IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

A Deep Learning-Based Data Minimization
Algorithm for Fast and Secure Transfer of Big
Genomic Datasets

Mohammed Aledhari, Member, IEEE, Marianne Di Pierro, Mohamed Hefeida, Member, IEEE,
and Fahad Saeed, Senior Member, IEEE

Abstract—In the age of Big Genomics Data, institutions such
as the National Human Genome Research Institute (NHGRI)
are challenged in their efforts to share volumes of data between
researchers, a process that has been plagued by unreliable trans-
fers and slow speeds. These occur due to throughput bottlenecks
of traditional transfer technologies. Two factors that affect the
efficiency of data transmission are the channel bandwidth and
the amount of data. Increasing the bandwidth is one way to
transmit date efficiently, but might not always be possible due to
resource limitations. Another way to maximize channel utilization
is by decreasing the bits needed for transmission of a dataset.
Traditionally, transmission of big genomic data between two
geographical locations is done using general-purpose protocols,
such as hypertext transfer protocol (HTTP) and file transfer
protocol (FTP) secure. In this paper, we present a novel deep
learning-based data minimization algorithm that 1) minimizes
the datasets during transfer over the carrier channels; 2) protects
the data from the man-in-the-middle (MITM) and other attacks
by changing the binary representation (content-encoding) several
times for the same dataset: we assign different codewords to
the same character in different parts of the dataset. Our data
minimization strategy exploits the alphabet limitation of DNA
sequences and modifies the binary representation (codeword)
of dataset characters using deep learning-based convolutional
neural network (CNN) to ensure a minimum of code word uses
to the high frequency characters at different time slots during
the transfer time. This algorithm ensures transmission of big
genomic DNA datasets with minimal bits and latency and yields
an efficient and expedient process. Our tested heuristic model,
simulation, and real implementation results indicate that the
proposed data minimization algorithm is up to 99 times faster and
more secure than the currently used content-encoding scheme
used in HTTP of the HTTP content-encoding scheme and 96
times faster than FTP on tested datasets. The developed protocol
in C# will be available to the wider genomics community and
domain scientists.

Index Terms—Machine Learning, Deep Learning, Convolu-
tional Neural Networks, DNA, Big Genomic Data, Big Data,
Content-Encoding, Transfer Protocols, HTTP, Wireless Commu-
nication, Variable-Length Binary Encoding.

1. INTRODUCTION

DNA sequencing is needed in the most critical areas
such as criminal investigations, genotyping and determina-
tion of disease-relevant genes or agents causing diseases,
mutation analysis, screening of single nucleotide polymor-
phisms (SNPs), detection of chromosome abnormalities [1],

* Correspondence should be addressed to Mohammed Aledhari at mo-
hammed.aledhari @ wmich.edu

and to identify disease- and/or drug-associated genetic vari-
ants to advance precision medicine [2] [3]. Also, the use
of high-throughput DNA sequencing instruments, such as
next-generation sequencing (NGS) technologies that include
whole-genome sequencing (WGS) and whole-exome sequenc-
ing (WES), significantly decreases the sequencing costs and
enables the genomic datasets to join the big data club. Those
instruments became big data generators, not only for big
biology centers, but also for small biology laboratories and
researchers.

The current major big data generators are Astronomy,
YouTube, and Twitter. For example, the Australian Square
Kilometer Array Pathfinder (ASKAP), an astronomy project,
currently generates about 7.5 terabytes/second of image data,
while the expectation is to reach to 750 terabytes/second (~25
zettabytes per year) by 2025 [4] [5]. Also, YouTube uploads
about 300 hours of videos per minute, while 1,700 hours of
videos per minute are expected to be uploaded by 2025 (1 - 2
exabytes of video data per year). There are approximately 500
million tweets/day with an anticipation of about 3 kilobytes
each, while the expectation is to reach 1.2 billion tweets
per day: that is 1.36 petabytes/year by 2025. However, a
big data generator, currently in progress, will exceed 35
petabases per year [6]. This capacity is surpassed only by
a reduction in sequencing costs. For example, less than 10
years ago, the cost of sequencing genomes was approximately
one million dollars and has spiraled down to several hundred
dollars, while simultaneously scientists can map genomes at
substantially increased rates. However, despite the advantages
of enhanced speed and reduced costs, growing the genomic
datasets brought challenges such as storing, handling, an-
alyzing, visualizing, sharing, and transferring the genomic
information generated by NGS technologies and that need to
be addressed. For instance, sequencing a single whole genome
generates more than 250 gigabytes of data since there are over
3 billion base pairs (sites) on a human genome as calculated:

1) Digitalizing a single cell would result in :
« Single Unit of all DNA (A-C-G-T) -1 bp.

« Average Length of exon sequences for one protein-
coding gene - (1100 bp).

» Approximate total length of all exons of protein-

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

coding genes in the human genome (20000 genes -
22000000 bp).

« Approximate total length of all coding and non-coding
DNA in haploid genome (3000000000 bp).

« Approximate length of diploid human genome. That
is all DNA within a single nucleus (6000000000 bp).

» Approximate number of bp generated in a shotgun
sequence using Next Generation Sequencing methods
assuming 30x coverage (180000000000 bp).

2) Digitalizing of the world’s population genomes (world’s
population on June 2016 [7]) would result in :
Approximate number of bp that would be generated by
sequencing diploid genomes for all 7 billion people on
earth today (1250000000000 bp).

Hint: 1kilo = 1024 used in these calculations, hence 1 Yotta
= 270 KB.

In fact, the growth rate of DNA sequencing over the last 10
years has generated a massive amount of data that doubles
approximately every 7 months. According to [8] to date as
shown in Table I on page 3, there are more than 2,500
high-throughput sequencing instruments distributed over 55
countries placed in about 1,000 sequencing centers.

A. Research Problem

Although low-cost, high-throughput instruments and cloud-
based services have solved big data generating and processing
challenges to certain extents, they do not efficiently solve data
transfer speed and security problems witnessed in , transferring
big data between two or more places (e.g. between two
biology laboratories or between lab-cloud-lab), which still
results in a bottleneck due to the use of traditional transfer
protocols such as HTTP [9] and FTP [10]. Recently, biologists
ascertained that the bottleneck results in an inability to share
and transfer large datasets in a timely manner. Therefore, some
projects have begun to navigate potential solutions to access
big data and share them with researchers worldwide. The
possible solutions are data minimization during transfer over
the networks [11] [12] or expansion of the network bandwidth
[13]. For example, the Human Genome Project [14] and the
HapMap project [15] facilitates sharing the sequence data
and the more recent data-sharing structures for genome-wide
association studies (GWAS) [16], such as dbGaP [17] and the
European Genotyping Archive [18].

In addition, grantors and other funding agencies make data
sharing a requirement of support for all projects, including
all hypothesis-driven projects, whose primary purpose is to
focus on a specific research question rather than to create data
to be used by others. Implementing tools and techniques for
accessing genomic datasets accelerates studies of the biolog-
ical mechanisms of diseases and their treatment. Individual
researchers can no longer download and analyze important
datasets in their scientific fields on their own computers, a

fact that inhibits access to critical information. This research
posits a solution.

B. Purpose of the Study

We designed a data minimization algorithm to transfer
big genomic datasets in an expedient, secure way to allow
scientists to share their data and analyses. We used the
HTTP as a baseline protocol [19] to compare and assess
implementation results of transferring big genomic datasets.
The goals of our data minimization algorithm are as follows:
1) reduce the size of data to be transferred between a server
and a client [20]; 2) secure and protect the privacy of the
data from unauthorized access due to attacks or data breach,
such as MITM attack. Our heuristic model, simulation, and
implementation results proved that our data minimization
algorithm reduces significant amounts of data and makes more
efficient use of network bandwidth, while also protecting the
data by preventing unauthorized individuals from accessing
them.

This paper represents an extension of our previous research
papers in [21], [22], and [23], in which we changed the
character codeword several times during transfer of a single
dataset (file), a change that minimizes data transfers, thus
shortening the overall transfer time of the genomic dataset
and increasing data security. To the best of our knowledge,
this is the first data minimization technique that reduces
and secures datasets during data transfer via changing binary
representations of data characters many times for the same file.
Our algorithm provides improvements in response and transfer
time of genomic datasets, as well as prevents unauthorized
individuals from accessing the file contents in the event of
a data breach because we assign different codewords to the
same character of the dataset in different times and file parts
based on data obtained in running the convolutional neural
network (CNN) We also illustrate the added benefit of using
the deep learning technique of random sampling to form a
renewable content-encoding in different times and file parts,
an outcome that yields optimal results in transfer data size,
time, and security. Our approach is compatible with all existing
browser implementations and specifications, such as Google
Chrome [24], Safari [25], Internet Explorer [26], etc. The
overall benefit of this work is to increase opportunities for
data sharing among researchers to advance the dissemination
of scientific knowledge.

