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CONSPECTUS: Transition-metal-catalyzed cross-coupling reactions represent a most powerful tool for the rapid construction of
C-C and C-X bonds available to synthetic chemists. Recently, tremendous progress has been made in the burgeoning area of
cross-coupling reactions of amides and esters enabled by regio- and chemoselective acyl C-X (X = N, O) cleavage using well-
defined Pd(II)-NHC complexes. The use of N-heterocyclic carbenes as ligands in palladium-catalyzed cross-couplings permits
reactions of amides and esters that were previously impossible using palladium or could be achieved only under harsh condi-
tions. These reactions provide an attractive method to synthetic chemists to manipulate the traditionally inert amide and ester
bonds with the broad cross-coupling generality inherent to palladium catalysis. Research in the area of cross-coupling of stable
acyl electrophiles can be broadly categorized by the type of electrophile undergoing the cross-coupling. Recent studies have
shown that cross-coupling of amides by transition metal catalysis represents one of the most straightforward and wide-ranging
ways of manipulating the classically inert amide bonds into generic acyl-metal intermediates that can be systematically exploited
in cross-coupling reactions as a new paradigm in organic synthesis. The key to achieving high chemoselectivity of the process is
control of amidic resonance (nx to m*c-o conjugation, rotation of ca. 15-20 mol/kcal in planar amides), enabling oxidative addi-
tion of the N-C amide bond to a metal in a rational and predictable manner. This mode of catalysis has been extended to
C(acyl)-O cross-coupling reactions of aryl esters, where selective C-O bond cleavage is accomplished through a rational match
of aryl ester electrophiles and nucleophilic metal catalysts. These two types of transition-metal-catalyzed cross-coupling reac-
tions represent an attractive concept in synthetic chemistry due to the ubiquity of esters and amides as precursors in organic
synthesis. Furthermore, the high stability of amides and esters provides unprecedented opportunities for orthogonal cross-
coupling strategies in the presence of other electrophiles.

In this Account, we highlight advances that have taken place in the last few years in the field of cross-coupling of amides and
esters, focusing on both (1) the stereo-electronic properties of well-defined Pd(II)-NHC complexes that have been critical to
realize this challenging cross-coupling manifold, and (2) the role of isomerization barrier of acyl electrophiles undergoing the
cross-coupling. In a broader sense, the chemistry described here, provides a practical approach to functionalize common amide
and ester functional groups in organic synthesis, as well as establishes straightforward access to acyl-metal intermediates that
enable non-conventional cross-coupling strategies.

1. Introduction strong o-donation and variable steric bulk around palladium
in Pd-NHC complexes'®?® facilitate oxidative addition and
reductive elimination steps, enabling for the first time a
broad range of cross-coupling reactions of amides in a gen-
eral fashion. Moreover, this catalytic manifold enables vari-
ous types of reactions of amides with high turnover numbers
for the first time," including industrially-valuable Suzuki-
Miyauraz® and Buchwald-Hartwig reactions,> and permits
the cross-coupling of amide and ester electrophiles under
one set of practical reaction conditions, which greatly simpli-
fies the cross-coupling paradigm and avoids restriction to a
particular acylmetal precursor.

Broadly speaking, Pd-NHC precatalysts represent a critical

The amide bond represents a privileged motif in organic syn-
thesis.! Traditionally, the amide bond has been considered as
one of the most stable functional groups in organic synthesis
as a result of amidic resonance (nn to m*c.o conjugation, ro-
tation of ca. 15-20 mol/kcal in planar amides).> Given the key
role of the amide bond in chemical sciences, including bio-
chemistry, polymer synthesis, pharmaceuticals, drug devel-
opment and materials science35 new methods that utilize
bench-stable amides as synthetic intermediates provide fun-
damental tools for molecular assembly.

In the context of amide bond functionalization, palladium-
catalyzed cross-coupling reactions®° that proceed through
selective insertion of a metal into the N—C bond have become area of cross-coupling that are routinely utilized by scientists
a thriving area of research." Recent research demonstrates working in all facets of chemical research, including organic
that well-defined, air- and moisture-stable, Pd(II)-NHC synthesis, drug discovery and polymer science. In this Ac-
(NHC = N-heterocyclic carbene) precatalystss provide a count we demonstrate that Pd-NHC precatalysts are the first
significant improvement over all current catalytic systems in practical as well as the most reactive catalyst system for
the cross-coupling of bench-stable amide electrophiles. The cross-coupling reactions of amides and esters. Both of these



functional groups are of paramount importance to all areas
of chemical research.

