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Abstract Magnetohydrodynamics (MHD) is the study of the interaction of electrically con-
ducting fluids in the presence of magnetic fields. MHD applications require substantially more
efficient numerical methods than currently exist. In this paper, we construct two decoupled
methods based on the artificial compression method (uncoupling the pressure and velocity)
and partitioned method (uncoupling the velocity and electric potential) for magnetohydro-
dynamics flows at low magnetic Reynolds numbers. The methods we study allow us at each
time step to solve linear problems, uncoupled by physical processes, per time step, which can
greatly improve the computational efficiency. This paper gives the stability and error anal-
ysis, presents a brief analysis of the non-physical acoustic waves generated, and provides
computational tests to support the theory.
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1 Introduction

We consider the time-dependent magnetohydrodynamic (MHD) flows at low magnetic
Reynolds numbers (denoted by R,;,). The low-R,,, MHD model (typical for terrestrial appli-
cations, see [12,20,23]) is given by: find fluid velocity u : Q x [0,T] — RY, pressure
p : 2 x[0,T] — R and electric potential ¢ : 2 x [0, T] — R satisfying

M?
V.ou=0, (1.1)
A¢p =V - (uxB).

1
N(u,—}-u-Vu)— Au+Vp=f+BxV¢+ (uxB) xB,

For (1.1) impose homogeneous Dirichlet boundary conditions and the initial condition

u=0 ondQ x][0,T],
¢=0 onad2x|[0,T], (1.2)
u(x,0) =up(x) VxeQ.

Here, body force f, external magnetic field B, and final time 7" > 0 are known. The domain
Q c R? (d = 2or3) is a convex polygon or polyhedra. N is interaction parameter and M is
Hartmann number, % = i, where Re is the Reynolds number. Further, ug(x) € HO1 (Q)d
and V -uy = 0.

In this report, we give an analysis of a classical artificial compression scheme from
[28] adapted from the Navier—Stokes equations (NSE) to the model (1.1). Combined with
two partitioned methods from [23], we gave two fully-decoupled methods. The schemes
(Algorithms 1 and 2) are based on (i) replacing V -u by ep; + V -u = 0, (ii) time discretiza-
tion by the implicit methods (Backward-Euler and BDF2) and (iii) treating the magnetic
field terms explicitly to further uncouple the system into components. Theorem 4.3 below
shows that for smooth solutions the error of Algorithm 1is O(At + ). Numerical tests in
Sect. 6 also confirm that the error of Algorithms 1 and 2 are O(At + ¢) and O(A1? + ¢),
respectively.

1.1 Previous Work

MHD describes the behavior of the electrically conducting fluids in the presence of an external
magnetic field. The study of MHD, initiated by Alfvén [1], has been widely developed
in many fields of science including astrophysics, geophysics, engineering, and metallurgy.
Applications include the studying of sunspots and solar flares, pumping and stirring of liquid
metals, liquid metals cooling of nuclear reactors, forecasting of climate change, controlled
thermonuclear fusion and sea water propulsion, see [2—6]. Most terrestrial applications, such
as liquid metals, involve small magnetic Reynolds numbers, R,, < 1. In these cases, the
magnetic field influences the conducting fluid via the Lorentz force, but the conducting
fluid does not significantly perturb the magnetic field. Thus the magnetic field induced by
the electrically conducting fluid motion is small and can be negligible compared with the
imposed magnetic field. Neglecting the induced magnetic field, the general MHD flows can
be simplified to the low-R,,, MHD model considered herein.

In the recent years, there are many works on the MHD equations. For instance, Refs.
[13,15-19] studied some effective iterative methods in finite element approximation for the
steady MHD equations. For the time-dependent MHD equations, He [33] discussed an Euler
semi-implicit scheme for the three-dimensional MHD equations. The decoupled fully discrete
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finite element schemes for the unsteady MHD equations were analyzed in [31,32,39]. Zhang
etal. [14] analyzed a partitioned scheme based on Gauge-Uzawa finite element method for the
2D time-dependent MHD equations. The mathematical structure of the steady low-R,,, MHD
model was established by Peterson [12]. Numerical analysis of the evolutionary problem (1.1)
was performed by Yuksel and Isik [25] (coupled implicit method), Yuksel and Ingram [20]
(coupled Crank—Nicolson method), and Rong et al. [35] (coupled spectral deferred correc-
tion method). Partitioned methods uncoupling the fluid velocity from the electric potential
were analyzed in [23,24,36]. The Algorithms 1 and 2 herein continue this development
uncoupling electric potential, pressure and individual components of the velocity.

1.2 The Slightly Compressible Model

There are two forms of coupling in the above Eq. (1.1). One is the coupling between the
fluid velocity u and the electric potential ¢. The other is that the fluid velocity u and the
pressure p are coupled by the incompressibility restriction V-u = 0. Both couplings increase
memory requirements, make the equations more difficult to solve numerically, and reduce
computational efficiency. In the existing papers on numerical analysis of the MHD flows atlow
magnetic Reynolds numbers, most methods considered to solve the problem are monolithic
methods in which the coupled problem is solved iteratively at each time step. Therefore, we
study uncoupling methods for the time-dependent MHD flows at low magnetic Reynolds
numbers.

As to the the coupling between u and p via V - u = 0, the general idea to deal with this
coupling is to relax the incompressibility constraint. There have been some such methods: the
artificial compression method, penalty method, projection method, and pressure stabiliza-
tion method (see [9,10,13,17,28-30,34,37,38]). The artificial compression method (ACM),
which was introduced by Chorin [9] and Temam [40], breaks the incompressibility restric-
tion by adding a slightly compressible term ep; (¢ > 0 small) in V - u = 0. This allows the
pressure to be advanced in time explicitly. Using ACM, the slightly compressible model of
(1.1) and (1.2) is given as follows.

1 1 1
N(uf—i—uf-VuE—i-i(V-us)uS)—WAus—i-Vps:f—i—BxV(pg—l—(uS x B) x B,
ep; +V-u® =0,
Ap? =V . (u® x B),

(1.3)

with the conditions
w=0 ondQx]|[0T],

#*=0 onadQ x[0,T], (1.4)
u?(0) =up, p(0) = po,

where typically e = O(At) or O(A#?). The function pg € L*(R) is arbitrarily chosen but
independent of ¢. The term %(V -u®)u’ preserves skew-symmetry of the trilinear form. Since

%(V -uw)u = O for the true solution u of (1.1) and (1.2) and ep; = O(e), the consistency
error of model (1.3) and (1.4) is clearly O(e).

