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Abstract

In the age of ever increasing data, faster and more efficient data processing
algorithms are needed. GPUs are emerging as a cost-effective alternative ar-
chitecture for high-end computing. However, optimal design of GPU algo-
rithms is a challenging task that requires significant amount of effort and a
thorough understanding of the architectural and the algorithmic design. The
steep learning curve needed for effective GPU-centric algorithm design is a hin-
derance to widespread adoption. This situation calls for a GPU algorithm
design template which outlines the critical bottlenecks and provides generic
methods to tackle them and can be followed to implement high performance,
scalable GPU algorithms for given big data problem. In this paper, we present
GPU-DAEMON, a GPU Data Management, Algorithm Design and Optimiza-
tion technique suitable for array based omics data. We study the capability
of GPU-DAEMON by reviewing the implementation of GPU-DAEMON based
algorithms for three different big data problems. Speed up of as large as 386x
(over the sequential version) and 50x (over naive GPU design methods) have
been observed using GPU-DAEMON. GPU-DAEMON template is available at
https://github.com/pcdslab/ GPU-DAEMON and the source codes for GPU-
ArraySort, G-MSR and GPU-PCC are available at https://github.com/pcdslab.
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1. Introduction

Computational techniques have rapidly increased the pace of scientific in-
quiry and progress. Big data is ubiquitous in our society today. We get large
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volume and velocity of data from a variety of sources including biological exper-
iments, social interactions, IoT sensors or other scientific investigations. Many
of these sources can produce enormous amount of data in short periods of time.
Faster and efficient computational techniques are essential to make sense out
of the data from these various sources [1] [3]. For instance, mass spectrom-
etry based proteomics is a problem of interest for precision medicine, cancer
research and drug discovery. However, experiments in this domain produce
big and complex data sets reaching peta-byte level [1] [3] [24]. Simple protein
and metaproteomic library searches can take impractically long compute times
[13][12]. Similarly, for proteogenomic experiments when proteomics is studied
in tandem with genomics, the compute times based on existing sequential ap-
proaches become excruciatingly slow [1] [23].

Multicore and manycore devices such as GPUs, Intel-Phi and FPGAs have
been shown to be useful for scaling big data problems for variety of applica-
tions [26] [9]. With the advent of these devices, there is a need to develop
well-designed and scalable algorithms that can exploit the underlying HPC ar-
chitecture [15] [18]. Omne of the most exciting devices of the modern times is
Graphics Processing Unit (GPU). Because of its low cost and high performance,
it is becoming the go-to device for computational labs [27] [6]. However, despite
its advantages, it is a very tedious task to develop an optimized GPU algorithm.
Because of the application specific designs of GPU algorithms, re-using exist-
ing designs with minor tweaks is not possible and naively designed algorithms
may perform even poorer than their sequential versions [26]. To facilitate rapid
designing of an optimized GPU algorithm, a set of fundamental guidelines and
generic principles needs to be available. Which can be followed to develop an
efficient GPU algorithm without worrying too much about the complexities of
GPU architecture.

To make this process more efficient and scalable for large number of program-
mers and application developers and for a variety of disciplines, a generic GPU
algorithm design template for big omics data must be made available. To this
end, we present GPU-DAEMON (GPU Algorithm Design, Data Management
and Optimization template), a GPU algorithm design template for array based
big omics data sets. This template can be followed by computer scientists and
developers to design an efficient and scalable GPU based algorithm for big omics
data, provided that the data can be transformed into array based structures.
To accomplish this, we consider all the possible bottlenecks in a GPU design,
methods of efficient memory management inside a GPU and the much-needed
optimizations to achieve maximum occupancy and performance on GPUs.

As a proof of concept, we present three GPU based algorithms as case stud-
ies of GPU-DAEMON i.e. GPU-ArraySort [2], G-MSR [4] and GPU-PCC [9].
We based the design of these algorithms on the proposed GPU-DAEMON tem-
plate which allowed us to implement extremely scalable strategies for big data
from proteomics and connectomics. When using GPU-DAEMON, we report
more than 386x speedup over sequential and 50x speedup over unified memory
development technique. These case studies provide an insight into the thought
process behind our assumptions and decisions in GPU algorithm design.



2. Discussion

To facilitate the implementation and porting of existing sequential algo-
rithms to GPUs, techniques like Unified Memory in CUDA 6 have been in-
troduced [22]. These aid in porting the existing codes to GPUs by introducing
simple modifications in the code. These modifications include addition of structs
and calls to initiate Unified Memory to make data structures accessible from
CPU as well as GPU. Followed by some manipulations of code, programs can
be run on GPUs. This removed the need for complete re-implementation of ex-
isting algorithms and in some cases reasonable speed-ups can be achieved. But
such an implementation, is done while being oblivious to the underlying archi-
tecture and resulting algorithms are not scalable and highly under-utilize the
GPU resources as shown in section 9.3. An alternate for this problem is to have
GPU programming templates available, these can provide the developer with a
program skeleton along with the steps of optimization to be used at each stage
of development. Such templates can prove to be more robust and flexible for
developing optimized GPU algorithms than techniques like Cuda Unified. The
only limitation for the template based approach is that they are application and
data specific and need to be designed for different applications separately.