C. Audience

The audience for this work is researchers (biologists),
investigators, and clinicians as shown in Figure ?? on page ??.
Investigators use DNA sequencing to combat crimes by under-
standing finger printings and genetic clues in a crime scene:
the use of gel electrophoresis to relate sperm DNA to potential
suspects. Investigators utilize DNA sequencing to understand
ethnicity and ancestry by identifying ethnic characteristics of
a certain country via specific patterns or genes. DNA sequenc-
ing enables biologists and clinicians to investigate various
diseases and genetic illnesses. Scientists can gain access to
epidemiological data with multiple genomic candidates, and

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

via genomic sequencing (in clinical trials), provide critical
information in the evolution of medical treatment.

D. Contribution

We have created a data minimization mechanism for big
genomic datasets during real-time data transfer using a deep
learning-based algorithm, as illustrated in section V on page 7.
Creating data minimization mechanisms to be equipped to
transfer protocols, such as HTTP and FTP, solves big data
transmission challenges, in transfer time and data security
[27]. Our proposed data minimization mechanism for the
transfer protocols enables them to be smart protocols via using
standard codewords for dataset headers, while using our data
minimization mechanism for the dataset body. We test our
data minimization algorithm by using three different transfer
protocols: HTTP, FTP and BitTorrent [28] and by considering
such variables as versatility, security and flexibility. These are
commonly used protocols that transfer different data types in a
variety of browsers, such as Google Chrome. These protocols
have certain security features in the transport layer because
they run on top of TCP [29] and are flexible because they are
equipped with the ability to modify one or more components,
such as content-encoding schemes, compression algorithms,
and message headers. This paper is a continuation of our
works published in [22] [23]. We extend this previous work
by employing the convolutional neural network to update the
encoding codewords periodically and to ensure the assignment
of the minimum binary representation to the most repetitive
characters in the file.

E. Motivation

The generation of big data sets led to other challenges
such as data storage, process, and share. Many efforts have
been made to solve the challenges of big data storage, and
manipulation, including data analysis and visualization. These
challenges still constitute a major challenge that must be ad-
dressed and resolved. In addition, issues of data minimization
and transfer time, as well as accuracy, speed, and security
still loomed on the research horizon. Big genomic datasets
are part of the big data club that require special handling
from generating and processing to transferring between two or
more biology laboratories. Although many solutions have been
developed to address the challenges of generating and analyz-
ing big data, transmission challenges have not been addressed
at the same level. As a result, scientists are motivated to
navigate and discover new mechanisms to transfer big genomic
datasets more efficiently in terms of transfer time and security.
Current content-encoding algorithms for transfer protocols use
the standard encoding scheme [30], which increases the size
and the transfer time, and which are not suitable for use with
big genomic datasets. By observing these limitations, we take
advantage of the nature of the genomic dataset alphabet to
reduce the size of data being transferred, as well as to reduce
the transfer time, and enhance security. Access to these data,
in the pursuit of scientific advances, is the end goal.

Table I: Four domains of Big Data in 2025

Big Data Main Domains

Data Lifecycle
YouTube

Astronomy

Acquisition 25 zetta bytes/year
Storage 1 EB/year

ets/year 500 - 900 million hours/year

Analysis Topic and sentiment mining

Metadata analysis

Limited requirements

Distribution | Dedicated lin

to server (600 TB/s)

nponent of modern
dwidth (10 MB/s)

small (10 MB/s

massive (10 TB/s) data movement

FE. Paper Goals and Organization

The purpose of this paper is to develop and implement
transfer protocols equipped with a novel data minimization
algorithm for big genomic datasets that aim to share the data
in less time and with more security. Moreover, these protocols
will introduce a generic concept that can be modified to
transfer securely minimum datasets that have limited symbols
by using CNN-based algorithm content-encoding schemes.
The implications of this paper are outlined as follows:

Summarizes the standard and common use of content-
encoding schemes that are currently employed in trans-
fer protocols and their relevant standards to provide
researchers with quick fundamentals, without having to
search through the details presented in the standards’
specifications.

Provides an overview of some of the big genomic data
challenges in terms of transmission and transfer time.
Explores the relationship between big data and binary
representation methods involving various binary encoding
mechanisms.

Presents the need for better transfer protocols equipped
with data minimization algorithms to transfer datasets
securely in shorter times, especially genomic datasets,
and then to provide better services for big data demands.
Implements, tests, and evaluates the proposed data min-
imization algorithm of transfer protocols in terms of
transfer size, time, and security.

The remainder of this paper is organized as follows: Section
II provides a summary of the related works that are used as
a baseline for our implementations. Section III presents tech-
niques used in this work. Section IV discusses the proposed
method of data minimization algorithm, and heuristic model’s
description in section V. Section VI presents the experiments,
results, and evaluations of the proposed data minimization
mechanism. Finally, our conclusion is presented in Section
VIIL

II. RELATED WORK

To the best of our knowledge, this work is the first network-
based data minimization solution for big genomic datasets that
utilizes data-encoding as a mechanism. GeneTorrent [31] is a
file transfer protocol which uses the BitTorrent [32] technique
to transfer genomic datasets, and which was originally de-
signed to support distributed peer-to-peer (P2P) file transfer
applications. In other words, GeneTorrent distributes the same
file(s) on different machines settled in different locations and
configures those machines to transfer certain part(s) of that
file(s) to a requester. Although higher throughput can be

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

achieved by using multiple machines for transferring data,
the underlying data are still transferred using general-purpose
protocols. This protocol is no longer in use, and there is a need
to create a data-aware network transfer protocol for the DNA
genomic datasets that use minimum resources of the network
to deliver data efficiently.

The possible network solutions to transfer big genomic
datasets expediently are listed as follows:

1) Enhance bandwidth utilization by developing new solu-
tions and techniques for:

« Flow Control [33]: An operation that balances the rate
at which bits are generated by the sender with the rate
at which bits are received by the receiver. This matches
the speed of a sender with the capabilities of a receiver.

« Congestion Control [34]: An operation that regulates
the rate at which senders generate traffic in order
to avoid the over-utilization of the resources avail-
able within network. This prevents network congestion
which if pronounced, could lead to a network collapse.

2) Maximize the bandwidth by expanding the network in
terms of physical (hardware) resources as such internet2
project [35] that provides high speed internet connection.

3) Minimize the datasets that can be achieved by developing
new techniques and solutions for:

« Encoding schemes that deal with character codewords
or binary representations, the focus and scope of this
paper.

o Compression techniques that are out of this work
scope. However, we list briefly the three different
lossless compression algorithms: compress [36], deflate
[37], and GZIP that can be used for HTTP as a
preprocessing operation that requires additional time
and continued research. Also, it would be worthy to
mention here that there are some efficient compres-
sion algorithms that provide higher compression ratios,
such as BZIP2 [38] and MFCompress, and that are
genomic-specific compared to those that can be used in
HTTP as preprocessing functions. However, the higher
compression ratio algorithm is not the best choice
when considering the compression time and security
aspects of browsers. This tradeoff between compres-
sion ratio and compression time requires additional
attention when dealing with time-sensitive applications,
as shown later in the results. Also, some compression
algorithms might suffer from security issues, such as
intermediate proxies of the Chromium browser, which
corrupts the data when trying to use BZIP2. Therefore,
we introduce a new content-encoding that works best
for all browsers, without adding more time or affecting
security, such as those attached to compression algo-
rithms. This work utilizes GZIP and MFCompress as
benchmarks to compare with our encoding scheme over
HTTP.

We can summarize some differences between the two data
minimization techniques: encoding and compression, and then
discuss why we decided to utilize data-encoding as a core of
this work. These explanations are as follows:

1) Compression techniques cannot be implemented on the
network during transfer phase, work in static envi-
ronments such as workstations, PCs, and any non-
transferable environments, which need network solutions.

2) Compression algorithms provide better performances in
terms of data minimization but require longer time due
to computation costs, which we want to avoid.

3) Compression algorithms use the same codeword for the
entire dataset characters rather than all datasets, while we
are able to change characters’ codewords several times for
each dataset to add extra security level via a proposed
data-encoding scheme.

4) Not all compression techniques supported by network
browsers such as Firefox, Edge, Safari, and etc.

5) Finally, the data-encoding techniques can provide similar
performances to compression techniques in shorter trans-
fer times and in more secure ways.

We put forward a novel network-based data minimization solu-
tion using CNN to transfer big genomic datasets expediently
and securely, thereby enabling more scientists to share and
analyze datasets.

III. TecuniQuEs USED IN THE STUDY

Development and implementation of a new data minimiza-
tion method, specified to the real-time big genomic datasets
transfers, requires an understanding of CNN algorithm and
data-encoding techniques. The next subsections provide a brief
description about these techniques.