1.3 The Artificial Compression Schemes

Implicit-explicit (IMEX) methods have been widely used in to reduce the cost per time
step in solving coupled systems of partial differential equations, see [8,11,31-33,39]. In
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Algorithms 1 and 2 below, the coupling between the velocity u and electric potential ¢ are
treated explicitly to uncouple the systems. The fluid velocity u and pressure p are further
uncoupled using artificial compression method. The nonlinear term u - Vu + %(V -w)u is
treated linearly implicitly to reduce complexity. Let B(u, v) :=u- Vv + %(V -u)v. Based
on the IMEX partitioned schemes in [23], the following first order (Backward-Euler) and
second order (BDF2) artificial compression schemes are introduced.

Algorithm 1 Givenu”, p", ¢", find u"+!, p"*!1 ¢"*! satisfying

1 un+1 —u"
N At

1
N + B (u", u"“)) — g Aut vyt
=" L B x V¢" + (u"T! x B) x B,

el (1.5)
e 4 v.utl =0,
At
A"t = V. " x B).
Algorithm 2 Givenu"~!, u”, p*, ¢"~ !, ¢", find w"t!, p"*+1 ¢+ satisfying
1 (3u"t! —d4u" +u"! { nt 1
- +1 +1
N( TN +B(2u”—u” ,u” ))—WAu” + Vp"
=" + B x V(20" —¢" ') + @"*! x B) x B, 6
pn+1 _ pn ( . )
e 4 v.utl =0,
At

Ap"T = V. @'t xB).

In both algorithms, the term V p"*+! can be eliminated by using p"*! = p" — &LV . " *1,
Thus, the calculation for Algorithm 1 (and similarly for Algorithm 2) proceeds as follows.

Given u”, p", ¢", solve for u"*+!:
1 n+l _ n 1 At
v (% + B (v, u"“)) - WAUH] — —Vvv.u"t — (0" xB) xB
&
=" 4+ B x V¢" — Vp".
(1.7)
Perform an algebraic update of p”"*!:
At
n+1 — "_7V.u”+l_ 1.8
p p . (1.3)
Solve for ¢"*1:
AY"Tl =V . " x B). (1.9)

In Algorithm 1, the explicit treatment of the coupling terms B x V¢ and V - (u x B)
preserves unconditional stability, Sect. 4. In Algorithm 2, the coupling term V - (u x B) is
treated implicitly preserving stability (conditionally stable, Sect. 4) and higher accuracy. The
derivation of a fully uncoupled, unconditionally, long time stable, second order method for
(1.1) is an open problem. Since decoupling is through time discretization and can be applied
to various space discretizations, we focus on analyzing the time discretization scheme for
the slightly compressible model. For the numerical tests in Sect. 6, we use a standard finite
element method for space discretizations.

The rest of this paper is organized as follows. Section 2 introduces some notations and
preliminaries. In Sect. 3, we give a priori estimates for the slightly compressible model and
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show its convergence. We analyze the stability and convergence in Sect. 4. Artificial com-
pression methods are fast, efficient and provide effective velocity approximations. However,
the pressure can suffer from spurious acoustic oscillations. Section 5 gives a preliminary
analysis of the non-physical acoustic waves generated. In Sect. 6, numerical examples are
given to test the convergence rates of Algorithms 1 and 2, and the non-physical acoustic
waves. Section 7 presents the conclusion and open questions.

2 Notations and Preliminaries

In this paper, we partition the time interval [0, T'] into m elements (", t"‘H) forn =
0,1,---,m — 1 where " := nAt. The time step At := % We denote the L2(§2) inner
products by (-, -) and its corresponding norms by || - ||. Let || - || denote the L”(£2) norms.
We use the standard notations H*(Q) and H(’f(Q) to denote the usual Sobolev spaces over
Q, see [7]. Denote || - ||z as the norms in H*(Q). The spaces H~*(Q) denote the dual spaces
of Hé‘ (R2). C is a positive constant which differs in different places but independent of mesh
size and time step. In addition, we define

X = Hy(@)" ={ve H'(Q!: vy =0},
0 :=L}(Q) = {qeLz(Q):/qZO},
Q

S:=Hy(Q) =¥ € H(Q) : ¥|sq =0},

as the velocity, pressure, and electric potentials spaces, respectively. The divergence free
space V is given by

Vi={veX:(V-v,q)=0 Vq € Q}.
We define the trilinear form by
b(u,v,w) := (B(u,v), w).
Integrating by parts, we have
b(ua,v,w) = %(u~Vv,w) - %(u-Vw,v), Yu,v,w e X,
b(a,v,v) =0, Vu,velX.
The following inequalities will be used frequently in our later analysis.
bu,v,w) < C|IVu|[|[VV|[[|[VW] VYu,v,we X,
b(u,v,w) < Cllu|[[v]2VW|] Vu,weX,veXnNH Q).

Furthermore, we introduce the following function spaces and their norms. For 1 < p <
00,1 <s <o0,

T v
LP(0,T; L*(R)) := { v(x, 1) : (/ v (-, t)||€.\.dt) <oy,
0

r }
v(x,t):(/ ||v(.,z)||,fdz> <o00¢,
0

{v(x. 1) : EssSuppo,r1llv(-. D)l|1s < oo},

LP,T; HY(Q)) :

L0, T; L*(Q)) :
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L>®(0, T; H*(Q)) := {v(x, 1) : EssSuppo,r1lIv(-, )llx < 0},

T »
Ivllpx == (/0 v, t)||;fdt) forveLP(0,T; H*(Q)).

3 Analysis of the Slightly Compressible Model

In this section, we analyze the slightly compressible model (1.3) and (1.4). Firstly, we give
a prior estimates for its solution (u®, p¢, ¢¢). Then, we show that (u®, p®, ¢¢) is an approx-
imation to the true solution of the simplified MHD Egs. (1.1) and (1.2) when & goes to
0.

The electric current density J := o (—V¢@-+u x B) is an important electromagnetic quantity
in MHD flows, see [21,22]. Here the electrical conductivity o is a constant. For convenient
analysis, we define j := —V¢ +u x B and j¢ := —V¢® +u® x B.

Theorem 3.1 Ler (u®, p®, ¢°) be the solution of model (1.3) and (1.4), then, with all bounds
uniform in €, we have

ut e L, T; LX) () L7(0, T3 Hy () [ | L*0, T; L),

Vep® € L0, T; L*(Q)), ¢° € L*(0, T; Hy (Q)), G
i€ L7, T; L*(Q), '

w’ - Vu® and (V- ud)u® € L2(0, T; L' (Q)) ﬂ LY, T: L3 ().

