A Fourier-Based Data Minimization Algorithm for
Fast and Secure Transfer of Big Genomic Datasets

Mohammed Aledhari*, Marianne Di Pierro’, and Fahad Saeed*
*Department of Computer Science
Western Michigan University, Kalamazoo, MI, 49008-5466,
Correspondence should be addressed to Mohammed Aledhari at mohammed.aledhari @wmich.edu
T Graduate College
Western Michigan University, Kalamazoo, MI, 49008-5466

Abstract—DNA sequencing plays an important role in the
bioinformatics research community. DNA sequencing is impor-
tant to all organisms, especially to humans and from multiple
perspectives. These include understanding the correlation of
specific mutations that plays a significant role in increasing
or decreasing the risks of developing a disease or condition,
or finding the implications and connections between the geno-
type and the phenotype. Advancements in the high-throughput
sequencing techniques, tools, and equipment, have helped to
generate big genomic datasets due to the tremendous decrease in
the DNA sequence costs. However, the advancements have posed
great challenges to genomic data storage, analysis, and transfer.
Accessing, manipulating, and sharing the generated big genomic
datasets present major challenges in terms of time and size, as
well as privacy. Data size plays an important role in addressing
these challenges. Accordingly, data minimization techniques have
recently attracted much interest in the bioinformatics research
community. Therefore, it is critical to develop new ways to
minimize the data size. This paper presents a new real-time
data minimization mechanism of big genomic datasets to shorten
the transfer time in a more secure manner, despite the potential
occurrence of a data breach. Our method involves the application
of the random sampling of Fourier transform theory to the real-
time generated big genomic datasets of both formats: FASTA and
FASTQ and assigns the lowest possible codeword to the most
frequent characters of the datasets. Our results indicate that the
proposed data minimization algorithm is up to 79% of FASTA
datasets’ size reduction, with 98-fold faster and more secure than
the standard data-encoding method. Also, the results show up to
45% of FASTQ datasets’ size reduction with 57-fold faster than
the standard data-encoding approach. Based on our results, we
conclude that the proposed data minimization algorithm provides
the best performance among current data-encoding approaches
for big real-time generated genomic datasets.

1. INTRODUCTION

DNA sequencing is needed in the most critical areas
such as criminal investigations, genotyping and determina-
tion of disease-relevant genes or agents causing diseases,
mutation analysis, screening of single nucleotide polymor-
phisms (SNPs), detection of chromosome abnormalities [1],
and to identify disease- and/or drug-associated genetic vari-
ants to advance precision medicine [2] [3]. Also, the use
of high-throughput DNA sequencing instruments, such as
next-generation sequencing (NGS) technologies that include
whole-genome sequencing (WGS) and whole-exome sequenc-
ing (WES), significantly decreases the sequencing costs and

enables the genomic datasets to join the big data club. Those
instruments became big data generators, not only for big
biology centers, but also for small biology laboratories and
researchers.

Also, many genome related projects, such as the 1000-
Genomes project [4] and the international cancer sequencing
consortium [5], suggest using the cloud as an infrastructure to
solve the store and analysis challenges [6], [7], [8]. However,
the transfer and share of the genomic datasets between biolog-
ical laboratories and from/to the cloud represents an ongoing
bottleneck because of the amount of data and the limitations of
the network bandwidth [9]. Therefore, transfer challenges can
be solved by either increasing the bandwidth or minimizing the
data size during the transfer phase. These elements represent
our contributions to the research and are the focus of this

paper.
A. Contribution

This paper discusses the design and implementation of a
novel data minimization algorithm for the real-time generated
big genomic datasets that relies on a combination of the
random sampling of Fourier transform [10] and variable-length
binary-encoding [11]. This work aims to minimize and secure
big genomic datasets during the data transfer phase over the
networks, either via wire or wireless. We assert that creating
a new minimization mechanism for big genomic datasets can
significantly shorten the transfer time and secure the data at the
same time by changing the data-encoding of the datasets multi-
ple times during the transfer phase. Consequently, the transfer
time will decrease tremendously, in addition to protecting the
data against a potential breach by changing the codewords of
the genomic symbols frequently. Therefore, we can ensure that
the data will transfer faster and in a more secure way. This
paper represents an extension of our previous research papers
in [12], [13], and [14].

