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Abstract

Mass Spectrometry (MS) based proteomics has become an essential tool in the study of
proteins. With the advent of modern MS machines huge amounts of data is being gener-
ated which can only be processed by novel algorithmic tools. However, in the absence of
data benchmarks and ground truth datasets algorithmic integrity testing and reproducibil-
ity is a challenging problem. To this end, we present MaSS-Simulator, which is an easy
to use simulator and can be configured to simulate MS/MS datasets for a wide variety of
conditions with known ground truths. MaSS-Simulator offers many configuration options
to allow the user a great degree of control over the test datasets which can enable rigor-
ous and large-scale testing of any proteomics algorithm. We assessed MaSS-Simulator by
comparing its performance against 8,031 experimentally generated spectra for which we
had high confidence peptide matches available. Our results showed that MaSS-Simulator
generated spectra matched closely with real-experimental spectra and had a relative-error
distribution centered around 25%. In contrast the theoretical spectra for same peptides had
relative-error distribution centered around 150%. MaSS-Simulator will enable developers to
specifically highlight the capabilities of their algorithms and provide a strong proof of any
pitfalls they might face. . Source code, executables and a user manual for MaSS-Simulator
can be downloaded from https://github.com/pcdslab/MaSS-Simulator

Mass-Simulator

High performance liquid chromatography (HPLC) combined with tandem mass spectrometry
has revolutionized the study of proteins. It has become an essential part of systems biology
studies [1], drug discovery research [2], detection and determination of phenotypes of cancer [3],
toxicology studies [4] and evolutionary biology [5]. A usual mass spectrometry (MS) based pro-
teomics pipeline consists of breakdown of unknown proteins into smaller chains known as pep-
tides and proceeds by separating them using high-performance liquid chromatography (HPLC).
Separated peptides are then transferred to a Mass Spectrometer to obtain MS1 spectra [6]. In
the fragmentation process each unknown peptide is broken down into several types of ions to
yield an MS/MS spectrum. Each ion in MS/MS spectrum is represented by its mass-to-charge
ratio and corresponding intensity to represent its relative abundance. Collision Induced Disso-
ciation (CID), Higher Energy Collisional Dissociation (HCD) [7], Electron Capture Dissociation
(ECD), and Electron Transfer Dissociation (ETD) are common dissociation strategies [8] [6].
The data generated by the Mass Spectrometers is processed using an algorithmic pipeline
[9]. Usefulness of MS based proteomics relies on the accuracy of this pipeline. These algorithms
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Figure 1: Figure A) shows the workflow used for obtaining experimental spectra with high
confidence PSMs along with their Coverage and SNR values. Figure B) shows the workflow for
generation and assessment of simulated spectra. To determine the relative error percentage for
theoretical spectra, we replaced simulated spectra with theoretical spectra in this workflow.

[10] were either designed for MS/MS spectra generated by a specific ion-dissociation strategy or
have only been tested on very limited sets of data. Comparing and assessing the performance
of these large number of algorithms is a challenging problem due to the lack of systematic data
generation where the parameters of benchmarks are in control of the method developer [11].
Due to the lack of controlled integrity testing, it becomes difficult to tell that which algorithm
will function better for a particular type of dataset thus highly limiting the reliability of such
softwares.

Generating experimental spectra is a costly process with many parameters not in one’s
control. One way of obtaining MS data sets in which all the parameters are in control of the
method developer is with the help of simulators. Existing simulation techniques enable gener-
ating simple theoretical spectra [12] with a lot of parameters not in user’s control. MSSimulator
[11] can be used to generate a control dataset with desired properties for an LC-MS experiment
but offers a very limited control over the simulation of MS/MS spectra. Another simulator
with a similar name i.e. MS-Simulator [13] consists of a trained model to generate theoretical
spectra with accurate y-ion intensities. These simulators either offer very limited control over
the parameters or use pre-trained models specific for a particular instrument or ion-dissociation
strategy to simulate MS/MS spectra.

To the best of our knowledge there does not exist a simulator for MS/MS data which will



allow careful exploration of the space of the parameters associated with MS/MS data. Such
exploration will allow one to identify bottlenecks, strengths and weaknesses in the proposed
algorithms for MS based proteomics. Previously such simulators have been used successfully
for generation of next generation sequencing data [14].

In this paper we introduce MaSS-Simulator, which offers many configurable options includ-
ing the selection of ion-series, Ion Generation Probabilities, immonium ions, type and amount
of noise, adjustable ion intensities and ability to simulate static and variable modifications of all
types. By correctly configuring this simulator with simple configuration text file control datasets
with desired properties and ground truth peptides can be obtained and used for assessment of
proteomics algorithms.

We have tested MaSS-Simulator for two different dissociation strategies and compared sim-
ulated spectra against experimentally generated spectra. Our results have shown that MaSS-
Simulator can generate spectra which are very close to experimental spectra regardless of dis-
sociation technique.