A. Data-Encoding Approaches

Data minimization can be divided into two main forms:
data encoding and data compression. Data minimization us-
ing data encoding assigns the lowest possible bits to each
alphabet’s symbol using content-encoding schemes without
complex computations, whereas the data minimization using
data compression assigns the lowest possible bits to the
entire dataset: this process involves complex computations
and an extended period of time to compress and decompress
operations. In general, binary representation can be divided
into two categories: Fixed-Length Binary Encoding (FLBE)
and Variable-Length Binary Encoding (VLBE). FLBE scheme,
also called singular encoding, converts symbols into a fixed
number of output bits, such as in an ASCII code which consists
of an 8-bit long for each codeword [39]. Variable-length binary
encoding (VLBE), also referred to as a uniquely decodable
and non-singular code, converts symbols into variable-length
codewords, such that A; # 4; for all i and j [40]. However, the
scope of this paper is data minimization using data-encoding
techniques that are divided into five main mechanisms as
follows:

B. Naive Bit Encoding

This approach works by assigning fixed-length code-
word/binary representation to each alphabet symbol in a way
that represents more than a single symbol in a single byte,
such as 2-bit length to genomic symbols [41] and [42], as
shown in Figure 1-(a) on page 5.

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

C. Dictionary-based/Substitutional Encoding

This approach stores different patterns of the input symbols
in a dictionary or a database, along with their codewords, and
then replaces the new input parts with predefined portions [43]
and [44], such as in 1977-78 Ziv and Lempel (LZ-77) [45] and
[46], as shown in Figure 1-(b) on page 5. LZ-77 algorithm
works by replacing the repeated occurrences of symbols with
their references that indicate length and location of that string,
which occurred before, and which can be presented in the tuple
(offset, length, symbol).

D. Statistical/Entropy Encoding

This approach works by statistics, prediction, and a proba-
bilistic model from the input [47] and [48], such as Huffman’s
coding [45] and [49], as shown in Figure 1-(c) on page 5.
Huffman’s coding, introduced in 1952, is a statistical method
that assigns a fixed-length codeword/binary representation to
alphabet symbols, such as 2-bit, 3-bit, 8-bit, etc. The code-
words will have different lengths, and the lowest frequency
symbols will be assigned with the longest codewords and vice
versa. This research utilizes this type of encoding with CNN
deep learning algorithm to ensure the assignment of the lowest
possible codewords to the more frequent dataset characters,
and to undertake this process several times during the data
transfer phase.

E. Referential/Reference-based Encoding

This approach is similar to a dictionary-based technique,
except that it uses the pointer to the internal and external
references, as shown in Figure 1-(d) on page 5.

F. Hybrid Encoding

This approach works by combining two or more encod-
ing methods. For example, The Burrows-Wheeler transform
(BWT) [50] [45] and [51], is one of the hybrid encoding
methods, especially popular in bioinformatics, used for data
minimization. The BWT method works by permuting the
input sequence in a way that symbols are grouped by their
neighborhood. Our proposed data minimization algorithm can
be classified as a hybrid encoding method by incorporating
elements of the standard (8-bit) and the statistical encoding
methods (variation of 1 - 3 bits.

IV. ProPoSED METHOD

In this section, we illustrate our two implementation ver-
sions of the content-encoding schemes: standard (FLBE) and
proposed (dynamic VLBE/DVLBE). Also, we discuss model
formulations in this section for different possible scenarios
of symbol repetitions that verify how our proposed encod-
ing scheme compares to the current transfer protocols i.e.
HTTP and FTP content-encoding scheme. The encoding model
description and formulation are presented in the following
subsections:

Naive Bit Codewords Dictionary-based Codewords
A=100
C=01 1: AAA; 2: CGT; 3: TGAG; 4: GG;
G=10 5: CA; 6: TGA; 7: TA; 8: AGT;
T=11
R —

|A|A|/\|G|G C|A|/\|A|A|T|A| |A|/\|/\|G|G

clafafafafr]a]
— "

v v
L« [s | + |7]

|00|00|00|10|10|01|OO|00|00|00|11|00| | 1
\ﬁ(_l%(—%_l
(a) Naive Bit-based Encoding (b) Dictionary-based Encoding

Statistical-based Codewords

clafafafafr]s]

v v \4
| (0,6) | TA |

[a]alals]s

clafafafafr]s]

v
|()|0|0|1()|]0|1]0|0|0|()|0|1]l|0|
—

(c) Statistical-based Encoding (d) Reference-based Encoding

Figure 1: Data-encoding methods

Accumulator

10101010101 "\
_10001100010...
A

Figure 2: The Proposed Encoding System Framework

A. Convolutional Neural Network

Convolutional Neural Network (CNN) [52] [53] is an ex-
ample of deep learning (DL) [54] techniques that refer to
both deep neural networks and other branches of machine
learning, such as deep reinforcement learning. Neural net-
works are defined as a set of algorithms, modeled loosely
after the human brain, and that are designed to recognize
patterns. They interpret sensory data through a kind of ma-
chine perception, labeling or by clustering raw input. The
patterns they recognize are numerical, contained in vectors,
into which all real-world data, be it images, sound, text or
time series, must be translated. Thus, CNN is defined as an
end-to-end system, in which the input is raw data, while the
output is a prediction through the distinctive features extracted
via intermediate layers. CNN divides into four main layers:
convolution, pooling, normalization, and fully connected, as
illustrated in Figure 3 on page 6 as follows:

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Locating Sampling Zones

Pooli LRN) Poolz
Iln]_ym ﬁm/‘ é/‘

Input Convolutional Convolutional

TR G

Subsampling Subsampling Fully Connected

Invm Text Dimensionality Codeword Codeword Codeword Tree
Sampling Reduction Extraction Assembler
D : ™ { bn :
X, v v v
— Wo — > W, —@-»@—»qu

Figure 3: Convolutional Neural Network Conceptual Model.

1) Convolution Layers: Convolution layers are used to
convolve previous layer’s feature maps with multiple filter
masks to find the most common patterns of tested data. This
layer is responsible for running two important jobs: connection
and sharing. Connection applies each single convolve filter
only to a local region of the input volume and thus, decreases
the network weight parameters. Thus, the spatial extent of the
local connectivity is sometimes referred to as the receptive
field. Sharing the network parameters between layers means it
is necessary to use the same filter to convolve the entire feature
map at each layer. To formulate the convolution layers, we
denote C onf as the i input feature map of / layer; Kerfj refers
to connecting the kernels of the feature map of the output layer

j™ to the feature map of the input layer i and blas as an
additive bias.; and then the following:
Con‘l]» = f(z Conf_lKerfj + biaslj), @)

i=1
where f denotes the activation function that is usually a
rectified linear function.

2) Pooling Layers: Pooling layers represent the sampling
layers that work on combining the outputs of the convolution
layers and the related classical spatial pyramid [55]. These
layers reduce the spatial size of the feature maps, thus de-
creasing computation costs in the network. To formulate the
pooling layers, we denote as:

2

where next(Con;) is a subsampling function of the next layer.

3) Normalization Layers: Normalization layers are respon-
sible for assembling the output of different layers and provide
the best pattern recognition i.e. the most repetition characters.
Denoting by a; the single value of i feature map, the
normalize activity bias; is given by the expression

C oné = next(C oné_l),

ai

min(N—1,i+n/2)
(KEI" +a 2] max(0,1— n/2)

3)

bias; =

a2y

The constants Ker, n, @, and § are hyperparameters, and we
use Ker=2,n=5,a= 1074, and 8 = 0.75 in our experiments.

4) Fully Connected Layers: The final cycles of normaliza-
tion produce several fully connected layers that draw the final
forms of available data patterns (classifiers). The final layer
consists of a combination of the outputs of fully connected
layers which generate the new character-codeword tree. The
output of character-codeword tree represents the probabilities
of the character repetitions, in which the highest one corre-
sponds to the predicted codeword. Then, we can formulate
the fully-connected layer,

1
1 + exp(-wTCon)’

P(y = 1|Con;w) = 4
where y is label, x € RP*D! represents the D dimensional
feature vector, w € RP*D! represents the weight vector, T
refers to training data. Considering a classification problem
where the response variable y can take any one of N values,
we can generalize the binary classification (genomic or non-
genomic characters). Thus,

exp(w! Con)

P(y = c|Con; W) = (%)

" exp(w! Con)’
where W = [wy,wy, ..., w,] € RP*DN each w represents the
corresponding category weight parameters.

This subsection presents our implementation of network
data minimization solution that relies on the statistical en-
coding and CNN algorithm via modifying HTTP content-
encoding to transfer big genomic datasets expediently and
securely. This work assures better performance and bandwidth
utilization for the transfer of big genomic datasets via the
minimization of data size and time. This model assigns the
shortest possible codeword for more symbol occurrences via
utilizing a CNN algorithm, as illustrated in section V on
page 7, a codeword that divides a dataset into parts and that
reads a short string randomly to specify symbol repetitions.
Two encoding schemes are used in this model: standard (8-
bit) and modified (1,2, and 3-bit). The standard one uses
the title (header) of a dataset and other symbols out of the
genomic scope i.e. N in the body. The modified encoding
scheme uses a convolutional neural network technique for the
body of datasets. The proposed encoding scheme starts with
initial codewords such those shown in Table II on page 7 and
then periodically updates codewords via a CNN deep learning
algorithm, as illustrated in section V on page 7, while using the
former codeword table. After each real-time update, the server
send the proposed encoding scheme to the client (receiver)
prior to applying it on datasets at the server side. Therefore,
this model encodes the contents using two main codeword
tables: fixed (static) and dynamic, as shown in Figure 2 on
page 5.