B. Motivation

It is not a minor challenge to transfer big data like genomic
datasets faster than the current tool allow. This is because all
data transfer protocols, such as Hyper Text Transfer Protocol
(HTTP) [15] and File Transfer Protocol (FTP) [16], use the
standard content-encoding schemes, such as the American

Standard Code for Information Interchange (ASCII) [17]. Yet,
the decrease in the costs of DNA sequencing due to the
advancement of the DNA sequence techniques and equipment,
encourages biologists to extend their research and produce
increasingly greater numbers of genomic datasets that need
to be manipulated and transferred between various biology
laboratories. Such uses for DNA sequencing data include
critical areas such as criminal investigations, genotyping and
determination of disease-relevant genes or agents causing
diseases, mutation analysis, screening of single nucleotide
poly-morphisms (SNPs), and detection of chromosome ab-
normalities [18]. As a result, there is a high demand to
transfer and share data faster than the current transfer time.
However, shortening the transfer time of big datasets is com-
plicated because all Internet browsers use the standard content-
encoding schemes in terms of symbol lengths, such as 8-bit,
9-bit, 16-bit, 32-bit codewords. Data minimization and privacy
are also very important to both users and service providers,
especially for remote healthcare services. Many solutions, such
as the cloud, have been developed to address the challenges
of remote diagnostic devices. Yet, data minimization and
privacy challenges have not been addressed at the same level,
mainly due to compatibility issues. As a result, scientists are
motivated to navigate and search for new methods to transfer
big genomic data more efficiently and in a fully secured
environment. Current data transfer protocols are not suitable
for the increased growth of big data and cloud-based services
such as remote healthcare diagnostics due to the use of transfer
protocols that belong to different vendors. Observing these
facts, we take advantage of the nature of the genomic symbols
to implement a more efficient content-encoding algorithm to
minimize the data amount during the transfer phase.

C. Paper Goals and Organization

The purpose of this paper is to design and implement a novel
data minimization algorithm to decrease the required time to
transfer big genomic datasets over networks. In addition, we
increased security in the event of a data breach. Moreover,
it will introduce a generic concept that can be used by other
limited symbols alphabet of the cloud-based applications to
secure data that exchange remotely. The contributions of this
paper are outlined as follows:

« Summarizes the data minimization and data encoding
methods with quick fundamentals, sans the need to search
through the details presented in the standards’ specifica-
tions.

« Provides an overview of the challenges of the big ge-
nomic datasets in terms of transfer time with extra
protection if data breach occurs.

« Presents the need for better data minimization techniques
to provide faster data transfer, especially cloud-based
services.

The remainder of this paper is organized as follows: Section II
presents preliminaries in terms of data minimization methods.
Section III discusses the model description and formulation.

Section IV presents the experiments and results of the pro-
posed data minimization algorithm. Section V presents our
conclusions.

II. PRELIMINARIES

Data minimization can be divided into five main mecha-
nisms as follows:

A. Naive Bit Encoding

This approach works by assigning fixed-length code-
word/binary representation to each alphabet symbol in a way
that represents more than a single symbol in a single byte,
such as 2-bit length to genomic symbols [19] and [20], as
shown in Figure 1-(a) on page 3.

B. Dictionary-based/Substitutional Encoding

This approach stores different patterns of the input symbols
in a dictionary or a database, along with their codewords, and
then replaces the new input parts with predefined portions [21]
and [22], such as in 1977-78 Ziv and Lempel (LZ-77) [23] and
[24], as shown in Figure 1-(b) on page 3. LZ-77 algorithm
works by replacing the repeated occurrences of symbols with
their references that indicate length and location of that string,
which occurred before, and which can be presented in the tuple
(offset, length, symbol).

C. Statistical/Entropy Encoding

This approach works by statistics, prediction, and a proba-
bilistic model from the input [25] and [26], such as Huffman’s
coding [23] and [27], as shown in Figure 1-(c) on page 3.
Huffman’s coding, introduced in 1952, is a statistical method
that assigns a fixed-length codeword/binary representation to
alphabet symbols, such as 2-bit, 3-bit, 8-bit, etc. The code-
words will have different lengths, and the lowest frequency
symbols will be assigned with the longest codewords and vice
versa.