One such template has been introduced to aid in the development of GPU
algorithms in the field of remote sensing image processing [18]. For further
referencing we will use the term Yan’s template for this. Yan’s template was
designed to accelerate the development of optimized GPU strategies for the field
of remote-sensing image processing. It provides the users with class templates
and structs which can efficiently manage and store typical remote-sensing data
sets that have been converted to a unified format. This conversion can be per-
formed by using the tools that have been integrated as a part of the template.
The remote-sensing data consists mostly of pixel information of images and ge-
ographical details such as longitudes, latitudes and map projections along with
some other metadata. Along with data management templates, it also provides
basic code skeletons as a code base to implement desired image processing opera-
tions on GPUs. Due to the data and application specific nature of this template,
it would not be possible for scientists to use this template for developing GPU
based algorithms for any other domain e.g. omics-sciences. Besides, Yan's tem-
plate is based on the features offered by CUDA 4.0, since then a lot of advances
have been made in the field of GPU computing and with the introduction of
CUDA 9.0, Yan’s template is outdated.

In comparison, the proposed GPU-DAEMON template has been specifically
designed for big-omics data which can be transformed and stored in the form of
arrays. Since majority of omics datasets can undergo such a transformation or
naturally exist as such, GPU-DAEMON can prove to be useful for developers,
working in the domain of bioinformatics. GPU-DAEMON offers a code skeleton,
data management strategy and a set of optimization rules which can be followed
to implement high-performance GPU based algorithms. Comparison with other
nave strategies and CUDA unified method has shown superior performance for
GPU-DAEMON
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Figure 1: Figure showing CPU-GPU architecture overview. All the data transfers happen via
PCle.

3. GPU Architecture and CUDA

Graphics processing units (GPUs) were introduced as dedicated graphics
accelerating devices. These can run millions of compute units in parallel; which
allows them to process individual elements of an image matrix in parallel. A
set of computations which can be reduced to simple matrix manipulations can
take advantage of GPUs massively parallel processing power [10].

A GPU contains several Streaming Multiprocessors(SM) each of which con-
tains multiple CUDA cores. Number of these units on each device varies with
the GPU model. For instance, a K-40 Tesla GPU contains 15 SMs with 192
CUDA cores each, making a total of 2880 cores. While GTX 1080Ti GPU
contains 28 SMs with 128 CUDA cores each.

Each SM has a fast on-chip memory which is shared among its cores and is
called the Shared Memory. It is about 100x faster than the GPU global memory
but is quite small and usually varies from 32 kByte to 64 kByte depending upon
the GPU [2]. It is also available to be used as a user defined cache. An off-chip
memory of much larger size, called Global memory is used for storing data and
communicating with the host. Sizes of Global memory are of the order of GBs.
Fig. 1 shows an overview of CPU-GPU architecture.

3.1. CUDA Environment

3.1.1. CUDA overview

With increasing interest in GPUs for data processing applications, NVIDIA
introduced CUDA platform to aid in the use of their GPUs for general purpose
processing. CUDA is a programing environment which can be used with mul-
tiple programming languages to implement programs on GPUs [21]. It forms a
software overlay and provides programmer an easy access to programmable fea-
tures of a GPU. CUDA uses SIMT (Single Instruction Multiple Thread) model,
which combines the usual SIMD (Single Instruction Multiple Data) with multi-
ple threading thus providing two levels of parallelism [20] [16]. CUDA compute



units are arranged in the form of a Grid of Blocks while each block contains
several threads. Number of threads and blocks are determined by the compute
capability of the device. Each thread within a block is assigned two IDs; a block
ID and a thread ID, using these a unique ID can be calculated for each thread.
In a CUDA model the SMs in Fig. 1 would be replaced by blocks and CUDA
cores with threads.

3.1.2. CPU-GPU computing

In CPU-GPU computing, CPU acts as the host and offloads tasks to the
GPU which behaves as a coprocessor. Data from CPU RAM is transferred to
GPUs global memory via a PCle cable and a set of instructions known as CUDA
Kernel is launched on the GPU. Each CUDA compute unit executes these in-
structions independently. Once the kernel completes execution, the results are
copied back to the host. First step in designing any GPU algorithm is to care-
fully profile the problem and offload only the most compute intense and data
independent tasks to the GPU [4]. In a lot of cases, CPU can perform tasks
faster than GPU when the data transfer overheads are taken into considerations
[11].

4. Challenges in GPU algorithm design

Following is an overview of common challenges and bottlenecks faced in the
design of efficient GPU algorithm.

4.1. Need for Data Parallel Design

Even though large in number, the GPU compute units are quite simple
without deep pipelines or any optimizations for executing long lines of codes
in an efficient manner. Best way of exploiting GPUs power is to design a data
parallel algorithm such that each compute unit has to perform simple operations
while being independent of results from other units.

