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Abstract—This paper demonstrates a coupled Schmitt trigger
oscillator based oscillator neural network (SMT-ONN) for pattern
recognition applications. Unlike previous ONN models, the SMT-
ONN can be easily realized in both hardware and software
levels. A mathematical model of the Schmitt Trigger Oscillator
as well as the corresponding CMOS circuit are presented to
validate the mathematical model. The SMT-ONN can realize the
pattern recognition task by considering the convergence time and
frequency as the recognition indicators. A Kuramoto model based
frequency synchronization approach is utilized, and simulation
results indicate less than 160 ms convergence time and close
frequency match for a simplified pattern recognition application.

Index Terms—Schmitt Trigger, oscillator neural network, syn-
chronization, pattern recognition

I. INTRODUCTION

Technological innovations of sensors and integrated circuit
technology have resulted in wireless sensing for various appli-
cations [1]- [2]. With the widespread deployment of sensors
and proliferation of Internet-of-Things, there is a critical
need of in-situ energy-efficient computational units. Recently,
neuro-inspired computing architecture, oscillator neural net-
works (ONN), has attracted researchers’ attentions, which has
demonstrated more efficient computational characteristics than
the conventional Von-Neumann architecture [3]. Oscillation is
a common phenomenon in nature. It was performed in differ-
ent areas including physics, neuroscience, and engineering [4]-
[6]. Based on its synchronization phenomenon, the coupled
oscillatory network can perform the classification and pattern
recognition tasks with ease than other schemes [7].

To study the dynamics of coupled oscillator network,
different mathematical models are reported. The Kuramoto
model is an authoritative model for studying synchronization
phenomenon, which provides a simple but solvable approach
to the coupled oscillators [8]. In recent years, multiples of
coupled oscillators for pattern recognition have been proposed
by different researchers. Fang er al. develops a new chemo-
mechanical oscillating material, BZ-PZ oscillator network for
pattern recognition [9]. In [10], CMOS ring oscillators for
pattern recognition are proposed. In this paper, we propose
a coupled Schmitt trigger oscillator neural network (SMT-
ONN) with a simplified Kuramoto model based approach
to realize the pattern recognition task. The proposed neural
network uses Schmitt Trigger oscillator and can solve noise
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problems due to its hysteretic characteristics [11]. Both a
mathematical model and an analog circuit implementation of
the Schmitt trigger oscillator are presented in the paper. The
advantage of this approach is that it makes it possible to test
the algorithm in a practical way through experiment. This also
facilitates energy-efficient hardware implementation and low-
level signal processing using ONN other than computation
intensive software simulation.

The organization of the paper is as follows. In Section II,
an overview of the ONN system is summarized including the
coupled topology between oscillators, the hardware architec-
ture of Schmitt trigger oscillator, Simulink block module, and
the introduction of the coupled approach, Kuramoto model.
We show the simulation results for pattern recognition using
Kuramoto model and coupled oscillator network in Section III.
Finally, this paper ends with a conclusion in Section IV.

II. OVERVIEW OF THE ONN SYSTEM

Pattern recognition is to classify the samples through the
calculation according to the characteristics of the sample.
Pattern recognition system is basically composed of three
parts — data acquisition, data processing, and classification
decision or model matching. Our goal is to compare the
stored pattern with the detective pattern. There can be multiple
stored patterns. We define the pattern recognition task with
the convergence time and frequency to the stored pattern.
The initialized detective pattern the closest convergence time
and frequency exhibit the best match between the detective
pattern and store pattern. If the time and frequency difference
are asymptotic to zero, the detective pattern is synchronized
with the stored pattern, which we consider as recognition.
However, if the frequency does not synchronize or the time and
frequency differences are bigger than € (¢ depends on different
recognition system), it is considered lack of recognition. The
functional flow diagram for pattern recognition using ONN is
shown in Fig. 1.

