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Abstract—We report on the first beta gallium oxide (B-Ga203)
feedback oscillator built by using a B-Ga203 nanoresonator as the
frequency reference for real-time middle ultraviolet (MUYV) light
detection. We fabricate suspended 3-Ga:03 nanodevices through
growth of B-Ga20s3 nanoflakes using low-pressure chemical vapor
deposition (LPCVD), and all-dry transfer of nanoflakes onto
microtrenches. Open-loop tests reveal a resonance of the $-Ga:03
nanomechanical resonator at ~30 MHz frequency with a quality
factor (Q) of ~150-200. A closed-loop oscillator is then realized by
using a combined optical-electrical feedback circuitry boosting an
>70-fold enhancement to Q, to perform real-time MUV sensing.
The oscillator exposed to cyclic MUYV irradiation exhibits resonant
frequency downshifts, with a responsivity of -3.3 Hz/pW and a
minimal detectable power of 0.9 nW, showing great promise of -
Ga20s3 transducers for resonant-frequency-based MUYV detection.

Index Terms—Beta gallium oxide (B-Ga203), NEMS, oscillator,
ultraviolet light detection.

I. INTRODUCTION

HOTODETECTION in solar-blind range (<280 nm) has

received significant attention thanks to the absence of <280
nm light irradiation in earth atmosphere, providing a “black”
background in solar-blind ultraviolet (UV) regime for
ultrasensitive and selective illumination detection in missile
tracking, fire detection, and environmental monitoring
applications [ 1,2 ]. Beta gallium oxide (B-Ga;03), a
semiconductor with a monoclinic crystal structure, has an
ultrawide bandgap, E; = 4.5-4.9 eV [3,4,5], perfectly aligned
with the cutoff wavelength of the solar-blind range. Various
optoelectronic photodetectors (PDs) made of B-Ga,Os crystal
have been demonstrated utilizing the ideal bandgap and
promising electronic properties of the material [6,7,8]. In
addition, owing to its excellent mechanical properties (e.g.,
measured Young’s modulus, Ey = 261 GPa) [9], B-Ga,0O3 can
be an appealing structural material for building
micro/nanoelectromechanical systems (MEMS/NEMS) and
new transducers, especially sensors that can capitalize on its
ultrawide bandgap embedded in the MEMS/NEMS device
platforms. To date, engineering of 3-Ga;Os crystal has been
mainly focused on electronic devices without any moving parts,
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such as field effect transistors (FETs) [10,11,12] and electronic
ultraviolet photodetectors [6,7,8]. Transducers exploiting
mechanical properties of B-Ga,Oj3 for light sensing are yet to be
shown and carefully studied.

In this letter, we describe the construction and measurement
of the first self-sustaining -Ga,Os oscillator by using a f3-
Ga»O3 nanoresonator and a feedback circuitry, for middle UV
MUV, 200-300 nm, strongly overlapped with solar-blind
range) light detection and real-time sensing. Fig. 1(a) illustrates
the light sensing mechanism of the f-Ga>O3; nanomechanical
device. The photothermal effect induced by the incident MUV
light will elevate the temperature and expand the suspended [3-
Gay03; crystal, causing a resonance frequency downshift. By
probing the resonance frequency shift of the 3-Ga,Os resonator,
the intensity of the incident MUV light can be resolved to
achieve MUYV light detection and real-time sensing.
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Fig. 1. (a) Transduction scheme of MUV light sensing. (b) Signal transduction
chain. Pp: radiation power on device; (,, : rate of heat flow; T: device

temperature; y: surface tension; Ey: Young’s modulus of f-Ga,Os; h: device
thickness; 7: device radius; v: Poisson’s ratio of $-Ga,O;; p: mass density of -
Ga,0;; (kr)*: eigenvalue; f: resonance frequency; (c) A scanning electron
microscopy (SEM) image of a f-Ga,O; nanoflake on the growth substrate.
Inset: The crystal structure of B-Ga,Os.

