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 

Abstract—We report on the first beta gallium oxide (-Ga2O3) 

feedback oscillator built by using a -Ga2O3 nanoresonator as the 

frequency reference for real-time middle ultraviolet (MUV) light 

detection.  We fabricate suspended -Ga2O3 nanodevices through 

growth of -Ga2O3 nanoflakes using low-pressure chemical vapor 

deposition (LPCVD), and all-dry transfer of nanoflakes onto 

microtrenches.  Open-loop tests reveal a resonance of the -Ga2O3 

nanomechanical resonator at ~30 MHz frequency with a quality 

factor (Q) of ~150–200.  A closed-loop oscillator is then realized by 

using a combined optical-electrical feedback circuitry boosting an 

>70-fold enhancement to Q, to perform real-time MUV sensing.  

The oscillator exposed to cyclic MUV irradiation exhibits resonant 

frequency downshifts, with a responsivity of -3.3 Hz/pW and a 

minimal detectable power of 0.9 nW, showing great promise of -

Ga2O3 transducers for resonant-frequency-based MUV detection. 

 

Index Terms—Beta gallium oxide (-Ga2O3), NEMS, oscillator, 

ultraviolet light detection.   

 

I. INTRODUCTION 

HOTODETECTION in solar-blind range (<280 nm) has 

received significant attention thanks to the absence of <280 

nm light irradiation in earth atmosphere, providing a “black” 

background in solar-blind ultraviolet (UV) regime for 

ultrasensitive and selective illumination detection in missile 

tracking, fire detection, and environmental monitoring 

applications [ 1 , 2 ].  Beta gallium oxide (-Ga2O3), a 

semiconductor with a monoclinic crystal structure, has an 

ultrawide bandgap, Eg  4.5–4.9 eV [3,4,5], perfectly aligned 

with the cutoff wavelength of the solar-blind range.  Various 

optoelectronic photodetectors (PDs) made of -Ga2O3 crystal 

have been demonstrated utilizing the ideal bandgap and 

promising electronic properties of the material [6,7,8].  In 

addition, owing to its excellent mechanical properties (e.g., 

measured Young’s modulus, EY = 261 GPa) [9], -Ga2O3 can 

be an appealing structural material for building 

micro/nanoelectromechanical systems (MEMS/NEMS) and 

new transducers, especially sensors that can capitalize on its 

ultrawide bandgap embedded in the MEMS/NEMS device 

platforms.  To date, engineering of -Ga2O3 crystal has been 

mainly focused on electronic devices without any moving parts, 
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such as field effect transistors (FETs) [10,11,12] and electronic 

ultraviolet photodetectors [6,7,8].  Transducers exploiting 

mechanical properties of -Ga2O3 for light sensing are yet to be 

shown and carefully studied.   

In this letter, we describe the construction and measurement 

of the first self-sustaining -Ga2O3 oscillator by using a -

Ga2O3 nanoresonator and a feedback circuitry, for middle UV 

(MUV, 200–300 nm, strongly overlapped with solar-blind 

range) light detection and real-time sensing.  Fig. 1(a) illustrates 

the light sensing mechanism of the -Ga2O3 nanomechanical 

device.  The photothermal effect induced by the incident MUV 

light will elevate the temperature and expand the suspended -

Ga2O3 crystal, causing a resonance frequency downshift.  By 

probing the resonance frequency shift of the -Ga2O3 resonator, 

the intensity of the incident MUV light can be resolved to 

achieve MUV light detection and real-time sensing.   

 
Fig. 1.  (a) Transduction scheme of MUV light sensing.  (b) Signal transduction 

chain.  PD: radiation power on device; 
ThQ : rate of heat flow; T: device 

temperature; γ: surface tension; EY: Young’s modulus of β-Ga2O3; h: device 

thickness; r: device radius; ν: Poisson’s ratio of β-Ga2O3; ρ: mass density of β-

Ga2O3; (kr)2: eigenvalue; f: resonance frequency; (c) A scanning electron 
microscopy (SEM) image of a β-Ga2O3 nanoflake on the growth substrate.  

Inset: The crystal structure of β-Ga2O3. 