Mechanistically, the activation of the N-C amide bond
proceeds through ground-state destabilization of the amide
bond by steric and/or electronic factors,?>24 which allows
facile insertion of a low valent metal into the N-C bond fur-
nishing acyl-metal intermediate (Scheme 1).

Scheme 1. Amide Bond Cross-Coupling Reactions
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In this Account, we highlight advances in the field of
cross-coupling of amides and esters, focusing on both (1) the
stereo-electronic properties of well-defined Pd(II)-NHC
complexes that have been critical to realize this challenging
cross-coupling manifold, and (2) the role of isomerization
barrier of acyl electrophiles undergoing the cross-coupling.
In a broader sense, the chemistry described here, provides a
practical avenue to functionalize common amide and ester
functional groups in organic synthesis, as well as establishes
straightforward access to acyl-metal intermediates that ena-
ble non-conventional cross-coupling strategies. The Account
has been arranged by the type of transformation (Suzuki-
Miyaura, Buchwald-Hartwig), and the type of functional
group that undergoes the coupling (amides, esters).

2. Suzuki-Miyaura Cross-Coupling of Amides

2.1. Historical Perspective on Amide Bond Cross-
Coupling. The origin of amide bond cross-coupling reac-
tions can be traced to the classic studies on modulating
amidic resonance in bridged non-planar lactams.?> The sem-
inal work by Greenberg, Kirby,*® Stoltz?7 and others has
amply demonstrated the facility of nucleophilic addition to
the resonance destabilized amide bond constrained in a vari-
ety of cyclic bridged scaffolds. In the early 1990s, Yamada
found that acyclic N-acyl-1,3-thiazolidine-2-thiones feature
unusual twisted amide bonds that activate the amide moiety
towards nucleophilic reactivity, thus advancing the concept
of amide bond twist to acyclic amides.® In another im-
portant development, elegant studies on metal-catalyzed
cleavage of the o N-C bond by Aubé demonstrated the facili-
ty of transition-metal-catalysis to promote unusual reactivity
of non-planar amides.?® Despite these observations, the ex-
traordinary capacity of the amide bond to participate in the
direct metal insertion/cross-coupling remained unrecog-
nized until 2015, when the field of amide bond cross-coupling
was initiated by independent reports by Garg on nickel-
catalyzed esterification of amides3° and our group on palla-
dium-catalyzed Suzuki-Miyaura cross-coupling of amides.>*
The research rationale on ground-state-destabilization of the
amide bond in easily available acyclic amide precursors put
forward by our group has effectively provided the basis for
the development of a wide range of acyl- and decarbonylative
cross-coupling reactions of amides.3'3> Closely related cross-
coupling reported by Zou further supported this concept.3 In

a general sense, amide cross-coupling manifold by direct
metal insertion complements and expands the potential of
the ubiquitous amide bond to participate in a wide range of
Ni-catalyzed,34 electrophilic,35 Lewis acid,3¢ radical3” and nu-
cleophilic3® reaction pathways to achieve a myriad of high
value transformations.

In contrast to amide cross-coupling, one of the first reports
on ester bond activation involved a mechanistic study of
oxidative addition of aryl carboxylates to Ni(o) disclosed in
1976 by Yamamoto.39 This observation lay dormant until Ya-
maguchi and Itami found in 2012 that simple and abundant
aryl esters participate in a Ni(o)-catalyzed C-H arylation of
heterocycles by selective scission of the acyl C-O bond.4° The
work by Yamaguchi/Itami is significant because it demon-
strated that non-conventional aryl ester electrophiles could
be applied in the classical aryl cross-coupling reactivity by a
decarbonylative pathway. While the inherent facility of
cross-coupling of esters (cf. amides) can be attributed to the
diminished no to m*c-o conjugation as result of maintaining
resonance during the isomerization pathway,# recent re-
search has demonstrated that transition-metal-catalyzed
cross-coupling of amides and esters proceeds under a unified
reaction manifold. This generality provides one of the most
important considerations in the cross-coupling of amides
and esters and enables the productive engagement of both
types of valuable electrophiles, while avoiding restriction to a
particular acylmetal precursor.