D. Referential/Reference-based Encoding

This approach is similar to a dictionary-based technique,
except that it uses the pointer to the internal and external
references, as shown in Figure 1-(d) on page 3.

E. Hybrid Encoding

This approach works by combining two or more encod-
ing methods. For example, The Burrows-Wheeler transform
(BWT) [28] [23] and [29], is one of the hybrid encoding
methods, especially popular in bioinformatics, used for data
minimization. The BWT method works by permuting the
input sequence in a way that symbols are grouped by their
neighborhood. Our proposed data minimization algorithm can
be classified as a hybrid encoding method by incorporating
elements of the standard (8-bit) and the statistical encoding
methods (variation of 1 - 3 bits.

Naive Bit Codewords
A= 00
C=01
G=10
T=11

wf/_\

|/\|A|A|G|G

Dictionary-based Codewords

C|A|/\|A|/\|T|A| |A|/\|A|G|G
—

clafafafafr]a]
v
L« [s | ¢

v
|7 |
H—/

|00|00|00|10|10|01|00|00|00|00|11|00| | 1
%{_/%(_%_J

(a) Naive Bit-based Encoding (b) Dictionary-based Encoding

Statistical-based Codewords

clafafafafr]4]
—

v A4 v
(0,6)

DONOOENNNNGEEE =

|0|0|0|10|10|110|0|0|0|0|111|0|
—

(c) Statistical-based Encoding (d) Reference-based Encoding

Figure 1: Data-encoding methods

Accumulator Encoder

10101010101 1"\
_\ooot100010...
A

Figure 2: The Proposed Encoding System Framework

III. MobpEL DESCRIPTION AND FORMULATION
A. Model description

This subsection presents our implementation of data min-
imization algorithm for the generation of big real-time ge-
nomic DNA datasets using DNA-sequencing equipment such
as NGS. The generated datasets can have many formats, but
the common ones are FASTA [30] and FASTQ [31] formats, as
illustrated in Figure 3 on page 3. This work has been done to
minimize the size of big genomic datasets and then shorten the
transfer time. Also, this work adds an extra security layer via
changing the symbol codewords several times for each dataset
during the transfer phase. This model ensures the assignment
of the lowest possible codewords for more symbol occurrences
via dividing the datasets into parts based on time and by
utilizing a random sampling of Fourier transform theory, as

One line starting with a ">" sign, followed by a sequence identification code

GACCTTCTCCTCCTGOAATAMACCTCACCCATG

Figure 3: The FASTA and FASTQ format components

illustrated in Figure 2 on page 3. Two encoding schemes
are used in this model: standard and modified. The standard
one uses the dataset headers and non-DNA symbols in the
dataset bodies. The modified encoding scheme starts with an
initial codeword, and then updates frequently via running a
time-based sampling using a Fourier transform theory. The
initial codewords of the proposed encoding codewords, such
as those shown in Figure 1 (c) on page 3, periodically updates
codewords via random sample of Fourier theory, as illustrated
in Figure 2 on page 3. The data-encoding switches between
the standard and proposed ones by sending 25-byte of 1’s
from the sender to the receiver, indicating that the alternative
codewords will be used from this point on, and continuously,
until receiving another data-encoding scheme. Therefore, this
model encodes the contents using two main codeword tables:
fixed and variable (changes many times), as shown in Figure 2
on page 3. The proposed data-encoding scheme of the genomic
dataset benefits from being in the alphabet that can be encoded
in four unique decipherable codewords, i.e. [0, 11, 100, 101]
or simply [0, 3, 4, 5]. The result of the sampling phase adds to
the encoding accumulator in an array form, and then calculates
symbol repetitions and creates the new encoding tree that is
used in the data-encoding phase. We utilize a binary tree as
a structure to represent our genomic data-encoding because
it is faster to search, avoids duplicate values, and facilitates
decoding at the receiver side. Also, the use of a binary tree,
as a structure, gives the programmer special flexibility because
it offers one of the two paths to follow and cuts the search
time in half, thereby increasing process throughput.