II. DEVICE FABRICATION

The device fabrication process consists of chemical synthesis
and direct transfer of 3-Ga,O3 nanoflakes for making suspended
nanostructures. We perform low-pressure chemical vapor
deposition (LPCVD) to grow B-Ga,O3 nanoflakes on a 3C-SiC-
on-Si substrate. Using high purity Ga pellets and O, gas
precursor in a 950 °C LPCVD chamber for 1.5 hours, the
formation of [-Ga,O3; nanostructures proceeds, step by step,
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from B-Ga>Os nanocrystals to nanorods, and then to nanoflakes,
without the need of any foreign catalyst [13]. Fig. 1(b) shows
an as-grown B-Ga,Oj3 nanoflake on the growth substrate.

We use an all-dry transfer technique to fabricate suspended
B-Ga>O3 nanomechanical structures (Fig. 2). We secure and
harvest the B-Ga,Os3 nanoflakes from the growth substrate by
using a thermal release tape. We apply the harvested p-Ga,0s
nanoflakes to a substrate with predefined circular
microtrenches. By heating up the substrate to 90 °C and
detaching the thermal release tape, the nanoflakes are
transferred onto the substrate, thus creating circular p-Ga,Os
drumheads on microtrench locations. Fig. 2(b) shows a
nanomechanical resonator made of a 73nm-thick B-Ga,Os
nanoflake suspended over a ~5.2 um-diameter circular
microtrench. We use this resonator to build the B-Ga,Os
oscillator for MUV light detection.
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Fig. 2. Fabrication of B-Ga,O; nanomechanical structures. (a) B-Ga,Os
nanoflake picked up by thermal release tape. (b) Pressing down the nanoflake
and heating the substrate to 90 °C. (c) Lifting the tape in 90 °C temperature,
leaving nanoflake on substrate. (d) Image of the fabricated 3-Ga,O; device.
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Fig. 3. Schematic of the apparatus for resonance measurement of a f-Ga,Os
nanoresonator and the demonstration of MUV detection via a self-sustaining -
Ga,0; oscillator. PD: photodetector; LPF: long-pass filter; BS: beam splitter;
LNA: low-noise amplifier; PS: phase shifter; BPF: band-pass filter.

III. RESULTS AND DISCUSSION

Fig. 3 illustrates the system for measuring the resonances of
the B-Ga>O3 nanomechanical resonator and the self-sustaining
B-GaxO3 oscillator for MUV detection. We use a home-built
ultrasensitive laser interferometry system [9,14,15] to measure
both the undriven thermomechanical noise spectrum and the
photothermally  driven resonance of the p-GayOs;
nanomechanical resonator in vacuum. We employ a 633nm
laser to read out the device motion interferometrically and a
405nm laser to photothermally drive the device. A PD is used
to measure the intensity of the device-motion-modulated laser

light. Loop #1 of the system is used for measuring the
photothermally driven resonance of the 3-Ga,O3 nanoresonator.
Further, we build a closed-loop oscillator by adding a feedback
circuit to the B-GaxO; resonator (Loop #2 with feedback
switched on). The amplitude and phase of the signal from the
PD are adjusted by an amplifier and a phase shifter,
respectively, to satisfy the Barkhausen criterion for a feedback
oscillator. The modified signal is then fed back to the device
using the amplitude-modulated 405nm laser. A self-sustaining
B-GaxO; oscillator is therefore achieved without external ac
source. For demonstration of MUV light detection using the
oscillator, we employ a light source with wavelengths of 200—
600 nm to periodically illuminate the resonator. We measure
its frequency response using the feedback oscillator.

We first measure the resonance frequency of the B-Ga>O;
nanomechanical resonator. Using Loop #1, we measure an
open-loop, photothermally driven resonance of the B-Ga,Os
resonator at ~30 MHz with a quality factor (Q) ~ 150 (Fig. 4(a)).
From Loop #2 without feedback, the resonator also exhibits a
measured thermomechanical resonance at ~30 MHz witha O ~
200 (Fig. 4(b)), readout by the spectrum analyzer.
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Fig. 4. (a) Photothermally driven response of a circular drumhead B-Ga,Os
resonator. (b) Thermomechanical noise spectrum of the resonator.