2.2. PA(II)-NHC Precatalysts in Cross-Coupling of Deac-
tivated Substrates. Since the seminal discovery of stable N-
heterocyclic carbenes by Arduengo, NHCs have found inval-
uable applications as strong o-donor ligands in transition-
metal-catalysis.’>'5 Fuelled by the interest to provide innova-
tions in the synthesis of pharmaceuticals, materials science
and agrochemical industry,>* well-defined Pd(II)-NHC
precatalysts have become attractive alternatives to
Pd/phosphine precatalysts owing to the improved catalytic
activity than electron-rich phosphines due to strong o-
donating properties. As further important characteristics,
Pd(II)-NHC complexes are air- and moisture-stable, which
makes their handling operationally-convenient, many of the
Pd(II)-NHC complexes are commercially available, which
facilitates ligand screening and reaction optimization, and
well-defined Pd(II)-NHC precatalysts feature 11 Pd:NHC
ratio. This avoids using excess of expensive ligand and is op-
timal for the formation of catalytically-active monoligated
Pd(o) species. Optimization of steric demand around the
metal has resulted in the discovery of novel precatalysts with
better efficiency, selectivity and allowing higher turnover
numbers.>"'8

Current evidence supporting the high reactivity of Pd(II)-
NHC precatalysts in amide and ester cross-coupling reac-
tions is consistent with strong o-donation to the Pd center,>-
14 facilitating activation of relatively strong C(acyl)-X (X = N,
O) bonds. In contrast to the well-defined Pd(II)-NHC precat-
alysts, Ni catalysts based on NHC ligands have been slower
to develop predominantly due to challenges in reducing
Ni(I) precursors and handling air-sensitive Ni(o) complex-
es.? However, the reactivity of Ni-catalysts in activation of
amide and ester bonds is promising.34 It should also be noted
that cleavage of the aryl C-O bond is feasible using, in par-
ticular, Ni catalysis.®7 The activity of Pd-NHC precatalysts is



often sensitive to reaction conditions. Examples presented in
this account have been selected to emphasize the differences
and, in some cases, complementarity of Pd-NHCs used for a
given transformation.

Two major classes of Pd(II)-NHC precatalysts have been
developed: (1) [Pd(NHC)(allyl)Cl] complexes pioneered by
Nolan and co-workers;#-44 and (2) Pd-PEPPSI complexes
introduced by Organ and co-workers#546 (Figure 1). These
complexes offer complementary reactivity in terms of rate
and mechanism of activation, stabilization of the NHC-Pd(o)
species, synthesis and reaction scope. More recently, Pd(II)-
NHCs Dbearing a substituted indenyl-type ligand,
[PA(NHC)(ind)Cl], were reported.47 The high reactivity of
[PA(NHC)(ind)Cl] complexes results from fast reduction of
Pd(II) to Pd(o) and preventing the formation of catalytically
inactive Pd(I) dimer, depending on reaction conditions.43
Implementation of Pd(II)-NHC precatalysts with different
throw-away ligands offers new opportunities for developing
efficient amide and ester cross-coupling reactions.
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Figure 1. Structures of Pd(II)-NHC precatalysts. NHC = IPr.

2.3. Implementation of Pd/PR; and Pd/NHC Precatalysts
in Amide Bond Activation: High Activity of
[PA(NHC)(cin)Cl] Precatalysts. In 2015, we reported the
first Suzuki-Miyaura cross-coupling of N-glutarimide amides
with boronic acids via ground-state-destabilization of the
amide bond.> This transformation proceeded smoothly in
the presence of Pd(OAc), (3 mol%), PCy;HBF, (12 mol%),
K,CO;/H;BO; in THF at 65 °C (Scheme 2A). The reaction
showed good functional group compatibility with respect to
both the amide and boronic acid components; however,
among various amides screened, only highly-twisted N-
glutarimide amides (t = 85.7% %~ = 5.6°, Winkler-Dunitz pa-
rameters describing twist around the N-C(O) bond and N-
pyramidalization angle)>* showed high reactivity. Further-
more, the optimal 1:4 Pd/phosphine ratio was less than prac-
tical in terms of applications.

Meanwhile, to improve the generality of amide bond cross-
couplings, a large number of amide precursors, ligands and
catalytic conditions were tested.#9 In 2017, we reported
[Pd(IPr)(cin)Cl] (3 mol%) in the presence of a mild carbonate
base, K,CO; (3.0 equiv), in THF at 60 °C for Suzuki-Miyaura
cross-coupling of amides under simple, as operationally-
convenient conditions (Scheme 2B).5°

This method showed good functional group tolerance for
both the amide and boronic acids components. More im-
portantly, the developed catalytic system promoted the N-C
amide bond activation of various amides, including N-
glutarimide, N-Boc-carbamate and N-Ts-sulfonamide, under
the same reaction conditions, for the first time. Cross-
couplings applied across a broad range of amides activated
with readily installed N-activating groups render the amide
bond cross-coupling manifold of great use for academic and
industrial applications.6©19-21 This Pd(II)-NHC catalytic sys-
tem benefits from the strong o-donation, which facilitates

