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Abstract: Prolific growth of sensors and sensor technology has resulted various applications in
sensing, monitoring, assessment and control operations. Owing to the large number of sensing
units the the aggregate data volume creates a burden to the central data processing unit. This paper
demonstrates an analog computational platform using weakly coupled oscillator neural network
for pattern recognition applications. The oscillator neural network (ONN) has been studied over
the last couple of decades for it’s increasing computational efficiency. The coupled ONN can realize
the classification and pattern recognition functionalities based on its synchronization phenomenon.
The convergence time and frequency of synchronization are considered as the indicator of recognition.
For hierarchical sensing, the synchronization is detected in the first layer, and then the classification is
accomplished in the second layer. In this work, a Kuramoto model based frequency synchronization
approach is utilized, and simulation results indicate less than 160 ms convergence time and
close frequency match for a simplified pattern recognition application. An array of 10 sensors is
considered to affect the coupling weights of the oscillating nodes, and demonstrate network level
computation. Based on MATLAB simulations, the proposed ONN architecture can successfully detect
the close-in-match pattern through synchronization, and differentiate the far-out-match pattern
through loss of synchronization in the oscillating nodes.

Keywords: associative memory (AM); oscillatory neural network; Kuramoto model; synchronization;
hierarchical clustering; pattern recognition; classification

1. Introduction

Technological innovations of sensors and integrated circuit technology have resulted in wireless
sensing for various applications [1-16]. The massive scale of sensor data from an infrastructure creates
a burden to the property owner to process and extract meaningful information. Conventional CMOS
based boolean processors are reaching a plateau in norm of power per processing task. This has
motivated increased research and innovation on non-Boolean function-based processing. Non-Boolean
logic based recognition processes are very similar to processing in the human brain, where a large
number of inferior oscillating nodes perform a network level computation with superior performance.
Considering the extent of improvement in CMOS technology on device scaling, memory capacity,
and power consumption in the near future, the CMOS based oscillator neural network for analog
or non-Boolean computing applications has aroused interest among researchers for energy-efficient
computational units. Oscillation is a common natural phenomenon [17-23]. Classification or pattern
recognition tasks can be easily performed using synchronized coupled oscillator neural networks [24,25]
compared to other approaches. Cloud computing has been used to access server and database through
the internet [26] such as Amazon Web Services (AWS). The cloud services can easily connect to the
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hardware over a web application. However, could computing approaches in pattern recognition
applications are based on online data processing. Considering the possibility of an offline mode that the
server cannot respond to the local sensing machine with the request for pattern recognition or other
required tasks, the hierarchical AM model for local processing unit has been proposed to solve the
offline data processing problem.

To study the dynamics of coupled oscillator networks, different mathematical models have been
reported. In recent years, several researchers have proposed the use of multiple coupled oscillators
for pattern recognition. Fang et al. developed a new chemomechanical oscillating material for use
in a BZ-PZ oscillator network for pattern recognition [21]. In [27,28], CMOS ring oscillators for
pattern recognition were proposed. A non-Boolean ring oscillator coupled with a resistor network
was proposed to function as a Hopfield network [27]. The computing efficiency in pattern recognition
of a variety of coupled oscillator networks have been compared in references [28-30]. Each stored
pattern can be built using an AM model using oscillator neural network (ONN). The recognition
process initiates when the input stimulus patterns are applied to the stored pattern, and the degree of
recognition is defined by the ease with which the stored pattern can be retrieved. The close-in-match
pattern will be the winner pattern. A single AM with weakly coupled oscillators has been used for
many years but requires excessive energy. In comparison, hierarchical structures have been shown to
have higher efficiency than single oscillator neural networks without sacrificing the performance [31].
However, those works focus on evaluating the computational speed of the existing CMOS oscillators.

