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Abstract: Bridged lactams represent the most effective and wide-ranging method of constraining
the amide bond in a non-planar conformation. Previous comprehensive review on this topic was
published in 2013 (Chem. Rev. 2013, 113, 5701-5765). In the present review, which is published as a
part of the Special Issue on Amide Bond Activation, we present an overview of the recent developments
in the field of bridged lactams that have taken place in the last five years and present a critical
assessment of the current status of bridged lactams in synthetic and physical organic chemistry.
This review covers the period from 2014 until the end of 2018 and is intended as an update to Chem.
Rev. 2013, 113, 5701-5765. In addition to bridged lactams, the review covers recent advances in the
chemistry of bridged sultams, bridged enamines and related non-planar structures.

Keywords: amide bond; bridged lactams; twisted amides; amides; Winkler-Dunitz parameters;
N-C activation; hypersensitivity; nitrogen heterocycles; distortion; bridged sultams.

1. Introduction

The amide bond is arguably the most important linkage in chemistry and biology [1]. Typical
amide bonds are planar as a result of amidic resonance (nn — m*c-o conjugation, 15-20 kcal/mol)
(Figure 1A) [2]. The redesign of the amide bond geometry through structural and electronic changes
of substituents comprising the amide bond has had a profound impact on the physico-chemical
properties of amides [3-6]. The alteration of the amide bond geometry generally leads to a reversal of
traditional properties of amides, such as lower barrier to cis-trans rotation, increased length of the
N-C(O) bond, favored protonation at the nitrogen atom, and increased reactivity in nucleophilic
addition and hydrolysis [3-6]. The geometric and structural changes of the amide bond are an
established technique to affect properties of amide bonds in biology and medicinal chemistry [7-10],
while recent advances in selective metal insertion into the amide bond driven by its distortion
represent a thriving and general concept in organic synthesis [11,12].

A: Amide bond resonance
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Figure 1. (a) Amide Bond Resonance. (b) Types of Distorted Amide Bonds.
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In general, amide bond distortion can be achieved by four methods (Figure 1B): (1) steric
restriction, (2) steric repulsion, (3) conformation effects, and (4) electronic effects. Out of these
methods, the most effective one by far is steric restriction. Typically, steric restriction involves
constraining the amide bond in a rigid bicyclic ring system with a nitrogen atom positioned at a
bridgehead position. This allows one to constrain the typical planar amide bond in a non-planar
conformation with the magnitude of distortion principally controlled by the type of ring system
(Figure 2). To date, bridged lactams represent the only method that has allowed for a substantial
distortion, exceeding 60% of the maximum theoretical value of the amide bond [3-6,11,12].

Amide bond distortion is measured by Winkler-Dunitz parameters: t (twist angle), yn
(pyramidalization at N) and yc (pyramidalization at C) [13] as well as by changes in N-C(O) and
C=O bond lengths (Figure 2A). Amide bond distortion leads to a change of thermodynamic
N-/O-protonation aptitude, which is a key effect that controls the reactivity of non-planar amide
bonds (Figure 2B) [11]. The properties of amide bonds in bridged lactams are further amplified by a
type of bridged lactam scaffold (Figure 2C). In general, bridged lactams are classified into amides in
which the N-C(O) bond is placed on a one-carbon bridge or on a larger bridge, with the former
enjoying additional stabilization through transannular scaffolding effects.

In this review, published as a part of the Special Issue on Amide Bond Activation, we present an
overview of the recent developments in the field of bridged lactams and present a critical assessment
of the current status of bridged lactams. This review covers the period from 2014 until the end of
2018 and is intended as an update to the previous comprehensive review on topic, Chem. Rev. 2013,
113, 5701-5765 [3]. In addition to bridged lactams, the review covers recent advances in the
chemistry of bridged sultams, bridged enamines and related non-planar structures. For additional
coverage, the reader is referred to previous reviews on bridged lactams [4-6].

