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Abstract Magnetohydrodynamics (MHD) is the study of the interaction of electrically con-

ducting fluids in the presence of magnetic fields. MHD applications require substantially more

efficient numerical methods than currently exist. In this paper, we construct two decoupled

methods based on the artificial compression method (uncoupling the pressure and velocity)

and partitioned method (uncoupling the velocity and electric potential) for magnetohydro-

dynamics flows at low magnetic Reynolds numbers. The methods we study allow us at each

time step to solve linear problems, uncoupled by physical processes, per time step, which can

greatly improve the computational efficiency. This paper gives the stability and error anal-

ysis, presents a brief analysis of the non-physical acoustic waves generated, and provides

computational tests to support the theory.
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1 Introduction

We consider the time-dependent magnetohydrodynamic (MHD) flows at low magnetic

Reynolds numbers (denoted by Rm). The low-Rm MHD model (typical for terrestrial appli-

cations, see [12,20,23]) is given by: find fluid velocity u : � × [0, T ] → R
d , pressure

p : � × [0, T ] → R and electric potential φ : � × [0, T ] → R satisfying

1

N
(ut + u · ∇u) − 1

M2
�u + ∇ p = f + B × ∇φ + (u × B) × B,

∇ · u = 0,

�φ = ∇ · (u × B).

(1.1)

For (1.1) impose homogeneous Dirichlet boundary conditions and the initial condition

u = 0 on ∂� × [0, T ],
φ = 0 on ∂� × [0, T ],
u(x, 0) = u0(x) ∀ x ∈ �.

(1.2)

Here, body force f , external magnetic field B, and final time T > 0 are known. The domain

� ⊂ R
d (d = 2 or 3) is a convex polygon or polyhedra. N is interaction parameter and M is

Hartmann number, N
M2 = 1

Re
, where Re is the Reynolds number. Further, u0(x) ∈ H1

0 (�)d

and ∇ · u0 = 0.

In this report, we give an analysis of a classical artificial compression scheme from

[28] adapted from the Navier–Stokes equations (NSE) to the model (1.1). Combined with

two partitioned methods from [23], we gave two fully-decoupled methods. The schemes

(Algori thms 1 and 2) are based on (i) replacing ∇ ·u by εpt +∇ ·u = 0, (ii) time discretiza-

tion by the implicit methods (Backward-Euler and BDF2) and (iii) treating the magnetic

field terms explicitly to further uncouple the system into components. Theorem 4.3 below

shows that for smooth solutions the error of Algori thm 1 is O(�t + ε). Numerical tests in

Sect. 6 also confirm that the error of Algori thms 1 and 2 are O(�t + ε) and O(�t2 + ε),

respectively.

1.1 Previous Work

MHD describes the behavior of the electrically conducting fluids in the presence of an external

magnetic field. The study of MHD, initiated by Alfvén [1], has been widely developed

in many fields of science including astrophysics, geophysics, engineering, and metallurgy.

Applications include the studying of sunspots and solar flares, pumping and stirring of liquid

metals, liquid metals cooling of nuclear reactors, forecasting of climate change, controlled

thermonuclear fusion and sea water propulsion, see [2–6]. Most terrestrial applications, such

as liquid metals, involve small magnetic Reynolds numbers, Rm ≪ 1. In these cases, the

magnetic field influences the conducting fluid via the Lorentz force, but the conducting

fluid does not significantly perturb the magnetic field. Thus the magnetic field induced by

the electrically conducting fluid motion is small and can be negligible compared with the

imposed magnetic field. Neglecting the induced magnetic field, the general MHD flows can

be simplified to the low-Rm MHD model considered herein.

In the recent years, there are many works on the MHD equations. For instance, Refs.

[13,15–19] studied some effective iterative methods in finite element approximation for the

steady MHD equations. For the time-dependent MHD equations, He [33] discussed an Euler

semi-implicit scheme for the three-dimensional MHD equations. The decoupled fully discrete
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finite element schemes for the unsteady MHD equations were analyzed in [31,32,39]. Zhang

et al. [14] analyzed a partitioned scheme based on Gauge-Uzawa finite element method for the

2D time-dependent MHD equations. The mathematical structure of the steady low-Rm MHD

model was established by Peterson [12]. Numerical analysis of the evolutionary problem (1.1)

was performed by Yuksel and Isik [25] (coupled implicit method), Yuksel and Ingram [20]

(coupled Crank–Nicolson method), and Rong et al. [35] (coupled spectral deferred correc-

tion method). Partitioned methods uncoupling the fluid velocity from the electric potential

were analyzed in [23,24,36]. The Algori thms 1 and 2 herein continue this development

uncoupling electric potential, pressure and individual components of the velocity.

1.2 The Slightly Compressible Model

There are two forms of coupling in the above Eq. (1.1). One is the coupling between the

fluid velocity u and the electric potential φ. The other is that the fluid velocity u and the

pressure p are coupled by the incompressibility restriction ∇ ·u = 0. Both couplings increase

memory requirements, make the equations more difficult to solve numerically, and reduce

computational efficiency. In the existing papers on numerical analysis of the MHD flows at low

magnetic Reynolds numbers, most methods considered to solve the problem are monolithic

methods in which the coupled problem is solved iteratively at each time step. Therefore, we

study uncoupling methods for the time-dependent MHD flows at low magnetic Reynolds

numbers.

As to the the coupling between u and p via ∇ · u = 0, the general idea to deal with this

coupling is to relax the incompressibility constraint. There have been some such methods: the

artificial compression method, penalty method, projection method, and pressure stabiliza-

tion method (see [9,10,13,17,28–30,34,37,38]). The artificial compression method (ACM),

which was introduced by Chorin [9] and Temam [40], breaks the incompressibility restric-

tion by adding a slightly compressible term εpt (ε > 0 small) in ∇ · u = 0. This allows the

pressure to be advanced in time explicitly. Using ACM, the slightly compressible model of

(1.1) and (1.2) is given as follows.

1

N

(

uε
t + uε · ∇uε + 1

2

(

∇ · uε
)

uε

)

− 1

M2
�uε + ∇ pε = f + B × ∇φε + (uε × B) × B,

εpε
t + ∇ · uε = 0,

�φε = ∇ · (uε × B),

(1.3)

with the conditions
uε = 0 on ∂� × [0, T ],
φε = 0 on ∂� × [0, T ],
uε(0) = u0, pε(0) = p0,

(1.4)

where typically ε = O(�t) or O(�t2). The function p0 ∈ L2(�) is arbitrarily chosen but

independent of ε. The term 1
2
(∇ ·uε)uε preserves skew-symmetry of the trilinear form. Since

1
2
(∇ · u)u = 0 for the true solution u of (1.1) and (1.2) and εpt = O(ε), the consistency

error of model (1.3) and (1.4) is clearly O(ε).

1.3 The Artificial Compression Schemes

Implicit-explicit (IMEX) methods have been widely used in to reduce the cost per time

step in solving coupled systems of partial differential equations, see [8,11,31–33,39]. In
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Algori thms 1 and 2 below, the coupling between the velocity u and electric potential φ are

treated explicitly to uncouple the systems. The fluid velocity u and pressure p are further

uncoupled using artificial compression method. The nonlinear term u · ∇u + 1
2
(∇ · u)u is

treated linearly implicitly to reduce complexity. Let B(u, v) := u · ∇v + 1
2
(∇ · u)v. Based

on the IMEX partitioned schemes in [23], the following first order (Backward-Euler) and

second order (BDF2) artificial compression schemes are introduced.

Algorithm 1 Given un, pn, φn , find un+1, pn+1, φn+1 satisfying

1

N

(

un+1 − un

�t
+ B

(

un, un+1
)

)

− 1

M2
�un+1 + ∇ pn+1

= fn+1 + B × ∇φn + (un+1 × B) × B,

ε
pn+1 − pn

�t
+ ∇ · un+1 = 0,

�φn+1 = ∇ · (un × B).