The fact that the genomic DNA alphabet consists of only
four symbols inspired us to build an adaptive encoding scheme
to speed up the transfer time. This implementation combines
a VLBE scheme and dynamic behavior via applying a CNN
deep learning algorithm to guarantee producing the best up-
datable VLBE scheme for each single genomic dataset at
each transfer session. Producing an updatable VLBE scheme
assures getting the minimum possible data that facilitates
the minimum transfer time. The genomic alphabet (A) is

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Table II: The standard and proposed codewords

Symbol ‘ Frequency Proposed Standard
A 0.85 0 01000001
T 0.05 11 01010100
G 0.05 100 01000111
C 0.05 101 01000011
Total bits for 20 symbols 100% 25 160

comprised of four symbols: {A, T, G, C}, which can be
presented in less than an 8-bit codewords length as used in the
current implementation. We can encode the genomic dataset
symbols in four unique decipherable codewords i.e. [0, 11,
100, 101] or simply [0, 3, 4, 5], as shown in Table II on
page 7.

We utilize a binary tree as a structure to represent our
proposed encoding scheme because it is faster to search,
avoids duplicate values, and facilitates decoding at the receiver
side. Also, the use of a binary tree as a structure gives the
programmer special flexibility because it offers one of the
two paths to follow and cuts the search time to half, thereby
increasing process throughput. A simple example is listed
below to theoretically assess our binary encoding, in contrast
to the current use of HTTP binary encoding for a 20 genomic
symbols string based on Table II on page 7. Therefore, encod-
ing 20 symbols in 25 bits yields an average of 1.25 bits/symbol
in the proposed example, whereas 160 bits in the current HTTP
encoding yields an average of 8 bits/symbol. We designed
variable codes in Table II on page 7 in a way that facilitates
decoding, using a prefix property (unambiguously). The prefix
property assigns a unique specific bit pattern for each alphabet
symbol to ease the decoding operation on the client side.
Variable binary encoding is not a new idea; however, it is
more common in single or static applications. The use of the
proposed encoding scheme requires a prior knowledge to as-
sign short codes for high probabilities; otherwise, short codes
would be assigned for rare occurrences (negative results). The
current use of HTTP content-encoding is fixed (standard),
which means assigning the same weight for each symbol i.e.
8-bits. Therefore, we design a proposed encoding scheme for
HTTP in a way that always enables the server to assign short
codes for letters that appear more frequently. Although this
scheme produces minimum possible bits, it consumes extra
time. Our implementation relies on reading parts of the file
via the CNN algorithm to estimate symbol frequencies and to
set codes. Consequently, we can get minimum possible codes
in less time via applying the CNN algorithm to the proposed
scheme. Time complexity is O(n). This encoding approach
works well with high symbol repetition occurrences, so that
assigning a 1-bit length codeword for the highest occurrence
symbol, a 2-bit length codeword for less repetition, and a 3-
bit codeword length for the remaining 2 symbols is an optimal
approach. The pseudocode for our protocol is highlighted in
algorithm 1 on page 7. In addition, we implemented a variable-
length binary encoding (arbitrary or bind) to compare with our
proposed and standard.

Algorithm 1 Dynamic Variable-length binary encoding

1: procedure ENcopING

2: DVLBE.doSamplingAndBuildFreqArray(inputStream ,
filePartitions,SamplingRatioPerPartition)

3 if inputStream.hasGenomeFileheader then

4 outputStream.write(GenomeFileheader)

5 end if

6: DVLBE.writeGenomeSymbolsEncoder(outputStream)

7 while /inputStream. EOF do

8 genomeChar « inputStream.GetChar().

9 code «— DVLBE.encode(genomeChar).

10: oneByteStore.store(code).

11: if oneByteStore.ISFull() then

12: outputStream.write(oneByteStore).
13: oneByteStore.empty().

14: end if

15: end while

16: if /oneByteStore.ISEmpty() then

17: outputStream.write(oneByteStore).

18: outputStream.write(NumOfExtraBits).
19: end if

20: end procedure
1: function DoSAMPLINGANDBUILDFREQARRAY(INPUTSTREAM ,
FILEPARTITIONS,S AMPLINGR ATIOPER PARTITION)
PartitionSize < FileSize / filePartitions().

SamplesPerPartition —
FartitionSize * SamplingRatioPerPartition.
4 SymbolsFrequencyArray —
Interger Array with Four elements filled with zeros.
5: while filePartitions >0 do

Offest < Random.GetDouble * PartitionSize . »
Random.GetDouble generates random numbers between 0
and 1

7: inputStream.Seek(offest).
inputStream.Read(SamplesPerPartition, dataBuffer).
: UpdateFrequency(SymbolsFrequencyArray, —
dataBuffer).

10 filePartitions « filePartitions - 1.

11: end while

12: FreqArray.Build(SymbolsFrequencyArray). return
FreqTable

13: end function

V. Heuristic MoODEL

In this paper, a novel data minimization method is proposed
that significantly reduces data transfer size and time, as illus-
trated in Section VI. Two data-encoding schemes are used in
this work: standard and proposed. The proposed data-encoding
scheme is created via codeword generators & that run a deep
learning CNN algorithm during the data transfer process. The
codeword (encoding) generator &(&}, m, f;, a., a;, n) consists of
two main processes: sampling & and encoding improvement
function f;, where & is the last symbol in the encoding
codewords. The input symbols m represents the last generated
array of symbol codewords. The current array of symbol
codewords is represented by a;, a. and output bits .

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Table III: Datasets used in our experiments Table IV: Experimental setup
IDs Source Size(KB) Renamed Specifications Details
pataa National Center for Biotechnology Information 563,318 1 "
refGeneexonNuc University of California Santa Cruz 639,183 2 Processor 2.4 GHz Intel Core i7
envnr National Center for Biotechnology Information 1,952,531 3 Memory 8 GB 1600 MHz DDR3
hg38 University of California Santa Cruz 11,135,899 4 Graphics Intel HD Graphics 4000 1024 MB
patnt National Center for Biotechnology Information 14,807,918 5 . .
gss National Center for Biotechnology Information 30,526,525 6 Operatmg SyStem Windows 8.1 Pro
estothers National Center for Biotechnology Information 43,632,488 7 Download 87 Mb/s
humangenomic National Center for Biotechnology Information 45,323,884 8 Upload 40 Mb/s
othergenomic National Center for Biotechnology Information 346,387,292 9 Programmlng Language C# Net

The following two theorems illustrate the proposed scheme
of data-encoding: the codeword generator discussed in theorem
5.1 and sampling improvement function discussed in theorem
5.2. Proofs of 5.1 and 5.2 theorems can be found on the
supplementary pages.

Theorem 5.1

The proposed symbols encoding Eg, generates minimum
possible variable-length codewords for alphabet symbols
via running series of sampling S, over encoding gener-
ator &(&;, m, fi,ac,a;,n). For S, > 1.

Theorem 5.2

The sampling improvement function f; for symbols
that are randomly picked by the encoding generator
& (8, m, fi,ac, a,n) is always assigns minimum possible
codewords for symbols as can be formatted by

VI. EXPERIMENTS AND RESULTS

In this section, we discuss the performance of FTP and
HTTP protocols in terms of transfer time and size using both
data-encoding schemes: standard and proposed with/out GZIP
and MFCompress compression algorithms for a variety of
genomic datasets. The genomic datasets examined through
standard and proposed encoding schemes are in FASTA format
[56]. FASTA file is a single sequence described by a title
line followed by one or more data lines. The title line begins
with a right-angle bracket followed by a label. The label ends
with the first white space character. Everything after that on
the first line is considered a comment. The data lines begin
right after the title line and contain the sequence characters
in order. Each data line, except the last, should be exactly 60
letters long, although many programs allow some flexibility
on that score. The examined genomic datasets were divided
into two groups: actual and simulated datasets. Actual datasets
were downloaded through two sources: National Center for
Biotechnology Information (NCBI) [57] and the University
of California Santa Cruz (UCSC) [58] websites, as shown
in Table III on page 8. Simulated datasets were generated
via our genome generator that controls symbol repetitions to
assess our encoding scheme, as can been seen in Table III on

page 8.

Protocols FTP, HTTP, and BitTorrent

Dataset Sizes 550MB (1) - 340GB (9)

A. Experimental setup

This paper compares the proposed CNN algorithm-based
content-encoding to the standard content-encoding of network
transfer protocols, such as HTTP, FTP, and BitTorrent. Several
datasets of sizes up to 430GB of FASTA files have been fed
into these implementations to validate our content-encoding.
The experiments were performed on machines that have spec-
ifications shown in Table IV on page 8.