It is our hope that the review will serve as a useful reference for chemists involved in various
aspects of activating the amide bond and stimulate further research in this area.

A: Winkler-Dunitz distortion
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Figure 2. (a) Winkler-Dunitz Distortion. (b) Activation of the Amide Bond by N-/O-Protonation. (c)
Types of Bridged Lactams.
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2. Synthesis, Properties and Reactivity of Bridged Lactams

Recent advances in the field of bridged lactams include: (1) identification of the additive
Winkler-Dunitz parameter, (2) synthesis of extremely twisted non-stabilized amides, (3) synthesis of
novel bridged lactams, and (4) new examples of reactivity of non-planar amides.

In 2015, we have identified the additive Winkler-Dunitz distortion parameter (Xt+yn), sum of
twist and pyramidalization at nitrogen angles, as a more accurate prediction of the structural and
energetic properties of non-planar amides than either twist or pyramidalization alone (Figures 3-4)
[14,15]. A computational study to determine the effect of amide distortion on N-/O-protonation
using a set of lactams comprehensively covering the entire distortion range (Figure 3) revealed a
linear correlation between the composite Winkler-Dunitz parameter (Xt+y~) and N-/O-protonation
aptitude (Figure 4) [14]. Our subsequent study demonstrated that the additive Winkler-Dunitz
parameter (Zt+yn) gives linear correlations vs. structural and other energetic parameters (resonance
energies, atomic charges, frontier molecular orbitals, infrared frequencies) [15].

Since (1) amide bond distortion typically hinges upon both twist and pyramidalization, and (2) the
additive Winkler-Dunitz parameter gives a more accurate prediction of geometric changes of the amide bond,
this parameter should be routinely reported to describe structural variations of all non-planar amide bonds.

o 9 o
}Jﬂ VR@ CJXD %q

[2 2.1] [3.2.1] [3. 3 1] [4.1.1] [4.2.1] [4.3. 1]
% &\ As |
[4.4.1] [5.2.1] [5.3.1] [6.2.1] [5.4.1] [6.3.1]

& amide distortion: (7 + yp) = 20° to 150°
& the composite parameter = (7 + yp)
Figure 3. Additive Winkler-Dunitz Distortion Parameter: Sum of Twist Angle and Nitrogen

Pyramidalization (Xt+yn).
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Figure 4. Plot of APA (PA = Experimental Protonation Affinity) to the Sum of Twist and
Pyramidalization at Nitrogen Angles (Additive Winkler-Dunitz Parameter: Xt+yn). Note that
(Zt+yN) gives linear correlations vs. structural and other energetic parameters. See, ref. [15]. Also
note comprehensive studies, ref. [16-18].
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Recently, we have utilized the additive Winkler-Dunitz parameter (Xt+yn) to determine the
origin of high twist and N-/O-protonation aptitude of Troger’s base twisted amides (Figure 5) [19].
Perhaps surprisingly, we found that although Troger’s base twisted bis-amides are among the most
twisted amides synthesized and structurally-characterized to date (vide infra), these amides are less
effective in probing N-protonation than less twisted in this series 1-azabicyclo[3.3.1]Jnonan-2-one

o oy Gty G

derivatives.

o
[3.3.1] [3.3.1] [3.3.1] [3.3.2]
monoamide monoamide Troger's base Troger's base
bis-amide bis-amide

o (0]
§;N>:/§ §;’>§ & high distortion
(r+zN = 100°)
N N & not ideal for N-
o o protonation

[3.3.1] [3.3.2]
bis-amide bis-amide

Figure 5. Additive Winkler-Dunitz Distortion Parameter in Troger’s Base Twisted Amides.