B. Problem formulation

We are using the random sampling of Fourier transform
theory to update the content-encoding tree for big genomic
symbols. Accordingly, we need to find the best representation
of Fourier i,y 0of X complex exponential terms to approximate
i for a given a moment i € CV. The fast Fourier transform

(FFT) can be applied to find the i within X largest terms.
Fourier representation i* can be found by sampling a subset
7 C [0, N — 1] of i according to [32] as follows:

lli = ill3 < (1 + &lli = ipestll3 6]

the € refers to the error bound. Applying independent Bernoulli
trials on the set [0, N - 1] with a fixed probability to set the T
We can find the amount of the sampling rate by employing i
in the [33] as follows:

X-1

1
Z Q ciomoniV , W C[O,N—1]. 2)
x=0

VN
That can be written in an array form such as i = Fe, for the
discrete Fourier transform (DFT) array F, the elements of the
DFT can be found using the formula F,,, = —=e/>/N ¢, t =
0,...,N — 1, and @ only X non-zero values in the regular
repetitions w,. The goal is to recover @ from the random
samples of i. The sampling pool generator 7 is the Fourier
random sampling theory. The generated elements M of the
sampling pool 7. Therefore, we can obtain each sample cycle
through the M/N or discarded with probability 1 — M/N. The
sparse vector @ of time slots can be conducting with high
probability if M = O(Xlog*N) [34] that utilizes geometric
probability distributions. This paper applies the Fourier ran-
dom sampling to generate updated encoding tree of genomic
datasets to minimize the data size during transfer phase. Also,
we do a continue randomize of sampling intervals using the
following theories [35] [36] [37] [38] [39] . Then the random
interval sampling s(¢) is defined as

i[n] =

00

s = =1, 3)
The random operation i(f) can be sampled using s(f) can be
written as y(¢) = i(¢)s(¢). If ¢, is independent from i(¢), then

D,(f) = Oi(f) * s(f)s “4)

where ©,(f), ©;(f), and ®,(f) are the power spectral densities
(PSD) of y(1), i(r) and s(z), respectively. When ¢, = nT,
1 < n
O.(f) = Zm 5(f = 7). (5)
Therefore, the periodic sampling of the encoding tree of the
genomics alphabet ®,(f) can use [36] to obtain the following
theorem.

Theorem 3.1

Let’s assume the S is the average of the sampling
cycles, we can find 1/E[t,], where 7, refers to the
independently and identically distributed (i.i.d) intervals
between samples. If the characteristic function of 7, is

Y. (f), then

(6)

o) =/m{1 +wn<2nf>}.

1 =y, 2rf)

Since ¥, (0) = 1, Phiy(f) will have value f = 0.
The sampling time 7, can be found using the collective
random sampling (CRS) in the following equation

Iy =1Tx1+ Ty (N

applying the exponential distribution ~ Exp(1) to the i.i.d
interval 7,, we can get the following equation

D,(f) = 26(f) + A. (8)

When 7, is uniformly distributed 7, ~ Uniform[a, b],

P(pinb=ann)y 40
(Ds(f) _ (2P z(b,a)ﬂf) (Cl)ﬂ'f f i (9)
=3)°60(f) f=0
where P(r,0) is a Poisson kernel defined as:
1= 2
P(r,6) = - (10)

1-2rcos@+r?’

Moreover, Implementing periodically sampling is not a minor
challenge because the sampling intervals are usually divided
into fixed time slots determined mostly by the CPU clock
speed. Therefore, we can use rounding up A to specify the
sampling intervals 77 such that:

™ =nAifn—-1DA <1, <nA, neQ,

(1)

where Q refers to the adequate integers that can be used. For
instance, we can get the Q = 1, 2,... when the the exponential
distribution is used to the 74. Whereas, the Q = {1,2, ..., L%J}
in case of using the uniform distribution in [0, T] to the 7.
The time slots of the sampling of 7, can be found via their
characteristic function ¢, (f). Accordingly, we ensure that the
@,(f) becomes periodic synchronizing to the periodicity of the
%. Consequently, we can ensure getting the best possible time
slots of sampling rates only if i(#) place within [—5k, 5] limits.
In other words, we can obtain the best possible encoding tree
with minimum sampling intervals that includes the highest
frequency of genomics symbols.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the size and transfer time of
the simulated big genomic datasets by using the proposed and
standard data-encoding schemes over HTTP. The examined
datasets in both formats, FASTA and FASTQ, were generated
via our simulated NGS generator, as can been seen in Tables II
on page 5 and III on page 6.