(1.5)

Algorithm 2 Given un−1, un, pn, φn−1, φn , find un+1, pn+1, φn+1 satisfying

1

N

(

3un+1 − 4un + un−1

2�t
+ B

(

2un − un−1, un+1
)

)

− 1

M2
�un+1 + ∇ pn+1

= fn+1 + B × ∇
(

2φn − φn−1
)

+ (un+1 × B) × B,

ε
pn+1 − pn

�t
+ ∇ · un+1 = 0,

�φn+1 = ∇ · (un+1 × B).

(1.6)

In both algorithms, the term ∇ pn+1 can be eliminated by using pn+1 = pn − �t
ε

∇ · un+1.

Thus, the calculation for Algori thm 1 (and similarly for Algori thm 2) proceeds as follows.

Given un, pn, φn , solve for un+1:

1

N

(

un+1 − un

�t
+ B

(

un, un+1
)

)

− 1

M2
�un+1 − �t

ε
∇∇ · un+1 −

(

un+1 × B
)

× B

= fn+1 + B × ∇φn − ∇ pn .

(1.7)

Perform an algebraic update of pn+1:

pn+1 = pn − �t

ε
∇ · un+1. (1.8)

Solve for φn+1:

�φn+1 = ∇ · (un × B). (1.9)

In Algori thm 1, the explicit treatment of the coupling terms B × ∇φ and ∇ · (u × B)

preserves unconditional stability, Sect. 4. In Algori thm 2, the coupling term ∇ · (u × B) is

treated implicitly preserving stability (conditionally stable, Sect. 4) and higher accuracy. The

derivation of a fully uncoupled, unconditionally, long time stable, second order method for

(1.1) is an open problem. Since decoupling is through time discretization and can be applied

to various space discretizations, we focus on analyzing the time discretization scheme for

the slightly compressible model. For the numerical tests in Sect. 6, we use a standard finite

element method for space discretizations.

The rest of this paper is organized as follows. Section 2 introduces some notations and

preliminaries. In Sect. 3, we give á priori estimates for the slightly compressible model and
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show its convergence. We analyze the stability and convergence in Sect. 4. Artificial com-

pression methods are fast, efficient and provide effective velocity approximations. However,

the pressure can suffer from spurious acoustic oscillations. Section 5 gives a preliminary

analysis of the non-physical acoustic waves generated. In Sect. 6, numerical examples are

given to test the convergence rates of Algori thms 1 and 2, and the non-physical acoustic

waves. Section 7 presents the conclusion and open questions.

2 Notations and Preliminaries

In this paper, we partition the time interval [0, T ] into m elements (tn, tn+1) for n =
0, 1, · · · , m − 1 where tn := n�t . The time step �t := T

m
. We denote the L2(�) inner

products by (·, ·) and its corresponding norms by ‖ · ‖. Let ‖ · ‖L p denote the L p(�) norms.

We use the standard notations H k(�) and H k
0 (�) to denote the usual Sobolev spaces over

�, see [7]. Denote ‖ · ‖k as the norms in H k(�). The spaces H−k(�) denote the dual spaces

of H k
0 (�). C is a positive constant which differs in different places but independent of mesh

size and time step. In addition, we define

X := H1
0 (�)d = {v ∈ H1(�)d : v|∂� = 0},

Q := L2
0(�) =

{

q ∈ L2(�) :
∫

�

q = 0

}

,

S := H1
0 (�) = {ψ ∈ H1(�) : ψ |∂� = 0},

as the velocity, pressure, and electric potentials spaces, respectively. The divergence free

space V is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q}.

We define the trilinear form by

b(u, v, w) := (B(u, v), w).

Integrating by parts, we have

b(u, v, w) = 1
2

(u · ∇v, w) − 1
2

(u · ∇w, v) , ∀u, v, w ∈ X,

b (u, v, v) = 0, ∀u, v ∈ X.

The following inequalities will be used frequently in our later analysis.

b(u, v, w) ≤ C‖∇u‖‖∇v‖‖∇w‖ ∀u, v, w ∈ X,

b(u, v, w) ≤ C‖u‖‖v‖2‖∇w‖ ∀u, w ∈ X, v ∈ X ∩ H2(�).

Furthermore, we introduce the following function spaces and their norms. For 1 ≤ p <

∞, 1 ≤ s ≤ ∞,

L p(0, T ; Ls(�)) :=

⎧

⎨

⎩

v(x, t) :
(∫ T

0

‖v(·, t)‖p
Ls dt

)

1
p

< ∞

⎫

⎬

⎭

,

L p(0, T ; H k(�)) :=

⎧

⎨

⎩

v(x, t) :
(∫ T

0

‖v(·, t)‖p
k dt

)

1
p

< ∞

⎫

⎬

⎭

,

L∞(0, T ; Ls(�)) :=
{

v(x, t) : EssSup[0,T ]‖v(·, t)‖Ls < ∞
}

,
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L∞(0, T ; H k(�)) :=
{

v(x, t) : EssSup[0,T ]‖v(·, t)‖k < ∞
}

,

‖v‖p,k :=
(∫ T

0

‖v(·, t)‖p
k dt

)

1
p

f or v ∈ L p(0, T ; H k(�)).

3 Analysis of the Slightly Compressible Model

In this section, we analyze the slightly compressible model (1.3) and (1.4). Firstly, we give

á prior estimates for its solution (uε, pε, φε). Then, we show that (uε, pε, φε) is an approx-

imation to the true solution of the simplified MHD Eqs. (1.1) and (1.2) when ε goes to

0.

The electric current density J := σ(−∇φ+u×B) is an important electromagnetic quantity

in MHD flows, see [21,22]. Here the electrical conductivity σ is a constant. For convenient

analysis, we define j := −∇φ + u × B and jε := −∇φε + uε × B.

Theorem 3.1 Let (uε, pε, φε) be the solution of model (1.3) and (1.4), then, with all bounds

uniform in ε, we have

uε ∈ L∞(0, T ; L2(�))
⋂

L2(0, T ; H1
0 (�))

⋂

L2(0, T ; L6(�)),

√
εpε ∈ L∞(0, T ; L2(�)), φε ∈ L2(0, T ; H1

0 (�)),

jε ∈ L2(0, T ; L2(�)),

uε · ∇uε and (∇ · uε)uε ∈ L2(0, T ; L1(�))
⋂

L1(0, T ; L
3
2 (�)).

(3.1)

Proof Taking the inner product of the three equations in (1.3) with uε, pε , and φε, respec-

tively, then summing up the three new equations, we obtain

1

2N

d

dt
‖uε‖2 + 1

M2
‖∇uε‖2 + ‖ − ∇φε + uε × B‖2 + ε

2

d

dt
‖pε‖2

= (f, uε) ≤ 1

2M2
‖∇uε‖2 + M2

2
‖f‖2

−1.

(3.2)

Thus, we have

1

N

d

dt
‖uε‖2 + 1

M2
‖∇uε‖2 + ‖ − ∇φε + uε × B‖2 + ε

d

dt
‖pε‖2 ≤ M2‖f‖2

−1. (3.3)

Integration of (3.3) from 0 to t shows that

1

N
‖uε(t)‖2 + 1

M2

∫ t

0

‖∇uε(s)‖2ds +
∫ t

0

‖ − ∇φε(s) + uε(s) × B‖2ds + ε‖pε(t)‖2

≤ M2‖f‖2
L2(0,T ;H−1)

+ 1

N
‖uε(0)‖2 + ε‖pε(0)‖2, 0 < t ≤ T .

(3.4)

Thus, we have

sup
t∈[0,T ]

1

N
‖uε(t)‖2 + ε‖pε(t)‖2 ≤ c1,

c1 = M2‖f‖2
L2(0,T ;H−1)

+ 1

N
‖u0‖2 + ‖p0‖2.

(3.5)

Here, since we are interested in small values of ε, we assume ε ≤ 1.