In 2016, the extremely twisted 7-hypoquinuclidonium tetrafluoroborate was reported by Stoltz
and co-workers (Figure 6) [20]. The group has impressively exploited the intramolecular
Aubé-Schmidt reaction to access the [2.2.1] bridged scaffold. This unconventional amide bond
forming strategy represents a general approach to this and another extremely twisted amide,
2-quinuclidonium tetrafluoroborate (see Figure 6, box) [21], in the absence of nucleophiles that
would likely decompose both compounds. It should be noted that the target twisted amide was
isolated as a HBF4 salt or BFs complex. The latter compound was fully characterized by X-ray
crystallography, revealing one of the most twisted amide bonds isolated to date (t=90.0°, yn = 69.8°;
N-C(0) =1.526 A, C=0=1.186 A).

It is now well-established that N-coordination of the amide bond increases twist and
pyramidalization (vide infra). Thus, with the exception of a structurally-unique 1-adamantan-2-one
derivatives (see below), there are no examples of unconstrained structurally-characterized amides
with a combined Winkler-Dunitz parameter (Zt+yn) exceeding 100° in the neutral form.

Stoltz
o o) CO,H
o HBF, (2 equiv)
. ' '
Etzo, 0°Ctort N N
Ns 97% yield [ e [/ ; N
(77:12:15) H BF, F3B H2 BF,
o ——7" (X-ray) (X-ray)
CH5CN
(ti2=2h)

[ . 7 _ 2-quinuclidonium
’>’ BF, | tetrafluoroborate
H

Figure 6. Synthesis of 7-Hypoquinuclidonium Tetrafluoroborate.

In 2016, the synthesis of another extremely twisted amide was reported by Komarov, Kirby ef al.
(Figure 7) [22]. These researchers achieved the synthesis of the parent 1-aza-2-adamantanone via a
route consisting of thermal amidation of the N-Boc protected amino acid. Previous calculations
showed a significant stabilizing effect of the methyl groups in the trimethyl twisted amide derivative
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(see Figure 7, box) [23]. The parent 1-aza-2-adamantanone was fully characterized after protonation
as HBFa salt (t = 88.1°, yn =58.0°; N-C = 1.508 A, C=0=1.186 A). Furthermore, the authors obtained
the x-ray structure of the a-monomethylated 1-aza-2-adamantanone in a neutral form (t=90.0°, yn =
61.8°; N-C =1.448 A, C=0=1.201 A). Similar to the [2.2.1] amide synthesized by the Stoltz group (cf.
[2.2.2] amide), the parent 1-aza-2-adamantanone was found to be more reactive in reactions with
nucleophiles than the previous “most twisted amide” 3,5,7-trimethyl-1-azaadamantan-2-one [24].

Komarov/Kirby

OyOt-Bu

N CO,H sublimation N
g@ 150 °C, 0.5 mmHg g

(0]

43% yield
N o
3,5,7-trimethyl-
Me Me| 1-azaadamantan-2-one
Me

Figure 7. Synthesis of Parent 1-Azaadamantan-2-one.

In 2017, Greenberg and co-workers reported an interesting study of a silicon-containing twisted
amide in a [3.3.3] scaffold (Figure 8) [25]. Heteroatom-containing derivatives of bridged lactams
have received considerable attention as a means of facilitating the synthesis and tuning properties of
the twisted amide bond. Through computations, the authors demonstrated that the nitrogen atom in
1-methyl-4-silatranone would be more similar to a lactam rather than a silatrane with a long
intramolecular N-Si bond (N-Si = 2.902 A vs. 1-methylsilatrane, N-Si = 2.466 A). Although the
attempted synthesis via condensation of (HOCH:CH2):N(COCH:0H) with various silanes was
unsuccessful, the study lays a foundation for the synthesis of silicon-containing twisted amides

Greenberg

1-methyl-4-silatranone 1-methyl-4-silatrane
Figure 8. Computational Study of 1-Methyl-4-Silatranone.

In 2016, we reported the first examples of structurally-characterized N-alkylated bridged
lactams (Scheme 9) [26]. N-Alkylation significantly increased amide bond distortion (t = 44.0°, yn =
58.3°;, N-C =1.554 A, C=0=1.192 A). Furthermore, we demonstrated that N-coordination activated
the twisted amide bond towards ¢ N-C bond activation by Pd-catalyzed hydrogenation.