4.2. Data transfer Bottlenecks

The part of algorithm which is offloaded to GPU, requires that the data be
present in the GPU memory before a kernel can be launched. This data transfer
happens via a slow PClIe cable. The potential speedups are subdued if the time
needed to transfer the data from CPU to GPU is larger than the execution time
of the program. Hence efficient techniques are required to reduce the amount
of data transfers. Similarly, the data generated on GPU after execution of the
kernel can be much larger than the input and may require novel result sifting
techniques to avoid GPU-CPU transfer bottlenecks.



4.8. Non-Coalesced Memory Accesses

Active GPU threads are grouped into chunks of 32 threads called a warp.
These warps are scheduled onto SMs as the resources become available. Global
memory accesses from threads of a warp are coalesced together into same mem-
ory transaction if the locations being accessed have spatial locality. Otherwise
threads access global memory in multiple transactions, which stalls the execu-
tion of warp until the data is available. This problem considerably slows down
execution by reducing the number of concurrent compute units active at a given
time.

4.4. Warp Divergence

In an SIMT execution, threads in a warp execute in a lock step which means
that all the instructions are executed simultaneously by the threads of a warp.
In case of a branch or if threads must diverge, a warp divergence occurs leading
to a loss of efficiency and slowdown of a GPU algorithm. One of the challenges
in efficient GPU algorithm design is to minimize the warp-divergence.

4.5. Exploiting Coarse Grained and Fine Grained Parallelism

GPU offers two levels of parallelism, to exploit each level to its fullest fine-
grained data management techniques are required. This requires that the data
be managed in such a way that it can be disintegrated to a fine level. In the
absence of such technique large amount of GPU resources are left unutilized.

5. Basic Principles of GPU-DAEMON

The proposed GPU algorithm design approach provides a template for the
design of GPU algorithm for big-omics data. GPU-DAEMON is divided into
seven steps, each step proposes a generic solution for tackling a GPU bottleneck.
These solutions need to be specialized depending upon each application. Fig. 2
shows flow of the steps in GPU-DAEMON.

The first step is to analyze and profile the algorithm under consideration to
determine compute and data intensive parts. These data and compute intense
tasks are reserved for GPU while other bookkeeping and simpler operations are
left for CPU side. After this we begin by considering each bottleneck step by
step.

5.1. Simplifying Complex Data Structures

Data is mostly stored in the form of larger data structures for ease of ac-
cess and better organization purposes. First bottleneck occurs when large data
structures are transferred over PCle. Approach of transferring complete data
structures is very easy and attractive for any programmer since no considerable
redesigning of the algorithm/code is required. However, most of the computa-
tions performed on GPUs require only a part of large data structures. As a first
step, instead of transferring complete data structures to GPU, data should be
transformed such that only the portion required by GPUs part of processing is
transferred. This considerably cuts the transfer bottleneck created by sluggish
PCle.



5.2. Simplifying Complex Computations

The architecture of GPU compute units is very simple and is not capable
of processing more involved or large number of operations in an efficient way.
Their shallow pipelines and naive designs make them specialized for simpler
computations.

Keeping this in mind, in the second step of GPU-DAEMON, complex com-
putations are simplified. For instance, converting floating point numbers into
integers or representing them in binary will make GPU computations much
simpler and faster. Depending on the algorithm, in some cases simpler logical
operations will simplify the computations for a complex algorithm. At times
precision is too important to simplify computations. In such a scenario GPU
can be used to process a simpler representation of more complex data to ap-
proximate simpler solutions. These simpler solutions can then be processed to
yield more precise results on CPU with the aid of actual data. In such a sce-
nario GPU aids by performing the brunt of processing and CPU just does the
bare minimum. These simplification techniques may vary depending upon the
application, we discuss them in more detail in case studies.

5.8. Efficient Array Management in GPU

A scalable GPU algorithm design boils down to array management strategies
inside CPU-GPU architecture. This step discusses management and mapping of
data to CUDA compute units to achieve fine grained parallelism. As discussed
before, compute units in CUDA platform are classified as Blocks and Threads.
To fully exploit this two-level parallelism, we recommend an array fragmentation
strategy. This can be done in two steps:

5.8.1. Coarse Grained Distribution

First we perform coarse grained distribution by mapping each array to a
unique block. This mapping is feasible because the number of CUDA blocks is
much larger than the number of arrays which a GPU can hold in its memory at
a given time.

5.8.2. Fine Grained Distribution

In second step, we achieve fine grained mapping by segmenting each array
into subarrays and then mapping each subarray to a cluster of threads or a
single thread depending upon the nature of problem. The data mapping can be
divided into two categories each requiring a different approach.

If the nature of data and target function is such that each element can be
processed independently then considering an array of size m, following number
of elements assigned per thread should suffice:

m
Ei=— 1
‘ nl ( )

Eanl = Ei + m mod (nT)
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Figure 2: Figure shows the template for GPU-DAEMON

where E; is the number of elements to be mapped to thread i where nT
is the total number of threads available per block, and F,7_; represents the
number of elements mapped to the last thread in block. Here we assume that
Thread IDs start at position 0. Start and end indices for subarray assigned to
each thread can be calculated as:

ElLr—1=(ElLir—2+Epr_1)—1

Here SI; and EI; are the locations for first and last elements of the subarrays
assigned to thread i, respectively.