Proof Taking the inner product of the three equations in (1.3) with u®, p®, and ¢°, respec-
tively, then summing up the three new equations, we obtain

Ld 1 e d
V52 — Vot & BZ < &2
2thll I””+ 2|| W+ = Vo +ut xBII" + Sl a2

2
=, u) < 5[Vu I+ 5 —IfI1%,.
Thus, we have

1
YT < 2+ S IV 41 = Vo +u® x B +s CIpT7 = MRS, (33)

Integration of (3.3) from O to 7 shows that
l 1 t t
— [l OI* + —2/ VUl (s) ]| %ds +/ I = V¢©(s) +u’(s) x B|*ds + ¢ p° () II”
N M= Jy 0

1
< M2 gy + 3 10 O +ellp" O, 0 < <T.

(3.4)
Thus, we have

1
sup NW(:)H2 +ellps O < ei,
t€[0,T] (3.5)

= M2 7y + ||uo|| + I poll®.

Here, since we are interested in small values of &, we assume ¢ < 1.
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We also have

T T
/ VUt (5)]%ds < MPer, / I ()1%ds < 1. (3.6)
0 0

Since
Vo©(s) = =j°(s) +u’(s) x B, 3.7

using the inequality ||[vy X v2]| < 2||v1| L] v2|| and the Poincaré inequality, we can get
T T T
[ 1veroias < [ Ras+ [ < wikas

T T
< | 1iF©)I%ds + 4B / l[uf (s)|%ds
/o o (3.8)

T T

< / 15 ($)1%ds + CIB|7 / IVu? (s) |1 %ds
0 0

< (1 4+ CM*|B|?)cr.

The remaining conditions follow from Holder’s inequality and the Sobolev embedding the-
orem. O

Next, we derive an error estimate for the sightly compressible model. Denote the error
ey =u—u’, ey =¢p—¢° e, = p—p° andej = j—j°. Thus, we have ej = —Vey +ey X B.
The following theorem shows that |[u — u®| tends to zero in L*°(0, T'; L%(Q))ase — 0. The
order of convergence is at least O(:/¢).

Theorem 3.2 Assume that the true solutionu e L2(0, T; H*()) and pr€ L2(0, T; L3(Q)),
then we have the following estimate

leullzoco,7:22()) + leull 200, 7: 10 @) + €l 20,711 @) T IVeepllL,7: 122

< Cy/e.
3.9)

Proof Subtracting (1.3) from (1.1), we obtain

19

1 1 1
Nateu+ B(eu,u)—i-NB(u eu)—WAeu—e—Vep=B><Ve¢+(eu><B)><B,

a
856]7 +V c €y = &Py,

Aeg =V - (eq X B). (3.10)

Taking the inner product of the three equations in (3.10) with ey, ¢, and ey, respectively,
then summing up the three new equations, we obtain

1 1
ﬁa” el + b(eu,ueu)+ SalIVeal + 11 = Veg + ew x BJ? +5d—llepll

= (Sph e[))'
(3.11)
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Thus,
1 d 2 1 2 , ¢ed 2
ﬁalleull +W||Veull + 1l = Vey + ey x B +§E”€p”
1
= (epr, ep) — Nb(emu’ €u)
C (3.12)
<elplllepll + ﬁlleullllquIIVeull
2
€ 2, ¢ 2 1 » , CM 21112
< Ellprll +§|Iep|| +W||Veull + N2 llewll” a3
We have 1 4
2 2 2 2
——le — || Ve, -V e B —
thll ull +M2|| ull ™+l ep + ey X B +£dt||ep|| (3.13)

< Cllul3lleall* + elleplI* + el pe 1%
Integrate (3.13) from O to 7 to obtain
1 2 2 1 ! 2 ! 2
—llea®* +elle,I* + — | [IVeul®ds + | || = Vey + eq x B||*ds
N M= Jy 0

1 2 2 fo 2 ! 2 ! 2
< Nlleu(O)Il +elle, (O +C ; llullzlleall"ds + ; ellepll~ds + A ellpell~ds.

(3.14)
Using the Gronwall lemma, we get
L eall? + ellep 2 + ~ /tnv 1% +/[|| Vey +eq x BJ2d
— || € £ — € — €y X
v leu ep 72 A u s ; e u K
] t
< C(ﬁneu(mnz+a||ep<0)||2+/0 ell pelIds) (3.15)
t
< Ce(llep(0)] +/ I pellPds), 0 <t <T.
0
Thus, we have, as ¢ — 0,
T
sup |ley]l < Cy/e — 0, / [Veul?ds < Ce — 0,
0,7 0
] (3.16)
/ lejll’ds < Ce — 0, sup |ee,| < C/e — 0.
0 t€[0,T]
Since
Vey = —ej +ey x B, (3.17)
we can also deduce that
T
/ IVey|2ds < Ce — 0, as & — 0, (3.18)
0
which completes the proof. O
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4 Stability and Error Analysis

In this section, we analyze stability of Algorithms 1 and 2, then give an a priori error
estimate for Algorithm 1. Theorem 4.1 below shows that Algorithm 1 is unconditionally
stable.

Theorem 4.1 For (0", p", ¢") satisfying Algorithm 1, we have the following unconditional
stability.

Lomn  LRN it o w2 N e AR
NI 20 P e pM P e 3 M =P s Y IVt
n=0 n=0 n=0
m—1
+ At x BJ? + AtV |2 + A Y (|| —Ve" +u ! B2 4 || — VT 4" x B|\2> (4.1
n=0

m—1
1
<M2Ar Y I+ O el 017 + Aru® < BIP + Ar V¥,
n=0

Proof Taking the inner product of the three equations in (1.5) with u"*!, p"*+! and ¢"+1,
respectively, and multiplying it by 2A¢, we can obtain

: n+l 2 n)2 nil g2y 2Af
VAL —lu u —u I Vun+l 2
7 (2 = ) 4 1)+ 2ozl I
— 2At (pn+l, V. u”+l) +2At(—V¢” +u}’l+l x B,un+l « B)
= 2At (fn+1’ u”+1) ,
e (1P 2 = 1p" 17+ 1p" T = p"I17) + 240 (p"H, V-u ) =0,
201 (V" +u" x B, —V¢" ) =0.