A. Topology of the Proposed System

In this section, we present the topology of the overall system
used in the neural network design. The coupled oscillators
are separated into two categories: stimulus oscillators and
recognition oscillators. We assume that the topology between
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Fig. 1. Functional block for pattern recognition using ONN.

each oscillator is cross-connected with different weight w;;
shown in Fig. 2. The advantage of cross-connected topology
is that if one oscillator fails, only the failed oscillator is unable
to send or receive data [12].
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Fig. 2. Topology of coupled oscillators.

B. Basic Schmitt Trigger

A Schmitt trigger is used as CMOS neuron in ONN circuit.
A Schmitt trigger is a digital transmission gate with hysteresis
characteristics. Its output state depends on the input state and
will change only when the input voltage crosses a certain pre-
defined voltage: higher switching threshold voltage (V) and
lower switching threshold voltage (V,,;). When the output is
high and the input exceeds V), the output switches low. On
the other hand, the input voltage must go below V,; before
the output can switch high again. In this project, by utilizing
this hysteresis property, a relaxation oscillator will be formed
and later on, by coupling a series of oscillators, an oscillatory

neural network will be established for computation such as
pattern recognition.

This system has been designed using IBM cmrf8sf 130 nm
CMOS process with Cadence. By providing a triangular signal
(increasing from 0 V' to 1 V, then decreasing to 0 V') as input,
the output switched when inputs are equal to 574 mV and 272
mV. From simulations, we got the threshold for our Schmitt
trigger: Vi,p= 574 mV, Vy,= 272 mV, a hysteresis value
h= Vipn — Vspi= 302 mV, which can be used to match the
Simulink model.

The architecture of a Schmitt trigger oscillator was shown
in Fig. 3, the resistor R = 222k} and capacitor C' = 1pF' is
used to determine the frequency of the oscillator. ¢; is the time
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Fig. 3. Oscillator using a Schmitt trigger.

when the voltage cross C' is equal to Vj;, given by equation

ey
VYSph
t1 = RC - ln—— (D
spl
to is the time When the voltage through capacitor is charged

from Vi, to Vi, as
Vdd — Vs;vh
Vdd — Vi

The frequency of this Schmitt trigger oscillator, without regard
to the delay of Schmitt trigger, is defined by

1
fosc = T
t1 +t2

to =RC-In 2
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C. System Modeling

In this paper, a basic Schmitt trigger Oscillator architecture
was described as a close loop system, which included a low
pass filter module and a binary switch with hysteresis as shown
in Fig. 4. The low pass filter is defined as the transfer function
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Fig. 4. First-order Schmitt trigger oscillator.
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in equation (4), R and C value were set the same as R and
C value in Fig. 3. The function of transfer function module
and the hysteresis are to determine the frequency. The transfer
function for low pass filter is defined by,
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The limit cycle frequency was obtained [13], [14],

wWpT 1

~h " T RC ©)
The frequency of the Schmitt trigger oscillator is obtained
from equation (4) and (5),
1

f= RC x h ©
The same model has been realized in MATLAB-Simulink
as shown in Fig. 5. The low pass filter is modeled as a
transfer function. The binary switch is modeled as a relay
to a threshold. The binary switch was specified "on’ or ’off’
value by comparing the input to the specified thresholds from
Cadence simulation V= 547 mV and V= 272 mV. The
on and off state of the relay is not affected by input between
the high threshold and low threshold.
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Fig. 5. Simulink module of Schmitt trigger oscillator.

D. Pattern Recognition with Kuramoto Model

Frequency synchronization is common in nature, and we can
observe this phenomenon when the frequencies of the oscilla-
tors converge to the same value by coupling. The Kuramoto
model is a well-known model for studying the synchroniza-
tion phenomenon of oscillators. Many of the synchronization
phenomena are studied on the basis of the Kuramoro model
[15], and the Kuramoto model is also widely used in the fields
of biology, physics, chemistry, and sociology. The oscillators
are coupled using Kuramoto equation is given in [16],

N
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de;
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Where ¢; is the phase of oscillator i, f; is its intrinsic
frequency, A; is the amplitude and k;; is coupling constant.
Coupled oscillators are synchronized if they are at the same
frequency and phase locked [17].

