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Abstract—This paper demonstrates a coupled Schmitt trigger
oscillator based oscillator neural network (SMT-ONN) for pattern
recognition applications. Unlike previous ONN models, the SMT-
ONN can be easily realized in both hardware and software
levels. A mathematical model of the Schmitt Trigger Oscillator
as well as the corresponding CMOS circuit are presented to
validate the mathematical model. The SMT-ONN can realize the
pattern recognition task by considering the convergence time and
frequency as the recognition indicators. A Kuramoto model based
frequency synchronization approach is utilized, and simulation
results indicate less than 160 ms convergence time and close
frequency match for a simplified pattern recognition application.

Index Terms—Schmitt Trigger, oscillator neural network, syn-
chronization, pattern recognition

I. INTRODUCTION

Technological innovations of sensors and integrated circuit

technology have resulted in wireless sensing for various appli-

cations [1]- [2]. With the widespread deployment of sensors

and proliferation of Internet-of-Things, there is a critical

need of in-situ energy-efficient computational units. Recently,

neuro-inspired computing architecture, oscillator neural net-

works (ONN), has attracted researchers’ attentions, which has

demonstrated more efficient computational characteristics than

the conventional Von-Neumann architecture [3]. Oscillation is

a common phenomenon in nature. It was performed in differ-

ent areas including physics, neuroscience, and engineering [4]-

[6]. Based on its synchronization phenomenon, the coupled

oscillatory network can perform the classification and pattern

recognition tasks with ease than other schemes [7].

To study the dynamics of coupled oscillator network,

different mathematical models are reported. The Kuramoto

model is an authoritative model for studying synchronization

phenomenon, which provides a simple but solvable approach

to the coupled oscillators [8]. In recent years, multiples of

coupled oscillators for pattern recognition have been proposed

by different researchers. Fang et al. develops a new chemo-

mechanical oscillating material, BZ-PZ oscillator network for

pattern recognition [9]. In [10], CMOS ring oscillators for

pattern recognition are proposed. In this paper, we propose

a coupled Schmitt trigger oscillator neural network (SMT-

ONN) with a simplified Kuramoto model based approach

to realize the pattern recognition task. The proposed neural

network uses Schmitt Trigger oscillator and can solve noise

problems due to its hysteretic characteristics [11]. Both a

mathematical model and an analog circuit implementation of

the Schmitt trigger oscillator are presented in the paper. The

advantage of this approach is that it makes it possible to test

the algorithm in a practical way through experiment. This also

facilitates energy-efficient hardware implementation and low-

level signal processing using ONN other than computation

intensive software simulation.

The organization of the paper is as follows. In Section II,

an overview of the ONN system is summarized including the

coupled topology between oscillators, the hardware architec-

ture of Schmitt trigger oscillator, Simulink block module, and

the introduction of the coupled approach, Kuramoto model.

We show the simulation results for pattern recognition using

Kuramoto model and coupled oscillator network in Section III.

Finally, this paper ends with a conclusion in Section IV.

II. OVERVIEW OF THE ONN SYSTEM

Pattern recognition is to classify the samples through the

calculation according to the characteristics of the sample.

Pattern recognition system is basically composed of three

parts – data acquisition, data processing, and classification

decision or model matching. Our goal is to compare the

stored pattern with the detective pattern. There can be multiple

stored patterns. We define the pattern recognition task with

the convergence time and frequency to the stored pattern.

The initialized detective pattern the closest convergence time

and frequency exhibit the best match between the detective

pattern and store pattern. If the time and frequency difference

are asymptotic to zero, the detective pattern is synchronized

with the stored pattern, which we consider as recognition.

However, if the frequency does not synchronize or the time and

frequency differences are bigger than ε (ε depends on different

recognition system), it is considered lack of recognition. The

functional flow diagram for pattern recognition using ONN is

shown in Fig. 1.

A. Topology of the Proposed System

In this section, we present the topology of the overall system

used in the neural network design. The coupled oscillators

are separated into two categories: stimulus oscillators and

recognition oscillators. We assume that the topology between
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Fig. 1. Functional block for pattern recognition using ONN.

each oscillator is cross-connected with different weight wij

shown in Fig. 2. The advantage of cross-connected topology

is that if one oscillator fails, only the failed oscillator is unable

to send or receive data [12].
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Fig. 2. Topology of coupled oscillators.