Scheme 2. Pd/PR; and Pd/NHC Precatalysts in Amide
Bond Cross-Coupling: High Activity of
[PA(NHC)(cin)Cl] Precatalysts
A: Pd/phosphine catalysts in Suzuki-Miyaura cross-coupling of amides
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B Note that esters are completely unreactive (<56%) using Pd-PRj catalysts

oxidative addition, while flexible steric bulk around Pd pro-
motes reductive elimination,'®?8 triggering high reactivity
with less activated amide precursors.

The fact that Pd(II)-NHC precatalysts are single-
component, commercially-available, air- and moisture-stable
establishes operational simplicity and provides important
benefits in terms of cost, safety and modularity.7° The cross-
coupling of various amides under the same reaction condi-
tions allowed us to develop a general reactivity scale of dif-
ferent amides in cross-coupling reactions (Figure 2).5° N-
glutarimide amides have the highest reactivity, as expected
from the lowest resonance energy and high twist angle;s
however, the easily prepared N-Boc and N-Ts amides were
not far off in terms of reactivity using [Pd(NHC)(cin)Cl]
precatalysts. Under the optimized conditions, these three
precursors cross-coupled with turnover numbers of 740-870,
thus bringing the amide bond cross-coupling manifold for
the first time close to the practical levels required for general
use."”

The initial finding that Pd(II)-NHC precatalysts promote
N-C bond activation of amides enabled us to discover mild
conditions for amide bond cross-coupling and has been criti-
cal in expanding the application of acyl cross-coupling reac-
tions in synthetic chemistry.
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Figure 2. Correlation of amide bond reactivity with resonance ener-
gies.

2.4. Pd-PEPPSI Precatalysts in Suzuki-Miyaura Cross-
Coupling of Amides. To develop a diverse toolbox of
Pd(II)-NHC precatalysts for amide bond cross-coupling, we
reported the first example of Pd-PEPPSI precatalysts for Su-
zuki-Miyaura cross-coupling of amides (Scheme 3).5* Pio-
neered by Organ and co-workers, Pd-PEPPSI complexes rep-
resent another important type of air- and moisture-stable,
commercially-available Pd(II)-NHC precatalysts.4546 One of
the benefits is their straightforward synthesis (only one-step
from corresponding NHC salts; however, a recent report on
facile synthesis of [PA(NHC)(cin)Cl] precatalysts also should
be noteds3), and a variety of Pd-PEPPSI precatalysts bearing
different throw-away ligands have been reported.> Pd-
PEPPSI complexes have different activation pathway,4 which
provides new opportunities for fine-tuning supporting lig-
ands in amide cross-coupling.

Under our optimized conditions (Pd-PEPPSI-IPr, 3 mol%,
K,CO;, 3.0 equiv, THF, 60-110 °C), both the amide and bo-
ronic acid components showed good functional group toler-
ance. In agreement with the high activity of Pd-NHC com-
plexes, diverse amides could be cross-coupled under identi-
cal reaction conditions. High turnover numbers were ob-
tained for all amide precursors (TON = 480-760). This study
further highlighted the robustness of Pd(II)-NHC catalytic
system over Pd/phosphines in selective amide N-C bond
activation.

2.5. [Pd(NHC)(ind)Cl] Precatalysts in Suzuki-Miyaura
Cross-Coupling of Amides. Cross-coupling reactions under
mild, room temperature conditions are vastly preferred due
to low overall cost and operational convenience. To fur-
ther establish the versatility of Pd(II)-NHC precatalysts in
amide N-C bond activation, we reported [Pd(NHC)(ind)Cl]-
promoted Suzuki-Miyaura cross-coupling of amides (Scheme
4).54 The reaction is notable as the first example of Suzuki-
Miyaura cross-coupling of amides at room temperature. The
developed catalytic system based on [Pd(NHC)(ind)Cl] rep-
resents a significant improvement over our initial
Pd/phosphine system. Previous work indicated that
[PA(NHC)(ind)Cl] precatalysts undergo fast reduction to
Pd(o) and that off-cycle Pd(I) dimers that account for the
loss of catalytic reactivity are not formed.474®¢ The robust
nature of Pd(II)-NHC allowed us to perform one-pot N-
activation/cross-coupling for the first time, thus providing a
streamlined route to biaryl ketone products directly from 2°
amides. Kinetic studies showed that N-Boc amides have
higher reactivity than N-Ts amides, which is consistent with
ground-state-destabilization of the amide bond.5

Clearly, these studies established that by fine-tuning of the
throw-away ligand in Pd(II)-NHC precatalysts, it is possible
to develop highly efficient N-C bond cross-coupling reac-
tions of amides in a predictable and highly selective manner.