Szostak
increase in distortion facile o C—N activation
Y R;0BF, Y H,, Pd/C v

X\_ CH,Cl,, rt X\_ i EtOAc, rt X/
T _ C, I \

N 2vi2 N BF Me N

o) I ‘o Pra LY
R R
R = Me, 99% (X-ray) R = Me, H, 83-85%

R = Et, 99% (X-ray)

Figure 9. N-Alkylation of Bridged Lactams as a Trigger for c N-C Bond Activation.
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Transition-metal-free ¢ N-C bond activation in bridged lactams was reported by our group in
2017 (Figure 10) [27]. Facile assembly of the twisted amide scaffold by intramolecular Heck reaction,
followed by N-alkylation and selective ¢ bond cleavage established a “sew-and-cut” approach to
complex isoquinoline-2-ones by a formal di-functionalization of the N-C amide bond. The reactivity
was correlated with amide bond twist in that less distorted amides were found unreactive. Given the
utility of mild difunctionalization methods in organic synthesis, twisted lactams are attractive
intermediates for the synthesis of nitrogen-containing heterocycles by this approach.

Szostak

.-~~> decorate =~ " "x

20 examples
50-99% yields

N N N —
Br H o) N3 e O I e © CO,Me
96% yield 81% yield 99% yield

Figure 10. Sew-And-Cut of Bridged Lactams by a Transition-Metal-Free c N-C Bond Activation.

In 2018, Marsden, Nelson and co-workers reported the synthesis of a set of bridged lactams
with [3.3.1] and [4.3.1] scaffolds as part of their research on fragment-based drug discovery (Figure
11) [28]. This approach nicely utilizes the presence of an additional heteroatom in the twisted amide
structure to facilitate the synthesis of starting materials. The cyclization was carried out according to
the established lactamization protocol mediated by Bu2SnO [29]. Due to the unique shape diversity,
bridged lactams hold a significant potential as unexplored scaffolds in drug discovery.

Marsden/Nelson

1. NaOH

fj/ 2 HClI f\?
COR 3 rpumsno Bu,SnO X

toluene, 120 °C

n=1,2,R= Me, Et 11 examples
XR' = CH,, NBn, NMe, NCbz, NCOR, NSO,Ar, NCH,CN 13-68% yields

Selected examples o

R ’ o)
Qs {J ({1
N~g N\‘Q N N~g A
o] Y o]
R = Bn, 46% R =Bn, 59% 57% R = CH,OMe,
R = Me, 45% R = Cbz, 52% n=1,63%

R=Me,n=2,35%

Figure 11. Fragment-Based Drug Discovery using Bridged Lactams.
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In 2017, Stoltz and co-workers reported the synthesis of a bridged hydantoin by asymmetric
a-allylation, Ru-catalyzed olefin isomerization, oxidative cleavage, Curtius rearrangement and
N-cyclization onto the isocyanate (Figure 12) [30]. The cyclization is performed by the same
mechanism as reported previously by Brouillette [31]; however, the method avoids the use of toxic
lead acetate. The bridged hydantoin was fully characterized by x-ray crystallography (t=36.4°, y~=
50.2°; N-C(O) = 1.404 A; C=0 = 1.210 A). This research illustrates one of the few methods for the
synthesis of an enantioenriched twisted amide bond.

Bridged hydantoins of this type were originally proposed by Smissman as potential
anticonvulsants (Figure 12, box) [32]. Our group has recently reported the structural characterization
of related acyclic twisted N-acyl-hydantoins (Figure 12, box) [33].

Stoltz
1. Grubbs II, VTMS 0] SIMes
0 Me 2. Nalo, Y—NH ve RS
HN WINF N~ cl” | _\ph
3. DPPA - PC
65% yield o) i
Grubbs I
(0]
Y—NH . o O
N - " )L twisted acyclic
smissmanones R7OUN"NH| " hydantoins
(0]
n (0)

Figure 12. Synthesis of a Bridged Hydantoin. VIMS = Vinyloxytrimethylsilane. DPPA = diphenyl
phosphoryl azide. SIMes = 1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene.