123



1464 J Sci Comput (2018) 76:1458–1483

We also have

∫ T

0

‖∇uε(s)‖2ds ≤ M2c1,

∫ T

0

‖jε(s)‖2ds ≤ c1. (3.6)

Since

∇φε(s) = −jε(s) + uε(s) × B, (3.7)

using the inequality ‖v1 × v2‖ ≤ 2‖v1‖L∞‖v2‖ and the Poincaré inequality, we can get

∫ T

0

‖∇φε(s)‖2ds ≤
∫ T

0

‖jε(s)‖2ds +
∫ T

0

‖uε(s) × B‖2ds

≤
∫ T

0

‖jε(s)‖2ds + 4‖B‖2
L∞

∫ T

0

‖uε(s)‖2ds

≤
∫ T

0

‖jε(s)‖2ds + C‖B‖2
L∞

∫ T

0

‖∇uε(s)‖2ds

≤ (1 + C M2‖B‖2
L∞)c1.

(3.8)

The remaining conditions follow from Hölder’s inequality and the Sobolev embedding the-

orem. ⊓⊔

Next, we derive an error estimate for the sightly compressible model. Denote the error

eu = u−uε, eφ = φ−φε, ep = p− pε , and ej = j−jε . Thus, we have ej = −∇eφ +eu ×B.

The following theorem shows that |u − uε| tends to zero in L∞(0, T ; L2(�)) as ε → 0. The

order of convergence is at least O(
√

ε).

Theorem 3.2 Assume that the true solution u∈ L2(0, T ; H2(�)) and pt ∈ L2(0, T ; L2(�)),

then we have the following estimate

‖eu‖L∞(0,T ;L2(�)) + ‖eu‖L2(0,T ;H1
0 (�)) + ‖eφ‖L2(0,T ;H1

0 (�)) + ‖
√

εep‖L∞(0,T ;L2(�))

≤ C
√

ε.

(3.9)

Proof Subtracting (1.3) from (1.1), we obtain

1

N

∂

∂t
eu + 1

N
B (eu, u) + 1

N
B

(

uε, eu

)

− 1

M2
�eu + ∇ep = B × ∇eφ + (eu × B) × B,

ε
∂

∂t
ep + ∇ · eu = εpt ,

�eφ = ∇ · (eu × B). (3.10)

Taking the inner product of the three equations in (3.10) with eu, ep , and eφ , respectively,

then summing up the three new equations, we obtain

1

2N

d

dt
‖eu‖2 + 1

N
b (eu, u, eu) + 1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu × B‖2 + ε

2

d

dt
‖ep‖2

= (εpt , ep).

(3.11)
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Thus,
1

2N

d

dt
‖eu‖2 + 1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu × B‖2 + ε

2

d

dt
‖ep‖2

= (εpt , ep) − 1

N
b(eu, u, eu)

≤ ε‖pt‖‖ep‖ + C

N
‖eu‖‖u‖2‖∇eu‖

≤ ε

2
‖pt‖2 + ε

2
‖ep‖2 + 1

2M2
‖∇eu‖2 + C M2

2N 2
‖eu‖2‖u‖2

2.

(3.12)

We have
1

N

d

dt
‖eu‖2 + 1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu × B‖2 + ε

d

dt
‖ep‖2

≤ C‖u‖2
2‖eu‖2 + ε‖ep‖2 + ε‖pt‖2.

(3.13)

Integrate (3.13) from 0 to t to obtain

1

N
‖eu(t)‖2 + ε‖ep(t)‖2 + 1

M2

∫ t

0

‖∇eu‖2ds +
∫ t

0

‖ − ∇eφ + eu × B‖2ds

≤ 1

N
‖eu(0)‖2 + ε‖ep(0)‖2 + C

∫ t

0

‖u‖2
2‖eu‖2ds +

∫ t

0

ε‖ep‖2ds +
∫ t

0

ε‖pt‖2ds.

(3.14)

Using the Gronwall lemma, we get

1

N
‖eu‖2 + ε‖ep‖2 + 1

M2

∫ t

0

‖∇eu‖2ds +
∫ t

0

‖ − ∇eφ + eu × B‖2ds

≤ C(
1

N
‖eu(0)‖2 + ε‖ep(0)‖2 +

∫ t

0

ε‖pt‖2ds)

≤ Cε(‖ep(0)‖2 +
∫ t

0

‖pt‖2ds), 0 < t ≤ T .

(3.15)

Thus, we have, as ε → 0,

sup
t∈[0,T ]

‖eu‖ ≤ C
√

ε → 0,

∫ T

0

‖∇eu‖2ds ≤ Cε → 0,

∫ T

0

‖ej‖2ds ≤ Cε → 0, sup
t∈[0,T ]

‖
√

εep‖ ≤ C
√

ε → 0.

(3.16)

Since

∇eφ = −ej + eu × B, (3.17)

we can also deduce that

∫ T

0

‖∇eφ‖2ds ≤ Cε → 0, as ε → 0, (3.18)

which completes the proof. ⊓⊔
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4 Stability and Error Analysis

In this section, we analyze stability of Algori thms 1 and 2, then give an á priori error

estimate for Algori thm 1. Theorem 4.1 below shows that Algori thm 1 is unconditionally

stable.

Theorem 4.1 For (un, pn, φn) satisfying Algori thm 1, we have the following unconditional

stability.

1

N
‖um‖2 + 1

N

m−1
∑

n=0

‖un+1−un‖2 + ε‖pm‖2 + ε

m−1
∑

n=0

‖pn+1− pn‖2 + �t

M2

m−1
∑

n=0

‖∇un+1‖2

+ �t‖um × B‖2 + �t‖∇φm‖2 + �t

m−1
∑

n=0

(

‖ − ∇φn + un+1 × B‖2 + ‖ − ∇φn+1 + un × B‖2
)

≤ M2�t

m−1
∑

n=0

‖fn+1‖2
−1 + 1

N
‖u0‖2 + ε‖p0‖2 + �t‖u0 × B‖2 + �t‖∇φ0‖2.

(4.1)

Proof Taking the inner product of the three equations in (1.5) with un+1, pn+1, and φn+1,

respectively, and multiplying it by 2�t , we can obtain

1

N

(

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2
)

+ 2�t

M2
‖∇un+1‖2

− 2�t
(

pn+1,∇ · un+1
)

+ 2�t (−∇φn + un+1 × B, un+1 × B)

= 2�t
(

fn+1, un+1
)

,

ε
(

‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2
)

+ 2�t
(

pn+1,∇ · un+1
)

= 0,

2�t
(

−∇φn+1 + un × B,−∇φn+1
)

= 0.

(4.2)

Then summing up the three equations in (4.2), we have

1

N

(

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2
)

+ 2�t

M2
‖∇un+1‖2

+ 2�t
(

−∇φn + un+1 × B, un+1 × B
)

+ 2�t
(

−∇φn+1 + un × B,−∇φn+1
)

+ ε
(

‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2
)

= 2�t
(

fn+1, un+1
)

.

(4.3)

By using the following identity

2(a + b, b) + 2(c + d, c) = c2 − a2 + b2 − d2 + (a + b)2 + (c + d)2, (4.4)

we get

2�t
(

−∇φn + un+1 × B, un+1 × B
)

+ 2�t
(

−∇φn+1 + un × B,−∇φn+1
)

= �t‖un+1 × B‖2 − �t‖un × B‖2 + �t‖∇φn+1‖2 − �t‖∇φn‖2

+ �t
(

‖ − ∇φn + un+1 × B‖2 + ‖ − ∇φn+1 + un × B‖2
)

.

(4.5)
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Thus, (4.3) can be rewritten as

1

N

(

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2
)

+ ε
(

‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2
)

+2�t

M2
‖∇un+1‖2 + �t‖un+1 × B‖2 − �t‖un × B‖2 + �t‖∇φn+1‖2 − �t‖∇φn‖2

+�t
(

‖ − ∇φn + un+1 × B‖2 + ‖ − ∇φn+1 + un × B‖2
)

= 2�t
(

fn+1, un+1
)

≤ M2�t‖fn+1‖2
−1 + �t

M2
‖∇un+1‖2. (4.6)

Finally, summing (4.6) from n = 0 to n = m − 1 completes the proof. ⊓⊔

The following theorem shows that Algori thm 2 is stable with a condition, relating the

time step �t with the problem data. Recall jn := −∇φn + un × B.