In contrast, the work presented here focuses on specific applications of synchronization and
stable cluster to improve computational efficiency. By choosing an appropriate coupling function, a
set of synchronization or stable cluster patterns can be obtained as stored pattern. When presenting
a distorted or noisy pattern as input, the association is a nearest neighbor searching procedure. In this
paper, networks of weakly coupled phase oscillators are used for pattern recognition. Specifically,
the dynamics of coupled functions are analyzed for spatial, temporal rhythmic patterns including
synchronization and stable cluster. In addition to improving computational efficiency, the use
of such networks also facilitates energy-efficient hardware implementation and low-level signal
processing using ONN compared to computation intensive software simulation. For hierarchical
sensing process, each sensing data is read by the Kuramoto model as the natural frequency on
the first layer. The Kuramoto model is a useful model for studying synchronization phenomenon.
It provides a simple but solvable approach to synchronization in coupled oscillators [32]. In the
Kuramoto model a sinusoidal coupling function among neighbor oscillators is used to characterize the
local synchronization of the network. The synchronization frequency then acts as the natural phase
of one of the oscillators in the second layer. Afterwards a classification process is performed using
a stable cluster algorithm, where phase difference between the oscillators in each pair is classified
into stable 2-cluster. Since the input pattern will always need to be compared to all the memorized
patterns to search nearest neighbor, the hierarchical clustering greatly reduces the time complexity by
increasing the space complexity through multi-layer processing.

In this paper, a non-Boolean or analog computing architecture based on CMOS oscillator neural
networks is used to implement pattern recognition and classification tasks. The organization of
the paper is as follows. Section 2 gives a short overview of the weakly coupled oscillatory neural
network and pattern recognition task. Section 3 shows the proposed oscillatory neural network and
pattern recognition using Kuramoto model. Section 4 describes hierarchical clustering of data from
an impedance grid and the corresponding simulation results of stable cluster with specific coupling
approach, which solve the complex behavior of coupled nonlinear oscillators. Section 5 is the validation
of the hierarchical AM model’s performance. Finally, Section 6 provides a discussion and conclusion
of the work.

2. Weakly Coupled Oscillatory Neural Network and Pattern Recognition

In this section, we describe a weakly phase-coupled oscillatory network with a dynamic coupling
function. The behavior of the oscillator is governed by the following equation:
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Here ¢; is the phase of oscillator i, w; is its intrinsic frequency, Kj; is the coupling weight, H;;
is the coupling function between oscillator i and oscillator j. In general, by choosing appropriate
coupling function H;j, any arbitrarily complex behavior can achieve a stable cluster state. In particular,
when Hj; [¢;(t) — ¢i(t)] is equal to sin [¢;(t) — ¢;(t)], then the system becomes Kuramoto model.
The dynamics of weakly coupled oscillators can exhibit complex chaotic behavior; however, such a
behavior cannot be obtained by the Kuramoto model using a simple sinusoidal coupling function.

Pattern recognition classifies the samples through the calculation according to the characteristics
of the sample. A pattern recognition system is basically composed of three parts-data acquisition,
data processing, and a classification decision or model matching. The objective is to compare the
stored pattern with the detected pattern. There can be multiple stored patterns. We define the pattern
recognition task with the convergence time and frequency to the stored pattern. The initialized detective
pattern with the closest convergence time and frequency exhibit the best match between the detective
pattern and stored pattern. If the time and frequency difference are asymptotic to zero, the detective
pattern is synchronized with the stored pattern, which we consider as recognition. However, if the
frequency does not synchronize, or the time and frequency differences are bigger than ¢ (¢ depends
on different recognition system), it is considered lack of recognition. The functional flow diagram for
pattern recognition using ONN is shown in Figure 1.

Get the detective
Pattern

y

Apply to ONN

Synchronized
?
Yes

Compare with
store patterns

Difference < ¢
?
Yes

Recognition

( End }:

Figure 1. Functional block for pattern recognition using ONN.

Lack of
recognition
A

3. Topology of the Proposed ONN System

In this section, we present the topology of the overall system used in the neural network design.
The coupled oscillators are separated into two categories: stimulus oscillators and recognition oscillators.
We assume that the topology between each oscillator is cross-connected with different weight K;; shown
in Figure 2. The advantage of cross-connected topology is that if one oscillator fails, only the failed
oscillator is unable to send or receive data [33].
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Figure 2. Topology of the proposed ONN.