In 2017, Gouverneur, Cvengros and co-workers reported the synthesis of ethano Troger’s base
twisted bis-amides (Figure 13) [34]. Their approach involves one-step oxidation of the
ethano-Troger’s base precursors under the conditions reported earlier by Warnmark (Figure 13, box)
[35]. The ethano Troger’s base twisted bis-amide is significantly twisted (t =29.8°, yn = 45.5° N-C(O)
=1.401 A, C=0O = 1.215 A). The advantage of this method is rapid access to a twisted amide bond;
however, our study suggests that the presence of the fused aromatic ring is detrimental to the
N-protonation reactivity in this class of twisted amides [19].

Gouverneur/Cvengros
(0]
/@O@ KMnO4/BTEAC R N
CHZCIZ, 50 °C N R
R = Me, OMe, Br, CI o
ethano-Tréger's base 4 examples

30-52% yield

/ Tréger's base
N Me twisted bis-amide

Figure 13. Synthesis of Ethano Troger’s Base Twisted Amides. BTEAC = Benzyltriethylammonium
Chloride.

Satyanarayana and Helmchen reported asymmetric synthesis of bridged lactams in [3.3.1] and
[4.3.1] scaffolds using Ir-catalyzed allylic amination as an enantioselectivity determining key step
(Figure 14) [36]. With allylic amines in hand, the synthesis was completed by well-established
amidation/Heck cyclization sequence. The structure of one of the lactams in the [3.3.1] series was
confirmed by x-ray crystallography (t = 30.8°, yn = 52.7°; N-C(O) = 1.393 A, C=0 = 1.218 A).
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Satyanarayana/Helmchen

Br
@; Br HOZCH}/\
NH, Ir-catalyzed 1. DCC, DMAP

allylic amination ’;’H 2. Grubbs |
OCO,Me - RF -
. 54-88% vyield 82-98% vyield
R [93-98% ee]
R 5 examples PCy;,
Pd(dppf);Cl, R = Me, Et, Cl
(10-20 mol%) . CH,QOTr, Ph Ru=\
( CI” | ph
Et;N, DMF, A PCys;
58-72% yield Grubbs |
n=0,1

Figure 14. Enantioselective Synthesis of Bridged Lactams by Allylic Amination.

An inventive strategy for the synthesis of bridged lactams in the [5.3.1] and larger scaffolds was
reported by Liu and co-workers (Figure 15) [37]. The authors developed a new process for radical
aryl migration with chirality transfer to form macrocyclic ketones. As an application of this method,
they subjected several azido-ketones to the transannular Aubé-Schmidt rearrangement, resulting in
the formation of bridged lactams in 40-63% yields. Nevertheless, bridged lactams with the overall
sum of carbon atoms forming the bridged structure of ten or more, are similar in properties to planar
amides.

1. azidoiodinane (2 equiv)
CuCN (10 mol%)

2. TfOH
60% yield

>99% ee

azidoiodinane

Figure 15. Enantioselective Synthesis of Bridged Lactams by Radical Aryl Migration.

3. Bridged Sultams

Bridged sultams (bridged sulfonamides) have attracted significant attention due to a wide
range of biological activities of the sulfonamide bond [38]. In contrast to bridged lactams,
constraining a sulfonamide bond in rigid bicyclic ring systems is easily possible due to the lack of
Nlp to SOz conjugation (NIp = nitrogen lone pair) [39]. Such bridged sultams are not hyper-reactive
to hydrolysis and besides applications in medicinal chemistry have been used as template in
stereoselective synthesis enabled by rapid scission of the N-50: bond [3].