Scheme 3. Activity of Pd-PEPPSI-IPr in Cross-
Coupling of Amides
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Scheme 4. Activity of [Pd(IPr)(ind)Cl] in Cross-
Coupling of Amides at Room Temperature
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3. Scope of New Amide Precursors in Cross-Coupling
Reactions Catalyzed by Pd(II)-NHC Precatalysts

Different amide precursors have been developed for amide
cross-coupling manifold (Figure 3)." These amides can be
synthesized from carboxylic acids or, more importantly, di-
rectly from secondary or primary amides in several cases. The
development of new amide bond precursors is guided by the
principle of amide bond resonance destabilization, which
conceptualizes the amide bond cross-coupling area of re-
search and provides a benchmark for the continuum of reac-
tivity of the amide bond.

The role of new amide precursors is two-fold: (1) to enable
the catalytic mode of reactivity, wherein the amide bond is
ultimately derived from carboxylic acids, and (2) to permit
non-classical, electrophilic reactivity of the amide bond,
through metal-catalyzed as well as metal-free pathways,
wherein the reactive amide bond originates from common
primary or secondary amides. The introduction of practical,
robust Pd(II)-NHC precatalysts significantly expands the
scope of amides that can be employed in cross-coupling due
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Figure 3. Amide bond precursors in Suzuki-Miyaura cross-coupling.

Scheme 5. Activity of [Pd(NHC)(cin)Cl] in Cross-
Coupling of N-Acylpyrroles and Pyrazoles
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Scheme 6. Activity of [Pd(NHC)(cin)Cl] in Cross-
Coupling of N-Methylamino-Pyrimidyl-Amides
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Scheme 7. Activity of [Pd(NHC)(cin)Cl] in Cross-
Coupling of N,N-Boc,-Amides Derived Directly from
1° Amides
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to high o-donation and operationally-convenient condi-
tions.16-18

In this context, Pd(II)-NHC have been used to cross-
couple planar amides (Scheme 5),5¢ N-heteroaryl amides
(Scheme 6)57 and 1° amides (Scheme 7).58

As a further illustration, Zou reported a Pd-PEPPSI-IPr-
enabled Suzuki-Miyaura cross-coupling of N-Ts amides with
diarylborinic acids.59 These reactions are not easily achieved
using Pd/phosphine precatalysts.

4. Suzuki-Miyaura Cross-Coupling of Esters

Aromatic esters have emerged as increasingly important
precursors to generate acyl-metal intermediates in organic
synthesis.™39.% The ubiquity of esters as common intermedi-
ates in synthetic endeavors makes the development of cata-
lytic cross-coupling methods by C-O acyl cleavage appealing.
As part of our interest in generating acyl-metal intermedi-
ates, we have made significant progress in activating ester C—
O bonds under mild and practical conditions by using
Pd(II)-NHC precatalysts. These studies explore new acyl-
metal precursors with the selectivity complementing reac-
tions of amides in terms of synthesis of C-O electrophiles (cf.
amides), catalytic performance, reaction scope and relative
facility of oxidative addition in the catalytic cycle.

Based on the lessons drawn from Pd(IT)-NHC catalysis, we
reported the first Suzuki-Miyaura cross-coupling of esters by
selective C-O bond activation to give biaryl ketones at room
temperature (Scheme 8).54 The reaction was catalyzed by
[PA(IPr)(ind)Cl] in the presence of a mild carbonate base.
Notably, the method established the first example of efficient
acyl cross-coupling of common amide and ester electrophiles
promoted by a single commercially-available, air- and mois-
ture-stable Pd(II)-NHC precatalyst under identical reaction
conditions. Kinetic studies allowed us to correlate the reac-



tivity with low barriers to isomerization around the C-X
bond (Figure 4). Esters feature considerable stabilization in
the ground-state countered by significant stabilization in the
transition-state.# This study provides a unified manifold for
the development of cross-coupling reactions of ester and
amide electrophiles by selective activation of C-O and C-N
bonds under the same reaction conditions.