II. DEVICE FABRICATION 

The device fabrication process consists of chemical synthesis 

and direct transfer of -Ga2O3 nanoflakes for making suspended 

nanostructures.  We perform low-pressure chemical vapor 

deposition (LPCVD) to grow β-Ga2O3 nanoflakes on a 3C-SiC-

on-Si substrate.  Using high purity Ga pellets and O2 gas 

precursor in a 950 °C LPCVD chamber for 1.5 hours, the 

formation of -Ga2O3 nanostructures proceeds, step by step, 
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from -Ga2O3 nanocrystals to nanorods, and then to nanoflakes, 

without the need of any foreign catalyst [13].  Fig. 1(b) shows 

an as-grown -Ga2O3 nanoflake on the growth substrate.   

We use an all-dry transfer technique to fabricate suspended 

β-Ga2O3 nanomechanical structures (Fig. 2).  We secure and 

harvest the β-Ga2O3 nanoflakes from the growth substrate by 

using a thermal release tape.  We apply the harvested β-Ga2O3 

nanoflakes to a substrate with predefined circular 

microtrenches.  By heating up the substrate to 90 °C and 

detaching the thermal release tape, the nanoflakes are 

transferred onto the substrate, thus creating circular β-Ga2O3 

drumheads on microtrench locations.  Fig. 2(b) shows a 

nanomechanical resonator made of a 73nm-thick β-Ga2O3 

nanoflake suspended over a ~5.2 µm-diameter circular 

microtrench.  We use this resonator to build the β-Ga2O3 

oscillator for MUV light detection.   

 
Fig. 2.  Fabrication of β-Ga2O3 nanomechanical structures. (a) β-Ga2O3 

nanoflake picked up by thermal release tape. (b) Pressing down the nanoflake 
and heating the substrate to 90 °C. (c) Lifting the tape in 90 °C temperature, 

leaving nanoflake on substrate. (d) Image of the fabricated β-Ga2O3 device.   

 
Fig. 3.  Schematic of the apparatus for resonance measurement of a β-Ga2O3 
nanoresonator and the demonstration of MUV detection via a self-sustaining β-

Ga2O3 oscillator.  PD: photodetector;  LPF: long-pass filter;  BS: beam splitter;  

LNA: low-noise amplifier;  PS: phase shifter;  BPF: band-pass filter.   

III. RESULTS AND DISCUSSION 

Fig. 3 illustrates the system for measuring the resonances of 

the β-Ga2O3 nanomechanical resonator and the self-sustaining 

β-Ga2O3 oscillator for MUV detection.  We use a home-built 

ultrasensitive laser interferometry system [9,14,15] to measure 

both the undriven thermomechanical noise spectrum and the 

photothermally driven resonance of the β-Ga2O3 

nanomechanical resonator in vacuum.  We employ a 633nm 

laser to read out the device motion interferometrically and a 

405nm laser to photothermally drive the device.  A PD is used 

to measure the intensity of the device-motion-modulated laser 

light.  Loop #1 of the system is used for measuring the 

photothermally driven resonance of the β-Ga2O3 nanoresonator.  

Further, we build a closed-loop oscillator by adding a feedback 

circuit to the β-Ga2O3 resonator (Loop #2 with feedback 

switched on).  The amplitude and phase of the signal from the 

PD are adjusted by an amplifier and a phase shifter, 

respectively, to satisfy the Barkhausen criterion for a feedback 

oscillator.  The modified signal is then fed back to the device 

using the amplitude-modulated 405nm laser.  A self-sustaining 

β-Ga2O3 oscillator is therefore achieved without external ac 

source.  For demonstration of MUV light detection using the 

oscillator, we employ a light source with wavelengths of 200–

600 nm to periodically illuminate the resonator.  We measure 

its frequency response using the feedback oscillator.   

We first measure the resonance frequency of the β-Ga2O3 

nanomechanical resonator.  Using Loop #1, we measure an 

open-loop, photothermally driven resonance of the β-Ga2O3 

resonator at ~30 MHz with a quality factor (Q) ~ 150 (Fig. 4(a)).  

From Loop #2 without feedback, the resonator also exhibits a 

measured thermomechanical resonance at ~30 MHz with a Q ~ 

200 (Fig. 4(b)), readout by the spectrum analyzer.   

 
Fig. 4.  (a) Photothermally driven response of a circular drumhead β-Ga2O3 

resonator.  (b) Thermomechanical noise spectrum of the resonator. 