When the nature of data and operations to be performed are such that
elements cannot be processed independent of each other, then elements need to
be divided into data independent subsets using a suitable user defined function
as shown in GPU-DAEMON template Fig. 2. We denote this function by Flyp.

5.4. Ezploiting shared memory

Shared memory is about 100x faster than the global memory. To utilize this
speed most frequently accessed parts of data should be moved to the shared
memory. But doing so may not always yield better results [4] [2]. If the following
equation holds then it is reasonable to move the data to shared memory:



(Tiy) + (Psa) < (Pawr) (2)

Here Tiy is the time to move data from global to shared memory while Psys
and Pg )y are the processing times in Shared and Global memory, respectively.

5.5. In-Warp Optimizations

This step considers optimization strategies which can be used to get the best
out of a GPU. As discussed in section 4, thread divergence inside a warp and lack
of memory coalescing in accessing global memory leads to loss of performance.
Among these two the latter has more dominant affect. Thread divergence can be
avoided by redesigning the algorithm so that threads of a warp do not diverge.

To achieve global memory coalescing a good thread to data mapping strategy
is needed. The mappings discussed in 3rd step of GPU-DAEMON simplifies this
mapping. By mapping consecutive threads to independent contiguous array
segments of step 3 can help achieve memory coalescing.

5.6. Result Sifting

Output arrays generated on GPU as a result of big data processing can be
very large in size, at times even larger than the size of total input [14]. Copying
these back to CPU over PCle cable results in a memory transfer bottleneck.
This step of GPU-DAEMON deals with techniques for removing this bottleneck.
These techniques can include either compressing the results or copying back only
the most interesting results while filtering out the others. These methods are
application specific and are not generalized in our proposed strategy. We discuss
a memory efficient methods of result sifting in case study 2.

5.7. Post Processing Results

If in the first step, if a transformation is performed on the data to simplify
the transfer and processing then there may be a need for a post processing
phase. This phase is mostly performed on the host processor and is basically
an inverse of the data transformation performed in the first step.

5.8. Out-Of-Core Design

Modern GPUs have a very limited in-core memory, when dealing with big
data it is essential that the algorithm can work out-of-core. For each case study,
we discuss an out-of-core processing approach which minimizes the CPU-GPU
communication while maximizing the through-put.



5.9. Time Complexity Model for GPU-DAEMON

Any algorithm developed using GPU-DAEMON will have total time Ti.:
comprising of two terms

Tiot = Topu +Tapu

where T py is the total time complexity of CPU part of the design and T py
is the total time complexity of GPU part of the design. Here we will give a
generic formulation for T p, this formulation can be used to derive the actual
time complexity of the GPU part of the algorithm.

Tepy depends on the time taken to disintegerate a given array into data
independent segments (Ts,p), time for processing the data independent arrays
(Tproc) and the time for result sifting step (Tsift) i.e. Tapu = Toub+Tproc+Lsift-
If we consider N arrays with each of size n then the total time for applying
disintegeration function fs,; to N arrays on GPU would be equal to Ty, =

% * (T(f;“b)) where B is the number of Cuda Blocks active at a given time,
p is the number of threads active per block and T'(fsyp) is the time for fqup.
Similarly, we can compute T'( fproc) to be & * ( %) for processing function
fsup and Tgipp = %*(f““) for result sifting function fg;r;. Here x is the
number of elements in each result array. This gives us:
N
TGPU = B+ D * (T(fsub) + T(fproc) + x * T(fmft)) (3)

6. Case Study 1: GPU-ArraySort

Sorting a given list of numbers is one of the most studied problem in com-
puter science. A lot of algorithms have sorting as an integral step [3]. There
is a large number of sequential and parallel algorithms available for sorting one
large array of numbers [25] but not much effort has been made to tackle the
problem of sorting large number of moderately sized arrays. Sorting large num-
ber of moderately sized arrays results into a computational bottleneck in several
algorithms [3] [2].

To this end, we present a GPU based array sorting algorithm capable of sort-
ing large number of moderately sized arrays. This algorithm was first presented
in [2]. GPU-ArraySort was developed following the GPU-DAEMON template,
here we briefly review the implementation of GPU-ArraySort as a case study
for GPU-DAEMON. Fig. 3 shows design of GPU-ArraySort overlaid on GPU-
DAEMON template.

6.1. Simplifying Complex Data Structures

Since GPU-ArraySort is mostly used as integral part of a bigger algorithm,
in this step the data to be sorted can be extracted from larger data structures
and stored in the form of simple arrays. These arrays are then transferred over
to GPU memory via the PCle cable.

