinates of the input equal zI ; we now argue that this

conjunction satisfies the desired properties. It certainly has the right width and accepts z.

Define σ ∈ {0, 1, ∗}n as the partial assignment that extends ρ by fixing the coordinates

in I to zI . Pick any x′ ∈ A′ and let B := Y w
x′ . Then A′ × B is σ-structured (note that

for all (x, y) ∈ A′ × B, G(x, y)I = G(x′, y)I = zI since xI = x′
I) and D∞(B) ≤ n3, and

thus by Lemma 8.(ii), G(A′, B) is o(1)-pointwise-close to the uniform distribution over

all strings consistent with σ. In particular, for every z′ consistent with σ (i.e., for every

z′ consistent with ρ that is accepted by the conjunction) there exists an (x, y) ∈ A′ × B

such that G(x, y) = z′; since A′ × B ⊆ Rw ⊆ G−1(f−1(1)), this implies that f(z′) = 1.

In summary, the conjunction does not accept any input in f−1(0) consistent with ρ. This

finishes the proof of Lemma 11.

5 Applications

We prove Theorem 3 in this section. Since MAcc ∩ coMAcc, UScc ∩ coUScc ⊆ Bcc ∩ coBcc,

Theorem 3 cannot be shown using the lower bound technique from [21], so we instead prove

the analogous separations in query complexity and apply our lifting theorem. We start by

defining the query/communication versions of MA and US.

Merlin–Arthur games (MA) are the model where Merlin nondeterministically sends a

message to Arthur (comprised of Alice and Bob in the communication setting), who is

randomized and decides whether to accept. On a 1-input, there should exist a witness Merlin

can send that makes Arthur accept with probability 1, and on a 0-input, Arthur should reject

with probability ≥ 1/2 no matter what Merlin sends. In the query/communication settings,

the cost is Merlin’s message length plus Arthur’s query/communication cost.

The US model is like ordinary nondeterminism, except that an input is accepted iff there

is exactly one witness that leads to acceptance (so, rejection means there are either 0 or

≥ 2 accepted witnesses). In query complexity, the cost is the maximum width of any of the

witness conjunctions. In communication complexity, the cost is the log of the number of

witness rectangles.

5.1 MA ∩ coMA

We now prove Theorem 3.(i). We start with a general technique for proving CautiousBPPNP[1]dt

lower bounds. For a bit b, we say a conjunction is b-monochromatic for a partial function f

if it rejects all (1 − b)-inputs.

I Lemma 13. Suppose f has no monochromatic conjunction of width < k. Then

CautiousBPPNP[1]dt(f) ≥ min(k, BPPdt(f)).

Proof. If f has a CautiousBPPNP[1]-type decision tree of cost < k, then this decision tree

must never make a DNF query (in which case it is just a BPP-type decision tree, showing

that BPPdt(f) ≤ CautiousBPPNP[1]dt(f)). To see this, suppose for contradiction some leaf

is labeled with a DNF query D and a function out, and consider the conjunction that

accepts the inputs that lead to that leaf and are accepted by an arbitrarily chosen term of

D (which WLOG is consistent with the partial assignment leading to the leaf). Then this

conjunction has width < k and is out(1)-monochromatic (as any input accepted by it would

make the CautiousBPPNP[1]-type decision tree output out(1) after making a DNF query, for

some outcome of the coin tosses, and hence could not be an out(0)-input). J
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Let n = 2`2, and define the partial function f : {0, 1}n → {0, 1} that interprets its input

as a pair of ` × ` boolean matrices (A, B), such that f(A, B) = 1 iff A has an all-1 row and

every row of B is at most half 1’s, and f(A, B) = 0 iff B has an all-1 row and every row of A

is at most half 1’s. Note that f ∈ MAdt ∩ coMAdt since an MA-type decision tree can guess a

row in A and check that a random bit from that row is 1, and a coMA-type decision tree can

guess a row in B and check that a random bit from that row is 1. This upper bound lifts to

f ◦ Ind
n
m ∈ MAcc ∩ coMAcc. We now show that f 6∈ CautiousBPPNP[1]dt which, by Theorems

1 and 2, implies that f ◦ Ind
n
m 6∈ ZPPNP[1]cc. This will yield Theorem 3.(i).

By Lemma 13, it suffices to show that (1) f has no monochromatic conjunction of width

≤ `/2, and (2) BPPdt(f) ≥ Ω(`).

To see (1), consider any conjunction C of width ≤ `/2: Since it does not touch every

row of A, and it touches at most half the bits in each row of B, we can construct a 1-input

accepted by C by putting all 1’s in an untouched row of A, and filling the rest of the matrix

entries with 0’s (except those whose value is determined by C accepting). Similarly, there

must exist a 0-input accepted by C. Thus C is not monochromatic.

For (2), it suffices to show that every cost-o(`) deterministic decision tree succeeds with

probability < 3/4 over the input distribution obtained by filling a uniformly random one of

the 2` rows with 1’s (and letting all other entries of (A, B) be 0’s). If the decision tree accepts

after seeing only 0’s, then conditioned on a random 0-input it continues to accept (and hence

err) with probability ≥ 1 − o(1) (since the all-0’s path of the decision tree only touches a

o(1) fraction of the rows). Similarly, if it rejects after seeing only 0’s, then conditioned on a

random 1-input it continues to reject (and hence err) with probability ≥ 1 − o(1). In either

case, it errs with probability ≥ 1/2 − o(1) over an unconditioned random input.