A. Experimental setup

This paper applies the proposed and standard data-encoding
schemes during transfer of big genomic datasets using HTTP.
Several sizes of genomic datasets in both formats, FASTA and
FASTQ, were generated using our NGS simulation and tested
up to 1TB to validate our data-encoding. The experiments were
performed on machines that have specifications shown in Table
I on page 5.

Table I: Experimental setup

Specifications Details
Processor 2.4 GHz Intel Core i7
Memory 8 GB 1600 MHz DDR3
Graphics Intel HD Graphics 4000 1024 MB
Operating System Windows 8.1 Pro
Download 87 Mb/s
Upload 40 Mb/s
Programming Language C# Net
Used Protocol HTTP

Dataset Sizes 1GB,5GB,10GB,20GB,50GB,100GB,200GB,400GB,500GB,1TB

B. Experimental Results

Our experimental results of big genomic datasets are shown

in Tables II on page 5, III on page 6, IV on page 6, and
V on page 6, and Figures 4 on page 5, 5 on page 5, 6 on
page 6, and 7 on page 6.
In order to assess the effectiveness of our proposed data
minimization method, several genomic dataset sizes were
tested using both data-encoding methods: propose and stan-
dard during transfer using HTTP. The results show that the
propose method significantly decreases the dataset sizes, and
then shortens the transfer time, as shown in Tables and Figures.
For example, the original 1GB dataset in FASTA format
was minimized to 293393 KB using the proposed method
during transfer phase in contrast to 1048576 KB using the
standard encoding method with about 72% size reduction.
Consequently, the transfer time was 5255 milliseconds (ms)
using the proposed method, while 2.54 x 10°1 ms resulted
by using the standard scheme with about 98-fold of time
acceleration. Also, 223136461 KB were transferred of 1TB
FASTA dataset using the proposed method, while 1073741824
KB resulted by using the standard method for the same dataset
with about 79% size reduction. The transfer time of 1TB
FASTA dataset using the proposed data-encoding were 8 x 10°
ms, while 1.79 x 10% ms resulted in the transfer of the same
dataset using the standard scheme, with about 96-fold of time
acceleration. Also, the 1GB FASTQ dataset was minimized
to 356516 KB by using the proposed scheme, while 1048576
KB resulted by using the standard scheme, with about 34% of
size reduction. Consequently, 8333 ms were needed to transfer
the dataset by using the proposed method, while 15150 ms
were required to transfer the same dataset using the standard
approach, with 55-fold of time acceleration. Moreover, 1TB
FASTQ dataset was minimized to 418759311 KB by using a
proposed encoding method, while 1073741824 KB transferred
using the standard approach with about 39% of size reduction.
The time acceleration of the 1'TB FASTQ dataset was 54-fold
by sending the dataset in 7.74 x 10° ms using the proposed
method, while 143 x 107 ms were needed to transfer the same
dataset. The maximum size reduction of examined FASTA
datasets using the proposed data-encoding scheme is 79% and
about 98-fold of time acceleration, The maximum rate of size
reduction for the examined FASTQ datasets using the proposed
encoding method is 45%, while 57-fold is the maximum time
acceleration.

Table II: Simulated Next-generation
Dataset Sizes, FASTA Format

sequencing (NGS)