Since the sorting operation cannot be further simplified, the step for simpli-
fication of computations was skipped for this algorithm.
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6.2. Efficient Array Management

In a sorting problem, correct placement of each element depends on the value
of every other element, so this presented a tailor-made situation for dependent
sub-array case of section 5.3. The coarse-grained mapping was achieved by
mapping each array to a different CUDA block using the method discussed
in section 5.3. To perform fine grained segmentation, we made use of sample
based bucketing technique [17]. Using this strategy, the larger arrays were
fragmented into smaller data independent sub-arrays and then mapped to fine
grained compute units. In GPU-DAEMON template, Fy,; was replaced with
sample based bucketing function.

A pseudo code for the bucketing phase of the algorithm is given in supple-
mentary materials. The splitters here are sampled from the array to be sorted
and determine the upper and lower bound of a given bucket.

6.3. Exploiting shared memory

Independent subarrays from previous step were moved to the shared memory
for in-place sorting operation. Since the subarrays are quite small in size, they
can always fit inside the shared memory.

6.4. In-Warp Optimizations

The independent sub-arrays were then assigned to threads of a warp for
sorting. The sub-arrays assigned to threads of a warp were placed in contiguous
locations in the memory. This minimized the number of memory transactions
required by each warp thus optimizing the memory accesses.

The next step of the GPU-DAEMON template was skipped for GPU-ArraySort
because result sifting is required when all of the results are not of interest or the
results are impractically large to be transferred back. In this case our output
was sorted arrays which had to be transferred back completely, so we skipped
the result sifting step.

6.5. Post Processing Results

The sorted arrays can then be used for remainder of the processing of the
algorithm of which the array-sorting was part of.

6.6. Out-Of-Core Design

It happens very often when all the arrays to be sorted cannot fit inside the
GPU memory and have to be sorted in batches. Our results showed that the
use of CUDA streams to overlap the data transfer and data processing times
created a pipeline like affect and gave smaller processing times than simple batch
processing.

11
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Figure 3: Design of GPU-ArraySort overlaid on GPU-DAEMON template

6.7. Time Complexity Model

Time complexity of GPU-ArraySort can be determined by replacing the
values of T'( fsup) and T(fproc) in Eq. 3 with O(3) and O(+log(3;)) respectively.
Here n is the length of each array while p is the number of threads per CUDA
block. Since GPU-ArraySort does not have any pre- or post-processing steps,
remaining values will be replaced by zero.

O(; + » * log(;)) (4)

7. Case Study 2: Proteomics Dimensionality Reduction algorithm
(G-MSR)

Now a days, high-throughput study of proteins is being performed using a
Mass Spectrometry (MS) based proteomics pipeline. This pipeline consists of
analyzing a protein sample using Mass Spectrometers and processing that data
using a software pipeline for rapid protein sequencing and assessment [8] [3][7].
The number of spectra generated by an MS can vary between thousands to
up to a billion depending on the nature and the objective of a systems biol-
ogy experiment. Each spectrum is a set of 2-tuples where each tuple consists
of a mass to charge ratio and a corresponding intensity; we call each such tu-
ple a peak [13] [4]. For accurate and timely peptide deduction, preprocessing
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of this data is an essential part of the proteomics pipeline. However, conven-
tional pre-processing algorithms are very slow and take days of computations
[citewuDenoise [19]. As an attempt to resolve this problem, we introduced G-
MSR, a GPU based dimensionality reduction algorithm for proteomics data
[4]. G-MSR is a GPU-DAEMON based implementation of previously presented
MS-REDUCE algorithm [3].

G-MSR algorithm basically consists of three major steps i.e. Spectral Clas-
sification, 2) Quantization and 3) Weighted Random Sampling. At input it
accepts a spectrum s and a reduction factor R. If size of the input spectrum
can be denoted by |s| then at the output G-MSR will generate a reduced spec-
trum of size R * |s|.

In the classification stage, based on the estimate of noise content each spec-
trum is classified into one of four classes. Spectra belonging to different classes
are then quantized i.e. peaks in each spectrum are then grouped based on their
tendency to be a significant peak. Finally, using a weighted random sampling
stage, peaks are randomly sampled from each quantum to form a reduced spec-
trum. The sampling weights ensure that only the most significant peaks make it
to the final reduced spectrum. The weighted random sampling step is governed
by the following total peak equation:

n

> 1x0io = (5)

=0

Here z; is the sampling weight for the i-th quantum, ¢; is the number of
peaks in the quantum 4, p’ represents the total peaks in the reduced spectrum
and n is the number of quanta for given spectrum.

Fig.4 shows the design of G-MSR overlapped on the GPU-DAEMON tem-
plate.

7.1. Simplifying Complex Data Structures

As discussed before, the mass spectra obtained from MS consist of mass
to charge ratios and their corresponding intensities. In a naive methodology
complete spectra along with meta-data would be transferred over the PCle cable
to GPU for processing. But following the GPU-DAEMON template we separate
the intensities from the larger data structure in the forms of multiple arrays (one
array for each spectrum) and only transfer them over to GPU memory. This
cuts down the amount of data being transferred by more than 50%. The actual
spectra are kept on the host for book-keeping and post processing phase.