Fragmentation process which leads to the generation of MS2 spectra is highly dependent
upon the ionization technique, instrument and other factors [15]. For instance, the type of
ions present in a spectrum and peptide coverage are dependent upon the type of dissociation
strategy [8]. To give user a complete control over the ion fragmentation we introduce a feature
of Ton Generation Probability (IGP). IGP value for each ion determines the likelihood that a
given ion will be generated in the simulation. For instance, if the IGP value of b-ions is set to
40%, then the probability that each b-ion will be generated is 0.4. Using the ion generation
probabilities peptide coverage can be controlled. Hence by correctly selecting the ion series and
their corresponding IGP values, any dissociation strategy can be simulated. Immonium ions
[10] may be formed for some ion dissociation techniques which are helpful in detecting certain
amino acids [10]. MaSS-Simulator can be configured to generate these ions with a given IGP
value.

Ton intensities depict the relative abundance of the ions. A lot of effort has been made to
predict the ion intensities theoretically but the developed models have been trained only for a
handful of experimental conditions [13]. For our purposes we used average of relative intensity
values as default settings e.g. average intensity of y ions is usually two times that of b ions [16].
Intensity values for each ion series can also be adjusted by the user from the configuration file.

For large scale testing of peptide search engines an elaborate set of spectra with a range of
Post Translational Modifications may be required. To help with this, MaSS-Simulator provides
the option of simulating any static and variable Post Translational Modification (PTM). All
desired types of modifications can be listed in the modifications.ptm file by following a simple to
understand form. Details of this format can be found in the user manual. For our experiments
we tested both static Carbamidomethyl: (C+57.021) and variable modifications (Phosphory-
lation: STY + 79.966, Deamidation: NQ+0.984 and Oxidation: M+15.995). In most MS2
spectra only about 5-10% of the peaks are useful for peptide deduction and the remaining data
is usually noise [9] [17]. Nature and amount of noise in spectra can vary greatly with the exper-
imental conditions. MaSS-Simulator gives an option to add random noise peaks in the spectra
that can either be uniformly distributed across each spectrum or follow a Gaussian distribution
with the possibility of including a user defined noise model. Intensity values for noise peaks
can also be configured as either fixed or randomly generated within a user defined range.

To control the amount of noise we use Sound to Noise Ratio (SNR) factor. User can specify



a desired SNR value to control the amount of noise to be added to spectra. SNR is given by:

_ n(y) +n(b)
SNR==""55

* 100

Where n(y) is the number of y ions, n(b) is the number of b-ions while n(N) is the number of
noise peaks to be added. Generated spectra are output in the form of an MS2 file which can
be conveniently converted to any other desired format using software like proteowizard [18].

To assess the spectra generated by MaSS Simulator, we shortlisted 8,031 control peptides for
which we had high confidence experimental spectra available. Detailed process of generation
of experimental data has been discussed in Supplementary Materials and the work-flow for
shortlisting the high-confidence experimental spectra and their corresponding peptides (which
will be used as control dataset) has been visualized in Fig. 1 (A). The list of control peptides
along with a configuration file containing the SNR and coverage values and a modification.ptm
was given as input to the simulator as shown in Fig. 1 (B). In the configuration file we used
peptide coverage values for control data-set as the IGP values for b and y ion series and the SNR
values to control the amount of noise. Other parameters in configuration file for this experiment
can be found in the Table 1 of Supplementary Materials. At the output we obtained simulated
spectra for each control peptide.

Ideally the simulated spectra should closely match the corresponding experimentally gen-
erated spectra. To assess the similarity between the two sets of spectra we use the work-flow
given in Fig. 1 (B). The idea is to compare both the experimental and simulated spectra using
a proven method/score. For this purpose, we use the xcorr scores obtained from Tide database
search software [19] which gives a measure of how closely the spectrum under consideration
matches the theoretical spectrum of a particular peptide. We consider the xcorr value for our
experimentally obtained spectra to be a gold standard. Consider xcorres, to be the xcorr score
of an experimental spectrum and xcorrsg;, be the xcorr score attained by a simulated spec-
trum which has the same target peptide. Smaller the difference between these two scores, more
similar the two spectra are. So using the following equation we can compute a relative error
percentage, a smaller error means two spectra match closely.

|xcortegp — xcortgim|
*

RE = 100
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Following the above discussed method, the simulated and the experimental spectra are searched
against a rat proteome using Tide [19] algorithm which outputs the list of peptide spectral
matches (PSMs) and xcorr scores for each set of input spectra. We consider the PSMs from
both sets which have the same target peptide and use their xcorr values to compute a relative
error percentage using the above equation. The same procedure is repeated by replacing the
simulated spectra with simple theoretical spectra and relative error percentage is computed
using the above equation by replacing xcorrg;,, with xcorry,., which represents the xcorr score
for theoretical spectra.

Boxplots were used to compare the relative error distributions for simulated and theoretical
spectra as shown in Fig. 1 through 4 of Supplementary Materials. It can be observed that the
simulated spectra match the xcorr scores of experimental spectra much more closely than the
theoretical spectra. Majority of simulated spectra have an error percentage of 25% which is
extremely small compared to the large error percentage for theoretical spectra. Further, it can
be observed that the error remains small consistently regardless of the type of ion-dissociation
technique used or if the peptides were modified or not.



We also demonstrate the usability of MaSS-Simulator by assessing the performance of pep-

tide database search engine Tide. Details of this study can be found in Supplementary Materials.
Our experiments using controlled sets of simulated spectra show that Tide performs poorly for
spectra with low coverage or low SNR. Such a study would not have been possible without
MaSS-Simulator.
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