Theorem 4.2 For (un, pn, φn) satisfying Algori thm 2, if time step �t satisfies

�t <
1

2N
(

1 + C2
p M2‖B‖2

L∞

)

‖B‖2
L∞

, (4.7)

we have the following stability.

1

2N
‖um‖2 + 1

2N
‖2um − um−1‖2 + �t

2M2

m−1
∑

n=1

‖∇un+1‖2

+ �t

m−1
∑

n=1

‖jn+1‖2 + �t

m−1
∑

n=1

‖2jn − jn−1‖2

≤ 1

2N
‖u1‖2 + 1

2N
‖2u1 − u0‖2 + 2M2�t

m−1
∑

n=1

‖fn+1‖2
−1.

(4.8)

Proof Taking the inner product of the three equations in (1.6) with un+1, pn+1, and φn+1,

respectively, and multiplying it by 2�t , we can obtain

1

2N

(

3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2
)

+ 1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+ 1

2N
‖un+1 − 2un + un−1‖2 + 2�t

M2
‖∇un+1‖2 − 2�t

(

pn+1,∇ · un+1
)

+ 2�t
(

−∇
(

2φn − φn−1
)

+ un+1 × B, un+1 × B
)

= 2�t
(

fn+1, un+1
)

,

ε
(

‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2
)

+ 2�t
(

pn+1,∇ · un+1
)

= 0,

2�t
(

−∇φn+1 + un+1 × B,−∇φn+1
)

= 0,

(4.9)

where we use the identity

1

2
(3a − 4b + c) a = 1

4

(

3a2 − 4b2 + c2
)

+ 1

2
(a − b)2 − 1

2
(b − c)2 + 1

4
(a − 2b + c)2 .
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The key issue is to deal with the term 2�t (−∇(2φn − φn−1) + un+1 × B, un+1 × B). We

have

2�t
(

−∇(2φn − φn−1) + un+1 × B, un+1 × B
)

= 2�t
(

2jn − jn−1 +
(

un+1 − 2un + un−1
)

× B, un+1 × B
)

= 2�t
(

2jn − jn−1, un+1 × B
)

+ 2�t
((

un+1 − 2un + un−1
)

× B, un+1 × B
)

= 2�t
(

2jn − jn−1, un+1 × B
)

+ �t
(

‖un+1 × B‖2 − ‖
(

2un − un−1
)

× B‖2 + ‖
(

un+1 − 2un + un−1
)

× B‖2
)

.

(4.10)

From the third equation in (1.6), we have

(

2jn − jn−1,−∇ψ
)

= 0, ∀ψ ∈ S. (4.11)

Taking ψ = φn+1 and adding it to the term 2�t (2jn − jn−1, un+1 × B) gives

2�t
(

2jn − jn−1, un+1 × B
)

= 2�t
(

2jn − jn−1, jn+1
)

= �t
(

‖jn+1‖2 + ‖2jn − jn−1‖2 − ‖jn+1 − 2jn + jn−1‖2
)

= �t
(

‖jn+1‖2 + ‖2jn − jn−1‖2 − ‖(un+1 − 2un + un−1) × B‖2

+‖∇φn+1 − 2∇φn + ∇φn−1‖2
)

,

(4.12)

where we use ‖ji‖2 = ‖ui ×B‖2 −‖∇φi‖2, ∀i ≤ n +1. Combining (4.9), (4.10) and (4.12)

yields

1

2N

(

3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2
)

+ 1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+ 1

2N
‖un+1 − 2un + un−1‖2 + 2�t

M2
‖∇un+1‖2

+ �t‖un+1 × B‖2 + �t‖jn+1‖2 + �t‖2jn − jn−1‖2

= 2�t
(

fn+1, un+1
)

+ �t‖
(

2un − un−1
)

× B‖2.

(4.13)

For an arbitrary δ > 0, the term �t‖(2un − un−1) × B‖2 can be bounded by

�t‖
(

2un − un−1
)

× B‖2 = �t‖
(

un+1 − 2un + un−1
)

× B‖2 + �t‖un+1 × B‖2

−2�t
((

un+1 − 2un + un−1
)

× B, un+1 × B
)

≤ �t‖
(

un+1 − 2un + un−1
)

× B‖2 + �t‖un+1 × B‖2

+�t

δ2
‖
(

un+1 − 2un + un−1
)

× B‖2 + �tδ2‖un+1 × B‖2

≤ �t

(

1 + 1

δ2

)

‖B‖2
L∞‖un+1 − 2un + un−1‖2

+�t‖un+1 × B‖2 + �tC2
pδ

2‖B‖2
L∞‖∇un+1‖2, (4.14)

123



J Sci Comput (2018) 76:1458–1483 1469

where we use the Poincaré inequality ‖u‖ ≤ C p‖∇u‖, ∀u ∈ X . By taking δ = 1
C p M‖B‖L∞ ,

we can obtain

1

2N

(

3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2
)

+ 1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+
(

1

2N
− �t

(

1 + 1

ε2

)

‖B‖2
L∞

)

‖un+1 − 2un + un−1‖2

+ �t

2M2
‖∇un+1‖2 + �t‖jn+1‖2 + �t‖2jn − jn−1‖2

≤ 2M2�t‖fn+1‖2
−1.

(4.15)

Finally, under the condition (4.7), summing (4.15) from n = 1 to n = m − 1 completes the

proof. ⊓⊔

Next, we analyze the convergency of Algori thm 1 and give an á priori error estimate for

Algori thm 1. Since the error analysis of Algori thm 2 is similar to that of Algori thm 1

but considerably longer, we omit it. Denote en
u = u(tn) − un , en

p = p(tn) − pn , and en
φ =

φ(tn) − φn . The following theorem not only shows the convergence order of Algori thm 1

but can also indicates a way to choose the value of ε.

Theorem 4.3 Assume that the true solution (u, p, φ) satisfies the following regularity

u ∈ L∞(0, T ; H2(�)), ut ∈ L2(0, T ; H1(�)), ut t ∈ L2(0, T ; H−1(�)),

pt ∈ L∞(0, T ; L2(�)), pt t ∈ L2(0, T ; L2(�)), φt ∈ L2(0, T ; H1(�)).
(4.16)

For (un, pn, φn) satisfying Algori thm 1, we have the following estimate

1

2N
‖em

u ‖2 + �t

M2

m−1
∑

n=0

‖∇en+1
u ‖2 + �t

m−1
∑

n=0

‖∇en+1
φ ‖2

+ �t

m−1
∑

n=0

(

‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2
)

≤ C
(

�t2 + ε2
)

,

(4.17)

for sufficiently small �t .

Proof At time tn+1, the true solution (u, p, φ) satisfies

1

N

(

u(tn+1) − u(tn)

�t
+ B

(

u
(

tn+1
)

, u(tn+1)
)

)

− 1

M2
�u

(

tn+1
)

+ ∇ p
(

tn+1
)

− B × ∇φ
(

tn+1
)

−
(

u
(

tn+1
)

× B
)

× B = fn+1 + 1

N

(

u(tn+1) − u(tn)

�t
− ut

(

tn+1
)

)

,

ε
p

(

tn+1
)

− p
(

tn
)

�t
+ ∇ · u

(

tn+1
)

= ε

�t

∫ tn+1

tn
pt dt,�φ

(

tn+1
)

= ∇ ·
(

u(tn+1
)

× B).

(4.18)
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Subtract (1.5) from (4.18) to obtain

1

N

(

en+1
u − en

u

�t
+ B

(

en
u, u(tn+1)

)

+ B
(

un, en+1
u

)

+ B
(

u(tn+1) − u(tn), u(tn+1)
)

)

− 1

M2
�en+1

u + ∇en+1
p − B × ∇en

φ − B ×
(

∇φ(tn+1) − ∇φ(tn)
)

−
(

en+1
u × B

)

× B

= 1

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1)

)

,

ε
en+1

p − en
p

�t
+ ∇ · en+1

u = ε

�t

∫ tn+1

tn

pt dt,

�en+1
φ = ∇ ·

(

en
u × B

)

+ ∇ ·
((

u(tn+1) − u(tn)
)

× B
)

.