In this work, we present an example of pattern recognition using the Kuramoto model. The
structure of the ONN architecture is shown in Figure 2. The couplings between the ten oscillators
comprised with two stimulus oscillators: O; and O,, and eight recognition oscillators O3z, Oy, Os,
Og, Oz, Og, Og, O19. The coupling constant between oscillators is kl-]-(i # j), we set kl-j = 1, except
ki =koy =0. Ay =4, Ay =4, A3 = Ay = ... = Ayp = 1. The weight between each oscillator is Kjj,

The weight between each recognition oscillator is Kjj = 1,i # j. The weights between each
stimulus are K;» = Kj;; = 0. The weight from stimulus oscillator to recognition oscillator is
Kij = 4,i=1and 2,j = 3...10, while the weight from recognition oscillator to stimulus oscillator
is K;j = 0,i = 3..10 j = 1 and 2. The weights between these ten oscillators are shown as,

0 0 4 4 4 4 4 4 4 4
00 4 4 4 4 4 4 4 4
0001111111
0010111111
0011011111
Ki=loo11101111] ®)
0011110111
0011111011
0011111101
0011111110,

Frequency synchronization is a common phenomenon in nature, and this can be observed when
the frequencies of the oscillators converge to a single value because of coupling. The Kuramoto model is
a well-known model for studying the synchronization phenomenon of oscillators. This model has been
widely used in the fields of biology, physics, chemistry, sociology, etc. to study the synchronization
phenomena [34-36]. The equation of coupled oscillators using the Kuramoto model is [37],

%(t)_ZTC f'-I—iA‘A-k--si [9;(t) — ¢;
ar i+ ) AiAjkisin [¢(t) — ¢i(t)] )

j=1
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Here ¢;, f; and A, are the phase, intrinsic frequency, and amplitude of the i*" oscillator, respectively.
kij is a coupling constant. Coupled oscillators are synchronized if they are at the same frequency and
phase-locked [38].

3.1. Network Initialization

By choosing an appropriate value for Kj;, a binary pattern ¢ can be stored in the network, { =1
or 4. The coupling weight Kj; can also be represented by ¢;* ¢;. In this example, we choose different
intrinsic frequencies and weights for each of the ten oscillators. The frequency vector, f, and the weight
vector, Kl-]-, are shown as below,

f:[21 14 10 15 20 25 125 175 175 22.5}, )

Ki]»:[4411111111}, ®)

Figure 3 shows the synchronization diagram of the ten coupled oscillators. The store pattern
synchronized with the coupling approach of Kuramoto model. The convergence time of the stored
pattern is 1.576800 x 10~! s, the convergence frequency is 17.5 Hz.
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Figure 3. Convergence time and frequency of the stored pattern.
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3.2. Pattern Recognition

In this work, the pattern recognition task is performed by monitoring the synchronizing time
and frequency of the ONN. In this network the number of inputs is identical to the number of
oscillating nodes, and each input is considered to disturb the intrinsic frequency of the corresponding
oscillating node. In this scenario, when an input pattern is applied to the network, one or more
oscillators experience different intrinsic frequencies from that of the stored pattern case. With the
identical coupling approach and coupling weights of the stored pattern, the ONN exhibits a different
synchronizing time and frequency for the applied input pattern. In this example, the intrinsic frequency
of the oscillator is varied from 15 Hz to 10 Hz at coordinate (2, 2) and the corresponding the convergence
time of the ONN is monitored as shown in Figure 4. The ten oscillators used in this simulation are
eventually synchronized at 1.550100 x 10~! s and the convergence frequency appears to be 17.3 Hz.
Figure 5 shows a detective pattern with lack of recognition. When changing the ninth oscillator’s
frequency with coordinate (1, 5) to a more than twice the average value of those ten oscillators in the
stored pattern, the coupled oscillators of the ONN are not able to synchronize.
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Figure 4. Convergence time and frequency of one distorted pattern.
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Figure 5. Coupled ONN behavior displays lack of synchronization.

Table 1 summarizes the synchronizing time and frequency for the stored pattern and the detective
pattern. The differences in convergence time and synchronizing frequency between the input detective
pattern and the stored pattern illustrate the pattern recognition status. Once the network frequency is
synchronized, the convergence time and frequency are measured and compare to the stored pattern’s

convergence time and frequency.

Table 1. Summary of convergence time and frequency for recognition performance.