4.2)

Then summing up the three equations in (4.2), we have

1 2At

+2A1 (—=V¢" + 0 x B u"t! x B) + 241 (V" 4 u” x B, —vgrt!) ()
+ g (||pn+1 ”2 _ ”pn ”2 4 “pn—H _ pn “2) — 2At (f’l-’r] , un+1) )

By using the following identity
2a+bb)+2(c+d,c)=c?—a>+b>—d>+ (a+ b’ + (c + d)%, (4.4)
we get

2At (V" +u"t x B,u"t! x B) +2A1 (—Ve" T +u" x B, —Vg¢" )
= Atflu"™ x B> — At[lu” x B|> + At]|[V¢"T|? — Ar||[Ve"|? 4.5)
+ At (I = V" +u"T x B2+ || — Vo' +u” x B||?).
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Thus, (4.3) can be rewritten as

1

12 2 1
N(”uw I = w1 + " — "

2 +e (P2 = 1p" 12 + I p" = p"I1%)

2At n+12 n+1 2 n 2 412 02
+W”V“ I+ At[a™™ x B||© — At|lu” x B||” + At[|[V¢" T |7 — At||Ve"||
AL (” _ v¢n +un+1 x B||2+ ” _ V¢n+l +un % BHZ)

—2At (fn-'rl Il+1) < MZAt”fVH-] ” | 4+ — 2 ||Vll”+1 ” (46)
Finally, summing (4.6) from n = 0 to n = m — 1 completes the proof. O

The following theorem shows that Algorithm 2 is stable with a condition, relating the
time step At with the problem data. Recall j* := —V¢" +u”" x B.

Theorem 4.2 For (0", p", ¢") satisfying Algorithm 2, if time step At satisfies

1

At <
> 4.7
2N (1 + c},Manniw) B3 oo @

we have the following stability.

1 my 2 1 1
2 u”- vu n+1
72N”u l +72N” u” I +2M2 E I I

m—1 m—1
A I A Y 2t - (4.8)
n=1 n=1
1 1 m—1
12 1 02 2 n+12
< oI+ o2t =P 2mPar Y 2

n=1

Proof Taking the inner product of the three equations in (1.6) with u**!, p"*! and ¢"*!,
respectively, and multiplying it by 2A¢, we can obtain

_ 1 1 _
oo Gl 2 = 4" + u" )2 + ﬁuu"+l —u"|? - 5 - 12
| o’ niy2 , 2Af Va2 — 2A7 (") Vg
+ﬁ”u —2u" +u" +W|| | = (P , Vouth)
+2A1 (=V (29" —¢" ') +u"t! x B, u"t! x B) (4.9)

= 2A¢ (71w,
e (IP" U2 = 1p" 1% + 1" = p"I) + 241 (p"*1, v -ty =0,
201 (V" utt x B, Vgt =0,

where we use the identity

1 1 1 1
5 Ba—4b+cya= (3a2—4b2+02)+5(a—b)2—E(b—c)2+1(a—2b+c)2.

ENI
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The key issue is to deal with the term 2At(—V(2¢" — ¢"~ 1) + u"T! x B, u"*! x B). We
have

201 (—V(2¢" — ") +u"t! x B, u"*! x B)
= 2A1 (2§" -t (un+l w4 unfl) % B, u"t! x B)
=280 (2" — ' 0 B) 200 (W 20" ) x B B
=2At (2§" —j" ', u"™! x B)
+ Az (< BIR — | (20" —u') < B2+ || (0 = 2u" 4 u"!) x BY?).

(4.10)
From the third equation in (1.6), we have
Q2" -, -Vy) =0, Yy eS. 4.11)
Taking ¥ = ¢"*! and adding it to the term 2A7(2j" — j7~!, u"+! x B) gives
2041 (25" ="t x B) =241 (2" — L
= Ar (I 12" =R - -2 ) @)

= Ar (I 125" — NP - @t = 20" +ut) x B2
+ V"t —2Ve" 4+ Ve ?),

where we use [[j' | = |[u’ x B||2 — ||[V¢!||?, Vi < n+ 1.Combining (4.9), (4.10) and (4.12)
yields

1 B 1 1 _
T Bl 2 = 4" )2 + a2 + ﬁnu"*l —u"|? - 5 - 2

1 _ 2At
+ ﬁ”unﬁ-l —2u" +u" 1”2 + W”Vu"+1”2 (413)

+ Atflu™ x B2 4 Ar]ljE + Arf2it -2
=2At ("M u"t) + Ar|| (20" —u"!) x B

For an arbitrary § > 0, the term Af||(2u” — u"~1) x B2 can be bounded by

At (20" —u"") x B2 = Az (' — 20" +u"") x BJI* + Ar[u"t! x B||?
—2At ((u"+1 —2u” +u”71) x B, u"t! x B)
< At] (u" —2u" +u"!) x B2 + Atflu"™! x B|?

At
_’_872” (un+1 _ 2u” +un—1) % B”2 4 At52||lln+1 % B||2

1 _
< At (1 + 57) IBJ|? o Ju" ! — 20" w2

+AH U X B? 4+ AtCIE BT [V P, (4.14)
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where we use the Poincaré inequality [jul| < C,[|Vul|, Yu € X. By taking § = W,

we can obtain

1
N “un—H _ un”Z

_ 1 _
"2 — 4 )2 + a2 + -l v 2

o {
1 1
+—=-Ar|1+— ||B||2x> ”un-H _ " +u"_1||2
<2N < 82) L ws)
t 3 . 11—
+ WHVUH_III2 + AN + Ar)2it — N2

< 2M*Ar|f" 2,

Finally, under the condition (4.7), summing (4.15) from n = 1 ton = m — 1 completes the
proof. O

Next, we analyze the convergency of Algorithm 1 and give an a priori error estimate for
Algorithm 1. Since the error analysis of Algorithm 2 is similar to that of Algorithm 1
but considerably longer, we omit it. Denote e, = u(t") — u" = p(") — p", and e; =
¢ (") — ¢". The following theorem not only shows the convergence order of Al gorithm 1
but can also indicates a way to choose the value of ¢.

Theorem 4.3 Assume that the true solution (w, p, ¢) satisfies the following regularity

ue L%0,T; HX(Q)), w e L*0,T; H'(Q)), wu, € L*0,T; H1(Q)),

2 2 2 2 1 (416)
pr € L0, T; L7(R)), pu € L(0,T; L7 (RQ), ¢ € L0, T; H (Q)).
For (u", p"*, ¢") satisfying Algorithm 1, we have the following estimate
m—1
|| eI + Z Ve 1% + A Z Vet
(4.17)

+Atz<”—Ve$+eg+le”2_’_” Ven+l+e XB” )5C(At2+82),

for sufficiently small At.