Our subsequent studies have determined that Pd-PEPPSI
type precatalysts catalyze the cross-coupling of amides with
comparable reactivity to [Pd(IPr)(cin)Cl] (Scheme g).®*

In an effort to find general and operationally-simple condi-
tions for C-O bond activation, we reported an exceedingly
mild method for Suzuki-Miyaura cross-coupling of aryl esters
using Pd-PEPPSI at room temperature (Scheme 10 and Fig-
ure 5).2 Low cost, accessibility and broad applicability of
PEPPSI catalysts provide additional impetus to study Pd(II)-
NHCs containing different throw-away ligands.

Scheme 8. Activity of [Pd(IPr)(ind)Cl] in Cross-
Coupling of Esters at Room Temperature

o [Pd(IPr)(ind)CI] 0
J\ (3 mol%)
R ~OPh + Ar—BOH); ——— — » R™ NAr
4.5 equiv K,CO3, THF, 23 °C

49-98% vyield
18 examples

Selected examples
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Figure 4. Correlation of amide and ester bond reactivity with isom-
erization barriers.

Scheme 9. Activity of Pd-PEPPSI-IPr in Cross-
Coupling of Esters
o Pd-PEPPSI-IPr o)

i (3 mol%) JJ\

R”SOPh + Ar—B(OH), R SAr
K»COj3, THF, 80 °C

3.0 equiv 54-98% vyield
19 examples
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In their seminal work, Newman, Houk and co-workers re-
ported the first Suzuki-Miyaura cross-coupling of aryl esters
catalyzed by [Pd(NHC)(cin)Cl] (Scheme 1).%4 This finding
was of central importance because it demonstrated that Pd-
NHC precatalysts are capable of cleaving strong C-O bonds
in phenolic esters. A sequential C-N amide bond activation
using Pd/PCy;HBF, (Scheme 2A)3' followed by C-O bond
activation of aryl ester using Pd(II)-NHC was achieved with

Scheme 10. Activity of Pd-PEPPSI-IPr and Related
Pd(II)-NHC Precatalysts in Cross-Coupling of Esters
at Room Temperature

A: Cross-coupling of aryl esters using various Pd(Il)-NHC precatalysts

o) o)
PhJ\4-Tol
K,CO3, H,0, THF, 23 °C

Pd-PEPPSI-IPr  95%

[Pd(1Pr)(cin)Cl]  73%

[Pd(IPr)(ind)Cl]  94%

B: Determination of TON in cross-coupling of aryl esters
(e}

P Pd-NHC (1.0 mol%)
Ph” NOPh + 4-Tol—B(OH),

2.0 equiv

Pe Pd-NHC (0.10 mol%)
Ph” NOPh + 4-Tol—B(OH),

1.2 equiv

o)
PhJ\4-Tol
K,CO3, H,0, THF, 23 °C

Pd-PEPPSI-IPr 600
[Pd(IPr)(cin)CI] 570
[Pd(IPr)(ind)CI] 680

[Pd(IPr)(u-OH)CI1,

Figure 5. Structure of Pd(II)-NHC hydroxide dimer. NHC = IPr.

Scheme u. Activity of [Pd(IPr)(cin)Cl] in Cross-
Coupling of Esters at Elevated Temperatures
o [Pd(IPr)(cin)Cl] o

I (3 mol%)

R”SOPh + Ar—B(OH),
1.7equiv KsPOy, Hz0, THF, 90 °C

R™ “Ar

53-97% yield
36 examples

Selected examples
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Suzuki-Miyaura cross-coupling by sequential N-C/O-C activation

4-Ac-CgHy-B(OH),

1st 0
i Pd(OAC), 2
N PCy3HBF, O O
(o) 0.
Fh o KLCO5 H;BO; 71 Ac
ond & THF, 65 °C o
[ref. 31] 80% yield
Q 3-Fur-B(OH),
5 S O O [Pd(IPr)(cin)Cl]
= Ac K3POy, H0
o) THF, 90 °C

91% yield



Scheme 12. Activity of [Pd(IPr)(ind)Cl] in Cross-
Coupling of Esters using Hydroxide Bases

o) [Pd(iPr)(ind)Cl] o
(1 mol%)
RJ\OPh + Ar—B(OH), RJ\AF
1.5 equiv KOH, THF/H,0, 23 °C 32-91% yield

14 examples

Selected examples

oo o0 o,

57% 86% 67%
(o] (o] (0]
\ e
MeO,C OMe
74% 83% 32%

exquisite chemoselectivity, demonstrating the synthetic val-
ue of cross-coupling of bench-stable acyl derivatives with a
varying degree of nx to m*c-o delocalization.

