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Abstract  

 

Alkylated benzosulfonamides are compounds of high importance in organic synthesis, including the 

production of pharmaceuticals, agrochemicals and plasticizers. We report the iron-catalyzed C(sp2)–

C(sp3) cross-coupling of chlorobenzosulfonamides with alkyl Grignard reagents under mild and 

sustainable conditions. Electronically- and sterically-varied benzosulfonamides as well as challenging 

alkyl organometallics containing -hydrogen afford alkylated benzosulfonamides in high to excellent 

yields. Sulfonamide represents the most reactive activating group for iron-catalyzed cross-coupling. The 

process affords alkylated benzenesulfonamides poised for medicinal chemistry applications and 

traceless reductive cleavage. 
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The iron-catalyzed cross-coupling has emerged as an increasingly powerful method for organic 

synthesis.1,2 The high interest of the organic community in iron catalysis is driven by the abundance of 

iron in the Earth’s crust leading to a sustained catalyst economy.3 Equally importantly, iron-catalysis 

allows to execute traditionally challenging cross-coupling disconnections,4 including alkylative cross-

couplings which are notoriously difficult because of the propensity of alkyl organometallic reagents to 

undergo -hydride elimination and homo-coupling.5 In recent years, iron-catalyzed cross-couplings 

have attracted a major attention of researchers in pharmaceutical industry.6 

Sulfonamides are among the most important molecules in drug discovery.7 In particular, the discovery 

of sulfa drugs have led to the construction of the dominant concepts in modern medicinal chemistry,7,8 

and resulted in the development of a wide range of antibacterial, hypoglycaemic, diuretic and 

antihypertensive drugs (Figure 1). In modern drug discovery alkylated benzenesulfonamides are further 

used as lead molecules for the treatment of cancer, as fatty acid amide hydrolase inhibitors, N-myristoyl 

transferase inhibitors and calcium-sensing receptor antagonists (Figure 1), among other applications.9 

Furthermore, alkylated benzenesulfonamides are prevalent in industries beyond drug discovery, 

including as agrochemical agents and plasticizers.10 As a consequence of the key importance of 

sulfonamides in organic chemistry, new methods for the synthesis of sulfonamides continue to have a 

major impact on organic synthesis and medicinal chemistry.11 

Inspired by our interest in amide bonds12 and iron-catalyzed cross-couplings,13 herein, we report the 

iron-catalyzed C(sp2)–C(sp3) cross-coupling of chlorobenzenesulfonamides with alkyl Grignard 

reagents (Figure 2). The reaction proceeds under exceedingly mild conditions using sustainable iron-

catalysis. We demonstrate that a broad range of electronically- and sterically-varied benzosulfonamides 

as well as challenging alkyl organometallics containing -hydrogen are compatible with these 

conditions. Mechanistic studies reveal that sulfonamide acts as one of the most reactive activating 

groups for iron-catalyzed alkylative cross-coupling with Grignard reagents,14,15 which may have 

implications for the future design of iron-catalyzed cross-coupling methods mediated by O-coordinating 
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additives. Collectively, the process affords alkylated benzosulfonamides poised for applications in 

medicinal chemistry as well as traceless reductive cleavage processes. 

Notable features of our findings include: (1) the synthesis of alkylated benzenesulfonamides of 

medicinal interest that would be difficult to access by other methods, (2) the discovery of sulfonamide 

as the strongest activating group for iron-catalyzed cross-couplings, (3) the potential for using tertiary 

sulfonamides as traceless activating groups. 

 

 

Figure 1. Biologically-active sulfonamides: (a) Classic sulfa drugs (top), and (b) pharmaceutically-

active alkylated sulfonamides (bottom). 