Proof At time "*1 the true solution (u, p, @) satisfies
1 fu@th —u@™) 1
(M () 1)) < () )

B Vg (1) (u () B) kB =t L ((i” u (M)) |
p (t’”‘l) —p (") 1

fm e+ V- u("“) Ail/ pedt, Ag (r"“):V-(u(r"“) % B).
t (4.18)
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Subtract (1.5) from (4.18) to obtain

1 en+1 — e
— < u u + B (eﬁ, u(tl’l+1)) + B (ul’l, eﬁ+]) + B (u(tn+l) _ u(l‘l’l)7 u(tl’l+l))>

N At
|
— WAe"H + Vet —B x Ve —B x (Vo ("T!) — V(i) — (ei™ xB) x B
tn+1 —u("
- L (WMD),
N At
€”+l _ en e tn+l
p P ntl _
—— +V-e dt,
A TV TN / Pr
Ayt =V - (ef x B) + V- ((w"t!) —u@") x B).
4.19)
Taking the inner product of the three equations in (4.19) with e""‘1 ntl and ¢ respec-

€p
tively, then summing up the three new equations and multlplymg it by 2At, we obtain

1

n+1 ny2 n+1 n 2 n+1 ny2 n+1 ny2
7 (el 12 = ey + ey ™! = ebl2) + e (lleh ™12 = llep? + e = e 112)

At
S AIVertt I + Arlleptt x BI? — Arflel x BI* + At|| Vel |1F — Ar|| Ve |*

+ AL = Vey +egt xBIP + | - Ve, + ¢ x BJ?)

2At (u(™t) —u@) 2At
=N (T —u, ("Th, et ) — N~ b (e}, u("th, eﬁ“)
2At
— = b ETh =), u@h, ) + 240 (Vo — Vo), e x B)

!

n

+2At ((u(t"“) u(r")) x B, Ve”“) +2¢ (/ pidt, e"+l> (4.20)
15

where we use the identity (4.4) again. We have that

201 Vel ? = 241 ((u(r”“) —u(t")) x B, Veg“) A (Veg“, e x B) 421)

Adding (4.20) and (4.21), we obtain
1
7 (112 = ey + ey ™ = ebl2) + & (lleh ™12 = llep® + e = e 12)

2At
+ Wuw{'ﬁ‘ 1P+ 24 Vey 1 + Arflegt! x BJ* — Arfleg x B

+ At Ve T2 — Ar||Vey|P+ At (|| — Ve + €t xB|P + || - Vet + € x B||2)

_ & (ll(ln+l) _ ll(tn)

2At
v N —u (tn+])’ en+]> v b(e ll(l‘n+1), en+1)

= 280 () ), wG . €) 4 280 (VO ~ Vo) eh < B
1 4Ar ((u(t"'H) u(t")) x B, Ve"“) 1 2A (Ve”“ e x B)

tn+|

+2¢ ( / pdt, e”“) (4.22)
tn
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Next, we need to bound all the terms on the RHS of (4.22). For arbitrary ¢ > 0,01 >
0,02 > 0, 03 > 0, we have the following estimates. The first term can be bounded as

u (l‘"+1) —u (")
At
+ o At||Velt!)2,

u, (tn+l) ”2_1

& (u(tn+l) _ u(t”)
N At

—uz(t”“),e:i“) <CAt||

(4.23)
The nonlinear terms can be bounded as
2At n n+1 n+1 n n+1 n+1
_Tb (el u@™h), eg™) < CAtlleg | lu@ 2 Ve |
< CAtllu" 5 l€nl* + o At Vet |1, (4.24)
2 1% u

2At
==y b @Eh =), ueth, et < Carjuth —uE) e 2 Ve

< CAtu™ ™) 3@ —u@)? + o Ar|| Vel (4.25)
We bound the term 2At (Ve (1"+1) — Vo (1), el ! x B) as follows.

201 (Vo (") = Ve ™), €7 x B) < 4Arlley T [IB] L | Vo (") — Vo M|

< CAt|Vo ") — VoI + o At Vel |2
(4.26)
The term 4At ((u(t" 1) — u(t")) x B, Ve;H) is bounded as

481 (00" —ua") x B Vel ) < 8aruG —ue B~ Ve
4.27)
< CAHBI <l —u(™)|? + o1 At[[ Vel 12,

We also bound the term 2A¢ (Veg'H, e x B) by

201 (Ve e x B) <4At|ey]|[BllL= Ve || < CALIB|T ll€jl> + o1 At]| Vel 1>,
(4.28)
n+l
Lastly, we need to bound the remaining term 2 ( ftt,, pidt, e’l’,“). It is known (see [28]) that
if pi(t), pu(t) € LZ(Q)/R, there exists an unique ¢(¢) € H& (£2), such that

Vo) =pi(0), V¢ (1) = put) (4.29)

and
le@lt < ClipeOIl, Nt < Cllpe@Il  forallt €[0,T]. (4.30)

From (4.19), we have, at time 1!,

n+1 le:ll-‘rl_e:ll 1 n+1 1 n n+1 1 n .n+l1
ve! :_NT-{-WA% —NB(eu,u(t ))—NB(u,eu)

—%B (u@"t) —u@), u@"*)) + B x Vel + B x (Vo (") — Vo ™))

u@"th —u@")

1
n+1 B B _
e x B) X +N( At

u,(t”“)) ) 4.31)
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Thus, we obtain

tn+] tn+l tn+l
2¢ </zn pedt, e'l’,“) =2¢ </r" V - p(t)dt, e;’fl) = —2¢ (/t" pdt, Ve’[’fl)
el 1 u(t”‘H) u(t™)
= —2¢ (/ (A—t - ll,(l‘”Jrl))
tn+] tn+1

_%<f
([
<
(

pdt, Aeﬁ“) — 28(/ pdt, B x Ve(';))
t

n
el

—2¢ odt, B x (Vo (") — v¢(r"))>

t"+l t"+1 1 n+l1 en
—2¢ / odt, (el x B) x B | 4 2¢ / edt, NTU
tn
l‘"'H t"+1 l
+2¢ / edt, —B(u e““)) +2¢ (/ godt,NB(eﬁ,u(t"H)))
tn
t"'H 1
+2¢ (/ edt, NB(u(t”'H) —u(™), u(t”+l))) ) (4.32)
tn

Next, we need to bound all the terms on the RHS of (4.32). First, we have

ol u(tn-i—l) ll(t”) ]
— 2 (/z" pdt, v <A—t_ut(t ))

+1
" u(tIH-l) _ ll(fn)