In 2017, Evans and co-workers in the continuation of their studies on bridged sultams reported
an improved method for the synthesis of saturated sultams via intramolecular reductive Heck
reaction (Figure 16) [40]. The use of a single Pd catalyst and a broad substrate scope are noteworthy
features of this method. One of the saturated sultams in a [3.2.1] scaffold was characterized by x-ray
crystallography (8 = 328.7; N-S = 1.643). The same group reported a bromonium-triggered
1,2-Wagner-Meerwein rearrangement of benzofused bridged sultams (not shown) [41].
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In 2017, Das and co-workers nicely exploited intramolecular S~xAr-type cyclization to form
bridged benzothiaoxazepine-1,1-dioxides in a [4.3.1] scaffold (Figure 17) [42]. An advantage of this
method is a rapid, telescoped, three-step synthesis of bridged sultams from the corresponding
N-aryl-2-fluorobenzenesulfonamides and trans-2,3-epoxy cinnamyl tosylates. One of the sultams
was fully characterized by x-ray crystallography (6 = 342.0; N-S = 1.668). The authors have also
developed an enantioselective variant by using a chiral trans-2,3-epoxy cinnamyl alcohol.

One example of an “apex-type” bridged sultam in a [3.2.1] scaffold was reported by Sokolov
and co-workers (Figure 18) [43]. The x-ray structure demonstrated significant pyramidalization of
the nitrogen atom (&= 325.5; N-S = 1.668).

Evans 1. Pd(OAC), (10 mol%) N
R' PPhs (20 mol%)
@X /é K,CO3, DMF, 110 °C = |
S F g N 2. NH,HCO,, 80 °C So~g-N
R AN R O// \\o
o o X = Br, Cl
R = H, OMe, CI, NH,, NO, 14 examples
R' = H, Me, C(Me)=CH, 43-93% yields
Selected examples (X =Br)
Me Me
§> HoN §> MeO \§>
i j\ .N [ j\ _N ]: l N [: 1 N
O/’S\\O O/’S\\O MeO o”s\\o O/’S\\O
91% 65% 70% 90% (x-ray)

*55% X = Cl

Figure 16. Synthesis of Saturated Bridged Sultams via Intramolecular Heck Reaction/Reduction.

Das o 74 | o\\S/P _
ONIPZ % .
s R" P W
N N F St ‘ | fo]
| NaH, DMF, rt R g
R NoH — _
: R =H, Me, OMe |
= R'=H, CI, Br, F, OMe S\
S | R"=H, F R
R' 15 examples
telescoped sequence 66-74% yields

72% 74% (87:13 er) 71% (X-ray)

Figure 17. Synthesis of Bridged Benzothiaoxazepine-1,1-dioxides via SxAr Cyclization.
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Sokolov

N NC2
\S\/\COZMG 1. K,CO3, 70 °C ~si g
7N -

o 0© 2. Br(CH,),B KCOV

- Br(LH)obr, KoLOs
| DMF, 70 °C COMe
CO,t-Bu 28% yield CO,t-Bu
X-ray

Figure 18. Synthesis of an Apex Bridged Sultam via 1,4-Addition.

4. Application in Natural Product Synthesis

Bridged lactams continue to serve as useful intermediates in the total synthesis of natural
products [3]. In general, recent applications hinge upon the increased electrophilicity of the carbonyl
group and increased nucleophilicity of the nitrogen atom of the amide bond rendered possible by
geometric distortion.

In 2015, Zhu and co-workers reported selective reduction of the more twisted amide bond in
scholarisine G (Figure 19A) [44]. The enamine was obtained after dehydration of the intermediate
hemiaminal. The x-ray structure of scholarisine G showed a significantly distorted N-aryl amide
bond (1 =21.9°, yn = 32.0% N-C(O) = 1.373 A, C=0 =1.223 A) vs. the aliphatic amide bond (t =2.9°, yn
=19.9°, N-C(O) = 1.352 A, C=0O = 1.227 A). It is also possible that the selective reduction in this case
can be explained by the exclusive stability of the five-membered ring lactams and by the fact that the
six-membered lactam is an anilide. In contrast, Dai exploited the higher basicity of the oxygen atom
in the aliphatic amide bond in a structurally-related leuconoxine to selectively maneuver reduction
of the more electron-rich amide bond through electrophilic pathway (Figure 19B) [45].