B. Actual Datasets Results

This section discusses and evaluates the performance and
results of the proposed data minimization scheme, compared
to the standard encoding. Our experimental results of real
datasets are obtained through the transfer of the datasets
using FTP, HTTP, and BitTorrent protocols using standard and
proposed data-encoding schemes with/out two compression
algorithms:GZIP and MFCompress as shown in Figure 4 on
page 10, 5 on page 10, and 5 on page 10 and Tables V on
page 9, VI on page 9, VII on page 9, VIII on page 9, IX
on page 9, X on page 11.

In order to assess the effectiveness of this work, we com-
pared the genomic data size and transfer time of each dataset,
using both data-encoding schemes: standard and proposed.
The results show that the proposed method decreases data
sizes that need to be transferred quickly, and also illustrate
a corresponding decrease in the transfer time, as shown in
Figure 4 on page 10 and Tables V on page 9, VI on page 9,
VII on page 9, VIII on page 9, IX on page 9, and X on
page 11. For example, 1.20e+05 millisecond (ms) are required
to transfer a compressed 550MB dataset using the traditional
HTTP content-encoding with GZIP, 3.83e+04 ms via the FTP,
whereas 2.02e+03 ms are required to transfer the same file via
the DVLBE and 6.36e+05 ms over HTTP with MFCompress
algorithm. This rate of transfer is approximately 98 times faster
than HTTP standard-based, and about 95 times faster than FTP,
and 99-fold faster than HTTP-standard with MFCompress.
Also, the 30GB dataset was transferred in 7.20e+06 ms,
using the HTTP standard and GZIP-based, 6.312e+06 ms
by FTP standard and GZIP-based, 9.60e+07 HTTP FLBE-
MFCompress-based, whereas it took only 3.26e+05 ms to
transfer the file using HTTP proposed and GZIP-based. This
is about 95-fold faster than the standard content-encoding of
HTTP and FTP, without using compression algorithms, com-
pared to 99-fold faster than the standard content-encoding of

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Table V: Time acceleration comparisons of actual datasets in
(ms) without compression

Dataset HTTP FTP HTTP
standard-based standard-based proposed-based
1 1.44e+05 4.28e+04 2.24e+03
2 1.68e+05 7.12e+04 7.31e+03
3 6.10e+05 1.66e+05 1.11e+04
4 3.33e+06 1.24e+06 8.08e+04
5 5.11e+06 3.22e+06 1.98e+05
6 8.86e+06 7.58e+06 4.90e+05
7 1.44e+07 1.06e+07 7.77e+05
8 2.23e+07 1.30e+07 8.01e+05
9 1.03e+08 4.18e+07 8.22e+06

HTTP when using the compression algorithm of MFCompress.
Our results illustrate the performance of examined genomic
datasets that have sizes up to 340GB. The size reduction, when
using the proposed method, reaches to 96%, compared to the
standard content-encoding of HTTP and FTP when utilizing
compression algorithm of GZIP as shown in Figure 4 on
page 10. Tables V on page 9, VI on page 9, VII on page 9,
VIII on page 9 , IX on page 9, and X on page 11 that
provide more results about time acceleration and size reduction
of actual datasets over HTTP and FTP protocols using standard
and proposed content-encoding schemes with/out compression
algorithms (GZIP and MFCompress).

Moreover, we implemented a BitTorrent protocol that uses
the standard content-encoding scheme to compare the results
in terms of transfer time and size with HTTP that uses our
proposed encoding scheme. The results are shown in Figures
5 on page 10 and 6 on page 11 for a 1GB genomic dataset of
a FASTA format that was downloaded from the NCBI web-
site (Homo _sapiens. GRCH38.dna_sm__toplevel). The results
show that transfer time, when using a single computer (server)
equipped by HTTP that uses the proposed encoding method,
is almost similar to the transfer time when using 10 computers
in parallel, equipped by a BitTorrent protocol that utilizes
the standard content-encoding scheme. As expected, with the
increasing number of machines, the time to transfer decreases
sharply over BitTorrent. It can also be observed that 1 machine
using HTTP utilizes the proposed scheme and requires the
same time to transfer 1GB of the genomic dataset using 10
parallel machines over BitTorrent. This occurrence is due to
the massive reduction in size that can be attributed to our
encoding scheme. Also, note that employing HTTP equipped
by the proposed encoding mechanism illuminates the need to
use multiple machines in parallel and therefore reduces overall
costs.

C. Simulated Dataset Results

In this section, we discuss the performance of the transfer
protocols HTTP and FTP in terms of transfer time and
size when using standard and proposed encoding methods
during the transmission of simulated genomic datasets. We
implemented a genomic DNA generator to generate simulated
FASTA format genomic datasets.

Table VI: Time acceleration comparisons of actual datasets in
(ms) with compression

Dataset HTTP FTP HTTP HTTP
standard-GZIP standard-GZIP proposed-GZIP standard-MFCompress

1 1.20e+05 3.83e+04 2.02e+03 6.36e+05
2 1.20e+05 5.89e+04 4.57e+03 6.82e+05
3 4.21e+05 1.42e+05 5.85e+03 3.73e+06
4 2.52e+06 1.15e+06 4.25e+04 N/A

5 3.60e+06 2.78e+06 1.52e+05 3.75e+05
6 7.20e+06 6.32e+06 3.26e+05 9.60e+07
7 1.08e+07 8.62e+06 4.57e+05 2.24e+08
8 1.80e+07 1.05e+07 5.72e+05 2.46e+07
9 7.98e+07 3.24e+07 5.27e+06 1.74e+08

Table VII: Size reduction comparisons of actual datasets in
(KB) without compression

Dataset HTTP FTP HTTP
standard-based standard-based proposed-based
1 5.63e+05 5.63e+05 6.76e+04
2 6.39e+05 6.39e+05 9.59e+04
3 1.95e+06 1.95e+06 3.32e+05
4 1.11e+07 1.11e+07 1.45e+06
5 1.48e+07 1.48e+07 2.81e+06
6 3.05e+07 3.05e+07 4.58e+06
7 4.36e+07 4.36e+07 5.67e+06
8 4.53e+07 4.53e+07 7.25e+06
9 3.46e+08 3.46e+08 4.85e+07

Table VIII: Size reduction comparisons of actual datasets in
(K B) with compression (P refers to the proposed while S refers
to the standard encoding scheme)

Dataset HTTP FTP HTTP HTTP
S-GZIP S-GZIP P-GZIP S-MFCompress

1 3.94e+05 3.15e+05 1.69e+04 1.88e+05
2 3.96e+05 3.13e+05 6.64e+04 9.31e+04
3 1.35e+06 8.79e+05 8.78e+04 6.67e+05
4 6.24e+06 5.79e+06 7.96e+05 N/A

5 8.74e+06 6.22e+06 2.97e+06 2.34e+06
6 1.56e+07 1.34e+07 6.42e+06 5.39e+06
7 2.49e+07 1.79e+07 8.75e+06 6.47e+06
8 2.8le+07 2.31e+07 1.1le+07 9.08e+06
9 1.91e+08 1.63e+08 8.30e+07 6.96e+07

Table IX: Size reduction rates of actual datasets with compres-
sion (P refers to the proposed while S refers to the standard
encoding scheme)

Dataset HTTP HTTP HTTP vs FTP

P-GZIP vs S-GZIP P-GZIP vs S-MFCompress P-GZIP vs S-GZIP
1 96% 91% 95%
2 83% 29% 79%
3 93% 87% 90%
4 87% N/A% 86%
5 66% 127% 529%
6 59% 119% 52%
7 65% 135% 51%
8 61% 122% 52%
9 56% 119% 49%