By closing the feedback switch in Loop #2, an oscillator is
built. The Q of the ~30MHz resonance is boosted from ~200 to
an effective Qcrr >15,000 (Fig. 5(a)), which corresponds to a
>70-fold enhancement. Using the frequency counter, we also
measure the frequency stability of the oscillator (Fig. 5(b)),
which yields an Allan deviation of o (t) ~10 for 1=0.1-10's.
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Fig. 5. Performance of the -Ga,0O; feedback oscillator. (a) The closed-loop
oscillation spectrum. (b) Measured Allan deviation.

To demonstrate MUV sensing using the f-Ga,Os oscillator,
we introduce periodic light irradiation to the device with power
intensity adjusted to be ps = 1W/cm?. Therefore, the incident
power of the light on device (Pp) can be calculated using

PD:AD-TOp-(dSZ/dé)pS , where Ap (= 21.2 pm?) is the
suspended area of the resonator, 7o, (= 0.92) is the optical

transmission coefficient of the fused silica optical window of
the vacuum chamber, ds (= 5 mm) and dc (= 10 mm) are the
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diameters of the circular MUV light source and the light spot
on device substrate, respectively. Thus, an incident power of
~24 nW and ~49 nW on the circular resonator, for 0.5 W/cm?
and 1W/cm? intensity, respectively, can be calculated. The
results of real-time tracking of the oscillator frequency show
clear frequency downshifts upon cyclic illumination (Fig. 6).
Using R = Af// B, , we can get an average responsivity of -3.3
Hz/pW. Given the Allan deviation, the oscillator has a
frequency fluctuation of Jf = oa f'= 3 kHz at the ~30 MHz
resonance for t=0.1-10s. So we can get a minimal detectable
power (MDP) of the oscillator, 0Pp= 51 /R~ 0.9 nW.

C T T T T T T T 3
N
. I . I . 1 . =29.9
=
B J ! ! 43027
Q
c
-30.1 g
- 4 o
)
30.0 C
. 1 . 1 . 1 —5429.9
0 50 100 150 200
Time (s)
Fig. 6. Responses of the 3-Ga, 05 oscillator to photon irradiation.
In analysis, B-Ga,O; crystal absorbs photons with

wavelengths <280 nm (because of the 4.5-4.9 eV ultrawide
bandgap) and generates heat. The resulting temperature
elevation expands the -Ga,Os device, softens the resonator,
and causes resonance frequency downshift. The SiO, (with
bandgap ~9 eV) layer beneath [-Ga,Os; has minimal
photothermal effect and acts as an isolator of mechanical
deformation and a heat barrier between the -Ga>O; nanoflake
and the Si substrate. The photothermal effect in the f-Ga,O3
crystal is the main contributor to the observed resonance
frequency downshift of the oscillator upon MUYV irradiation.

IV. CONCLUSION

We summarize the sensing performance of the B-Ga,O3
oscillator and compare it with performance of the f-Ga,O3; PDs
made in conventional ways (see Table I). With a different
photon detection mechanism, the oscillator made by using a -
Gay0O3; nanomechanical resonator already show promising
performance compared to conventional PDs.

TABLE I
SUMMARY AND COMPARISON FOR MUV SENSING B-Ga,03; OSCILLATOR
‘s Frequency
R t
Active Area eslzc:; S)l vy Fluctuation (df) / MDT]\)IéifD) / Refs.
Dark Current (/p)
20pm?  -3.3 HzpW ~3 kHz 0.9 nW This
: ’ work
0.8 cm? 39.3 A/W 1.1 pA 1.5x107'* W/Hz'? [6]
~7 mm? 0.07 A/W ~101° A ~8x107* W/Hz"? [7]
~0.8 mm? 8.7 A/W ~10% A ~7x10" W/Hz"? [8]

“Noise equivalent power (NEP) = (241, )/ R, ¢: electronic charge, Ip: dark

current, ‘R : responsivity.

In conclusion, the demonstration of MUYV light detection by

the B-Ga>O3; nanostructure-enabled self-sustaining oscillator
reveals the potential of using resonant 3-Ga,O3 nanostructures
as ultrasensitive solar-blind UV (<280 nm) sensing transducers.
The demonstrated -Ga,Os oscillator could pave the way for
future solar-blind UV detection using 3-Ga,O3 nanomechanical
transducers for applications including target detection and
acquisition, flame detection, and environmental monitoring.
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