A total synthesis of 3-O-demethylmacronine, an Amaryllidaceae alkaloid, utilizing a
lactam-to-lactone rearrangement of a twisted amide was reported by Banwell and co-workers
(Figure 20) [46]. This elegant method capitalized on the high basicity of the twisted amide nitrogen
atom to form the acylium ion, which underwent trapping with a pendant hydroxyl group under
mild conditions.

Landais and co-workers reported a total synthesis of eucophylline, a dimeric terpene indole
alkaloid, taking advantage of a high electrophilicity of the carbonyl group in a [3.3.1] bridged lactam
scaffold (Figure 21) [47]. Bridged lactams are known to readily condense with amines to form
amidines. In this approach, condensation of the twisted amide bond with aniline afforded a bridged
amidine, which provided the key disconnection to the eucophylline core.

A. Zhu less
electrophilic
(o)

N7 LiAIH,

HO,

47% yield
more Me
twisted O
scholarisine G
B. Dai more
nucleophilic
H 1. Me;OBF,
N/7 2. NaCNBHj;
56% yield
more Me
twisted O
leuconoxine leuconodine

Figure 19. Reduction of a Bridged Lactam in Scholarisine G and Leuconoxine Alkaloids.
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268  Figure 20. Lactam-to-Lactone Rearrangement of a Bridged Lactam in Haemanthidine Alkaloids.
269
Landais
CN
> _
o\ N POCly, A MeO N~ "N 70% yield
’ 88% yield
electrophilic
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NH, X
Et Et
N 4 steps N
~ _— ~
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271  Figure 21. Bridged Amidine from a [3.3.1] Bridged Lactam in the Synthesis of Eucophylline.

272 5.Miscellaneous Examples

273 In 2015, Wang, Yu and co-workers reported the synthesis of bridged enamines via Au-catalyzed
274  spiro-cyclization of 2-propargyl-B-tetrahydrocarbolines (Figure 22) [48]. In these heterocycles, the
275  resonance interaction between Nlp and = electrons of the double bond is inhibited, resulting in a
276  nucleophilic nitrogen atom.

277
Wang/Yu [Au] (1 mol%)
\/ AgSbFg (1 mol%)
N t o

\ R" MsOH, CH,Cly, rt
N I Rll ,
R R [Au] = JohnPhosAuCl R R
11 examples
278 76-97% yields

279  Figure 22. Synthesis of Bridged Enamines via Gold-Catalyzed Spriocyclization.

280 In their studies on the Witkop cyclization, Gaich and co-workers reported the synthesis of
281  macrocyclic amides supported by the indole ring (Figure 23) [49]. The structure of one of the amides
282  was confirmed by x-ray crystallography and showed a significantly distorted amide bond (t = 32.3°,
283 yx=0.0° N-C(O) =1.353 A, C=0 =1.227 A).

284
hv
Na,CO3, MeOH, rt
47% yield (1:1:1)
X-ray
285 + 2 other isomers

286  Figure 23. Synthesis of a Macrocyclic Lactam via Witkop Cyclization.
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Yudin and co-workers developed several elegant methods for site-specific incorporation of
amino acids [50], peptide sequencing [51] and conformational control [52] of cyclic peptides based
on the twisted amide electrophilic sites (Figure 24). In their approach, the integration of a highly
strained and N-pyramidalized aziridinyl ring allows for selective N-C(O) cleavage and amino acid
incorporation, while the strained aziridinyl ring provides a handle for further functionalization by
aziridine-ring opening with nucleophiles.