 

 

Figure 2. Iron-catalyzed C(sp2)–C(sp3) cross-coupling of chloro-benzosulfonamides with alkyl 

Grignard reagents (this study). 
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Our studies began with an investigation of the cross-coupling of N,N-dimethyl-4-

chlorobenzenesulfonamide with n-alkyl Grignard reagent containing -hydrogens (Table 1). An 

important precedent in the cross-coupling of sterically-hindered sulfonamides should be noted.14a,b In 

contrast to the amide bond, the nitrogen atom in the sulfonamide grouping tends to be pyramidalized,16 

which in turn may influence the coordination. Furthermore, the weak N–SO2 bond is prone to reductive 

cleavage under cross-coupling conditions.17 Hence, at the outset it was unclear if non-sterically 

demanding sulfonamides can be used as cross-coupling partners. Since we are focused on developing 

operationally-practical methods of broad synthetic appeal, we selected rapid addition of organometallic 

reagent and the use of cheap, readily accessible O-coordinating additives.14a,b As shown, no reaction was 

observed in the absence of iron (Table 1, entry 1). The reaction was inefficient in the absence of 

additives (entry 2). Pleasingly, we found that the combined use of iron and NMP (NMP = N-methyl-2-

pyrrolidone) afforded the coupling product in excellent yield (Table 1, entries 3-6). Importantly, while 

efficient coupling was observed with as little as 50 mol% of NMP (entry 4), the use of excess of NMP 

afforded the cleanest reactions. We further note that the use of TMEDA (61% yield) or HMTA 

(hexamethylenetetramine) (70% yield) under the optimized conditions is less efficient; however, DMI 

(98%) and DMPU (97%) can be used as NMP replacements in this cross-coupling. NMP was selected 

for the study to enable comparison with the benchmark method. At present, cross-coupling at lower 

catalyst loading is less efficient. Ongoing studies in our laboratories are focused on the development of 

iron-catalyzed cross-couplings at low catalyst loadings. Importantly, under these reaction conditions, the 

cleavage of SO2–N bond, or side reactions from the Grignard reagents, including -hydride elimination 

and homo-coupling were not observed, indicating a significant activating effect of the sulfonamide 

moiety. 

Having determined that sterically-non-hindered N,N-dimethyl-4-chlorobenzenesulfonamide serves as 

an efficient cross-coupling partner, the substrate scope of this reaction was next explored (Table 2). 

Pleasingly, the reaction was found to tolerate electronically- and sterically-varied benzosulfonamides as 

well as challenging alkyl organometallics containing -hydrogen (Table 2, entries 1-12). Importantly, 
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sulfonamides with varied steric hindrance at the nitrogen atom are readily tolerated, including NMe2 

(entry 1), NEt2 (entry 2) and N-iPr2 (entry 3) with no deleterious effect on the coupling. Furthermore, 

highly medicinally-relevant N-cyclic sulfonamides are readily tolerated (entry 4). The reaction is also 

compatible with N-Ar sulfonamides (entry 5), which are used in sulfonamide exchange reactions18 to 

increase the diverse modifications of the sulfonamide bond, as well as N-Bn sulfonamides, which are 

used as synthetic equivalent of secondary sulfonamides after hydrogenolysis19 (entry 6). Intriguingly, 

very high efficiency without any modification of the reaction conditions was observed in the cross-

coupling of a meta-substituted benzosulfonamide (entry 7), indicating that conjugation with the 

sulfonamide moiety is not required for the coupling. Furthermore, even the ortho-substituted 

benzenesulfonamide afforded the desired coupling product, albeit in a modest yield (entry 8). The two 

latter findings sharply contrast with the cross-coupling of the analogous chloro-benzamides,13d which 

(1) require extensive optimization for the cross-coupling at the non-conjugated position, (2) are 

completely unreactive in cross-coupling at the sterically-hindered ortho-position. 

The scope of the reaction also encompasses challenging secondary alkyl Grignard reagents, such as 

cyclohexyl (entry 9) and isopropyl (entry 10). Again, these Grignard reagents afford cross-coupling 

products using the analogous chloro-benzamides in significantly lower yields,13d showing the superior 

propensity of sulfonamide as the activating group for cross-coupling. Furthermore, isomerization to n-

alkyl product, which is the major side reaction using other iron-catalyst systems20 was not observed 

under these mild conditions. Finally, we were pleased to find that other representative Grignard 

reagents, such as prone to -hydride elimination phenethyl Grignard reagent (entry 11) and sensitive 

dioxolane Grignard (entry 12), which serves as a synthetic carbonyl equivalent are readily tolerated in 

the cross-coupling. It is worthwhile to note that Grignard addition to the electrophilic sulfonamide bond 

was not observed in any of the tested examples, attesting to the mild conditions and facility of the 

coupling. Several of the synthesized products map very well onto the structures of bioactive 

alkylbenzenesulfonamides.8,9 Thus, these reactions should find wide application in the preparation of 

medicinally-relevant scaffolds. 
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Table 1. Optimization of Fe-Catalyzed Cross-Couplinga 