< —u/ pat M @

1

tn+1 2 n+1y _ n
cova (/ II</>||%df> S R (4.33)
tn

At

IA

tn+l

u thrl —u I”
< Ce? / lpllide + A 2wl
o At

tn+l n+1 n
u(zs —u(z

< Cé? / Il pelI2dt + At|| RE™) — @)

o At

1y12
—ut(tn+ My

1\ 2
—u, (""" M=y

n+l1
For the term —2¢ ([,  @dt, -5 Aelit!), we have

’ M2
1 el

1
—2¢ (/ edt, Ae”“) =2¢ (/ Vedt, Ve”“)
" "

tn+l

2 / Ved|| Vel |2
1 (4.34)

2
||V<p||2dt> [vertt)?

et

§Ce\/E</tn

et

§C82/ I peldt + o Ar|| Vet
t’l
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n+1
For the term —28(ftt,, B @dt, B x Vef;)), we have

tn+1 tn+1
—2e¢ (/ pdt, B x Ve,’,i) < 4| Bl |l pdt||[|[Vegll
1 n
| (4.35)
1 2 it
< Cev/AT ( / ||sa||2dr> Ivel | < Ce? / 1pe%dt + or At Vel 2.
th "
The term —28(/‘;,,”“ @dt, B x (Vo (") — V(")) is bounded as
t"+1
—2¢ (/ odt, B x (Ve (")
t"
1
In+| 7
—Vg (") < Cev/At ( / ||<o||2dr) IVe ™+ — V™| (4.36)
t"
t”+1
< Ce? f IpelPdt + AtV ™) — Vo ™).
tﬂ
n+1
The term —28(.[;” ’ pdt, (e} ! x B) x B) is by
1
t"+1 t”+1 7
— 2 (/ pdt, (el x B) x B) < CeVAr (/ ||¢||2dz) flerth]
" " 4.37)

tn+1

< 052/ I pelPde + o Ar|| Vel 2.
t

n

n+l n+l_an
We bound the term 2¢ (ftt,, ! pdt, % ‘u - ) by

it

1 en-‘rl — e
2e f odt, — -4 U
o N Ar

= NZZI :(/;nﬂ dt, eﬁ"'l) - (/t':"] pdt, eﬁ): - 1\/22t (/t:n+1 odt — /;"] pdt, eﬁ)
= szt :(/ttH qadt,e{l,“) - (/ttl qadt,e{;>: + ZSNAtl(w,(s,,),eﬁn
< 2 (/t wdr,e.”,“) - (/t wdr,e:l,): + 2 oo lnes)
< 2 ( / wdt,eﬁ“) - ( / wdr,e.,>_ + Ce2A ] pur &) + o3 Ar| Ve,

(4.38)

@ Springer



1474 J Sci Comput (2018) 76:1458-1483

n+1
where &, € (1", "*t1). We bound the term 25(ftfn ' @dt, %B(u”, eltl)) as

t"+1 l‘"'H

2 ( / pdt, —B(u ,e"“)) < Ce| f Vedt||[|[Vey || Vu” |
[ﬂ

[n+1
< Cev/Ar (/ ||V¢||2dt> Vet || vu” | (4.39)
tn
tn+1
< Ce?||vu"|? I pell*dt + o At||Vert |,

yanl 1 +1 .
The term 28(ftn pdt, 5 B(ey, u(z"™"))) is bounded as

tn+1 1 tn+]
2¢ ( / B(eu,uo"“))) < Ce|| / Vodt||| Vel Vu@ ]|
1‘"
. (4.40)
< Ce?|Vu("th)? f I pell*dt + o3 At Vel
For the last term, we have
t"+1 1
2¢ (/ edt, NB(U(I”H) —u@"), u(z"+1)))
tll
1
e+l 7
< Cev/At ( [ ||Vgo||2dr> a1 —u@™) a1 (441)
tl‘l
tn+1
< CEuEHE / IpelPdt + AtfuG™) — u@™)|P.
["
Combining (4.33) and (4.41), we have
tn+l
2¢ (/t pdt, e';,+‘> <30 At|Vey |17 + oaAt|[ Ve |1* + 203 At Ve |
u tn+1 —u("
+ A — u)? + g DTy g2,
” e p (4.42)
At| Vo™t — Vot = / dr, elt! / dt, e’
+ At Vo ™) — Ve( >||+Nm[( @ | edie
tn+1 t"+1

4 CE2 AL prr &) 1? + Ce? /

tn

Il pelI2dt + Ce*||Vu"| / Il pe |1 %dt.

Seto = i, 01 = 1,02 = 5,03 = ;. Combining (4.22)~(4.28) and (4.42), we have
%(ue"“n el + lleg+ = ehl?) +& (llep™ 17 = lleh I + e = 1)
||Ve"+1 1P+ At Vet + Atllegt! x BI* — Arlleg x BIJ?
+WIIW{1“ I? mnwuuz + %Azuwg*lnz - %Arnwg I”?
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AL (|| — Vel 4 et B2+ || - Vet el x B||2)

I.l(t"+1) _ ll(l‘n)
At
+CALVH(" T = Vo ™) |I* + CAt(L + [[u@ T3 + B o) lu@" ™) —u@™)||?

28 t11+] il " .
+NAt |:<[n pdt, e, — /;n_l(pdt,eu

< CAt (Ju@@ ™13 + Bll7) lleall* + C Az —u ("H)2,

tn+1 tn+1
+ Ce2 At pi (E) |1 + Ce? / I pell2dt + Ce?||vu" |2 / VARD (4.43)
tn ["
Summing (4.43) fromn = 0ton = m — 1, we obtain
1 m—1
el + Z legt' — ell® + slle) I” + Z eyt — eyl + Z IVept!|?
m—1 3
n+1,2 2 2
+At§0 IVeg ™M I7 + Arlley x BI? + S AL Ve I* + 2M2 Ivey |2

+ At Z (|| — Ve:’b —|—e:‘l+1 X B||2 + - Veg-H +e; x B“Z)

m—1

1
= leall® +ellepl + Arley xB||2+ ||Ve 1% + AtIIV€¢|| 2rCary el
n=0
-1
u(t"“) —u(t ) -
+CA Z I—————— = ("%, + CAL Y V") — V)|
n=0
m—1 2¢ m m—1
n+1 m 2 2
+CAr§) Ju(h =@ + (/, q:dr,eu> +Cs A’; 1per )l

t"+1 m—1

Ip:l1*dt + C? Z Va2 / I pel1%dt.