III. RESULTS

This paper exhibited an example for pattern recognition with
Kuramoto model. The structure of the ONN architecture was
shown in Fig. 2. The couplings between the ten oscillators
comprised with two stimulus oscillators: O; and O-, and eight
recognition oscillators O3, Oy, Os5, Og, O7, Os, Og, O1g.
The coupling constant is k;;(¢i # j), we set k;; = 1, except
klgzk‘gl = 0. A1=4, A2=4, A3:A4:...:A10=1.
The weight between each oscillator is Kj;,

Kij = Al * Aj * ki]‘ (8)

The weight between each recognition oscillator is K;; =
1,7 # j. The weights between the two stimulus oscillators
are K19 = K91 = 0. The weight from stimulus oscillator to
recognition oscillator is K;; = 4,7 = 1 and 2,5 = 3...10,
while the weight from recognition oscillator to stimulus oscil-
lator K;; = 0,4 = 3...10 j = 1 and 2. The weights between
these ten oscillators are shown as,
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A. Initialization of the Network

By choosing an appropriate value for K;;, a binary pattern £
can be stored in the network, £ = 1 or 4. The coupling weight
K;; can also be represented by &;* ;. In this example, we
choose ten different intrinsic frequency and weight for each
oscillator, the frequency vector and weight vector are shown
below,

f=1[21 14 10 15 20 25 125 175 17.5 22.5]
(10
(1D

Fig. 6 shows the synchronization diagram of the ten coupled
oscillators. The stored pattern synchronized with the coupling
approach of Kuramoto model. The convergence time of the
stored pattern is 1.576800e-01 s, the convergence frequency
is 17.5 Hz. The ten coupled oscillators intrinsic frequencies
are in different colors.
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Fig. 6. Convergence time and frequency (top), and weight vector diagram of
the stored pattern (bottom).

B. Pattern Recognition

From the simulation results of the stored pattern, we detect
the synchronizing time and frequency. The next critical step



for ONN system is the pattern recognition. A detective pattern
was given, with one or more oscillators are in different intrinsic
frequencies from stored pattern. With the same coupling
approach, the coupling weights are the same as the stored
pattern, the synchronizing time and frequency of detective
pattern determine the process of pattern recognition. In this
example, by changing the intrinsic frequency of the oscillator
from 15 Hz to 10 Hz at coordinate (2, 2) and measuring the
convergence time of the detective pattern is shown in Fig. 7.
Those ten oscillators eventually synchronized in 1.550100e-01
s and the convergence frequency is 17.3 Hz. When changing
the ninth oscillator’s frequency with coordinate (1, 5) to a
more than twice the average value of those ten oscillators in
store pattern. The coupled oscillators were not synchronized.
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Fig. 7. Convergence time and frequency (top), and weight vector diagram of
the recognition pattern (bottom).

Table I summarizes the synchronized convergence time and
frequency for the stored pattern and the detective pattern. The
difference in convergence time and synchronizing frequency
between the detective pattern and the store pattern illustrate
the pattern recognition status. Once the network frequency is
synchronized, we measure the convergence time and frequency
of the detective pattern and compare to the stored patterns
convergence time and frequency.

TABLE I
SIMULATION RESULTS OF CONVERGENCE TIME AND FREQUENCY AS
RECOGNITION INDICATORS.

Synchronization Convergence
Pattern Time(s) Frequency(Hz)
Stored 1.576800e-01 17.5
Recognition 1.550100e-01 17.3
Recognition upper threshold 2.742600e-01 19.3
Recognition lower threshold 1.841300e-01 16.5
Lack of Recognition No Convergence | No Convergence

IV. DISCUSSION AND CONCLUSION

In this work, we have demonstrated an ONN that can be
realized both in mathematical models in Simulink and with
CMOS hardware module. We have shown a coupled approach
using Kuramoto model to exhibit the synchronization for
pattern recognition. The convergence time and frequency of

synchronization are considered as the indicators of recognition.
The learning happens by changing the natural frequency of the
oscillator in the ONN. We presented the ONN in both digital
and analog CMOS circuitry. This enables not only to achieve
computing energy efficiency, but also to perform on a small
scale device. Our Mathematical algorithm can match up with
the hardware implementation in theory.
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