By closing the feedback switch in Loop #2, an oscillator is 

built.  The Q of the ~30MHz resonance is boosted from ~200 to 

an effective Qeff >15,000 (Fig. 5(a)), which corresponds to a 

>70-fold enhancement.  Using the frequency counter, we also 

measure the frequency stability of the oscillator (Fig. 5(b)), 

which yields an Allan deviation of A (τ) ~10-4 for τ = 0.1–10 s.   

 
Fig. 5.  Performance of the β-Ga2O3 feedback oscillator. (a) The closed-loop 

oscillation spectrum. (b) Measured Allan deviation.    

To demonstrate MUV sensing using the β-Ga2O3 oscillator, 

we introduce periodic light irradiation to the device with power 

intensity adjusted to be pS = 1W/cm2.  Therefore, the incident 

power of the light on device (PD) can be calculated using

 2 2

D D Op S C SP A T d d p   , where AD (≈ 21.2 µm2) is the 

suspended area of the resonator, TOp (= 0.92) is the optical 

transmission coefficient of the fused silica optical window of 

the vacuum chamber, dS (= 5 mm) and dC (≈ 10 mm) are the 
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diameters of the circular MUV light source and the light spot 

on device substrate, respectively.  Thus, an incident power of 

~24 nW and ~49 nW on the circular resonator, for 0.5 W/cm2 

and 1W/cm2 intensity, respectively, can be calculated.  The 

results of real-time tracking of the oscillator frequency show 

clear frequency downshifts upon cyclic illumination (Fig. 6).  

Using
Df P   , we can get an average responsivity of -3.3 

Hz/pW.  Given the Allan deviation, the oscillator has a 

frequency fluctuation of δf = A f ≈ 3 kHz at the ~30 MHz 

resonance for τ = 0.1–10 s.  So we can get a minimal detectable 

power (MDP) of the oscillator, δPD f  ≈ 0.9 nW.   

 
Fig. 6.  Responses of the -Ga2O3 oscillator to photon irradiation. 

In analysis, -Ga2O3 crystal absorbs photons with 

wavelengths <280 nm (because of the 4.5–4.9 eV ultrawide 

bandgap) and generates heat.  The resulting temperature 

elevation expands the -Ga2O3 device, softens the resonator, 

and causes resonance frequency downshift.  The SiO2 (with 

bandgap ~9 eV) layer beneath -Ga2O3 has minimal 

photothermal effect and acts as an isolator of mechanical 

deformation and a heat barrier between the -Ga2O3 nanoflake 

and the Si substrate.  The photothermal effect in the -Ga2O3 

crystal is the main contributor to the observed resonance 

frequency downshift of the oscillator upon MUV irradiation.   

IV. CONCLUSION 

We summarize the sensing performance of the β-Ga2O3 

oscillator and compare it with performance of the β-Ga2O3 PDs 

made in conventional ways (see Table I).  With a different 

photon detection mechanism, the oscillator made by using a β-

Ga2O3 nanomechanical resonator already show promising 

performance compared to conventional PDs.   

TABLE I 

SUMMARY AND COMPARISON FOR MUV SENSING β-Ga2O3 OSCILLATOR 

Active Area 
Responsivity 

(  ) 

Frequency 

Fluctuation (δf) / 

Dark Current (ID) 

MDP (δPD) / 

NEPa 
Refs. 

21 μm2 –3.3 Hz/pW ~3 kHz 0.9 nW 
This 

work 

0.8 cm2 39.3 A/W 1.1 μA 1.5×10-14 W/Hz1/2 [6] 

~7 mm2 0.07 A/W ~10-10 A ~8×10-14 W/Hz1/2 [7] 

~0.8 mm2 8.7 A/W ~10-8 A ~7×10-15 W/Hz1/2 [8] 

aNoise equivalent power (NEP) =  D2qI  , q: electronic charge, ID: dark 

current,  : responsivity.   

In conclusion, the demonstration of MUV light detection by 

the -Ga2O3 nanostructure-enabled self-sustaining oscillator 

reveals the potential of using resonant -Ga2O3 nanostructures 

as ultrasensitive solar-blind UV (<280 nm) sensing transducers.  

The demonstrated -Ga2O3 oscillator could pave the way for 

future solar-blind UV detection using -Ga2O3 nanomechanical 

transducers for applications including target detection and 

acquisition, flame detection, and environmental monitoring.   
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