+C822/

(4.44)
Next, we bound the terms in the right hand side of (4.44). First, we have
l"+l) u(t") s
CAtY | —————= —w,("H)2, < car? / g 1% dt

Z Z v (4.45)

< CAr? lluy, ||2,_1-

We also have
— tn+l

CAt Z IVt — Vo™ |* < CAr? Z f IV lI*dt < CAL* |13, (4.46)

n=0

and

m—1 L+l

cmZnu(t”“ —u@|? <cm22 / lulPde < CAP w3 (447)
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Moreover,
2e </’m m) 2e , 2¢2 ) 1 )
pdt, ey | = — (™), ey) < —llom™II” + s lley
NAt \ Jm- N N 2N (4.48)
1 1
2 2 2 2 2 2
< Cellpe™II° + ﬁlleﬂll =Celpilise0 + ﬁllefll ,
where n™ € @=L pmy. Lastly, it gives that
m—1 el
2y [ InlPar < celpio, (4.49)
n=0"1"
and
m—1 i+l m—1
ce? Y |Ivurth? f IpclPdr < CelipiliZeo D AtV 1* < Ce|pilIZ, -
n=0 & n=0
(4.50)
where we use the result in Theorem 4.1.
Combining (4.45)—(4.50) with (4.44), we can have
1 At m—1 m—1
Syl IP 405 2 IVer Tz 4+ Ay T veg
n=0 n=0
m—1
+ArY (|| — Vel et x B+ || - Vet el x B||2) 4.51)
n=0
m—1
< CAtY llepl* + C (A2 + 7).
n=0
Finally applying the discrete Gronwall lemma completes the proof. O

5 Analysis of Non-physical Acoustic Waves

Artificial compression method can greatly speed up computations but can also introduce new
physical flow behaviors associated with compressibility such as non-physical, fast, pressure
oscillations (acoustic waves). These fast acoustic waves can yield restrictive time step condi-
tions for explicit time discretization of the full system or pollute the pressure approximation.
In this section, we analyze these non-physical acoustic waves through an acoustic waves
equation for pressure. We rewrite the model (1.3) as follows.

%(ut+u~Vu+%(V~u)u> — N.l eAu—i—Vp:f—i—j x B,

epr+V-u=0, Ry
V-j=0.

Taking the divergence of the first equation and d/9¢ of the second equation in (5.1), we obtain

1 1 1 1
NV~U,+NV~(u'Vu+§(V~u)u—EAu)—I—Ap:V-f—I—VWjXB),

epy +V-u =0.

(5.2)
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Assume V - f = 0. Multiplying the first equation in (5.2) by N and eliminating V - u, term,
we can have

1 1
epn—NAp:V-(u-Vu+§(V-u)u—7Au)—NV-(ij). (5.3)
‘Re

Since V- (jxB)=(Vxj)-BandVxj=Vx(=V¢+uxB)=V x(uxB), wehave

Vxj=—(V-u)Bland V- (j x B) = —(V - u)|B|? in 2 dimension case. Thus Eq. (5.3)
can be rewritten as

1 1
epu +eNB)?p; — NAp =V - (u Vot o (Vowu - 7Au) . (5.4)
‘e

The pressure wave equation (5.4) shows that the non-physical oscillation in p will be damped
by damping coefficient N|B|%. Thus, the effect of magnetic field is to damp acoustic waves
in slightly compressible flows. The waves have energy input due to the right hand side terms.
The speed of the non-physical acoustic wave is (’)(%), which indicates that the wave speed
goes up to oo as € — (0. We test the non-physical acoustic wave in Sect. 6.2. We compute
and plot (Figs. 1, 2) the pressure at origin (0, 0) on a time interval after initial transients pass
to test if the wave speed increases as the time step At | 0.

5.1 Nonlinear Acoustics

We consider the effect of the nonlinear term in the right hand side of (5.4) on acoustic waves.
Let the usual Lighthill sound source (see, [26] and [27] for justification) be denoted by

for d =2 or 3.

ou; du;
O,u):=Vu: V)’ =) —
12]: 3Xj 3Xi

Since we have the identity that
1 1 1 2
V. u~Vu+§(V~u)u =Q(u,u)—§u~V(V~u)+§|V~u|,
if the effect of slight compressibility on acoustic waves is negligible, we can obtain
1 1
V. (u-Vu—i—f(V-u)u——Au) ~Q(uu ifV.-uxO0.
2 -Re

Recall (1.3) that V - u = —ep;. Then we have

1 1 £ &2 £
V. <u~Vu+ §(V~u)u— EAU) =Q(u,u)+ §u~Vp, + ?lpt|2+ EAp,.
Thus (5.4) can be rewritten as
2 & 2 , € 55
epu +eNBI"pr = NAp = Q(u,w) + Ju- Vi + —|pe|” + 2= Apy. (5.5

O (u, u) represents the physical sound source, i.e., the sound generated by the flow. The terms
%u -Vp:+ % Ipil? + % Ap; are the nonphysical sound sources and their values vanish as ¢
goes to 0. When Re > 1, the leading order term in nonphysical sound sources is %u -Vp;.
In Sect. 6.2, we compute the relative size of the leading order term in non-physical sound
sources to the Lighthill sound source

l5u-Vp

Ratio = ————.
1O, w]
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Table 1 Errors and convergence rates of Algorithm 1

At llel ] Rate (A1) " 01 ||Veﬁ+‘||2)% Rate (A1 17 HVe”'HH )2 Rate
120 6.0467e—2 2.2961e—1 2.5699e—1

130 4.3838¢—2 079  1.4885e—1 1.07  1.7247e—1 0.98
1/40  3.3862e—2 090  1.0901le—1 1.08  1.2983e—1 0.99
1/50  2.7299e—2 097  8.6329e—2 1.05  1.041le—1 0.99
1/60  2.2684e—2  1.02  7.2225e—2 098  8.6917e—2 0.99

The result is shown in Figs. 3 and 4. Looking at the vertical axis scales, we conclude that the
nonphysical sound source is negligible compared to the physical one.

6 Numerical Test

In this section, we provide numerical experiments to test the convergence of Algorithms 1
and 2, and the non-physical acoustic waves analyzed in Sect. 5. We utilize the P2-P1 Taylor-
Hood mixed finite elements for fluid velocity and pressure and P2 finite element for electric
potential. The software package FreeFEM++, see [41], are used for our simulation.