 

Entry 

Fe(acac)3  

(mol%) 

Ligand mol% Time 

Yield  

(%)b 

1 - - - 10 min 0 

2 5 - - 10 min 75 

3 5 NMP 20 10 min 88 

4 5 NMP 50 10 min 96 

5 5 NMP 200 10 min >98 

6 5 NMP 600 10 min >98 

a1 (0.50 mmol), Fe(acac)3 (5 mol%), THF (0.15 M),  C2H5MgCl (1.20 equiv, 2.0 M, THF), 0 °C, 10 

min. RMgCl added dropwise over 1-2 s. b Determined by 1H NMR and/or GC-MS.  

 

Table 2. Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Sulfonamides with Alkyl Grignard Reagentsa 

 

Entry Substrate 2 Product 
Yield  

(%) 

 

 

2a 

 

97  
1 

 

2 

 

2b 

 

96 

 

 

2c 

 

97 
3 
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4 

 

2d 

 

95 

5 

 

2e 

 

98 

6 

 

2f 

 

97 

7 

 

2g 

 

93 

8b 

 

2h 

 

50 

9c 

 

2i 

 

84 

10c 

 

2j 

 

74 

11c 

 

2k 

 

83 

12d 

 

2l 

 

96 

a1 (0.50 mmol), Fe(acac)3 (5 mol%), THF (0.15 M), NMP, RMgX (1.20 equiv, THF), 0 °C, 10 min. b15 

h, 0 °C. c1 h, 0 °C. d15 h, 23 °C, RMgX (3.0 equiv). See the Supporting Information for details. 

 

Intermolecular competition experiments were conducted to gain insight into the unique reactivity of 

benzenesulfonamides in the cross-coupling (Schemes 1-2). Intriguingly, we identified sulfonamide as a 

significantly more potent activating group than the amide bond (Scheme 1, sulfonamide:amide = 

11.5:1).13d The excellent activating profile of sulfonamide was further confirmed in the competition with 
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the ester bond (Scheme 2, sulfonamide:ester = 2.1:1). Hence, to our knowledge, sulfonamide has been 

identified as the most activating group for iron-catalyzed cross-couplings,1,13d,14 which may find wide 

application in future studies of iron-catalyzed cross-coupling methods. Future work is focused on 

mechanistic analysis evaluating broad classes of activating groups in iron-catalyzed cross-coupling.   

The utility of the sulfonamide bond is not limited to medicinal chemistry applications. For example, a 

recent manuscript describes reductive cleavage of n-alkylbenzosulfonamides catalyzed by Ni.21 Thus, in 

combination with our facile way of preparing diverse n-alkylbenzenesulfonamides by iron-catalysis, this 

method represents a traceless sulfonamide-based approach to n-alkylated aromatics (Scheme 3). 

Furthermore, owing to the utility of SO2NR2 moiety, other methods for manipulation of tertiary 

sulfonamides are well-established, further enhancing the utility of our method.22 

 

Scheme 1. Intermolecular Competition Experiments: Amides 

 

 

Scheme 2. Intermolecular Competition Experiments: Esters 
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Scheme 3. Sulfonamide as Traceless Activating Group 

 

In conclusion, we have reported the iron-catalyzed C(sp2)–C(sp3) cross-coupling of 

chlorobenzenesulfonamides with alkyl Grignard reagents. The method represents a convenient access to 

alkylated benzenesulfonamides that are widely used in the synthesis of pharmaceuticals, agrochemicals 

and plasticizers. A broad range of electronically- and sterically-varied benzenesulfonamides and 

challenging alkyl organometallics containing -hydrogen undergo cross-coupling under exceedingly 

mild reaction conditions that tolerate the presence of an electrophilic sulfonamide moiety in the 

presence of readily-accessible and cheap Grignard organometallics. Importantly, our study demonstrates 

that sulfonamide acts as the one of most reactive activating groups for iron-catalyzed alkylative cross-

couplings, a class of reactions that is broadly used in pharmaceutical settings. Further, the sulfonamide 

group is poised for applications as traceless activating group. Studies to facilitate further reaction 

development using sustainable iron-catalysis are in progress and will be reported in due course. 