5.2 US ∩ coUS

We now prove Theorem 3.(ii). Let weight(·) refer to Hamming weight. For even n, define the

partial function f : {0, 1}n → {0, 1} that interprets its input as (a, b) ∈ {0, 1}n/2 × {0, 1}n/2,

such that f(a, b) = 1 iff weight(a) = 1 and weight(b) ∈ {0, 2}, and f(a, b) = 0 iff weight(b) = 1

and weight(a) ∈ {0, 2}. Note that f ∈ USdt ∩ coUSdt since a US-type decision tree can guess

the location of a 1 in a, and a coUS-type decision tree can guess the location of a 1 in b. This

upper bound lifts to f ◦ Ind
n
m ∈ UScc ∩ coUScc. We now show that f 6∈ CautiousBPPNP[1]dt

which, by Theorems 1 and 2, implies that f◦Ind
n
m 6∈ ZPPNP[1]cc. This will yield Theorem 3.(ii).

Note that Lemma 13 cannot help us here, since this f does have small monochromatic

conjunctions (e.g., a conjunction with two positive literals from a is 0-monochromatic), so we

devise a different technique. In fact, we show something stronger than f 6∈ CautiousBPPNP[1]dt.

Define BPPNP[1] in the natural way (two-sided error, and allowed to err after an NP oracle

query is made), and notice that the class may depend on the exact choice of success probability

(since the standard method of amplification involves multiple independent trials, which would

increase the number of NP oracle queries). Let us use BPPNP[1]
p to indicate that the success

probability must be ≥ p on each input. As CautiousBPPNP[1] can be efficiently amplified (see

the end of Section 2.2), the following lemma implies that f 6∈ CautiousBPPNP[1]dt.

I Lemma 14. For every constant ε > 0, BPP
NP[1]dt

3/4+ε (f) ≥ Ω(n).

Proof. It suffices to show that every cost-o(n) PNP[1]-type decision tree succeeds with

probability ≤ 3/4 + o(1) over the uniform distribution on valid inputs to f . Let v be

the leaf reached after seeing only 0’s, and say v is labeled with DNF D and function

out : {0, 1} → {0, 1}. Assume out(1) = 1 (the case out(1) = 0 is argued similarly). Con-
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sider the joint random variables a, b, a′, b′ where a has a unique 1 in a random posi-

tion, b is all 0’s, a′ is obtained from a by flipping a random 0 to 1, and b′ is obtained

from b by flipping a random 0 to 1. Note that (a, b) is the input distribution conditioned

on weight(a) = 1 and weight(b) = 0, and (a′, b′) is the input distribution conditioned

on weight(a) = 2 and weight(b) = 1. We have P[(a, b) reaches v] ≥ 1 − o(1) and thus

P[(a, b) reaches v and is accepted] ≥ P[(a, b) is accepted] − o(1). Also, conditioned on any

outcome of (a, b) that reaches v and is accepted, with probability ≥ 1 − o(1) the two flipped

bits are not among those read along the path to v and not among those read by an arbitrarily

chosen term of D that accepts (a, b), in which case (a′, b′) also reaches v and is accep-

ted. Thus, P
[

(a′, b′) reaches v and is accepted
∣

∣ (a, b) reaches v and is accepted
]

≥ 1 − o(1).

Combining these, we get

P[(a′, b′) is accepted]

≥ P
[

(a′, b′) and (a, b) both reach v and are accepted
]

= P
[

(a′, b′) reaches v and is accepted
∣

∣ (a, b) reaches v and is accepted
]

· P[(a, b) reaches v and is accepted]

≥ (1 − o(1)) · (P[(a, b) is accepted] − o(1))

= P[(a, b) is accepted] − o(1).

Thus, under the uniform distribution on valid inputs to f ,

P[err] ≥ P
[

err
∣

∣ weight(a) = 1 and weight(b) = 0
]

/4

+ P
[

err
∣

∣ weight(a) = 2 and weight(b) = 1
]

/4

=
(

P[(a, b) is rejected] + P[(a′, b′) is accepted]
)

/4

=
(

1 − (P[(a, b) is accepted] − P[(a′, b′) is accepted])
)

/4 ≥ (1 − o(1))/4. J

We complement Lemma 14 by noting that BPP
NP[1]dt

3/4 (f) ≤ 2: With probability 1/4 each:

accept iff weight(a) ≤ 1,

accept iff weight(a) ≥ 1,

reject iff weight(b) ≤ 1,

reject iff weight(b) ≥ 1.

Hence BPP
NP[1]dt

3/4 6⊆ BPP
NP[1]dt

3/4+ε , which implies that BPP
NP[1]
3/4 6⊆ BPP

NP[1]
3/4+ε in a relativized

world. Thus, unlike ZPPNP[1], BPPNP[1] is not generally amenable to efficient amplification;

this phenomenon has subsequently been fully explored in [41].
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