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

108 109 10 108
43947108 ' '] ! 636" 10] 64637 10° 5.63-10° " 15440 10° 1
LN 7. J N R e . -
S 6| S . N
o 105 / 50 E R
_l 3,45.\10 | / B S _
2 K E / g 4l . B E 1| R
= g 4 A . o
3 \ £ ! 2 \ £
e \ 188.100 = / 250 \ | =
3 | e E ! 3 . £ b
5 : 2, ; I N Z 05) 42,840 B
4 s) S 5| \] = .
a8, S I R ; A2 . =
l\‘6 4// a0 2000 1 ;7 8| o
e _ - ~.
ol 6] I) | 5] of of
\ | ! \ , \ ! \ \ | ! \ \ !
HTTP FTP HTTP HTTP HTTP FTP HTTP HTTP HTTP FTP HTTP HTTP FTP HTTP
S+GZIP S+GZIP P+GZIP S+MFCompress S+GZIP S+GZIP P+GZIP S+MFCompress proposed proposed
(a) (b) (©) ()
-10°8 -10°8 -10° -10%
2{91%10° 1 ! 1.74710] 146" 10° 346 10° 03 10°
.. . L R - | e |
163, 10° 15| S 3| \ | N
=) N 2 / = Z 08} B
2 1s) 4 £ ! 2 " =
g N g F / 4 8 \ g 06| 4
z N = 98,107 / w2 X 1= N
b N 5 N . 5 N 5} 107
2 . Z . / Z . Z 04| R |
g af " 1 & osh ! 1 i . z
83,107 - 324107 ! 10 N | - R
el - N 02} . b
7269610 527410 4.85.10] 8:22.10f
o of ©] ® i
, \ , ! | \] | \ \ ! \ | C
HTTP FTP HTTP HTTP HTTP FTP HTTP HTTP HTTP FTP HTTP HTTP FTP HTTP
S+GZIP S+GZIP P+GZIP S+MFCompress S+GZIP S+GZIP P+GZIP S+MFCompress proposed proposed
(e) () (2) (h)
-10% -10 -10'° -10°
— : : — : : J T : S
08710 15422 37710 F51510°
0 | e i - -
. RIS . 8
IS 1 " 1N 1 .
— — AN — N — 6] N -
=) . A \ = \ A \
% 08| 1 £ N 2 4l 1 E \
3 g . 3 . 2,0 . |
3 0.6[N 1 &8 5 3 N B 8
g . E . £ .] .
a . & \ a N & \
041 3.39, 107 | 05} Y | 21 1.63- 101 2 : 7
1160 LR 1.09. 108
-~~~ 2.37-10] > 2,787 - L2110 o ____9.07~10]
ool | o1 | ‘ i | ol | ‘ ‘
HTTP FTP HTTP HTTP FTP HTTP HTTP FTP HTTP HTTP FTP HTTP
proposed proposed proposed proposed
(i) [©) (k) [0}

Figure 4: Transfer size and time of actual datasets 550MB and 340GB as defined in Table III on page 8 and generated
datasets 100MB and 50GB as defined in Table XI on page 11 over multiple transfer protocols: HTTP and FTP, standard
and proposed encoding schemes, with/out involving compression algorithms: GZIP and MFCompress. (a) Transfer size of
550MB with compression (b) Transfer time of SSOMB with compression (c) Transfer size of 550MB without compression (d)
Transfer time of S50MB without compression. (e) Transfer size of 340GB with compression (f) Transfer time of 340GB with
compression (g) Transfer size of 340GB without compression (h) Transfer time of 340GB without compression. (i) Transfer
size of 100MB without compression (j) Transfer time of 100MB without compression (k) Transfer size of S0GB without

compression (1) Transfer time of 50GB without compression

Server H .i q. ~. : ..i Q. ~.
H H
User V9268160 192.168.1.67 192168169 Tt 126160 192168167 192.168.1.69
1GB U Cliem2 Client7 Client 10 D w2 Client 7 Client 10
H User H
T 192168161 192.168.1.66 192168170 192.168.1.61 192.168.1.66 192168170
= | Internet N '

Client 3

=

=

i
i

Client 6 Clieat 3 Client 6 Client 11

i
i

: :
192.168.1.60 192.168.1.68 : 192.168.1.68 :
192.168.1.68 - . - . -
1GB \ Cliens Client 5 1GB \ Cliens Client 5 Client 12
26097 ms ! . 22912ms | . . .
| - S =
{ Lol .. ' LRG0zl IRGIT :

(a) Transfer time of 1GB genomic dataset

data minimization algorithm

Figure 5: Transfer time in millisecond of 1GB genomic dataset using a proposed

using multiple (1 - 12) machines in parallel.

We generated 18 FASTA datasets in different sizes and sym-
bol frequencies to assess the results of the proposed encoding
scheme, which works efficiently for more occurrence symbols,

(b) Transfer time of 1GB genomic dataset
using 1 machine that utilizes the proposed using 10 machines that utilizes the stan-
dard content-encoding algorithm

(c) Transfer time of 1GB genomic dataset
using 12 machines that utilizes the stan-
dard content-encoding algorithm

and a standard content-encoding schemes

as shown in Table XI on page 11. The genomic generator (GG)
runs in two different modes: auto and manually.

In the auto mode, the GG takes one input parameter

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Table X: Time acceleration rates of actual datasets with
compression (P refers to the proposed while S refers to the
standard encoding scheme)

Dataset HTTP HTTP HTTP vs FTP
P-GZIP vs S-GZIP P-GZIP vs S-MFCompress P-GZIP vs S-GZIP
1 98x 99x 95x
2 96x 99x 92
3 99x 99x 96x
4 98x N/A 96x
5 96x 99x 95x.
6 95x 99x 95x
7 96x 99x 95x
8 97x 08x 95x
9 93x 97x 84x
2 MsBT 140.85
3 MsBT
~ 4 MsBT
z
2
g 6 MsBT
Z
o
g 8 MsBT
=
2
2 10 MsBT 27
1 MNoBT 25.61
12 MsBT 2291

0 20 40 60 80 100 120

Transfer Time in Seconds

140 160

Figure 6: Transfer time in millisecond of 1GB genomic dataset
using the proposed data minimization algorithm using a single
machine and a standard content-encoding algorithm using
multiple (2 - 12) machines in parallel.

that represents the size of the dataset to be generated, and
then produces a genomic dataset with almost equal symbol
repetitions i.e. 25% each. In the manual mode, the GG takes
three input parameters: needed dataset size, symbol and needed
symbol repetition for this symbol and generates a genomic
dataset with required repetitions. The manual GG controls 1
symbol repetition only, and the rest are generated randomly at
different rates. To simplify our experiments, we generated 18
different genomic datasets at different symbol frequencies and
sizes up to SO0GB. For example, we generated a 10GB genomic
dataset in 3 different frequency rates that are 25%, 35%
and 50% for the symbol (A). Specifying symbol repetitions
verifies the performance of the proposed encoding method
of network transfer protocols for big genomic datasets, from
size and time perspectives. The first scenario assumes 25%
occurrence rate for each symbol in a dataset. The second
scenario assumes a 35% repetition rate for one symbol of a
dataset, and 65% occurrences for the 3 other symbols. The
third scenario assumes a 50% repetition for one symbol, while

Table XI: Generated FASTA files using a genomic generator

Number of DNA Symbols in each Dataset
A C G T A% C% G% T%

26843545 26843645 31808042 21878898 0.25% 025% 0.30% 0.20%
37580963 30868915 13425306 25498926 035% 028% 0.13% 0.24%
53687091 14786579 25675457 13224952 0.50% 0.14% 024% 0.12%
134217728 149129757 149112975 104410196 025% 0.28% 0.28% 0.19%
187904819 153550318 116324344 79091072 035% 029% 021% 0.15%
268435456 93792797 100263349 74378798 0.50% 0.17% 0.19% 0.14%
268435456 219637924 292809252 292858680 025% 021% 027% 027%
375809638 221793199 254370797 221767473 035% 020% 024% 021%
536870912 203878326 101922932 231068630 0.50% 0.19% 0.09% 0.22%
1342177280 1283854849 1517198501 1225475930 0.25% 0.24% 0.28% 0.23%
1879048192 1143192988 1203320398 1143143958 035% 021% 0.22% 0.22%
2684354560 723874757 1176284699 784189984 0.50% 0.13% 022% 0.15%
2684354560 2467876125 2338051024 3247131411 025% 023% 022% 0.30%
3758096384 2594087000 2532325440 1852902248 035% 0.24% 024% 0.17%
5368709120 894831061 2013252324 2460615495 0.50% 0.08% 0.19% 0.23%
13421772800 13421823505 14380428192 12463041103 0.25% 0.25% 027% 0.23%
18790481920 10550108277 9738567871 14607897292 0.35% 0.20% 0.18% 0.27%
26843545600 10949303940 7064179103 8830011357 0.50% 0.20% 0.14% 0.16%

Datasets

100M[25]
100M(35]
100M(50]
500M(25]
500M[35]
500M(50]
1G[25]
1G[35]
1GI50]
5G[25]
5G[35]
5G[50]
10G[25]
10G[35]
10G[50]
50G[25]
50G[35]
50G[50]

the 3 other symbols have different repetitions within 50%
of the dataset. The goals of the GG implementation are to
customize file sizes and occurrence rates. Also, the GG avoids
privacy violations to validate our content-encoding method,
in contrast to other possible approaches during big genomic
transferring. Note: A file of 25% of symbol (A) does not
necessarily mean the rest of the symbols have the same symbol
repetitions i.e. 25% for (C), 25% for (G), and 25% for (T),
they may vary.

D. Evaluation of Simulated Dataset Results

For more accuracy and further validation of the proposed
encoding scheme, we performed experiments on generated
genomic datasets, using our genome generator, as shown in
Table XI on page 11. In this section, we compare and discuss
the performance of HTTP and FTP using both encoding
schemes: standard and proposed, with/out involving compres-
sion algorithms (GZIP and MFCompress). Performance of the
proposed encoding method indicates better results than the
standard scheme, as shown in Tables XII on page 12 and
XIII on page 12.