7.2. Simplifying Complex Computations

Since intensities are floating-point numbers, we round them off to nearest
integer before transferring them to GPU. This converts all the floating-point
computations to integer computations thus simplifying the computations. As
shown in [4], this approximation does not affect the algorithm’s performance.
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7.8. Efficient Array Management

The quantization stage of the dimensionality reduction algorithm discussed
n [3] transforms the spectra into 3-Dimensional data structures. Managing this
3-D data structure is challenging for data processing on a GPU architecture
[5], also in-order for GPU-DAEMON’s array management technique to work we
need to map the data into a 1-Dimensional array.

To achieve this, we introduced a novel data structure called Quantized Index
Spectrum (QIS) which maps a 3-D quantized spectrum onto a 1-D array which
can then be easily managed using the techniques discussed in section 5.3. The
QIS data structure serves a dual purpose of transforming 3-D quantized spectra
to 1-D array while performing the step of quantization.

As discussed before, the quantization step basically groups together the
peaks of a spectrum. In a QIS data structure, these groups of peaks are present
in contiguous memory locations, with a separate array of pointers keeping track
of starting and ending points. Each of this group can be considered as a sub-
array, since these sub-arrays are independent of each other we can use the strat-
egy of section 5.3 for exploiting fine-grained parallelism. For G-MSR algorithm,
we replace Fs,p by QIS construction in GPU-DAEMON template. Detailed de-
sign and implementation of QIS data structure is out of the scope of this paper
and can be found in [4]
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7.4. Exploiting Shared Memory
To better exploit the shared memory, sub-arrays are then moved to the
shared memory for further processing if the Eq. 2 is satisfied.

7.5. In-Warp Optimizations

The sub-arrays created by the QIS are a part of a larger array, with their
beginning and end pointers listed separately. So, all the sub-arrays created by
QIS are in contiguous memory locations. This feature of QIS helps ensure that
when consecutive sub-arrays are processed by consecutive threads of a warp,
memory coalescing takes place.

7.6. Result Sifting

In the first step, rather than transferring complete spectra we transferred
only the part which was needed for GPU-processing, this and because of the ran-
dom sampling which takes place in the third phase of dimensionality reduction
algorithm [3], it becomes difficult to maintain which intensities are eliminated
on the GPU-side. To tackle this problem, we used an additional property of QIS
data structure i.e. the indices of peaks which are eliminated on the GPU-side
are retained with a place-holder. These place-holders help in constructing a bi-
nary spectrum indicating the indices of intensities to be retained in the reduced
spectrum. We define Binary Spectra as:

Definition: Given a spectrum s; = {p1,p2,D3,...,pn} & Binary Spectrum
B; for the corresponding reduced spectrum sj is defined as, B; = {e; = 1|p; €
siyU{e; =0lp; & si}.

In other words, if a peak at index j in s; is included in the reduced spectrum
then there will be a 1 at index j of B;; otherwise it will be zero.

For each spectrum, a Binary Spectrum is generated and only these Binary
Spectra are then copied back to CPU. Binary spectra are memory efficient and
helpful in quick reconstruction of reduced spectra on the CPU side. Introduction
of QIS and Binary Spectra thus enabled G-MSR to copy back just bare minimum
and resolve the GPU-CPU bottleneck.

7.7. Post Processing Results
The Binary Spectra copied back in the previous phase are then used for
constructing the reduced spectra on the CPU side as shown in Fig. 4.

7.8. Time Complexity Model
To compute the time complexity of G-MSR, we replace T'(fsup) = O(%) +

O(AI;,**';) + O(Ngn) and T(fproc) = O(S}‘BN) in Eq. 3. Here the fqu time
includes sorting, classification and construction of QIS data structure while the
fproc time consists of weighted random sampling phase. Replacing the values in

Eq. 3 and simplifying leaves us with:

N* (n?+1)
Bxp

o( ) (6)

where [ = px (24 n+nx*s) and s is the sampling rate.

15



GPU

Filtering step is skipped for this
algorithm . Complete correlation
array is copied back to CPU

CPU

&>

=

Using results
from GPU to re-
construct
required data
structures

Results from GPU

Data transfer over T

A 4

PCle.

in-warp optimizations}
to ensure coalesced
memory accesses

Since each value in
the array is used

Extracting time series from fMRI images
al Warpl Warp 2 only once for

performing dot

product, step 4 is

] i

Simplifying complex computations S S Performing dot
product by acluster
[— ) . [
I—n] Normalize each time [} ﬁ of threads
[ N - son * [———
== seriesusing equation = Data transfer over
— > =
— = PCle
=] =
i

Coarse grained m Eppingeﬂne grained array break

Transfer normalized time series
of arrays to CUDA blocks down using suitable function