 

Experimental Section 

General Methods. All compounds reported in the manuscript are commercially available or have 

been previously described in literature unless indicated otherwise. All experiments involving iron were 

performed using standard Schlenk techniques under argon or nitrogen atmosphere unless stated 

otherwise. All sulfonamides have been prepared by standard methods.23 1H NMR and 13C NMR data are 

given for all compounds in the Experimental Section for characterization purposes. 1H NMR, 13C NMR 
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and HRMS data are reported for all new compounds. All products have been previously reported, unless 

stated otherwise. Spectroscopic data matched literature values. General methods have been published.13a  

General Procedure for Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling. An oven-dried vial 

equipped with a stir bar was charged with an sulfonamide substrate (neat, typically, 0.50 mmol, 1.0 

equiv) and Fe(acac)3 (typically, 5 mol%), placed under a positive pressure of argon and subjected to 

three evacuation/backfilling cycles under vacuum. Tetrahydrofuran (0.15 M) and NMP were 

sequentially added with vigorous stirring at room temperature, the reaction mixture was cooled to 0 °C, 

a solution of Grignard reagent (typically, 1.2 equiv) was added dropwise with vigorous stirring and the 

reaction mixture was stirred for the indicated time at 0 °C. After the indicated time, the reaction mixture 

was diluted with HCl (1.0 N, 1.0 mL) and Et2O (1 x 30 mL), the organic layer was extracted with HCl 

(1.0 N, 2 x 10 mL), dried and concentrated. The sample was analyzed by 1H NMR (CDCl3, 400 MHz) 

and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with 

authentic samples. Purification by chromatography on silica gel (EtOAc/hexanes = 1/3) afforded the 

title product. 

General Procedure for Determination of Relative Reactivity. According to the general procedure, 

an oven-dried vial equipped with a stir bar was charged with two chloride substrates (each 0.50 mmol, 

1.0 equiv) and Fe(acac)3 (5 mol%), placed under a positive pressure of argon and subjected to three 

evacuation/backfilling cycles under vacuum. Tetrahydrofuran (0.15 M) and NMP (neat, 600 mol%) 

were sequentially added with vigorous stirring at room temperature, the reaction mixture was cooled to 

0 °C, a solution of C2H5MgCl (2.0 M in THF, 0.25 mmol, 0.50 equiv) was added dropwise with 

vigorous stirring and the reaction mixture was stirred for 10 min at 0 °C. Following the standard work-

up, the sample was analyzed by 1H NMR (CDCl3, 400 MHz) and GC-MS to obtain conversion, yield 

and selectivity using internal standard and comparison with authentic samples. 

Characterization Data for Starting Materials 



 12 

4-Chloro-N,N-dimethylbenzenesulfonamide (1a).24 Yield 95% (2.09 g). White solid. 1H NMR (400 

MHz, CDCl3) δ 7.73 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 2.72 (s, 6H). 13C{1H} NMR (100 

MHz, CDCl3) δ 139.4, 134.1, 129.5, 129.2, 38.9. 

4-Chloro-N,N-diethylbenzenesulfonamide (1b).25 Yield 97% (2.41 g). Colorless oil. 1H NMR (400 

MHz, CDCl3) δ 7.76 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 3.24 (q, J = 7.1 Hz, 4H), 1.13 (t, J = 

7.1 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3)  138.9, 138.5, 129.2, 128.3, 42.0, 14.1.  

4-Chloro-N,N-diisopropylbenzenesulfonamide (1c).14a Yield 88% (2.44 g). White solid. 1H NMR 

(400 MHz, CDCl3) δ 7.80 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 3.76-3.65 (m, 2 H), 1.27 (d, J = 

6.8 Hz, 12H). 13C{1H} NMR (100 MHz, CDCl3)  141.4, 138.3, 129.2, 128.8, 48.9, 22.1.  

1-((4-Chlorophenyl)sulfonyl)pyrrolidine (1d).26 Yield 96% (2.35 g). White solid. 1H NMR (400 

MHz, CDCl3) δ 7.78 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 3.24 (ddd, J = 6.8, 4.4, 2.7 Hz, 4H), 

1.80-1.76 (m, 4H). 13C{1H} NMR (100 MHz, CDCl3)  139.2, 135.6, 129.5, 129.0, 48.1, 25.4.  