Hazari and co-workers have reported Suzuki-Miyaura
cross-coupling of aryl esters catalyzed by [Pd(NHC)(ind)CI]
precatalysts (Scheme 12).55 The reaction proceeds at room
temperature in the presence of strong bases. The high effi-
ciency of their catalytic system benefits from rapid activation
of [PA(NHC)(ind)Cl] under the reaction condition.

5. Acyl-Buchwald-Hartwig Cross-Coupling of Amides
(Transamidation) and Esters

On the basis of efficient formation of acyl-metal intermedi-
ates enabled by Pd(II)-NHC precatalysts, new types of syn-
thetically valuable reactions hinging on Pd-NHCs are feasi-
ble. Adapting the general, well-established Buchwald-
Hartwig Cry) amination reaction mechanism® to common
amides and esters by chemoselective C(-X cleavage af-
fords amides through a unique synthetic pathway.®® This
mode of reactivity is particularly attractive to achieve trans-
amidation of the amide bond under mild conditions with
selectivity orthogonal to other known methods.

5.1. [PA(NHC)(cin)Cl] Precatalysts in Buchwald-Hartwig
Transamidation of Amides. Based on the excellent reactivi-
ty of Pd(IT)-NHC precatalysts in amide N-C bond activation,
we reported the first acyl-Buchwald-Hartwig reaction of am-
ides (transamidation) (Scheme 13).67 The reaction was cata-
lyzed by [Pd(NHC)(cin)Cl] in DME at no °C. Unlike the typi-
cal Cyn-aminations, which require strong bases, a weak
carbonate base performed best under the reaction condi-
tions. The robust nature of Pd(II)-NHCs allowed us to per-
form one-pot N-activation/transamidation, resulting in a net
amide exchange of common 2° amides. The catalytic system
was found applicable to a broad range of amides, highlight-
ing the generality of Pd(II)-NHC precatalysts in N-C bond
activation. This study provides a new approach to the syn-
thesis of valuable amide building blocks facilitated by the
versatility of Pd(II)-NHC complexes in amide N-C bond ac-
tivation.

5.2. Pd-PEPPSI Precatalysts in Buchwald-Hartwig Ami-
dation of Esters and Transamidation of Amides under
Identical Reaction Conditions. In our efforts to develop a
unified manifold for amide and ester cross-coupling, we re-
ported the first selective Cre)-N and Cpqn-O cleav-
age/Buchwald-Hartwig amination under the same reaction

Scheme 13. Activity of [Pd(IPr)(cin)Cl] in Transami-
dation of Amides

o) [Pd(IPr)(cin)Cl] o]
R3 o, 3
1 f
RJ\N”R AN (3 mol%) RJ\N,R
R2 R* K,CO3, DME, 110 °C R*
2.0-3.0 equiv 69-98% yield
R' = Ph, Me, Bn; R? = Boc, Ts 25 examples
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=j-Pr, 79% R =CF3, 76%
o J< oMe OMe
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N-activation/cross-coupling of common 2° amides
o) Me 1. Boc,0, DMAP oMe
2. [Pd(IPr)(cin)Cl]
HoN
Ph)J\,TI,Ph L M :© Py
K,CO3, DME, 110 °C H
H 2003, )
Me [85% yield] Me
2.0 equiv

Scheme 14. Activity of Pd-PEPPSI-IPr in Amidation
of Esters and Transamidation of Amides

0 Pd-PEPPSI-IPr o
. R (3 mol%) I R
N Ay
R? K,COj3, DME, 110 °C R?
2.0 equiv 50-97% yield
A: XR'= OPh, B: XR' = NBoc/Ph 26 examples

Selected examples

caaiicnclivas:
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Cross-coupling of various amides
0 Pd-PEPPSI-IPr o
P o (3 mol%) o NP
Ph” "N + H,N” N
R2 2.0 equiv K,CO3, DME, 110 °C
o o
Ph)L _R' R'=Me, 83% Ph)L _R! R'=Me, 92%
I R'=Ph, 84% ) R'=Bn, 76%
Ts Boc

conditions (Scheme 14).9® The selection of NHC ligand was
important for this reaction. The IPr¢ ligand performed best
under optimized conditions, while bulkier IPent and less
sterically-demanding IMes resulted in a significant decrease
of activity. Kinetic studies demonstrated that cross-coupling
of amides and esters follows almost identical kinetics. This
study conceptualized the common manifold for Buchwald-
Hartwig amination of amides and esters.