Yudin

o [}
H H
Me\j?.)\*" Ph 1. LIOH oM
" o 2. H,NRCO,Me ",
VPN Me

AOP, DIPEA

NH
o NH N 3:0
ligation: 77-99% % NH
N cyclization: 86-97% o R
) \ﬁ‘m
o)

AOP = coupling reagent

R = Gly, Sar, Ala, Leu, Val, Phe, Tyr, Trp, Aze, B-Ala, Na-Ac-Lys
Gly-Gly, Phe-D-Pro, Gly-Phe-D-Pro, Ala-Phe-D-Pro

Figure 24. Cyclic Twisted Amide-Containing Tetrapeptides.

Several additional studies on non-planar amides have been reported. Computational studies on
ion-pair interactions in Kirby’s amide HBFu salts [53] and N-protonation of twisted amides by HF
and HCI [54] were reported by Panday. Mykhailiuk and co-workers reported selective ¢ N-C bond
scission in strained acyclic amides [55]. Stereoselective C-O bond cleavage in pyramidalized
diketopiperazines induced by amide bond distortion was reported by Jahn and co-workers [56].
Intramolecular hydrogen bonding to electron-deficient oxygen in N-pyramidalized bicyclic amides
was reported by Otani, Ohwada and co-workers [57]. Excellent reviews on the role of amide bond
activation in biological molecules [58], amidicity [59], and heteroatom substitution at amide nitrogen
[60] have been published. Additional studies on the properties of amides have been reported [61,62].
Recent relevant studies on acyclic non-planar amides should also be noted [11,12,63-66].

6. Conclusions

In summary, we have reviewed recent advances in the area of bridged lactams. This field
continues to provide the most effective and wide-ranging method to achieve non-planarity of the
amide bond. The main progress in the last 5 years includes (1) identification of the additive
Winkler-Dunitz parameter as a straightforward and accurate descriptor of the structural and
energetic properties of the non-planar amide bond, and (2) the synthesis of extremely twisted
bridged lactams in both quinuclidone and adamantanone series. Recently reported examples of
novel bridged lactam scaffolds, divergent N-C cleavage reactivity and applications in the total
synthesis of natural products are also worth noting.

Despite the considerable progress that has been made, the area is far from being mature. The
recent remarkable progress in the chemistry of acyclic twisted amides has underlined the benefits of
using conformational restriction (i.e. bridged lactams) to achieve non-planarity, but also brought to
light the deficiencies of bridged lactams, and non-planar amide bonds in general. Most important is
that except for the structurally-limited 1-aza-2-adamantanones there is a complete lack of isolated
and fully characterized unhindered bridged lactams with a combined Winkler-Dunitz parameter
(Xt+yN) exceeding 100° in the neutral form (or in other words merely 60% of the maximum
theoretical distortion). It is beyond belief that the area has progressed so little since the first
conception of a bridged lactam bond by Lukes in 1938.

Further, very little is known about the stability of bridged lactams and, by extension, of
non-planar amides. It is now safe to assume that a range of distortion of (Zt+yn) ca. 70-80° gives
isolable lactams. However, this stability range has only been tested in a very limited set of lactams.
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Even less is known about the generality of amide bond distortion, properties and structures
across different sets of non-planar amides. This research is hindered by the very few types of
non-planar bridged lactams that have been described to date. The recent example of Troger’s base
twisted amides is as a good case in point [19]. Despite significant amide bond distortion, these
lactams do not protonate readily as a consequence of Nlp conjugation onto the aromatic ring.

Another issue involves the reactivity of non-planar amides. Almost all research thus far has
focused on simple hydrolytic stability and nucleophilic addition studies. At present, only one type of
potentially very synthetically appealing metal-catalyzed ¢ N-C bond activation has been reported,
and the mechanism of this transformation is unknown.

The importance of the amide bond and the continuous role of twisted amides in chemistry and
biology have served as a powerful stimulus for fundamental research on bridged lactams. Given the
obvious possibilities for applications of non-planar amide bonds, future studies are expected to have
a broad impact beyond this important research area.
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