(4.19)

Taking the inner product of the three equations in (4.19) with en+1
u , en+1

p , and en+1
φ , respec-

tively, then summing up the three new equations and multiplying it by 2�t , we obtain

1

N

(

‖en+1
u ‖2 − ‖en

u‖2 + ‖en+1
u − en

u‖2
)

+ ε
(

‖en+1
p ‖2 − ‖en

p‖2 + ‖en+1
p − en

p‖2
)

+ 2�t

M2
‖∇en+1

u ‖2 + �t‖en+1
u × B‖2 − �t‖en

u × B‖2 + �t‖∇en+1
φ ‖2 − �t‖∇en

φ‖2

+�t (‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2)

= 2�t

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1), en+1
u

)

− 2�t

N
b

(

en
u, u(tn+1), en+1

u

)

− 2�t

N
b

(

u(tn+1) − u(tn), u(tn+1), en+1
u

)

+ 2�t
(

∇φ(tn+1) − ∇φ(tn), en+1
u × B

)

+ 2�t
(

(u(tn+1) − u(tn)) × B,∇en+1
φ

)

+ 2ε

(

∫ tn+1

tn

pt dt, en+1
p

)

, (4.20)

where we use the identity (4.4) again. We have that

2�t‖∇en+1
φ ‖2 = 2�t

(

(

u(tn+1) − u(tn)
)

× B,∇en+1
φ

)

+ 2�t
(

∇en+1
φ , en

u × B
)

(4.21)

Adding (4.20) and (4.21), we obtain

1

N

(

‖en+1
u ‖2 − ‖en

u‖2 + ‖en+1
u − en

u‖2
)

+ ε
(

‖en+1
p ‖2 − ‖en

p‖2 + ‖en+1
p − en

p‖2
)

+ 2�t

M2
‖∇en+1

u ‖2 + 2�t‖∇en+1
φ ‖2 + �t‖en+1

u × B‖2 − �t‖en
u × B‖2

+�t‖∇en+1
φ ‖2 − �t‖∇en

φ‖2+�t
(

‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2
)

= 2�t

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1), en+1
u

)

− 2�t

N
b(en

u, u(tn+1), en+1
u )

− 2�t

N
b

(

u(tn+1) − u(tn), u(tn+1), en+1
u

)

+ 2�t
(

∇φ(tn+1) − ∇φ(tn
)

, en+1
u × B)

+ 4�t
(

(u(tn+1) − u(tn)) × B,∇en+1
φ

)

+ 2�t
(

∇en+1
φ , en

u × B
)

+ 2ε

(

∫ tn+1

tn

pt dt, en+1
p

)

. (4.22)
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Next, we need to bound all the terms on the RHS of (4.22). For arbitrary σ > 0, σ1 >

0, σ2 > 0, σ3 > 0, we have the following estimates. The first term can be bounded as

2�t

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1), en+1
u

)

≤C�t‖
u

(

tn+1
)

− u (tn)

�t
− ut

(

tn+1
)

‖2
−1

+ σ�t‖∇en+1
u ‖2.

(4.23)

The nonlinear terms can be bounded as

−2�t

N
b

(

en
u, u(tn+1), en+1

u

)

≤ C�t‖en
u‖‖u(tn+1)‖2‖∇en+1

u ‖

≤ C�t‖u(tn+1)‖2
2‖en

u‖2 + σ�t‖∇en+1
u ‖2, (4.24)

−2�t

N
b

(

u(tn+1) − u(tn), u(tn+1), en+1
u

)

≤ C�t‖u(tn+1) − u(tn)‖‖u(tn+1)‖2‖∇en+1
u ‖

≤ C�t‖u(tn+1)‖2
2‖u(tn+1) − u(tn)‖2 + σ�t‖∇en+1

u ‖2. (4.25)

We bound the term 2�t (∇φ(tn+1) − ∇φ(tn), en+1
u × B) as follows.

2�t
(

∇φ(tn+1) − ∇φ(tn), en+1
u × B

)

≤ 4�t‖en+1
u ‖‖B‖L∞‖∇φ(tn+1) − ∇φ(tn)‖

≤ C�t‖∇φ(tn+1) − ∇φ(tn)‖2 + σ�t‖∇en+1
u ‖2.

(4.26)

The term 4�t ((u(tn+1) − u(tn)) × B,∇en+1
φ ) is bounded as

4�t
(

(

u(tn+1) − u(tn)
)

× B,∇en+1
φ

)

≤ 8�t‖u(tn+1) − u(tn)‖‖B‖L∞‖∇en+1
φ ‖

≤ C�t‖B‖2
L∞‖u(tn+1) − u(tn)‖2 + σ1�t‖∇en+1

φ ‖2.
(4.27)

We also bound the term 2�t (∇en+1
φ , en

u × B) by

2�t
(

∇en+1
φ , en

u × B
)

≤4�t‖en
u‖‖B‖L∞‖∇en+1

φ ‖ ≤ C�t‖B‖2
L∞‖en

u‖2 + σ1�t‖∇en+1
φ ‖2.

(4.28)

Lastly, we need to bound the remaining term 2ε(
∫ tn+1

tn pt dt, en+1
p ). It is known (see [28]) that

if pt (t), pt t (t) ∈ L2(�)/R, there exists an unique ϕ(t) ∈ H1
0 (�), such that

∇ · ϕ(t) = pt (t), ∇ · ϕt (t) = pt t (t) (4.29)

and

‖ϕ(t)‖1 ≤ C‖pt (t)‖, ‖ϕt (t)‖1 ≤ C‖pt t (t)‖ f or all t ∈ [0, T ]. (4.30)

From (4.19), we have, at time tn+1,

∇en+1
p = − 1

N

en+1
u − en

u

�t
+ 1

M2
�en+1

u − 1

N
B

(

en
u, u(tn+1)

)

− 1

N
B

(

un, en+1
u

)

− 1

N
B

(

u(tn+1) − u(tn), u(tn+1)
)

+ B × ∇en
φ + B ×

(

∇φ(tn+1) − ∇φ(tn)
)

+ (en+1
u × B) × B + 1

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1)

)

. (4.31)
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Thus, we obtain

2ε

(

∫ tn+1

tn

pt dt, en+1
p

)

= 2ε

(

∫ tn+1

tn

∇ · ϕ(t)dt, en+1
p

)

= −2ε

(

∫ tn+1

tn

ϕdt,∇en+1
p

)

= −2ε

(

∫ tn+1

tn

ϕdt,
1

N
(
u(tn+1) − u(tn)

�t
− ut (t

n+1))

)

− 2ε

(

∫ tn+1

tn

ϕdt,
1

M2
�en+1

u

)

− 2ε(

∫ tn+1

tn

ϕdt, B × ∇en
φ)

− 2ε

(

∫ tn+1

tn

ϕdt, B × (∇φ(tn+1) − ∇φ(tn))

)

− 2ε

(

∫ tn+1

tn

ϕdt, (en+1
u × B) × B

)

+ 2ε

(

∫ tn+1

tn

ϕdt,
1

N

en+1
u − en

u

�t

)

+ 2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(un, en+1

u )

)

+ 2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(en

u, u(tn+1))

)

+ 2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(u(tn+1) − u(tn), u(tn+1))

)

. (4.32)

Next, we need to bound all the terms on the RHS of (4.32). First, we have

− 2ε

(

∫ tn+1

tn

ϕdt,
1

N

(

u(tn+1) − u(tn)

�t
− ut (t

n+1)

)

)

≤ 2ε

N
‖
∫ tn+1

tn

ϕdt‖1‖
u(tn+1) − u(tn)

�t
− ut (t

n+1)‖−1

≤ Cε
√

�t

(

∫ tn+1

tn

‖ϕ‖2
1dt

)
1
2

‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖−1

≤ Cε2

∫ tn+1

tn

‖ϕ‖2
1dt + �t‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1

≤ Cε2

∫ tn+1

tn

‖pt‖2dt + �t‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1.