Figure 5: Design of GPU-PCC overlaid on GPU-DAEMON template

8. Case Study 3: GPU-PCC

Studying functional connectivity of the brain is one of the important as-
pects of connectomics. Functional magnetic resonance imaging (fMRI) is a
widely used brain imaging technique for exploring activity of the brain. In
fMRI technology, several images are taken from different levels of the brain over
time. These images are divided into huge number of very small cubic elements
called voxels each containing thousands of neurons inside them. A time series
is extracted out of each voxel which shows how its activity is changing during
the scanning time. Functional connections among voxels can be constructed by
calculating pairwise Pearson’s correlation between them. Since there are huge
number of voxels in an fMRI scan, this process is really time consuming and
using GPU based techniques can help reduce the running time significantly.
Previously, we presented a GPU based algorithm called GPU-PCC to acceler-
ate this process [9]. In the following sections we explain how this algorithm has
been implemented using the GPU-DAEMON template. Fig. 5 shows the design
of this algorithm based on GPU-DAEMON template.

8.1. Simplifying Complex Data Structures

The data which is used for computing correlation coefficients is the time se-
ries of each voxel of the brain. This time series data cannot be further simplified
since all values over time are needed for computing correlation so we skip this
section in this algorithm.
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8.2. Simplifying Complex Computations

By normalizing the time series of each voxel using Eq. 7, computing Pearson’s
correlation between two voxels can be reduced to dot product of their normal-
ized time series which needs fewer number of operations rather than applying
Pearson’s correlation equation. In this equation v; denotes the original time
series and u; denotes the normalized time series.

V; — U

(7)

W =
' [v; — Vi,

8.3. FEfficient Array Management

In GPU-PCC each block is responsible for computing several correlation co-
efficients at the same time. Time series of voxels whose correlation is computed
by block ¢ are mapped to that block. Hence, the coarse-grained distribution is
achieved. On the other hand, threads inside each block are divided into small
clusters and each cluster is responsible for performing the dot product of two
time series. The size of this cluster is smaller than the length of the time se-
ries and multiplication of corresponding elements can be done independently, so
each cluster traverse the array and performs the multiplication until it reaches
the end of the array. The number of times each cluster shifts over the array
can be computed using Eq. 1 and in this case nT is the number of threads per
cluster. The final value of correlation is computed by summing up the partial
sums that each thread is computed using warp shuffling technique.

In GPU-PCC each block is responsible for computing several correlation
coefficients at the same time. Since time series of voxels are basically arrays, so
using the mapping approach in section 5.3 we can map each array to a unique
block thus achieving coarse grained distribution. An observation of the time
series data shows that this is the case of independent sub-arrays from section
5.3 so each array can be processed using a strategy similar to discussed in that
section.

We compute the dot product of two series by multiplying smaller sub-arrays
and then summing up the partial results into the final value. This strategy is
same as discussed in Efficient Array Management part of GPU-DAEMON from
section 5.3. To achieve this, we group the threads inside each block into small
clusters and then each cluster is responsible for performing the dot product of
two arrays. Since the size of this cluster is smaller than the length of the array,
the arrays are fragmented to smaller subarrays and the threads inside these
clusters multiply corresponding elements of sub arrays. The results of these
products are stored inside thread registers, and are then used for computing the
final value of dot product. After multiplying corresponding elements of the first
subarray, the cluster shifts to the next subarray. The value computed by each
thread is added to the result as computed for previous subarray. This process is
repeated until this cluster traverses all subarrays. At the end, the partial values
computed by threads inside each cluster are summed up to the final value of the
dot product using warp shuffling technique.

17



8.4. Ezxploiting Shared Memory

The only step that needs to be performed for computing correlations is the
dot product of two corresponding arrays. Since each thread multiplies two
corresponding values right after reading them from global memory and doesn’t
use them any further, copying data to shared memory adds additional overhead
to the computation so we skipped this step in GPU-PCC.

8.5. In-Warp Optimization

Since each thread is performing the same task which is multiplying two
corresponding values, the branch divergence is avoided. Threads in each cluster
belong to the same warp and access contiguous memory locations of global
memory which ensures global memory coalescing.

8.6. Result Sifting
Since the whole correlation array may be needed for further processing, we
skip this section in GPU-PCC and copy the correlation array to CPU.

8.7. Post Processing Result
Since there was no transformation applied on data for simplification and

neither does this algorithm require any type of result sifting, no post-processing
was needed for GPU-PCC.

8.8. Out-Of-Core Design

Size of correlation array is usually greater than the size of GPU global mem-
ory, so GPU-PCC computes the correlations in several rounds. In each round,
pairwise correlations are computed based on free space in GPU and copy back
to CPU when there is no more space to store them. This strategy minimizes
the number transfers from GPU to CPU.