Data-Encoding Size in KB Number of Genomic Symbols in each Dataset

Datasets

Propose Standard A C G T
1GB 293393 1048576 536870912 214748160 214748160 107374592
5GB 1181950 5242880 3758095360 268431360 429496320 912686080
10GB 2731022 10485760 6442444800 1610608640 858992640 1825372160
20GB 4720414 20971520 15461867520 2147471360 1717985280 2147512320
SOGB | 14369917 52428800 26843545600 13421772800 9663641600 3758131200
100GB | 23321911 104857600 73014374400 10737356800 2147430400 21475020800
200GB 53935177 209715200 1.33144E+11 21474713600 25769779200 34359910400
400GB 99176254 419430400 2.96353E+11 47244492800 42949427200 42950246400
500GB 127617346 524288000 3.22122E+11 1.07374E+11 96636416000 10738176000
1TB 223136461 1073741824 7.91648E+11 1.31941E+11 1.64926E+11 10996416512
o~
o
107 :
e}
)
08 Propose —
1.2 "1 g Standard
g 1p
=}
.-
g 0.8
. p— O
= o
= —
g 0.6 .
[T o
172} e} o)}
5 = “
v . ! -
; 04 - o <t “-" O =}
o — @\l (e} —
— . : = .
02 - © O ST . N
ARAl — — [sa) X
PR S e b o
v o & T «@
0 T T T = T

Dataset Size

Figure 4: Transfer time of FASTA datasets: 1G, 5GB, 10GB,
20GB, and 50GB

S
8 :
-10 %
00 Propose —
[0 Standard
» 15F o)
g .
k= = —
o — -
£ 1) -
5 = o .
= Lo ™ o < e S
0.5 S o = 2 I o
o @ = 3 -
5[- = > oo
(e = o I:I\ D\
100GB 200GB 400GB 500GB 1TB

Dataset Size

Figure 5: Transfer time of FASTA datasets: 100G, 200GB,
400GB, 500GB, and 1TB

Table III: Simulated Next-generation sequencing (NGS)
Dataset Sizes, FASTQ Format

Data-Encoding Size in KB Number of Genomic Symbols in each Dataset

Datasets

Propose Standard A C G T
1GB 356516 1048576 1100243 1171475 1194506 1070103
5GB 2097152 5242880 4587490 4722908 4853198 4293654
10GB 3879731 10485760 10579317 10871037 11069642 10603326
20GB 8808038 20971520 18383332 19099195 19068835 16777600
50GB 20971520 52428800 55189255 58677592 55350383 55861160
100GB 33554432 104857600 90769611 98405480 100395898 93309194
200GB 79691776 209715200 202744248 208871811 217755796 209397412
400GB 188743680 419430400 387005677 391542999 392718494 375820583
500G 214958080 524288000 490035888 508771266 550501004 490664651
1TB 418759311 1073741824 864354300 910476782 892603677 768828857
w)
o
6 —
-10 -
N .
[(@)}
1 |00 Propose —
[0 Standard
é 0.8 |-
v
R= =
o —
E 06 [~ b
i 0
o s g
—
@] — ~
[T
Z 04| » -
= —t 2 o
< — O F
i . — .
= . Ol\o %] ° [\
() .
02 [~ < — 8 [q g —
@ 0 <t ~ o —
0 ~ O
0 — D
=
0 I l:l\ I I I
1GB 5GB 10GB 20GB 50GB

Dataset Size

Figure 6: Transfer time of FASTQ datasets: 1G, 5GB, 10GB,
20GB, and 50GB

S
-107 -
<
L5 0g Propose -
[0 Standard
: Bl
= B © : .
s ! 2 2 i
£ %0 ©
[s &8 & n
2 = == =
= © S = <t —
< L5 S .
Z 0.5 o = - :— ﬁ <
T o (>
NI AH H
c\' p—
~
O I:I\’_‘ ﬂ I I I
100GB 200GB 400GB 500GB 1TB

Dataset Size

Figure 7: Transfer time of FASTQ datasets: 100G, 200GB,
400GB, 500GB, and 1TB

Table IV: Size Reduction and Time Acceleration of Datasets,
FASTA Format

Dataset Size Reduction Time Acceleration

Propose vs Standard ~ Propose vs Standard
1GB 72% 98x
5GB 77% 98x
10GB 74% 98x
20GB 77% 90x
50GB 73% 93x
100GB 78% 91x
200GB 74% 92x
400GB 76% 91x
500GB 76% 91x
1TB 79% 96x

Table V: Size Reduction and Time Acceleration of Datasets,
FASTQ Format

Dataset Size Reduction Time Acceleration
Propose vs Standard ~ Propose vs Standard