(4.33)

For the term −2ε(
∫ tn+1

tn ϕdt, 1
M2 �en+1

u ), we have

−2ε

(

∫ tn+1

tn

ϕdt,
1

M2
�en+1

u

)

= 2ε

(

∫ tn+1

tn

∇ϕdt,
1

M2
∇en+1

u

)

≤ 2ε

M2
‖
∫ tn+1

tn

∇ϕdt‖‖∇en+1
u ‖2

≤ Cε
√

�t

(

∫ tn+1

tn

‖∇ϕ‖2dt

)
1
2

‖∇en+1
u ‖2

≤ Cε2

∫ tn+1

tn

‖pt‖2dt + σ�t‖∇en+1
u ‖2.

(4.34)
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For the term −2ε(
∫ tn+1

tn ϕdt, B × ∇en
φ), we have

− 2ε

(

∫ tn+1

tn

ϕdt, B × ∇en
φ

)

≤ 4ε‖B‖L∞‖
∫ tn+1

tn

ϕdt‖‖∇en
φ‖

≤ Cε
√

�t

(

∫ tn+1

tn

‖ϕ‖2dt

)
1
2

‖∇en
φ‖ ≤ Cε2

∫ tn+1

tn

‖pt‖2dt + σ2�t‖∇en
φ‖2.

(4.35)

The term −2ε(
∫ tn+1

tn ϕdt, B × (∇φ(tn+1) − ∇φ(tn))) is bounded as

− 2ε

(

∫ tn+1

tn

ϕdt, B × (∇φ(tn+1)

−∇φ(tn))
)

≤ Cε
√

�t

(

∫ tn+1

tn

‖ϕ‖2dt

)
1
2

‖∇φ(tn+1) − ∇φ(tn)‖

≤ Cε2

∫ tn+1

tn

‖pt‖2dt + �t‖∇φ(tn+1) − ∇φ(tn)‖2.

(4.36)

The term −2ε(
∫ tn+1

tn ϕdt, (en+1
u × B) × B) is by

− 2ε

(

∫ tn+1

tn

ϕdt, (en+1
u × B) × B

)

≤ Cε
√

�t

(

∫ tn+1

tn

‖ϕ‖2dt

)
1
2

‖en+1
u ‖

≤ Cε2

∫ tn+1

tn

‖pt‖2dt + σ�t‖∇en+1
u ‖2.

(4.37)

We bound the term 2ε(
∫ tn+1

tn ϕdt, 1
N

en+1
u −en

u

�t
) by

2ε

(

∫ tn+1

tn

ϕdt,
1

N

en+1
u − en

u

�t

)

= 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1
ϕdt, en

u

)]

− 2ε

N�t

(

∫ tn+1

tn

ϕdt −
∫ tn

tn−1
ϕdt, en

u

)

≤ 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1
ϕdt, en

u

)]

+ 2ε�t

N
|(ϕt (ξn), en

u)|

≤ 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1

ϕdt, en
u

)]

+ 2ε�t

N
‖ϕt (ξn)‖‖en

u‖

≤ 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1
ϕdt, en

u

)]

+ Cε2�t‖pt t (ξn)‖2 + σ3�t‖∇en
u‖2,

(4.38)
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where ξn ∈ (tn−1, tn+1). We bound the term 2ε(
∫ tn+1

tn ϕdt, 1
N

B(un, en+1
u )) as

2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(un, en+1

u )

)

≤ Cε‖
∫ tn+1

tn

∇ϕdt‖‖∇en+1
u ‖‖∇un‖

≤ Cε
√

�t

(

∫ tn+1

tn

‖∇ϕ‖2dt

)
1
2

‖∇en+1
u ‖‖∇un‖

≤ Cε2‖∇un‖2

∫ tn+1

tn

‖pt‖2dt + σ�t‖∇en+1
u ‖2.

(4.39)

The term 2ε(
∫ tn+1

tn ϕdt, 1
N

B(en
u, u(tn+1))) is bounded as

2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(en

u, u(tn+1))

)

≤ Cε‖
∫ tn+1

tn

∇ϕdt‖‖∇en
u‖‖∇u(tn+1)‖

≤ Cε2‖∇u(tn+1)‖2

∫ tn+1

tn

‖pt‖2dt + σ3�t‖∇en
u‖2.

(4.40)

For the last term, we have

2ε

(

∫ tn+1

tn

ϕdt,
1

N
B(u(tn+1) − u(tn), u(tn+1))

)

≤ Cε
√

�t

(

∫ tn+1

tn

‖∇ϕ‖2dt

)
1
2

‖u(tn+1) − u(tn)‖‖u(tn+1)‖2

≤ Cε2‖u(tn+1)‖2
2

∫ tn+1

tn

‖pt‖2dt + �t‖u(tn+1) − u(tn)‖2.

(4.41)

Combining (4.33) and (4.41), we have

2ε

(

∫ tn+1

tn

pt dt, en+1
p

)

≤ 3σ�t‖∇en+1
u ‖2 + σ2�t‖∇en

φ‖2 + 2σ3�t‖∇en
u‖2

+ �t‖u(tn+1) − u(tn)‖2 + �t‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1

+ �t‖∇φ(tn+1) − ∇φ(tn)‖2 + 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1

ϕdt, en
u

)]

+ Cε2�t‖pt t (ξn)‖2 + Cε2

∫ tn+1

tn

‖pt‖2dt + Cε2‖∇un‖2

∫ tn+1

tn

‖pt‖2dt.

(4.42)

Set σ = 1
14M2 , σ1 = 1

4
, σ2 = 1

2
, σ3 = 1

4M2 . Combining (4.22)–(4.28) and (4.42), we have

1

N

(

‖en+1
u ‖2 − ‖en

u‖2 + ‖en+1
u − en

u‖2
)

+ ε
(

‖en+1
p ‖2 − ‖en

p‖2 + ‖en+1
p − en

p‖2
)

+ �t

M2
‖∇en+1

u ‖2 + �t‖∇en+1
φ ‖2 + �t‖en+1

u × B‖2 − �t‖en
u × B‖2

+ �t

2M2
‖∇en+1

u ‖2 − �t

2M2
‖∇en

u‖2 + 3

2
�t‖∇en+1

φ ‖2 − 3

2
�t‖∇en

φ‖2
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+�t
(

‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2
)

≤ C�t
(

‖u(tn+1)‖2
2 + ‖B‖2

L∞
)

‖en
u‖2 + C�t‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1

+ C�t‖∇φ(tn+1) − ∇φ(tn)‖2 + C�t (1 + ‖u(tn+1)‖2
2 + ‖B‖2

L∞)‖u(tn+1) − u(tn)‖2

+ 2ε

N�t

[(

∫ tn+1

tn

ϕdt, en+1
u

)

−
(

∫ tn

tn−1
ϕdt, en

u

)]

+ Cε2�t‖pt t (ξn)‖2 + Cε2

∫ tn+1

tn

‖pt‖2dt + Cε2‖∇un‖2

∫ tn+1

tn

‖pt‖2dt. (4.43)

Summing (4.43) from n = 0 to n = m − 1, we obtain

1

N
‖em

u ‖2 + 1

N

m−1
∑

n=0

‖en+1
u − en

u‖2 + ε‖em
p ‖2 +

m−1
∑

n=0

‖en+1
p − en

p‖2 + �t

M2

m−1
∑

n=0

‖∇en+1
u ‖2

+ �t

m−1
∑

n=0

‖∇en+1
φ ‖2 + �t‖em

u × B‖2 + 3

2
�t‖∇em

φ ‖2 + �t

2M2
‖∇em

u ‖2

+ �t

m−1
∑

n=0

(

‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2
)

≤ 1

N
‖e0

u‖2 + ε‖e0
p‖2 + �t‖e0

u × B‖2 + �t

2M2
‖∇e0

u‖2 + 3

2
�t‖∇e0

φ‖2+C�t

m−1
∑

n=0

‖en
u‖2

+ C�t

m−1
∑

n=0

‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1 + C�t

m−1
∑

n=0

‖∇φ(tn+1) − ∇φ(tn)‖2

+ C�t

m−1
∑

n=0

‖u(tn+1) − u(tn)‖2 + 2ε

N�t

(

∫ tm

tm−1

ϕdt, em
u

)

+ Cε2�t

m−1
∑

n=0

‖pt t (ξn)‖2

+ Cε2
m−1
∑

n=0

∫ tn+1

tn

‖pt‖2dt + Cε2
m−1
∑

n=0

‖∇un+1‖2

∫ tn+1

tn

‖pt‖2dt.