Both compression algorithms: GZIP and MFCompress were
involved, along with our proposed encoding scheme over
HTTP protocol, while only GZIP was utilized for FTP protocol
implementation to validate our proposed scheme performance.
The results showed a significant improvement in terms of the
data size reduction and acceleration of transfer time when
using our encoding scheme by significantly minimizing dataset
sizes during the data transfer phase, as shown in Figure
4 on page 10 and Tables XII on page 12 and XIII on
page 12 compared to the standard encoding method. As
expected, the transfer time for genomic datasets is always
much shorter when using the proposed encoding scheme than
the standard one that is currently used to encode contents using
HTTP and FTP protocols. HTTP protocol shows a significant
enhancement of genomic data transfer time when using the
proposed encoding in contrast to the standard scheme, due
to symbol repetitions and continuous updates of the encoding
tree via utilizing the CNN algorithm. The proposed encod-
ing method works efficiently for datasets that include more
symbol repetitions. However, utilizing the CNN algorithm, as
illustrated in section V on page 7, needs more string reads

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

Table XII: Size reduction comparisons of simulated datasets
in (kB)

Table XIII: Time acceleration comparisons of simulated
datasets in (m.s)

Dataset HTTP FTP HTTP HTTP vs HTTP HTTP vs FTP Dataset HTTP FTP HTTP HTTP vs HTTP HTTP vs FTP
Stand. + GZIP Stand. + GZIP Propo. + GZIP Propo. vs Stand. ~ Propo. vs Stand. Stand. + GZIP Stand. + GZIP Propo. + GZIP Propo. vs Stand. ~ Propo. vs Stand.
100MB[25] 1.078e+08 1.078e+08 2.906e+07 73% 73% 100MB[25] 2.277e+04 1.265e+04 3.249e+03 7.01x 3.89x
100MB[35] 1.075e+08 1.075e+08 2.703e+07 75% 75% 100MB[35] 1.997e+04 8.681e+03 2.710e+03 7.37x 3.20x
100MB[50] 1.077e+08 1.077e+08 2.367e+07 78% 78% 100MB[50] 1.542e+04 9.639e+03 2.787e+03 5.53x 3.46x
500MB[25] 5.369e+08 5.369e+08 1.473e+08 73% 13% 500MB[25] 9.534e+04 5.417e+04 1.133e+04 8.41x 4.78x
500MB(35] 5.372e+08 5.372e+08 1.352e+08 75% 75% 500MB(35] 8.502e+04 4.383e+04 1.049¢+04 8.11x 4.18x
500MB[50] 5.369e+08 5.369e+08 1.217e+08 T7% T7% 500MB[50] 7.595e+04 5.238e+04 9.205e+03 8.25x 5.69x
1GB[25] 1.074e+09 1.074e+09 2.928e+08 73% 73% 1GB[25] 1.881e+05 8.956e+04 1.837e+04 10.24x 4.87x
1GBJ[35] 1.074e+09 1.074e+09 2.769e+08 T4% T4% 1GBJ[35] 1.665e+05 6.938e+04 1.858e+04 8.96x 3.73x
1GB[50] 1.074e+09 1.074e+09 2.430e+08 71% 7% 1GB[50] 1.289e+05 6.894e+04 1.731e+04 7.45x 3.98x
5GB[25] 5.369e+09 5.369e+09 1.466e+09 73% T3% 5GB[25] 9.830e+05 5.922e+05 1.152e+05 8.53x 5.14x
5GB[35] 5.369¢+09 5.369e+09 1.393e+09 74% 74% 5GB[35] 8.448e+05 3.840e+05 9.681e+04 8.73x 3.97x
5GB[50] 5.369e+09 5.369e+09 1.195e+09 T7% T7% 5GB[50] 6.662e+05 2.221e+05 7.688e+04 8.67x 2.89x
10GB[25] 1.074e+10 1.074e+10 2.922e+09 73% 73% 10GB[25] 1.881e+06 6.967e+05 1.716e+05 10.96x 4.06x
10GBJ[35] 1.074e+10 1.074e+10 2.763e+09 T4% T4% 10GBJ[35] 1.670e+06 8.433e+05 1.902e+05 8.78x 4.43x
10GB[50] 1.074e+10 1.074e+10 2.433e+09 71% 7% 10GB[50] 1.367e+06 4.712e+05 1.787e+05 7.65x 2.64x
50GB[25] 5.369e+10 5.369e+10 1.486e+10 72% 72% 50GB[25] 1.005e+07 4.189e+06 1.149e+06 8.75x 3.64x
50GB[35] 5.369e+10 5.369e+10 1.412e+10 74% 74% 50GB([35] 8.793e+06 4.677e+06 1.073e+06 8.19x 4.36x
50GB[50] 5.369e+10 5.369e+10 1.205e+10 78% 78% 50GB[50] 7.511e+06 3.266e+06 9.066e+05 8.29x 3.60x

as samples, as well as additional time to update the encoding
tree to ensure the assignment of the shortest codewords to
the most repetition letters. The proposed encoding scheme
is designed in a way that encodes datasets in the minimum
possible binary codewords. Therefore, the proposed method
minimizes datasets significantly during the transfer process
due to including more symbols repetitions after applying a
CNN mechanism, as illustrated in section V on page 7. For
example, the first experiment spent 2.28e+04 ms to transfer
the 100M dataset with 25% frequency for the symbol A using
standard encoding over HTTP, 1.27e+04 ms via the FTP,
compared to 3.25e+03 ms to transfer the same file via the
proposed scheme with 7-fold faster than standard encoding.

The proposed encoding is impacted by two factors: the
number and repetitions of the symbols of genomic datasets.
Therefore, utilizing our encoding scheme that relies on the
CNN algorithm provides a better performance for big genomic
datasets. Also, the proposed content-encoding method presents
an ideal solution to transfer all genomic datasets that contain
different symbol repetitions with an average acceleration of 99-
fold, compared to the traditional HTTP. The time acceleration
and size reduction for all FASTA files in Table XI on page 11
using all mentioned encoding schemes are summarized in
Figure 4 on page 10 and Tables XII on page 12 and
XIII on page 12. This encoding scheme, when compared to
a standard scheme, features improved reliability, scalability,
performance and security. The reliability factor is evidenced
in its ability to use both encoding (genomics and universal)
schemes when assigning a codeword for each symbol. The
scalability feature is present by enabling the protocol to update
the binary representation of each alphabet symbol according
to the deep learning mechanisms, as illustrated in section V on
page 7. This encoding scheme indicates better performance via
reducing the dataset during the data transfer phase, which, in
turn, reduces the network traffic. The security of this scheme
stems from changing the binary representations to each single
character of the alphabet several times for the same dataset in
a single transfer session.

VII. CoNcLUSION

In this paper, we implemented a novel deep learning-
based data minimization algorithm to integrate with transfer
protocols to reduce the size of big genomic datasets during
the transfer phase, and then to transfer the data securely
in less time. The implementation results illustrate that the
proposed data minimization algorithm is capable of reducing
the transfer time 99-fold, compared to the standard content-
encoding of HTTP, and 96-fold compared to FTP on tested
datasets. We used GZIP and MFCompress algorithms as
optional compression algorithms, in addition to our data
minimization algorithm to assess how the transfer protocol
behaves in terms of transfer time and size. Also, we showed
that our data minimization algorithm provides the best size
reduction, reduces transfer time, and securely transfers big
genomic datasets. Our proposed data minimization mechanism
relies on a deep learning-based method, while encoding the
data during data transfer, and then transfers the data securely
in a shortened time, as illustrated in section V on page 7. We
demonstrated that the data size can be significantly reduced
by our adaptive encoding, compared to a standard content-
encoding scheme, with and without compression algorithms,
as well. Also, we implemented a genomic dataset generator
of a FASTA file format to verify the performance of our
current data minimization scheme and then compared it to the
standard, as well as our previous content-encoding schemes.
Our proposed genome generator allowed us to control the
repetition in the data, which was instrumental in assessing the
performance of our data minimization algorithm. The tested
encoding schemes, standard and proposed, were implemented
over HTTP, FTP and BitTorrent protocols, with/out involving
compression algorithms. Our experiments indicated that uti-
lizing a CNN-based content-encoding scheme performs much
better than the current and common use of the transfer protocol
content-encoding scheme by assigning short codewords for
the dataset characters. We conclude that the proposed data
minimization algorithm provides the best performance among
current content-encoding approaches for big genomic datasets.

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

ACKNOWLEDGMENT

The authors thank Dr. Todd Barkman, a professor in the
Department of Biological Sciences at Western Michigan Uni-
versity for his valued feedback and comments. This work was
supported in part by grants US National Science Foundation
CRII CCF-1464268 and US National Science Foundation
CAREER ACI-1651724. The authors would like to thank the
members of the Parallel Computing and Data Science (PCDS)
lab at Western Michigan University for their valuable input
while in the process of developing this paper.

[1]

[3]

[4]
[5]
[6]
[7]
[8]
[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. Mora, D. P. Tittensor, S. Adl, A. G. Simpson, and B. Worm, “How
many species are there on earth and in the ocean?”” PLoS biology, vol. 9,
no. 8, p. e1001127, 2011.