6.1 Testing Convergence

Let the domain 2 = [0, 1] x [0, 1], Re=1,N =1,M = 1and B = (0, 0, 1). Consider the
true solution (u, p, ¢) given as follows.

u(x,y,t) = 2w cos(2mx) sin(2wy), —27 sin(2wx) cos(2wy), 0)e™,
p(x,y, 1) =0,

G(x, y, 1) = (cos(2mx) cos(2my) + x> — y2)e .

The body force f, boundary condition and initial condition are determined by the true solution.
We firstly compute the rate of convergence to confirm the effectiveness of our theo-

retical analysis for Algorithm 1. Set ¢ = At. Select T = 1, h = % and then At =

250 250 20 07 a5 We compute [le [, (72 Vel )2 and (Ar Y=g Vel %)% 1o
obtain the convergence rate.

Table 1 confirms that the rate of convergence is first order in accord with the theoretical
result of Theorem 4.3.

We also compute the rate of convergence for Algorithm 2. Since Al gorithm 21is second

2 11 1
order accurate, we set ¢ = At“. Select T = 1, h = At and then At = E @ %0° 30° T00-

We also compute [l [, (377 Vel +! |2 )2 and (At > ||Ve"+l 12)2.
Table 2 shows that the rate of convergence of Algorlthm 2is second order, as expected.

6.2 Testing Non-physical Acoustic Waves

We explore the non-physical acoustic waves by the following 2D test problem (Flow between
offset circles).
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Table 2 Errors and convergence rates of Algorithm 2

1
At llef | Rate (A" |Vep™ %2 Rae  (ArY" uw"” )2 Rate
1720 7.1314e-3 1.1478e—1 9.7290e—3
1/40 1.7696e—3 2.01 3.6299¢—2 1.66 2.9077e—-3 1.72
1/60 7.6980e—4 2.05 1.7458e—2 1.81 1.3712e-3 1.85
1/80 4.2564e—4 2.06 1.0219e—-2 1.86 7.9445e—4 1.90
1/100 2.6889¢—4 2.06 6.6996e—3 1.89 5.1754e—4 1.92
-54 -46 - =31
Vss‘—‘ / 465-.‘"‘ 5
§ \’ \/ § ' S aisf ‘(‘
U AW 4 b AR L w
£ =" \n : H ‘H ‘ i M \‘ \h I
E‘ s1E E E’ 415k Vv W\ 2 @ ‘ M\‘ ‘ ’ ‘ ‘\ \“ “
; : My |3 H\ \
£ 58k 5 asf v ‘\n’\/\ £ “ ‘ H
: : W E s w i “‘“ |
559 \ N ‘Ess \E ‘H ‘\ ‘\wH\ [ \*‘h\
ol \ 485F H \H\ “UL“‘HJ ‘;p“
805 % 7 = % g “% % 7 F3 % %5 % 3 £ 2 3
Time Time Time

Fig. 1 Pressure at (0,0) versus time, Algorithm 1,dt= 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Pressure at origin, dt=1/226
i
j e
<
Sz
z
.
Pressure at origin, dt=150
5
T
e
Pressure at origin, dt=1/00
T
e
P
== -
=
e

. 1 1 1 5 2
205 26 27 % 25 3 - % 27 2% % 5 2% 27 2 29 £}
Time Time Time

Fig. 2 Pressure at (0,0) versus time, Algorithm 2, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Let the domain Q = {(x,y) : x2+y2 < 1l and (x — 052+ y> > 0.1}, B =1 -k,
the final time 7 = 30, and the body force f = (—4y(1 — x2 - y2), 4x(1 — x2 — yz))T. Set
Re =1000and N = 1,thus M = +/N - Re = +/1000. For velocity boundary conditions, let
u = 0 on both circles. Similarly set e = At for Algorithm 1 (¢ = At? for Algorithm 2).
Choose time step At = 2]5 510, 106+

Firstly, we plot the pressure versus ¢ at (0, 0). Figure 1 (Fig. 2) shows the results of
Algorithm 1 (Algorithm 2) on a time interval [25, 30] after initial transients pass. We find
that the time evolution of the pressure at one point in space varies greatly as Az changes.
However, the wave’s frequency has a clear pattern consistent with (5.4): As At decreases,
the wave’s frequency increases.

Figures 3 (Algorithm 1) and 4 (Algorithm 2) present the relative si%e of the leading
order term in non-physical sound sources to the Lighthill sound source: % It shows
that Q(u, u) is the dominant forcing for oscillations in p and V - u.
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Lastly, in order to study how close the computing solution is to incompressible, we compute
IV -ull/|lu|l. As shown in Fig. 5 (Algorithm 2), the relative size of V - u decreases as At
decreases. However, in Fig. 6 (Algorithm 1), V - u fails to decrease when Ar decreases,
which implies that the selection of e = At or At? should influence the stability of the artificial
compression method. For Algorithm 1, we could further stabilize this first order method.
Thus, we consider to add a stabilization term yVV - u in Algorithm 1 (y = 10,000) and
then recompute the relative size of V - u. Figure 7 presents the computing results and shows
that the relative size of V - u decreases as At decreases when we select a large y in the
stabilization term y VV - u. Compared with Fig. 6, when we apply the stabilization term, the
oscillation of the relative size of V - u becomes weaker, which shows the stabilization term
y V'V - u might be an effective way to dampen non-physical acoustic waves. Meanwhile, we
find that as Az | O, |V -u||/||u|| appears to be more oscillating, which is also consistent with
our analysis of non-physical acoustic waves since V - u = —ep;.
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7 Conclusion

In this paper, we construct two decoupled methods based on the artificial compression
method and the partitioned method for the time-dependent magnetohydrodynamics flows
at low magnetic Reynolds numbers. Theoretical analysis indicates that the error estimate of
Algorithm 1is |u(t,) —u"|| < C(At + ¢) Vn < T/At. We also explore the non-physical
acoustic waves that comes from the application of the artificial compression method and give
a brief analysis for it. The numerical examples illustrate the correctness of our theoretical
analysis.

An open question is that the error estimate given in Theorem 3.2 shows |[u(f) —uf(?)| <
C./e ¥Vt € [0, T], which is not optimal in view of the error estimate in Theorem 4.3. The
optimal error estimate for the slightly compressible model is necessary because it can indicate
the relation between the coefficient ¢ and the time step Az and thus suggest the optimal
choice of ¢ according to different time-discretization schemes. The other open question
is how to control the non-physical acoustic waves. Since the non-physical acoustic waves
will increasingly influence the accuracy of computing solution as the time step goes to 0,
it should be an interesting issue to study effective methods to solve this problem, such as
adding stabilization terms (e.g., y VV - u) or utilizing time filters.
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