(4.44)

Next, we bound the terms in the right hand side of (4.44). First, we have

C�t

m−1
∑

n=0

‖u(tn+1) − u(tn)

�t
− ut (t

n+1)‖2
−1 ≤ C�t2

m−1
∑

n=0

∫ tn+1

tn

‖ut t‖2
−1dt

≤ C�t2‖ut t‖2
2,−1.

(4.45)

We also have

C�t

m−1
∑

n=0

‖∇φ(tn+1) − ∇φ(tn)‖2 ≤ C�t2
m−1
∑

n=0

∫ tn+1

tn

‖∇φt‖2dt ≤ C�t2‖φt‖2
2,1, (4.46)

and

C�t

m−1
∑

n=0

‖u(tn+1) − u(tn)‖2 ≤ C�t2
m−1
∑

n=0

∫ tn+1

tn

‖ut‖2dt ≤ C�t2‖ut‖2
2,0. (4.47)
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Moreover,

2ε

N�t

(

∫ tm

tm−1
ϕdt, em

u

)

= 2ε

N
(ϕ(ηm), em

u ) ≤ 2ε2

N
‖ϕ(ηm)‖2 + 1

2N
‖em

u ‖2

≤ Cε2‖pt (η
m)‖2 + 1

2N
‖em

u ‖2 ≤ Cε2‖pt‖2
∞,0 + 1

2N
‖em

u ‖2,

(4.48)

where ηm ∈ (tm−1, tm). Lastly, it gives that

Cε2
m−1
∑

n=0

∫ tn+1

tn

‖pt‖2dt ≤ Cε2‖pt‖2
2,0, (4.49)

and

Cε2
m−1
∑

n=0

‖∇un+1‖2

∫ tn+1

tn

‖pt‖2dt ≤ Cε2‖pt‖2
∞,0

m−1
∑

n=0

�t‖∇un+1‖2 ≤ Cε2‖pt‖2
∞,0,

(4.50)

where we use the result in Theorem 4.1.

Combining (4.45)–(4.50) with (4.44), we can have

1

2N
‖em

u ‖2 + �t

M2

m−1
∑

n=0

‖∇en+1
u ‖2 + �t

m−1
∑

n=0

‖∇en+1
φ ‖2

+ �t

m−1
∑

n=0

(

‖ − ∇en
φ + en+1

u × B‖2 + ‖ − ∇en+1
φ + en

u × B‖2
)

≤ C�t

m−1
∑

n=0

‖en
u‖2 + C

(

�t2 + ε2
)

.

(4.51)

Finally applying the discrete Gronwall lemma completes the proof. ⊓⊔

5 Analysis of Non-physical Acoustic Waves

Artificial compression method can greatly speed up computations but can also introduce new

physical flow behaviors associated with compressibility such as non-physical, fast, pressure

oscillations (acoustic waves). These fast acoustic waves can yield restrictive time step condi-

tions for explicit time discretization of the full system or pollute the pressure approximation.

In this section, we analyze these non-physical acoustic waves through an acoustic waves

equation for pressure. We rewrite the model (1.3) as follows.

1

N

(

ut + u · ∇u + 1

2
(∇ · u)u

)

− 1

N · Re
�u + ∇ p = f + j × B,

εpt + ∇ · u = 0,

∇ · j = 0.

(5.1)

Taking the divergence of the first equation and ∂/∂t of the second equation in (5.1), we obtain

1

N
∇ · ut + 1

N
∇ ·

(

u · ∇u + 1

2
(∇ · u) u − 1

·Re
�u

)

+ �p = ∇ · f + ∇ · (j × B) ,

εpt t + ∇ · ut = 0.

(5.2)
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Assume ∇ · f = 0. Multiplying the first equation in (5.2) by N and eliminating ∇ · ut term,

we can have

εpt t − N�p = ∇ ·
(

u · ∇u + 1

2
(∇ · u) u − 1

·Re
�u

)

− N∇ · (j × B). (5.3)

Since ∇ · (j × B) = (∇ × j) · B and ∇ × j = ∇ × (−∇φ + u × B) = ∇ × (u × B), we have

∇ × j = −(∇ · u)|B| and ∇ · (j × B) = −(∇ · u)|B|2 in 2 dimension case. Thus Eq. (5.3)

can be rewritten as

εpt t + εN |B|2 pt − N�p = ∇ ·
(

u · ∇u + 1

2
(∇ · u) u − 1

·Re
�u

)

. (5.4)

The pressure wave equation (5.4) shows that the non-physical oscillation in p will be damped

by damping coefficient N |B|2. Thus, the effect of magnetic field is to damp acoustic waves

in slightly compressible flows. The waves have energy input due to the right hand side terms.

The speed of the non-physical acoustic wave is O( 1√
ε
), which indicates that the wave speed

goes up to ∞ as ε → 0. We test the non-physical acoustic wave in Sect. 6.2. We compute

and plot (Figs. 1, 2) the pressure at origin (0, 0) on a time interval after initial transients pass

to test if the wave speed increases as the time step �t ↓ 0.

5.1 Nonlinear Acoustics

We consider the effect of the nonlinear term in the right hand side of (5.4) on acoustic waves.

Let the usual Lighthill sound source (see, [26] and [27] for justification) be denoted by

Q(u, u) := ∇u : (∇u)T =
∑

i, j

∂ui

∂x j

∂u j

∂xi

for d = 2 or 3.

Since we have the identity that

∇ ·
(

u · ∇u + 1

2
(∇ · u) u

)

= Q (u, u) − 1

2
u · ∇ (∇ · u) + 1

2
|∇ · u|2,

if the effect of slight compressibility on acoustic waves is negligible, we can obtain

∇ ·
(

u · ∇u + 1

2
(∇ · u) u − 1

·Re
�u

)

≃ Q (u, u) if ∇ · u ≃ 0.

Recall (1.3) that ∇ · u = −εpt . Then we have

∇ ·
(

u · ∇u + 1

2
(∇ · u) u − 1

·Re
�u

)

= Q(u, u) + ε

2
u · ∇ pt + ε2

2
|pt |2 + ε

Re
�pt .

Thus (5.4) can be rewritten as

εpt t + εN |B|2 pt − N�p = Q(u, u) + ε

2
u · ∇ pt + ε2

2
|pt |2 + ε

Re
�pt . (5.5)

Q(u, u) represents the physical sound source, i.e., the sound generated by the flow. The terms
ε
2

u · ∇ pt + ε2

2
|pt |2 + ε

Re
�pt are the nonphysical sound sources and their values vanish as ε

goes to 0. When Re ≫ 1, the leading order term in nonphysical sound sources is ε
2

u · ∇ pt .

In Sect. 6.2, we compute the relative size of the leading order term in non-physical sound

sources to the Lighthill sound source

Ratio =
‖ ε

2
u · ∇ pt‖

‖Q(u, u)‖ .
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Table 1 Errors and convergence rates of Algori thm 1

�t ‖em
u ‖ Rate (�t

∑m−1
n=0 ‖∇en+1

u ‖2)
1
2 Rate (�t

∑m−1
n=0 ‖∇en+1

φ
‖2)

1
2 Rate

1/20 6.0467e−2 2.2961e−1 2.5699e−1

1/30 4.3838e−2 0.79 1.4885e−1 1.07 1.7247e−1 0.98

1/40 3.3862e−2 0.90 1.0901e−1 1.08 1.2983e−1 0.99

1/50 2.7299e−2 0.97 8.6329e−2 1.05 1.0411e−1 0.99

1/60 2.2684e−2 1.02 7.2225e−2 0.98 8.6917e−2 0.99

The result is shown in Figs. 3 and 4. Looking at the vertical axis scales, we conclude that the

nonphysical sound source is negligible compared to the physical one.