3. [PA(NHC)(cin)Cl] Precatalysts in Buchwald-Hartwig
Amidation of Esters. Newman and co-workers reported
Buchwald-Hartwig amination of aryl esters using
[PA(NHC)(cin)Cl] (Scheme 15).7° They found that water was
crucial for the reaction but the reason for this unclear. Inter-
estingly, water has no effect on the related Buchwald-



Scheme 15. Activity of [Pd(IPr)(cin)Cl] in Amidation

Scheme 16. Activity of [Pd(SIPr)(ind)Cl] in Amidation

of Esters
o) [Pd(SIPr)(ind)CI] o
P R (1 mol%) A R
R"NOPh + H-N RTYN
R?  Cs,CO;, THF/H,0, 40 °C R2
1.2 equiv

of Esters
o) [Pd(IPr)(cin)Cl] 0
1 R’ (3 mol%) A R
R“>OPh + H-N - + RN
R?  K,CO3, H,0, PhMe, 110 °C R2
1.2 equiv 55-97% yield
33 examples
Selected examples
N N N
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[e]
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Hartwig reactions of amides.6768 The reaction was applicable
to diverse esters using anilines, while aliphatic amines were
found to react with aryl esters in the absence of precatalyst.”
5.4. [PA(NHC)(ind)Cl] Precatalysts in Buchwald-Hartwig
Amidation of Esters. Hazari and co-workers have reported

Buchwald-Hartwig cross-coupling of esters promoted by
[PA(NHC)(ind)Cl] (Scheme 16).%5 Under the optimized con-

ditions, SIPr ligand performed best, and the cross-coupling
was achieved at 40 °C in THF:H,O.

6. Cross-Coupling Mechanism

To better understand the mechanism of Pd(II)-NHC-
promoted Suzuki-Miyaura cross-coupling of amides, we

32-97% vyield
21 examples

0 AR oY

Selected examples

90% 96% 56%
o /©/C02Me 0 /©/OM6 o ©/0M6
N == N t—Bu)kN
H N\ o H H
93% 87% 80%

reported a detailed investigation with [Pd(NHC)(allyl)Cl]
precatalysts.’> The study demonstrated the crucial role of
water using [Pd(NHC)(cin)Cl]. Experimental results indicat-
ed that bulkier [Pd(IPr*)(cin)Cl]73 showed similar or in some
cases even superior reactivity than [Pd(IPr)(cin)Cl]. DFT
calculations suggested that the rate-determining step in-
volves (1) activation of the precatalyst by formation of the C-
O bond between the cinnamyl moiety and the carbonate

moieties for [Pd(IPr)(cin)Cl], and (2) transmetallation in the

catalytic cycle with [Pd(IPr*)(cin)Cl] (Figure 6). Further
mechanistic studies should lead to the discovery of more

efficient Pd-NHC precatalysts for the cross-coupling of am-
ides.
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Figure 6. Reaction profile (kcal/mol) of the Suzuki-Miyaura cross-coupling of amides catalyzed by [PA(NHC)(cin)Cl]. Note that activation of
precatalyst is rate-determining in the case of IPr-supported cinnamyl precatalyst.

7. Outlook

In summary, the use of well-defined Pd(II)-NHC precatalysts
to enable cross-coupling reactions of bench-stable amides
and esters by C-X activation has emerged as a novel and val-
uable method for catalytic functionalization of the ubiqui-
tous amide and ester bond. Most crucially, the use of N-
heterocyclic carbenes permits reactions of amides and esters
that were previously impossible or could be achieved only
under very harsh conditions. To date, four important types of
cross-coupling reactions have been developed. Each of these
methods shows broad generality, unrivalled catalytic effi-
ciency and each is performed with commercially-available,
air- and moisture-stable Pd(Il) precatalysts.

Broadly speaking, cross-coupling of amides and esters
should be placed in the context of cross-coupling reactions of
acyl electrophiles. The use of amides and esters presents sev-
eral unique advantages due to (1) superior stability of these
functional groups as compared to less stable acyl chlorides,
thioesters and anhydrides, (2) ubiquitous presence of the
ester and, in particular, the amide bond in common synthetic
molecules.

We speculate that, in the future, this chemistry will be-
come important in the site-selective manipulation of biomol-
ecules, post-polymer modification as well as the synthesis of
important targets that are not readily available by other
methods. The very exciting recent breakthroughs enabled by
Pd(IT)-NHC catalysis should pave the way for the general use
of common amide and ester electrophiles in catalytic assem-
bly of valuable molecules.
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