1GB 34% 55x

5GB 40% 49x

10GB 37% 51x

20GB 42% 47x

50GB 40% 45%
100GB 32% 50x
200GB 38% 54x
400GB 45% 57x
500GB 41% 51x

1TB 39% 54x

V. ConNcLusIoN

In this paper, we implemented an innovative data mini-
mization algorithm that relies on a combination of the naive
bit encoding approach and the random sampling of Fourier
transform theory to form a time-based random sampling data-
encoding. The proposed algorithm is designed to be integrated
with transfer protocols to reduce the size of the real-time big
genomic datasets in both formats: FASTA and FASTQ, during
the transfer phase, and then to transfer the data securely in a
shorter time. The results indicate that the proposed data mini-
mization algorithm is capable or reducing the transfer time up
to 98-fold of FASTA datasets and 57-fold of FASTQ datasets,
compared to the standard data-encoding on tested datasets.
Further, the results also show the dataset can be reduced up
to 79% of the original FASTA format dataset sizes and up
to 45% of FASTQ format. The proposed data minimization
approach is integrated to HTTP to assess how the transfer
protocol behaves in terms of transfer time and size. Also,
we showed that our data minimization algorithm provides a
significant size reduction and transfer time acceleration, as
well as adds an extra level of security during the transfer
because dataset symbols encode in different codewords dur-
ing the transfer phase. We demonstrated that the data size
can be significantly reduced by our hybrid data-encoding,

compared to a standard scheme. Also, we implemented an
NGS simulator to generate genomic datasets in both formats:
FASTA and FASTQ, to verify the performance of our current
data minimization scheme and compared it to the standard.
Our experiments indicated that the Fourier transform theory-
based random sampling, data-encoding performs much better
than the standard scheme by ensuring the assignment of short
codewords for the genomic dataset symbols. We conclude that
the proposed data minimization algorithm provides the best
performance among current data-encoding approaches for big
real-time generated genomic datasets.

ACKNOWLEDGMENT

The authors thank Dr. Todd Barkman, a professor in the
Department of Biological Sciences at Western Michigan Uni-
versity for his valued feedback and comments. This work was
supported in part by grants US National Science Foundation
CRII CCF-1464268 and US National Science Foundation
CAREER ACI-1651724.

REFERENCES

[1] C. Mora, D. P. Tittensor, S. Adl, A. G. Simpson, and B. Worm, “How
many species are there on earth and in the ocean?”” PLoS biology, vol. 9,
no. 8, p. 1001127, 2011.

[2] F. S. Collins and H. Varmus, “A new initiative on precision medicine,”
New England Journal of Medicine, vol. 372, no. 9, pp. 793-795, 2015.

[3] T. C. Carter and M. M. He, “Challenges of identifying clinically
actionable genetic variants for precision medicine,” Journal of healthcare
engineering, vol. 2016, 2016.

[4] . G. P. Consortium et al., “A map of human genome variation from
population-scale sequencing,” Nature, vol. 467, no. 7319, pp. 1061-
1073, 2010.

[5] T. J. Hudson, W. Anderson, A. Aretz, A. D. Barker, C. Bell, R. R.
Bernabé, M. Bhan, F. Calvo, 1. Eerola, D. S. Gerhard et al., “Interna-
tional network of cancer genome projects,” Nature, vol. 464, no. 7291,
pp. 993-998, 2010.

[6] V. A. Fusaro, P. Patil, E. Gafni, D. P. Wall, and P. J. Tonellato, “Biomed-
ical cloud computing with amazon web services,” PLoS computational
biology, vol. 7, no. 8, p. €1002147, 2011.

[71 M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud computing and
the dna data race,” Nature biotechnology, vol. 28, no. 7, p. 691, 2010.

[8] L. D. Stein, “The case for cloud computing in genome informatics,”
Genome biology, vol. 11, no. 5, p. 207, 2010.

[9] O. Trelles, P. Prins, M. Snir, and R. C. Jansen, “Big data, but are we

ready?” Nature Reviews Genetics, vol. 12, no. 3, pp. 224-224, 2011.

K. Kazimierczuk, A. Zawadzka, W. KoZminski, and I. Zhukov, “Random

sampling of evolution time space and fourier transform processing,”

Journal of biomolecular NMR, vol. 36, no. 3, pp. 157-168, 2006.