F. S. Collins and H. Varmus, “A new initiative on precision medicine,”
New England Journal of Medicine, vol. 372, no. 9, pp. 793-795, 2015.
T. C. Carter and M. M. He, “Challenges of identifying clinically
actionable genetic variants for precision medicine,” Journal of healthcare
engineering, vol. 2016, 2016.

N. Drake et al., “Cloud computing beckons scientists.” Nature, vol. 509,
no. 7502, pp. 543-544, 2014.

R. Spencer, “The square kilometre array: The ultimate challenge for
processing big data,” in Data Analytics 2013: Deriving Intelligence and
Value from Big Data, IET Seminar on. IET, 2013, pp. 1-26.

M. Schatz, “The next 20 years of genome research,” bioRxiv, p. 020289,
2015.

Census, “World population.”

J. Hadfield and N. Loman, “Next generation genomics: world map of
high-throughput sequencers,” 2014.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol-http/1.1,” Internet
Engineering Task Force (IETF), Tech. Rep., 1999.

J. Postel and J. Reynolds, “File transfer protocol,” The Internet Engi-
neering Task Force, 1985.

S. Deorowicz and S. Grabowski, “Compression of dna sequence reads
in fastq format,” Bioinformatics, vol. 27, no. 6, pp. 860-862, 2011.

A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone, “Large-scale
compression of genomic sequence databases with the burrows—wheeler
transform,” Bioinformatics, vol. 28, no. 11, pp. 1415-1419, 2012.

S. W. Hodson, S. W. Poole, T. M. Ruwart, and B. W. Settlemyer,
“Moving large data sets over high-performance long distance networks,”
Citeseer, Tech. Rep., 2011.

N. I. of Health et al., “An overview of the human genome project,”
2005.

R. A. Gibbs, J. W. Belmont, P. Hardenbol, T. D. Willis, F. Yu, H. Yang,
L.-Y. Ch’ang, W. Huang, B. Liu, Y. Shen er al., “The international
hapmap project,” 2003.

W. S. Bush and J. H. Moore, “Genome-wide association studies,” PLoS
computational biology, vol. 8, no. 12, p. e1002822, 2012.

M. D. Mailman, M. Feolo, Y. Jin, M. Kimura, K. Tryka, R. Bagoutdinov,
L. Hao, A. Kiang, J. Paschall, L. Phan et al., “The ncbi dbgap database
of genotypes and phenotypes,” Nature genetics, vol. 39, no. 10, pp.
1181-1186, 2007.

J. Kaye, C. Heeney, N. Hawkins, J. De Vries, and P. Boddington, “Data
sharing in genomics—re-shaping scientific practice,” Nature reviews.
Genetics, vol. 10, no. 5, p. 331, 2009.

K. Holtman and A. Mutz, “Transparent content negotiation in http,”
Internet Engineering Task Force (IETF), Tech. Rep., 1998.

J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for http,” in ACM
SIGCOMM Computer Communication Review, vol. 27, no. 4. ACM,
1997, pp. 181-194.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347-2376, Fourthquarter 2015.

M. Aledhari and F. Saeed, “Design and implementation of network
transfer protocol for big genomic data,” IEEE 4th International Congress
on Big Data (BigData Congress 2015), June 2015.

(23]

[24]

[25]
[26]
[27]

(28]
[29]

[30]

[31]

[32]
(33]

[34]

[35]
[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

M. Aledhari, M. Hefeida, and F. Saeed, Wired/Wireless Internet Com-
munications: 14th International Conference, WWIC 2016, Thessaloniki,
Greece, May 25-27, 2016, Revised Selected Papers. Springer Inter-
national Publishing, 2016, ch. A Variable-Length Network Encoding
Protocol for Big Genomic Data.

S. Pichai and L. Upson, “Introducing the google chrome os,” The Official
Google Blog, vol. 7, 2009.

Apple. Safari 3.1: Product overview. Apple.

S. J. Davis and K. M. Murphy, “A competitive perspective on internet
explorer,” American Economic Review, pp. 184-187, 2000.

M. Diaz, G. Juan, O. Lucas, and A. Ryuga, “Big data on the internet
of things,” in 2012 Sixth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, 2012, pp. 978-0.

B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, 2003, pp. 68-72.

J. Postel, “Transmission control protocol,” The Internet Engineering Task
Force, 1981.

A. Ng, P. Greenfield, and S. Chen, “A study of the impact of compression
and binary encoding on soap performance,” in Proceedings of the
Sixth Australasian Workshop on Software and System Architectures
(AWSA2005). Citeseer, 2005, pp. 46-56.

C. Wilks, M. S. Cline, E. Weiler, M. Diehkans, B. Craft, C. Martin,
D. Murphy, H. Pierce, J. Black, D. Nelson et al., “The cancer genomics
hub (cghub): overcoming cancer through the power of torrential data,”
Database: The Journal of Biological Databases and Curation., vol.
2014, no. bau093, 2014.

B. Cohen, “Bittorrent-a new p2p app,” Yahoo eGroups, 2001.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM transactions on networking, vol. 1, no. 3, pp.
344-357, 1993.

Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion con-
trol in named data networking—a survey,” Computer Communications,
vol. 86, pp. 1-11, 2016.

(2017). [Online]. Available: https://www.internet2.edu/about-us/

Y. Rathore, M. K. Ahirwar, and R. Pandey, “A brief study of data
compression algorithms,” International Journal of Computer Science
and Information Security, vol. 11, no. 10, p. 86, 2013.

L. P. Deutsch, “Deflate compressed data format specification version
1.3, The Internet Engineering Task Force, 1996.

J. Seward, “Bzip2 and libbzip2: a program and library for data com-
pression,” htpp://sources. redhat. com/bzip2, 1998.

L. J. Krakauer and L. Baxter, “Method of fixed-length binary encoding
and decoding and apparatus for same,” Apr. 4 1989, uS Patent 4,818,969.
E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,” Bell
System Technical Journal, vol. 38, no. 4, pp. 933-967, 1959.

S. Grumbach and F. Tahi, “A new challenge for compression algo-
rithms: genetic sequences,” Information Processing & Management,
vol. 30, no. 6, pp. 875-886, 1994.

L. Chen, S. Lu, and J. Ram, “Compressed pattern matching in dna
sequences,” in Computational Systems Bioinformatics Conference, 2004.
CSB 2004. Proceedings. 2004 IEEE. 1EEE, 2004, pp. 62—68.

N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,”
Proceedings of the IEEE, vol. 88, no. 11, pp. 1722-1732, 2000.

Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa,
“A boyer-moore type algorithm for compressed pattern matching,” in
CPM. Springer, 2000, pp. 181-194.

D. Salomon and G. Motta, Handbook of data compression.
Science & Business Media, 2010.

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337-343, 1977.

J. Cleary and 1. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE transactions on Communications, vol. 32,
no. 4, pp. 396-402, 1984.

M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple statistical
algorithm for biological sequence compression,” in Data Compression
Conference, 2007. DCC’07. 1EEE, 2007, pp. 43-52.

D. A. Huffman et al., “A method for the construction of minimum
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098—
1101, 1952.

M. Effros, K. Visweswariah, S. R. Kulkarni, and S. Verdd, ‘“Universal
lossless source coding with the burrows wheeler transform,” [EEE
Transactions on Information Theory, vol. 48, no. 5, pp. 1061-1081,
2002.

M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” 1994.

Springer

https://www.internet2.edu/about-us/

IEEE TRANSACTIONS ON BIG DATA, DECEMBER 2017

[52]

[53]

[54]

[55]

[56]

[57]
[58]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Computer vision and pattern recognition, 2006 IEEE computer society
conference on, vol. 2. 1EEE, 2006, pp. 2169-2178.

R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G.
Higgins, and J. D. Thompson, “Multiple sequence alignment with the
clustal series of programs,” Nucleic acids research, vol. 31, no. 13, pp.
3497-3500, 2003.

(2015, 12). [Online]. Available: http://www.ncbi.nlm.nih.gov

(2015, 12). [Online]. Available: http://www.ucsc.edu

http://www.ncbi.nlm.nih.gov
http://www.ucsc.edu

	Introduction
	Research Problem
	Purpose of the Study
	Audience
	Contribution
	Motivation
	Paper Goals and Organization

	Related Work
	Techniques Used in the Study
	Data-Encoding Approaches
	Naive Bit Encoding
	Dictionary-based/Substitutional Encoding
	Statistical/Entropy Encoding
	Referential/Reference-based Encoding
	Hybrid Encoding

	Proposed Method
	Convolutional Neural Network
	Convolution Layers
	Pooling Layers
	Normalization Layers
	Fully Connected Layers

	Heuristic Model
	Experiments and Results
	Experimental setup
	Actual Datasets Results
	Simulated Dataset Results
	Evaluation of Simulated Dataset Results

	Conclusion
	References