Synchronization Pattern

Convergence Time (s)

Convergence Frequency (Hz)

Stored
Recognition
Recognition upper threshold
Recognition lower threshold
Lack of Recognition

1.576800 x 101
1.731000 x 1071
2.742600 x 1071
1.841300 x 1071
No Convergence

17.5
17
19.3
16.5
No Convergence
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4. Hierarchical Clustering of Impedance Sensing Grid

4.1. Hierarchical Associative Memory Model

In this section, a hierarchical clustering approach is employed along with the ONN. Figure 6
illustrates a two-level hierarchical model for large array sensor signal processing. Each module
represents a coupled ONN using the Kuramoto model in the first layer with 16 inputs and 1 output.
The output of each 16 sensing nodes or unit cell in the first layer are read as the input of the second
layer. For hierarchical sensing process, each sensing data is read by the Kuramoto model as natural
frequency on the first layer, and the synchronization frequency of each unit cell acts as the natural
phase of one of the oscillators in the second layer. A classification process is then done by using stable
cluster algorithm to classify phase difference between each pair of oscillator in the second layer into
stable 2-cluster.

Figure 6. Hierarchical clustering model

In this paper, a hierarchical AM model is performed. Table 2 shows a comparison of the hierarchical
AM model used in this work with a single AM model. The weights are corresponding to the connections
of each two oscillators. When the number of oscillators is high, the hierarchical model uses much
less connections compared with the single AM model, which is a big advantage for simplifying ONN.
Our aim is to develop an algorithm such that reducing the computational complexity and minimizing
the connections of stored pattern without sacrificing recognition accuracy. However, we still cannot
guarantee the accuracy of the hierarchical AM model when using it to differentiate two very similar
pattern. But with enough training data, we are able to improve coupling function for more accuracy
recognition performance.

Table 2. Comparison of the proposed hierarchical AM model with the single AM model.

ONN Characteristics Hierarchical AM Model Single AM Model
No. of layers 2 1
No. of oscillators n? n?
No. of oscillators in each layer n n?
Connections (Number of weights) Cﬁ 1 C%z

4.2. Sensing Device

Impedance sensing has been proved to be an efficient approach of detecting early pressure ulcers
in vivo by utilizing the electrical ‘signature” of the cell membrane. The damaged cell performs more
like a resistor and less like a capacitor [39]. The sensing device consists of impedance sensors and
oscillators as shown in Figure 7. We assume that each oscillator is connected to a sensor.
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Figure 7. Sensor based unit cell of the proposed ONN for clustering applications. Oscillator i and
oscillator j are connected with sensor i and sensor j, respectively. Oscillator i and oscillator j are coupled
with Kij, which is one in this system.

As shown in Figures 8 and 9, a white square corresponds to the phase difference equal to 2k7t, and
a black square corresponds to the phase difference equal to (k + %)n All the white squares represent
one cluster and all the black squares represent the other cluster.

Sensing pattern Stored pattern 1

Figure 8. The detected pattern on the second layer and the similarity measure with the first stored
pattern. The similarity measurement is based on network synchronization time and frequency.

o T
EEE__ B

Sensing pattern Stored pattern 2

Figure 9. The detected pattern on the second layer and the similarity measure with the second stored
pattern. The similarity measurement is based on network synchronization time and frequency.

The system of coupled nonlinear oscillators can perform complex behavior. The Kuramoto model
applies simple sinusoidal coupling function; however, it is not suitable for coupled nonlinear oscillators.
By choosing appropriate coupling function H;;, the stable cluster state can be achieved. Any Hj; can
be represented as a Fourier series and for suitable coefficient values of u; and v}, the Fourier series
expansion of Hj; up to the L-th harmonics can be shown as,
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L
Hjj = IZ[W cos(l) + vy sin(19)] )
=1
In this system, the network is considered to be in cross-connect topology with coupling weight
Kjj = 1. The Fourier series coefficients u; = 11—2, U1 = — %, Uy = %, vy = % were calculated and
designed as the first stored pattern as shown in Figure 8 for phase difference to achieve stable 2-cluster,
U =15, = — 1%0, Uy = %, vy = 45 was calculated and designed as the second store pattern shown in

Figure 9. Appendix A shows how to design stable 2-cluster [40]. Based on these oscillators, we can
design and build an AM circuit for each stored pattern. Since the input pattern will always need to be
compared to all the memorized patterns to search nearest neighbor, the hierarchical clustering greatly
reduces the time complexity by increasing the space complexity through multi-layer processing.