E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,” Bell

Labs Technical Journal, vol. 38, no. 4, pp. 933-967, 1959.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of things: A survey on enabling technologies,

protocols, and applications,” IEEE Communications Surveys &

Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

M. Aledhari and F. Saeed, “Design and implementation of network

transfer protocol for big genomic data,” in Big Data (BigData Congress),

2015 IEEE International Congress on. IEEE, 2015, pp. 281-288.

M. Aledhari, M. S. Hefeida, and F. Saeed, “A variable-length network

encoding protocol for big genomic data,” in International Conference on

Wired/Wireless Internet Communication. Springer, 2016, pp. 212-224.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee, “Hypertext transfer protocol-http/1.1,” Tech. Rep.,

1999.

J. Postel and J. Reynolds, “File transfer protocol,” 1985.

S. Gorn, R. W. Bemer, and J. Green, “American standard code for

information interchange,” Communications of the ACM, vol. 6, no. 8,

pp. 422-426, 1963.

[10]

(11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(36]
[37]

[38]

[39]

M. A. Jobling and P. Gill, “Encoded evidence: Dna in forensic analysis,”
Nature Reviews Genetics, vol. 5, no. 10, pp. 739-751, 2004.

S. Grumbach and F. Tahi, “A new challenge for compression algo-
rithms: genetic sequences,” Information Processing & Management,
vol. 30, no. 6, pp. 875-886, 1994.

L. Chen, S. Lu, and J. Ram, “Compressed pattern matching in dna
sequences,” in Computational Systems Bioinformatics Conference, 2004.
CSB 2004. Proceedings. 2004 IEEE. 1EEE, 2004, pp. 62-68.

N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,”
Proceedings of the IEEE, vol. 88, no. 11, pp. 1722-1732, 2000.

Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa,
“A boyer—moore type algorithm for compressed pattern matching,” in
Annual Symposium on Combinatorial Pattern Matching. Springer, 2000,
pp. 181-194.

D. Salomon and G. Motta, Handbook of data compression.
Science & Business Media, 2010.

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337-343, 1977.

J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE transactions on Communications, vol. 32,
no. 4, pp. 396402, 1984.

M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple statistical
algorithm for biological sequence compression,” in Data Compression
Conference, 2007. DCC’07. 1EEE, 2007, pp. 43-52.

D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
M. Effros, K. Visweswariah, S. R. Kulkarni, and S. Verdd, “Universal
lossless source coding with the burrows wheeler transform,” [EEE
Transactions on Information Theory, vol. 48, no. 5, pp. 1061-1081,
2002.

M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” 1994.

T. Tao, “Single letter codes for nucleotides,” NCBI Learning Center.
National Center for Biotechnology Information. Retrieved, pp. 0315,
2012.

T. D. Blacker, “Fastq users manual version 1.2, Sandia National
Laboratories, SAND8S8-1326, 1988.

A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Near-optimal sparse fourier representations via sampling,” in Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002, pp. 152-161.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Transactions on information theory, vol. 52, no. 2, pp. 489—
509, 2006.

M. Rudelson and R. Vershynin, “Sparse reconstruction by convex
relaxation: Fourier and gaussian measurements,” in Information Sciences
and Systems, 2006 40th Annual Conference on. 1EEE, 2006, pp. 207—
212.

H. S. Shapiro and R. A. Silverman, “Alias-free sampling of random
noise,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 225-248, 1960.

F. J. Beutler and O. A. Leneman, “The spectral analysis of impulse
processes,” Information and Control, vol. 12, no. 3, pp. 236-258, 1968.
O. A. Leneman and F. J. Beutler, “The theory of stationary point
processes,” Acta Mathematica, vol. 116, no. 1, pp. 159-190, 1966.

F. J. Beutler and O. A. Leneman, “Random sampling of random
processes: Stationary point processes,” Information and Control, vol. 9,
no. 4, pp. 325-346, 1966.

O. A. Leneman, “Random sampling of random processes: Impulse
processes,” Information and Control, vol. 9, no. 4, pp. 347-363, 1966.

Springer