6 Numerical Test

In this section, we provide numerical experiments to test the convergence of Algori thms 1

and 2, and the non-physical acoustic waves analyzed in Sect. 5. We utilize the P2-P1 Taylor-

Hood mixed finite elements for fluid velocity and pressure and P2 finite element for electric

potential. The software package FreeFEM++, see [41], are used for our simulation.

6.1 Testing Convergence

Let the domain � = [0, 1] × [0, 1], Re = 1, N = 1, M = 1 and B = (0, 0, 1). Consider the

true solution (u, p, φ) given as follows.

u(x, y, t) = (2π cos(2πx) sin(2πy),−2π sin(2πx) cos(2πy), 0)e−5t ,

p(x, y, t) = 0,

φ(x, y, t) = (cos(2πx) cos(2πy) + x2 − y2)e−5t .

The body force f , boundary condition and initial condition are determined by the true solution.

We firstly compute the rate of convergence to confirm the effectiveness of our theo-

retical analysis for Algori thm 1. Set ε = �t . Select T = 1, h = 1
60

and then �t =
1

20
, 1

30
, 1

40
, 1

50
, 1

60
. We compute ‖em

u ‖, (
∑m−1

n=0 ‖∇en+1
u ‖2)

1
2 and (�t

∑m−1
n=0 ‖∇en+1

φ ‖2)
1
2 to

obtain the convergence rate.

Table 1 confirms that the rate of convergence is first order in accord with the theoretical

result of Theorem 4.3.

We also compute the rate of convergence for Algori thm 2. Since Algori thm 2 is second

order accurate, we set ε = �t2. Select T = 1, h = �t and then �t = 1
20

, 1
40

, 1
60

, 1
80

, 1
100

.

We also compute ‖em
u ‖, (

∑m−1
n=0 ‖∇en+1

u ‖2)
1
2 and (�t

∑m−1
n=0 ‖∇en+1

φ ‖2)
1
2 .

Table 2 shows that the rate of convergence of Algori thm 2 is second order, as expected.

6.2 Testing Non-physical Acoustic Waves

We explore the non-physical acoustic waves by the following 2D test problem (Flow between

offset circles).
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Table 2 Errors and convergence rates of Algori thm 2

�t ‖em
u ‖ Rate (�t

∑m−1
n=0 ‖∇en+1

u ‖2)
1
2 Rate (�t

∑m−1
n=0 ‖∇en+1

φ
‖2)

1
2 Rate

1/20 7.1314e−3 1.1478e−1 9.7290e−3

1/40 1.7696e−3 2.01 3.6299e−2 1.66 2.9077e−3 1.72

1/60 7.6980e−4 2.05 1.7458e−2 1.81 1.3712e−3 1.85

1/80 4.2564e−4 2.06 1.0219e−2 1.86 7.9445e−4 1.90

1/100 2.6889e−4 2.06 6.6996e−3 1.89 5.1754e−4 1.92

Fig. 1 Pressure at (0,0) versus time, Algori thm 1, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Fig. 2 Pressure at (0,0) versus time, Algori thm 2, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Let the domain � = {(x, y) : x2 + y2 ≤ 1 and (x − 0.5)2 + y2 ≥ 0.12}, B = 1 · k,

the final time T = 30, and the body force f = (−4y(1 − x2 − y2), 4x(1 − x2 − y2))T. Set

Re = 1000 and N = 1, thus M =
√

N · Re =
√

1000. For velocity boundary conditions, let

u = 0 on both circles. Similarly set ε = �t for Algori thm 1 (ε = �t2 for Algori thm 2).

Choose time step �t = 1
25

, 1
50

, 1
100

.

Firstly, we plot the pressure versus t at (0, 0). Figure 1 (Fig. 2) shows the results of

Algori thm 1 (Algori thm 2) on a time interval [25, 30] after initial transients pass. We find

that the time evolution of the pressure at one point in space varies greatly as �t changes.

However, the wave’s frequency has a clear pattern consistent with (5.4): As �t decreases,

the wave’s frequency increases.

Figures 3 (Algori thm 1) and 4 (Algori thm 2) present the relative size of the leading

order term in non-physical sound sources to the Lighthill sound source:
‖ ε

2 u·∇ pt ‖
‖Q(u,u)‖ . It shows

that Q(u, u) is the dominant forcing for oscillations in p and ∇ · u.

123



1480 J Sci Comput (2018) 76:1458–1483

Fig. 3 Non-physical acoustic source / Lighthill source, Algori thm 1, dt = 1/25 (left), dt = 1/50 (middle)

and dt = 1/100 (right)

Fig. 4 Non-physical acoustic source / Lighthill source, Algori thm 2, dt = 1/25 (left), dt = 1/50 (middle)

and dt = 1/100 (right)

Fig. 5 ‖∇ · u‖/‖u‖, Algori thm 2, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Lastly, in order to study how close the computing solution is to incompressible, we compute

‖∇ · u‖/‖u‖. As shown in Fig. 5 (Algori thm 2), the relative size of ∇ · u decreases as �t

decreases. However, in Fig. 6 (Algori thm 1), ∇ · u fails to decrease when �t decreases,

which implies that the selection of ε = �t or �t2 should influence the stability of the artificial

compression method. For Algori thm 1, we could further stabilize this first order method.

Thus, we consider to add a stabilization term γ∇∇ · u in Algori thm 1 (γ = 10,000) and

then recompute the relative size of ∇ · u. Figure 7 presents the computing results and shows

that the relative size of ∇ · u decreases as �t decreases when we select a large γ in the

stabilization term γ∇∇ · u. Compared with Fig. 6, when we apply the stabilization term, the

oscillation of the relative size of ∇ · u becomes weaker, which shows the stabilization term

γ∇∇ · u might be an effective way to dampen non-physical acoustic waves. Meanwhile, we

find that as �t ↓ 0, ‖∇ ·u‖/‖u‖ appears to be more oscillating, which is also consistent with

our analysis of non-physical acoustic waves since ∇ · u = −εpt .

123



J Sci Comput (2018) 76:1458–1483 1481

Fig. 6 ‖∇ · u‖/‖u‖, Algori thm 1, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

Fig. 7 ‖∇ · u‖/‖u‖, with γ∇∇ · u, Algori thm 1, dt = 1/25 (left), dt = 1/50 (middle) and dt = 1/100 (right)

7 Conclusion

In this paper, we construct two decoupled methods based on the artificial compression

method and the partitioned method for the time-dependent magnetohydrodynamics flows

at low magnetic Reynolds numbers. Theoretical analysis indicates that the error estimate of

Algori thm 1 is ‖u(tn) − un‖ ≤ C(�t + ε) ∀n ≤ T/�t . We also explore the non-physical

acoustic waves that comes from the application of the artificial compression method and give

a brief analysis for it. The numerical examples illustrate the correctness of our theoretical

analysis.

An open question is that the error estimate given in Theorem 3.2 shows ‖u(t) − uε(t)‖ ≤
C

√
ε ∀t ∈ [0, T ], which is not optimal in view of the error estimate in Theorem 4.3. The

optimal error estimate for the slightly compressible model is necessary because it can indicate

the relation between the coefficient ε and the time step �t and thus suggest the optimal

choice of ε according to different time-discretization schemes. The other open question

is how to control the non-physical acoustic waves. Since the non-physical acoustic waves

will increasingly influence the accuracy of computing solution as the time step goes to 0,

it should be an interesting issue to study effective methods to solve this problem, such as

adding stabilization terms (e.g., γ∇∇ · u) or utilizing time filters.
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