4-Chloro-N-methyl-N-phenylbenzenesulfonamide (1e).27 Yield 97% (2.73 g). White solid. 1H 

NMR (400 MHz, CDCl3) δ 7.45 (q, J = 8.8 Hz, 4H), 7.35-7.27 (m, 3H), 7.12-7.07 (m, 2H), 3.18 (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3)  141.3, 139.5, 135.0, 129.4, 129.2, 129.2, 127.8, 126.8, 38.3.  

N-Benzyl-4-chloro-N-methylbenzenesulfonamide (1f).28 Yield 95% (2.82 g). White solid. 1H NMR 

(400 MHz, CDCl3) δ 7.78 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 7.37-7.27 (m, 5H), 4.14 (s, 2H), 

2.60 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3)  139.3, 136.0, 135.4, 129.6, 129.0, 128.8, 128.5, 

128.2, 54.2, 34.44.  

3-Chloro-N,N-dimethylbenzenesulfonamide (1g).29 Yield 96% (2.11 g). White solid. 1H NMR (400 

MHz, CDCl3) δ 7.77 (t, J = 1.9 Hz, 1H), 7.69-7.65 (m, 1H), 7.61-7.57 (m, 1H), 7.53-7.48 (m, 1H), 2.74 

(s, 6H). 13C{1H} NMR (100 MHz, CDCl3)  137.5, 135.5, 133.0, 130.5, 127.8, 125.9, 38.0.  

2-Chloro-N,N-dimethylbenzenesulfonamide (1h).11b Yield 95% (2.09 g). White solid. 1H NMR 

(400 MHz, CDCl3) δ 8.05 (dd, J = 7.9 Hz, 1H), 7.56-7.47 (m, 2H), 7.44-7.38 (m, 1H), 2.89 (s, 6H). 

13C{1H} NMR (100 MHz, CDCl3)  136.1, 133.7, 132.2, 127.1, 37.5.  
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Characterization Data for Cross-Coupling Products 

4-Ethyl-N,N-dimethylbenzenesulfonamide (Table 2, 2a). New compound. Prepared according to the 

general procedure using 4-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 mol%), 

NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction mixture 

was stirred for 10 min at 0 °C. Yield 97% (103.0 mg). Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.69 

(d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 2.73 (q, J = 7.7 Hz, 2H), 2.69 (s, 6H), 1.27 (t, J = 7.6 Hz, 

3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.6, 132.4, 128.5, 127.9, 38.0, 28.8, 15.2. HRMS (ESI/Q-

TOF) m/z: [M + Na]+ calcd for C10H15NO2SNa 236.0721 found 236.0724.  

N,N,4-Triethylbenzenesulfonamide (Table 2, 2b).25 Prepared according to the general procedure 

using N,N,4-triethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 mol%), NMP (600 mol%), THF 

(0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction mixture was stirred for 10 min at 0 

°C. Yield 96% (115.6 mg). Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.4 Hz, 2H), 7.31 

(d, J = 8.5 Hz, 2H), 3.23 (q, J = 7.1 Hz, 4H), 2.71(q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H), 1.13 (t, J 

= 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.1, 137.4, 128.5, 127.1, 42.1, 28.8, 15.2, 14.2.  

4-Ethyl-N,N-diisopropylbenzenesulfonamide (Table 2, 2c). New compound. Prepared according to 

the general procedure using 4-chloro-N,N-diisopropylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 

mol%), NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 10 min at 0 °C. Yield 97% (130.4 mg). White solid. Mp = 63-64 °C. 1H NMR 

(400 MHz, CDCl3) δ 7.77 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 3.75-3.64 (m, 2H), 2.70 (q, J = 

7.6 Hz, 2H), 1.26 (d, J = 6.8 Hz, 12H), 1.25 (t, J = 7.7 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

148.7, 139.9, 128.3, 127.3, 48.6, 28.8, 22.0, 15.2. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for 

C14H23NO2SNa 292.1347 found 292.1344.  