A binary pattern ¢,

E=|a & & . s },gi =+1,i=1.16¢ = +1,j = 1..16, 8)

can be designed as stable 2-cluster and stored into the ONN while the second layer achieving stable
2-cluster. When the phase difference is 2kt , ¢; is equal to 1 and corresponds to the white square as
shown in Figure 8. On the other hand, while the phase difference is (k + 3)7, ¢jisequal to —1 and
corresponds to the black square.

Gi=1<= ¢ =¢j+2kn < ¢ — ¢; = 2kn 9)

G = —1 4= ¢y = gy (k)7 <= 4y — gy = (k+ 5)m (10)
We have simulated a phase difference array as a sensing device with sixteen oscillators. Apparently
from the simulation results as shown in Figures 10 and 11, the second stored pattern achieves a better
matching with less convergence time. A part of the oscillators approach to one cluster with phase
difference 2k7t(k = 0 or 1) (for k = 0,¢; — ¢1 = O where j = 1, and for k = 1,¢; — 1 = 27t where j # 1)
and the rest of the pattern approaches to the other cluster with phase difference (k + 3)7t, which means
this two groups of oscillators are converged to phase difference (k + %) 7t and 271, respectively. We call
it stable 2-cluster.

—Oscl
2 -_— Osc2
Osc3
—Osc4
Osc5
3m/2+ ; Osc6 |1
—Osc7
Osc8
Osc9
Oscl0H
—Oscll1
Oscl2
Oscl3
—Oscl4/]
Oscl5
—Oscl6

0 10 20 30 40 50 60

Time(s)

Figure 10. The simulation results are shown as a particular stable 2-cluster partitions, where each curve
represents the phase difference ¢; — ¢;, fori=1,2,..,16,j=1, when a; = 5,45 = 11.
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When the state of the skin cell at Oscillator i changes, the signal from the sensor i will cause a
change in the phase of oscillator i. The 16 oscillators will achieve a new state. Since our cluster is only
related to the phase, the new state can find new nearest neighbor. The coupled oscillator array doesn’t
have to be orthogonal for achieving stable cluster as shown in Figure 11. In our model, the stable
2-cluster can be achieved when the coefficient satisfied the condition as shown in Appendix A. If the
new state approaches to the stored pattern with the shortest time we consider the stored pattern as the
winner pattern.

¢i_¢1 —Oscl

2t - e - PE—— Osc2
7 = _— Osc3
—Osc4
Osc5
Osc6 H
—0sc7
Osc8
Osc9
s 74 Oscl0p
g —Oscl1
Oscl2
Oscl3
7T/ 2 - _ —Oscl4
N Oscl5
—Oscl6

3n/2 -

0 10 20 30 40 50 60
Time(s)

Figure 11. The simulation results are shown as a particular stable 2-cluster partitions, where each curve
represents the phase difference ¢; — Pj, fori=1,2,.,16,j=1, whena; =13,a, =3,

4.3. Comparison with Other Algorithms

The comparison of our hierarchical AM model with other high dimensional algorithm is described
in Table 3. Our hierarchical AM model is a simple model can be achieved using hardware for local
processing computation. The first layer of our model is using Kuramoto model with weight affection
which is more robust to small image registration error than the other two.

Table 3. Comparison of the proposed work with other algorithms.

ONN Characteristics This Work ARENA Algorithm [31] PCA [41]
Hardware Realization Achievable - -
Dimension High Dimension High Dimension High Dimension
Signal Processing Kuramoto Model Local Averaging Discarding Eigenvectors
Robustness High Low Low

5. Validation of the Proposed Approach

In this section, our results were obtained using images of human faces from the ATT Cambridge
Database [42]. The ATT Cambridge Database contains images of 40 different people 40 with 10 images
for each person. Each original face image is reduced to n x n using simple local averaging. For 92 x 112
full resolution images, there is no significant improvement beyond n = 64, so in this work, we present
result with 64 x 64 oscillators for each image. In our ONN, the image pixel value is stored as the
intrinsic frequency of oscillators. When a new photograph is coming, we convert it to the same pixel
amount as our stored pattern. In this simulation, the image pixel values which are sensed by sensor i
and sensor j are stored in oscillators and forming the ONN shown in Figure 7. We assume that each
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oscillator is connected to a pixel. However not all of the images are suitable for our algorithm. We select
the images that satisfied the following constraints: near- frontal poses and near face to background
proportion ratio. We select two individuals with two photographs for each of them as storage patterns
and with one for each as recognition pattern. Figure 12 shows three images for each of two individuals
from the datasets.