8.9. Time Complexity Model

In order to compute the total time complexity of GPU-PCC, we replace
Tepy in Eq. 3 with O(Nn) which is the time complexity of normalizing time
series of voxels using Eq. 7. Here NN corresponds the to number of voxels
and n is the length of time series. Correlations are computed by performing
dot product between normalized time series which can be performed in parallel
by threads and there is no need for disintegration function (Fy,p). As stated
earlier, no post processing is performed on final correlations hence T'(Fsyp) and
T(F; i) are replaced with zero. Dot product between two vectors has linear time
complexity and is performed in parallel by a cluster of [ threads which results in
O(%}). A total of w pairwise correlation computations are divided among

blocks and each block computes ¥ correlations concurrently which gives total

time complexity for GPU-PCC as O(B]\iz x 7). Here, B and p are the number
l

of CUDA blocks and threads per block respectively. Simplifying, we get

N2%n )

Bp

=0
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9. Experiments and Results

Here we discuss the experiments and their results for each of the algorithms
developed in the three case-studies above.

9.1. Experimental Conditions

For all the following experiments we used a server with 24 CPU cores each
with operating frequency of 1200 MHz. The server was equipped with a Tesla
K-40c GPU which has 15 Multiprocessors with each Multiprocessor having 192
CUDA cores, making the total number of CUDA cores equal to 2880. Total
Global memory available on the device was equal to 11520 MBytes and the
shared memory was of 48 KBytes.

9.2. For GPU-ArraySort

To assess the efficiency of GPU-ArraySort we compared it against the NVIDIA’s
Thrust Library’s stable sort algorithm. The Thrust library though widely used
for sorting one large array can be used to sort a large number of small arrays
using what we call the tagged array sorting or STA. This approach has been
discussed in [2] in detail.

We tested both the algorithms for sorting the arrays of sizes 1000, 2000 and
3000 floating point elements each and then taking the average of runtimes. Fig.
6 shows a comparison between the execution times of GPU-ArraySort and the
STA approach using Thrust Library. It can be observed that GPU-ArraySort
provides a speed up of over 3-4x over the more popular GPU array sorting
method.

9.8. For G-MSR Algorithm

To assess the performance of G-MSR (a GPU-DAEMON based version of
MS-REDUCE algorithm), we compared it against a unified memory based GPU
implementation of MS-REDUCE. The unified memory technique enables quick
and easy development of GPU based algorithms. For our purpose, we simply
took the sequential version of G-MSR [3] and modified the code following rules
of GPU algorithm development using CUDA unified memory [22].

For scalability study, we appended the UPS2 dataset (details of datasets can
be found in Supplementary Materials Section 1) multiple times to get progres-
sively larger datasets.

Fig. 7 and Fig. 9 shows that GPU-DAEMON based implementation consis-
tently out-performs the naive implementation. It can be observed in Fig. 9 that
CUDA unified memory based implementation reaches its in-core memory limit
at only 14,000 spectra, while G-MSR as shown in [4] reaches its in-core memory
limit at 400,000 spectra. Along with better speed, GPU-DAEMON helps con-
serve limited in-core memory so that more throughput can be achieved. Fig. 8
shows that GPU-DAEMON version uses a very small amount of in-core memory
in comparison to the unified memory based implementation.
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Figure 6: Comparison of average run times of STA sorting technique and GPU-ArraySort.
Run times here are an average of times it takes to sort arrays of 1000, 2000 and 3000 elements
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Figure 7: Total speed up achieved by GPU-DAEMON implementation over CUDA unified
memory based implementation.
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Figure 8: Figure shows that GPU-DAEMON based implementation of MS-REDUCE uses
only a fraction of memory as used by the CUDA unified memory implementation.
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Figure 9: Figure shows that GPU-DAEMON based implementation of MS-REDUCE scales
better with increasing spectra. It should be noticed that CUDA unified memory based version
reaches in-core limit earlier and cannot process more than 14,000 spectra in a single pass while
GPU-DAEMON implementation can process about 400,000 spectra before that limit is reached
[4].
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9.4. For GPU-PCC Algorithm

We compared the running time of GPU-PCC (GPU-DAEMON based im-
plementation) with sequential and a naive GPU-based implementation for com-
puting Pearsons correlation. In the first experiment, we used synthetic time
series and in the second experiment, we used real fMRI data. Details of both
the datasets can be found in supplementary materials Section 1.

Fig. 10 shows the running time comparison of the three mentioned ap-
proaches based on increasing the number of voxels, using synthetic datasets.
Table 1 shows the running time comparison of different techniques on real data.
Same server and GPU was used for these experiments as for the previous two
case studies.
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Figure 10: Running time comparison of GPU-PCC with naive GPU-based and CPU-version
on synthetic datasets

Table 1: Running time comparison of different techniques on real fMRI data

GPU-PCC | Naive-GPU-PCC | CPU-version
20.83 279.99 577

Conclusion

In this paper we have presented GPU-DAEMON; a design template for im-
plementing high performance, memory efficient GPU based algorithms for big
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omics data. We have demonstrated the capability of GPU-DAEMON by re-
viewing three algorithms which were implemented separately using this design
template. Our experiments have shown that GPU-DAEMON based implemen-
tation provides more than 50x speed up over naive GPU based implementation
along with conserving already scarce GPU in-core memory.

GPU-DAEMON is a leap forward towards fast development and deployment
of high performance GPU based algorithms in the fields of bioinformatics and
connectomics.
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