1-((4-Ethylphenyl)sulfonyl)pyrrolidine (Table 2, 2d). New compound. Prepared according to the 

general procedure using 1-((4-chlorophenyl)sulfonyl)pyrrolidine (0.50 mmol), Fe(acac)3 (5 mol%), 

NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction mixture 

was stirred for 10 min at 0 °C. Yield 95% (113.8 mg). White solid. Mp = 73-74 °C. 1H NMR (400 MHz, 
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CDCl3) δ 7.74 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 3.23 (t, J = 6.6 Hz, 4H), 2.73 (q, J = 7.6 Hz, 

2H), 1.75 (t, J = 6.6 Hz, 4H), 1.27 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.5, 

134.0, 128.5, 127.7, 47.9, 28.8, 25.2, 15.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for 

C12H17NO2SNa 262.0878 found 262.0876.  

4-Ethyl-N-methyl-N-phenylbenzenesulfonamide (Table 2, 2e). New compound. Prepared according 

to the general procedure using 4-chloro-N-methyl-N-phenylbenzenesulfonamide (0.50 mmol), Fe(acac)3 

(5 mol%), NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 10 min at 0 °C. Yield 98% (134.5 mg). White solid. Mp = 78-79 °C. 1H NMR 

(400 MHz, CDCl3) δ 7.44 (d, J = 8.3 Hz, 2H), 7.32-7.21 (m, 5H), 7.12-7.07 (m, 2H), 3.15 (s, 3H), 2.70 

(q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.7, 141.6, 133.6, 

128.9, 128.2, 128.0, 127.3, 126.6, 38.1, 28.8, 15.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for 

C15H17NO2SNa 298.0878 found 298.0876.  

N-Benzyl-4-ethyl-N-methylbenzenesulfonamide (Table 2, 2f). New compound. Prepared according 

to the general procedure using N-benzyl-4-chloro-N-methylbenzenesulfonamide (0.50 mmol), Fe(acac)3 

(5 mol%), NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 10 min at 0 °C. Yield 98% (141.0 mg). White solid. Mp = 71-72 °C. 1H NMR 

(400 MHz, CDCl3) δ 7.75 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.33-7.24 (m, 5H), 4.12 (s, 2H), 

2.73 (q, J = 7.6 Hz, 2H), 2.57 (s, 3H), 1.27 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

149.6, 135.7, 134.4, 128.6, 128.6, 128.4, 127.8, 127.6, 54.1, 34.4, 28.8, 15.1. HRMS (ESI/Q-TOF) m/z: 

[M + Na]+ calcd for C16H19NO2SNa 312.1034 found 312.1035.  

3-Ethyl-N,N-dimethylbenzenesulfonamide (Table 2, 2g). New compound. Prepared according to the 

general procedure using 3-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 mol%), 

NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction mixture 

was stirred for 10 min at 0 °C. Yield 93% (99.4 mg). Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.62-

7.57 (m, 2H), 7.49-7.43 (m, 2H), 2.74 (q, J = 7.7 Hz, 2H), 2.71 (s, 6H), 1.27 (t, J = 7.6 Hz, 3H). 
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13C{1H} NMR (100 MHz, CDCl3) δ 145.6, 135.3, 132.5, 129.1, 127.0, 125.2, 38.1, 28.8, 15.5. HRMS 

(ESI/Q-TOF) m/z: [M + Na]+ calcd for C10H15NO2SNa 236.0721 found 236.0720.  

2-Ethyl-N,N-dimethylbenzenesulfonamide (Table 2, 2h). New compound. Prepared according to 

the general procedure using 2-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 

mol%), NMP (600 mol%), THF (0.15 M), and C2H5MgCl (2.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 15 h at 0 °C. Yield 50% (53.0 mg). Colorless oil. 1H NMR (400 MHz, CDCl3) δ 

7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.51 (td, J = 7.5, 1.4 Hz, 1H), 7.39 (dd, J = 7.7, 0.9 Hz, 1H), 7.31 (td, J = 

7.9, 1.4 Hz, 1H), 3.04 (q, J = 7.5 Hz, 2H), 2.80 (s, 6H), 1.28 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (100 

MHz, CDCl3) δ 144.4, 135.5, 133.0, 131.3, 130.1, 126.0, 37.2, 26.3, 15.8. HRMS (ESI/Q-TOF) m/z: [M 

+ Na]+ calcd for C10H15NO2SNa 236.0721 found 236.0717.  