B. Basic Schmitt Trigger

A Schmitt trigger is used as CMOS neuron in ONN circuit.

A Schmitt trigger is a digital transmission gate with hysteresis

characteristics. Its output state depends on the input state and

will change only when the input voltage crosses a certain pre-

defined voltage: higher switching threshold voltage (Vsph) and

lower switching threshold voltage (Vspl). When the output is

high and the input exceeds Vsph, the output switches low. On

the other hand, the input voltage must go below Vspl before

the output can switch high again. In this project, by utilizing

this hysteresis property, a relaxation oscillator will be formed

and later on, by coupling a series of oscillators, an oscillatory

neural network will be established for computation such as

pattern recognition.

This system has been designed using IBM cmrf8sf 130 nm

CMOS process with Cadence. By providing a triangular signal

(increasing from 0 V to 1 V , then decreasing to 0 V ) as input,

the output switched when inputs are equal to 574 mV and 272

mV . From simulations, we got the threshold for our Schmitt

trigger: Vsph= 574 mV , Vspl= 272 mV, a hysteresis value

h= Vsph − Vspl= 302 mV, which can be used to match the

Simulink model.

The architecture of a Schmitt trigger oscillator was shown

in Fig. 3, the resistor R = 222kΩ and capacitor C = 1pF is

used to determine the frequency of the oscillator. t1 is the time
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Fig. 3. Oscillator using a Schmitt trigger.

when the voltage cross C is equal to Vspl, given by equation

(1)

t1 = RC · lnVsph

Vspl
(1)

t2 is the time When the voltage through capacitor is charged

from Vspl to Vsph as

t2 = RC · lnV dd− Vsph

V dd− Vspl
(2)

The frequency of this Schmitt trigger oscillator, without regard

to the delay of Schmitt trigger, is defined by

fosc =
1

t1 + t2
(3)

C. System Modeling

In this paper, a basic Schmitt trigger Oscillator architecture

was described as a close loop system, which included a low

pass filter module and a binary switch with hysteresis as shown

in Fig. 4. The low pass filter is defined as the transfer function

-
N(A)

x(t) y(t)
H(s)

Fig. 4. First-order Schmitt trigger oscillator.

in equation (4), R and C value were set the same as R and

C value in Fig. 3. The function of transfer function module

and the hysteresis are to determine the frequency. The transfer

function for low pass filter is defined by,

H(s) =
1

RCs+ 1
, H(jω) =

1
jω
ωp

+ 1
(4)



The limit cycle frequency was obtained [13], [14],

ω =
ωpπ

h
, ωp =

1

RC
(5)

The frequency of the Schmitt trigger oscillator is obtained

from equation (4) and (5),

f =
1

RC ∗ h (6)

The same model has been realized in MATLAB-Simulink

as shown in Fig. 5. The low pass filter is modeled as a

transfer function. The binary switch is modeled as a relay

to a threshold. The binary switch was specified ’on’ or ’off’

value by comparing the input to the specified thresholds from

Cadence simulation Vsph= 547 mV and Vspl= 272 mV . The

on and off state of the relay is not affected by input between

the high threshold and low threshold.
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Fig. 5. Simulink module of Schmitt trigger oscillator.

D. Pattern Recognition with Kuramoto Model

Frequency synchronization is common in nature, and we can

observe this phenomenon when the frequencies of the oscilla-

tors converge to the same value by coupling. The Kuramoto

model is a well-known model for studying the synchroniza-

tion phenomenon of oscillators. Many of the synchronization

phenomena are studied on the basis of the Kuramoro model

[15], and the Kuramoto model is also widely used in the fields

of biology, physics, chemistry, and sociology. The oscillators

are coupled using Kuramoto equation is given in [16],

dφi

dt
(t) = 2π

⎧⎨
⎩fi +

N∑
j=1

AiAjkijsin [φj(t)− φi(t)]

⎫⎬
⎭ (7)

Where φi is the phase of oscillator i, fi is its intrinsic

frequency, Ai is the amplitude and kij is coupling constant.

Coupled oscillators are synchronized if they are at the same

frequency and phase locked [17].

III. RESULTS

This paper exhibited an example for pattern recognition with

Kuramoto model. The structure of the ONN architecture was

shown in Fig. 2. The couplings between the ten oscillators

comprised with two stimulus oscillators: O1 and O2, and eight

recognition oscillators O3, O4, O5, O6, O7, O8, O9, O10.