Figure 12. Three sample images for each individuals. In each row, the first and the second are storage
patterns, the third is the recognition pattern.

We have stored each individuals’ image with 64 x 64 oscillators. The first and second images
are stored as storage pattern, the third image is acting as recognition pattern shown in Figure 12.
For each image, in the lower layer, 8 x 8 oscillators are stored in each module. 8 x 8 modules are stored
in the higher layer. The output of each module in the lower layer is read as the input of the higher
layer. For hierarchical sensing process, each oscillator data is read by the Kuramoto model as intrinsic
frequency on the lower layer, and the synchronization frequency of each module acts as the intrinsic
phase of the oscillator in the higher layer. Apparently from the simulation result shown in Figures 13
and 14, the first storage pattern achieves a better matching.

¢_¢1 T T T T T

1

1 1 1 1
20 30 40 50 60
Time(s)

Figure 13. The simulation results are shown for the first individual’s third image using the first
individual’s Hj; function, which is a particular stable 2-cluster partition. Each curve represents the
phase difference ¢; — ¢;.
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¢i_¢] 2 T T T T T

3m/2

0 10 20 30 40 50 60
Time(s)

Figure 14. The simulation results are shown for the first individual’s third image using the second
individual’s Hj; function, which is a unstable cluster partition. Each curve represents the phase
difference ¢; — ¢1.

6. Discussion and Conclusions

We have learned that ONN are capable of sensing and computing on a local processing unit.
Our aim is to develop an algorithm that reduces the computational complexity. In this paper, a weakly
coupled phase oscillator theory is analyzed in the case of both linear and nonlinear couplings.
For the Kuramoto model, a sinusoidal coupling function is able to exhibit synchronization for pattern
recognition applications. The convergence time and frequency of synchronization are considered as
the indicators of recognition. Moreover, a nonlinear coupling function is utilized and the nonlinear
dynamics is represented as Fourier series. The dynamic coupling function provides an approach for
analyzing the nonlinear coupled oscillator. By choosing the specific coefficient and coupling function,
a stable 2-cluster is achieved for a sensing application. Since clustering can provide more than one
stable state, it also provides another stable state of pattern compared to the single decision from
Kuramoto model. In this work, a hierarchical AM model is performed. The hierarchical AM model
performed in this work can be easily achieved in a local processing unit. A sinusoidal coupling function
using the Kuramoto model is shown to exhibit the synchronization for the lower layer. By choosing the
specific coefficient and coupling function, a stable 2-cluster is achieved for the higher layer. Since the
input pattern will always need to be compared to all the memorized patterns to search nearest neighbor,
the hierarchical clustering greatly reduces the time complexity by increasing the space complexity
through multi-layer processing.
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Abbreviations

The following abbreviation is used in this manuscript:

ONN  Oscillator neural network
AM Associative memory

Appendix A

Consider a cluster cluster state with M cluster. For stable cluster states both the tangential
engenvalues and the transverse eigenvallues have to be on the left- half complex plane,

M
{Il](Hl] - Hli) = 0,1 =2,.M (Al)
=1
ReA,™ <0 (A2)
MM, <0 (A3)

We need at least 2 harmonics to design stable 2-cluster partitions. The Equation (A1)—(A3) become

a1(Hz — Hy) +az(Ho — Hy2) =0 (A4)
A8 = %(ulHél +ayHy,) <0 (A5)
M = (@ Hy o+ asHl) <0 (A6)
Al — %(angl +ayHp) <0 (A7)

which can be satisfied by changing the coefficient uy,v1, up, v in Equation (7). By fixing the cluster
phase difference ¢1 = 2km, ¢» = (2k +1/2)7, and the cluster size ay,a;, N = a1 +a, = 16,

the magnitude of the Fourier coefficients, 11 = %, U] = —14790, Uy = %,vz = % are calculated.
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