4-Cyclohexyl-N,N-dimethylbenzenesulfonamide (Table 2, 2i). New compound. Prepared according 

to the general procedure using 4-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 

mol%), NMP (600 mol%), THF (0.15 M), and c-C6H11MgCl (1.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 60 min at 0 °C. Yield 84% (112.4 mg). White solid. Mp = 102-103 °C. 1H NMR 

(400 MHz, CDCl3) δ 7.69 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 2.70 (s, 6H), 2.64-2.53 (m, 1H), 

1.92-1.82 (m, 4H), 1.81-1.73 (m, 1H), 1.48-1.35 (m, 4H), 1.31-1.21 (m, 1H). 13C{1H} NMR (100 MHz, 

CDCl3) δ 153.4, 132.7, 128.0, 127.6, 44.6, 38.1, 34.2, 26.8, 26.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ 

calcd for C14H21NO2SNa 290.1191 found 290.1187.  

4-Isopropyl-N,N-dimethylbenzenesulfonamide (Table 2, 2j). New compound. Prepared according 

to the general procedure using 4-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 

mol%), NMP (600 mol%), THF (0.15 M), and i-PrMgBr (1.0 M in THF, 1.20 equiv). The reaction 

mixture was stirred for 60 min at 0 °C. Yield 74% (84.3 mg). Colorless oil. 1H NMR (400 MHz, CDCl3) 

δ 7.70 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 3.05-2.94 (m, 1H), 2.70 (s, 6H), 1.28 (d, J = 6.9 Hz, 

6H). 13C{1H} NMR (100 MHz, CDCl3) δ 154.2, 132.8, 128.0, 127.2, 38.1, 34.3, 23.8. HRMS (ESI/Q-

TOF) m/z: [M + Na]+ calcd for C11H17NO2SNa 250.0878 found 250.0880.  
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N,N-Dimethyl-4-phenethylbenzenesulfonamide (Table 2, 2k).30 Prepared according to the general 

procedure using 4-chloro-N,N-dimethylbenzenesulfonamide (0.50 mmol), Fe(acac)3 (5 mol%), NMP 

(600 mol%), THF (0.15 M), and PhCH2CH2MgCl (1.0 M in THF, 1.20 equiv). The reaction mixture 

was stirred for 60 min at 0 °C. Yield 83% (119.8 mg). White solid. 1H NMR (400 MHz, CDCl3) δ 7.67 

(d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 7.5 Hz, 2H), 7.23-7.18 (m, 1H), 7.15-7.12 (m, 

2H), 3.03-2.97 (m, 2H), 2.96-2.91 (m, 2H), 2.68 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 147.2, 

140.9, 132.9, 129.3, 128.6, 128.0, 126.4, 38.1, 37.9, 37.5.  

4-(2-(1,3-Dioxan-2-yl)ethyl)-N,N-dimethylbenzenesulfonamide (Table 2, 2l). New compound. 

Prepared according to the general procedure using 4-chloro-N,N-dimethylbenzenesulfonamide (0.50 

mmol), Fe(acac)3 (5 mol%), NMP (600 mol%), THF (0.15 M), and (2-(1,3-dioxan-2-

yl)ethyl)magnesium bromide (0.5 M in THF, 3.00 equiv). The reaction mixture was stirred for 15 h at 

23 °C. Yield 96% (143.7 mg). White solid. Mp = 112-113 °C 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 

8.3 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 4.52 (t, J = 5.1 Hz, 1H), 4.12 (dd, J = 10.7, 5.0 Hz, 2H), 3.80-3.72 

(m, 2H), 2.84-2.78 (m, 2H), 2.70 (s, 6H), 2.15-2.02 (m, 1H), 1.96-1.89 (m, 2H), 1.40-1.33 (m, 1H). 

13C{1H} NMR (100 MHz, CDCl3) δ 147.4, 132.9, 129.1, 128.0, 101.0, 66.9, 38.0, 36.2, 30.0, 25.8. 

HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C14H21NO4SNa 322.1089 found 322.1085.  
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