The coupling constant is kij(i �= j), we set kij = 1, except

k12 = k21 = 0. A1 = 4, A2 = 4, A3 = A4 = ... = A10 = 1.

The weight between each oscillator is Kij ,

Kij = Ai ∗Aj ∗ kij (8)

The weight between each recognition oscillator is Kij =
1, i �= j. The weights between the two stimulus oscillators

are K12 = K21 = 0. The weight from stimulus oscillator to

recognition oscillator is Kij = 4, i = 1 and 2, j = 3...10,

while the weight from recognition oscillator to stimulus oscil-

lator Kij = 0, i = 3...10 j = 1 and 2. The weights between

these ten oscillators are shown as,

Kij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 4 4 4 4 4 4 4 4
0 0 4 4 4 4 4 4 4 4
0 0 0 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1
0 0 1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

A. Initialization of the Network

By choosing an appropriate value for Kij , a binary pattern ξ
can be stored in the network, ξ = 1 or 4. The coupling weight

Kij can also be represented by ξi* ξj . In this example, we

choose ten different intrinsic frequency and weight for each

oscillator, the frequency vector and weight vector are shown

below,

f =
[
21 14 10 15 20 25 12.5 17.5 17.5 22.5

]
(10)

ξ =
[
4 4 1 1 1 1 1 1 1 1

]
(11)

Fig. 6 shows the synchronization diagram of the ten coupled

oscillators. The stored pattern synchronized with the coupling

approach of Kuramoto model. The convergence time of the

stored pattern is 1.576800e-01 s, the convergence frequency

is 17.5 Hz. The ten coupled oscillators intrinsic frequencies

are in different colors.
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Fig. 6. Convergence time and frequency (top), and weight vector diagram of
the stored pattern (bottom).

B. Pattern Recognition

From the simulation results of the stored pattern, we detect

the synchronizing time and frequency. The next critical step



for ONN system is the pattern recognition. A detective pattern

was given, with one or more oscillators are in different intrinsic

frequencies from stored pattern. With the same coupling

approach, the coupling weights are the same as the stored

pattern, the synchronizing time and frequency of detective

pattern determine the process of pattern recognition. In this

example, by changing the intrinsic frequency of the oscillator

from 15 Hz to 10 Hz at coordinate (2, 2) and measuring the

convergence time of the detective pattern is shown in Fig. 7.

Those ten oscillators eventually synchronized in 1.550100e-01

s and the convergence frequency is 17.3 Hz. When changing

the ninth oscillator’s frequency with coordinate (1, 5) to a

more than twice the average value of those ten oscillators in

store pattern. The coupled oscillators were not synchronized.
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Fig. 7. Convergence time and frequency (top), and weight vector diagram of
the recognition pattern (bottom).

Table I summarizes the synchronized convergence time and

frequency for the stored pattern and the detective pattern. The

difference in convergence time and synchronizing frequency

between the detective pattern and the store pattern illustrate

the pattern recognition status. Once the network frequency is

synchronized, we measure the convergence time and frequency

of the detective pattern and compare to the stored patterns

convergence time and frequency.

TABLE I
SIMULATION RESULTS OF CONVERGENCE TIME AND FREQUENCY AS

RECOGNITION INDICATORS.

Synchronization Convergence
Pattern Time(s) Frequency(Hz)
Stored 1.576800e-01 17.5

Recognition 1.550100e-01 17.3
Recognition upper threshold 2.742600e-01 19.3
Recognition lower threshold 1.841300e-01 16.5

Lack of Recognition No Convergence No Convergence

IV. DISCUSSION AND CONCLUSION

In this work, we have demonstrated an ONN that can be

realized both in mathematical models in Simulink and with

CMOS hardware module. We have shown a coupled approach

using Kuramoto model to exhibit the synchronization for

pattern recognition. The convergence time and frequency of

synchronization are considered as the indicators of recognition.

The learning happens by changing the natural frequency of the

oscillator in the ONN. We presented the ONN in both digital

and analog CMOS circuitry. This enables not only to achieve

computing energy efficiency, but also to perform on a small

scale device. Our Mathematical algorithm can match up with

the hardware implementation in theory.
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