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Abstract: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique1

which is heavily used for studying brain’s functional activities in the past few years. A popular2

measure for capturing functional connectivities between brain regions is Pearson’s correlation3

coefficient. fMRI data consists of huge number of small elements called voxels. Computing pairwise4

correlation coefficient between them using traditional CPU based technique is time consuming. In this5

paper, we propose a GPU-based algorithm called Fast-GPU-PCC for computing pairwise Pearson’s6

correlation coefficient. Based on symmetric property of Pearson’s correlation, this approach returns7

N(N − 1)/2 correlation coefficients located at strictly upper/lower triangle part of correlation matrix.8

Storing correlations in an 1-dimensional array with the order as proposed in this paper is useful for9

further usage. Our approach is based on matrix multiplication and reordering its result which is10

performed on GPU. We performed some experiments on real and synthetic fMRI data for different11

number of voxels and varying length of time series. The proposed approach outperformed two other12

GPU-based techniques as well as the sequential version of computing correlation coefficient on CPU.13

We show that Fast-GPU-PCC runs 62.2 × faster than CPU-based version and 2.21 × and 4.05 × faster14

than two other GPU-based techniques. The implementation of our approach will be available as15

GPL license on GitHub portal of our lab (https://github.com/PCDS) after the paper is accepted for16

publication.17

Keywords: fMRI, Pearson’s correlation coefficient, GPU, CUDA, matrix multiplication18

1. Introduction19

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique
which is used by researchers in order to study functional activities of the brain.[1]. Using this
technology, many facts about the brain are discovered based on Blood Oxygen Level Dependent
(BOLD) contrast. Analyzing fMRI data using machine learning techniques for discovering hidden
patterns and early-stage detection of several brain-related diseases has gained significant attention
among fMRI researchers [2,3]. During an fMRI session, a sequence of images are taken by a scanner
through time while subject performs one or more tasks (task based fMRI) or the subject just rests
without falling asleep (resting state fMRI). fMRI data consists of several thousands or millions of very
small cubic components called voxels. Each voxel is the smallest addressable element of the brain and
houses millions of neurons inside it. Hemodynamic changes inside the brain are revealed as intensity
changes of the brain voxels.[4]. By keeping track of intensity of each voxel over time, a time series
is extracted out of each voxel which is used for further analysis. A popular technique for analyzing
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brain functional connectivity is Pearson’s correlation coefficient (PCC)[5–7]. PCC computes linear
association between two variables x and y using the following formula:

ρxy =
∑T

i=1(xi − x̄)(yi − ȳ)√
∑T

i=1(xi − x̄)2
√

∑T
i=1(yi − ȳ)2

(1)

The value of Peasrson’s Correlation Coefficient ρxy can be in range -1 and 1 [8]. Value of -1 indicates
perfect negative linear relationship, 0 indicates no linear relationship and +1 shows perfect positive
linear relationship among two variables. In this equation x and y correspond to two T dimensional
variables. Considering fMRI data, x and y are two individual voxels each having T data points in
their time series. Pairwise Pearson’s correlation computation is computationally intensive for large
datasets like fMRI images so using parallel computing techniques becomes necessary. Several parallel
computing based approaches have been proposed in order to accelerate the PCC computation. One
of these approaches is a GPU based approach proposed by Gembris et al. [9]. They reformulated the
Pearson’s correlation equation in order to minimize the number of necessary divisions as follows:

ρxy =
T ∑T

i=1 xiyi −∑T
i=1 xi . ∑T

i=1 yi√
T ∑T

i=1 x2
i − (∑T

i=1 xi)2
√

T ∑T
i=1 y2

i − (∑T
i=1 yi)2

(2)

Wang et al.[6] proposed a parallel technique based on a controller worker method with Message20

Passing Interface (MPI) to compute pairwise Pearson’s correlations over multiple time windows.21

Another approach was proposed by Liu et al.[10] to compute all pairwise correlation coefficients on22

Intel Xeon Phi clusters.23

Pearson’s correlation has symmetric property ((corr(x, y) = corr(y, x))). Based on this property all24

pairwise correlations among N elements can be represented by an array of N(N − 1)/2 elements25

instead of N2 elements. Each element of this array is the correlation among two distinct variables i26

and j. The correlation array may contain all correlations in strictly upper or lower triangle part of the27

correlation matrix. Elements on the main diagonal are discarded since they only show the correlation28

of each element with itself which is always one. An example of desired elements of the correlation29

matrix, resulting correlation array and two possible orders of storing correlation values is shown in30

Fig. 1.31
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Figure 1. a and b are examples of two possible orders for Pearson’s correlations in correlation matrix
and their resulting correlation array. In part a, the first N − 1 elements of the array show the Pearson’s
correlations between the first variable and all other variables, the next N − 2 elements show the
correlation of the second variable with all others and so on. In part b, Last N-1 elements show
correlation of the last element with the rest of elements, N-2 elements before them show the correlation
of the N − 1th element to the rest of elements and so on.

In [11], a GPU based tool was developed by Liang et al for constructing gene co-expression
networks based on computing N(N-1)/2 Pearson’s correlation coefficient. Wang et al [12] proposed
a hybrid CPU-GPU framework for computing Pearson’s correlations Based on General Matrix
multiplication (GEMM). Their approach is based on the fact that Pearson’s correlation computation
among two voxels can be reduced to vector dot product of their time series if each time series is
normalized based on the following equation:

ui =
vi − v̄i
‖vi − v̄i‖ 2

(3)

In this equation vi is time series of voxel i and ui is the normalized time series of vi. All normalized
voxels are then aggregated in matrixU(u1, u2, ..., un). The correlation matrix can be constructed by
multiplying matrix U to its transpose (U ×UT). Sometimes the size of correlation matrix is larger
than GPU memory, in this case, their approach divides matrix U to smaller blocks and computes the
multiplication of each block to others to cover all elements in upper triangle. After performing matrix
multiplication of all blocks a post processing step is needed to reorder the elements and eliminate
redundant correlations. This post processing runs on CPU.
In [13] we proposed two GPU based approaches to compute N(N − 1)/2 Pearson’s correlation based
on the order shown in part a of Fig. 1. In the first approach, after normalizing the data using equation
1, correlations of each voxel with the rest of voxels are computed by multiplying its time series to a
matrix containing the time series of all other voxels. This process which is multiplying a vector to a
matrix is continued for all voxels. The matrix that is multiplied to the time series of first voxel contains
N − 1 rows, for second voxel, matrix contains N − 2 rows since correlation of first and second voxels
have been computed by first matrix vector multiplication. Reducing the size of the matrix by one
for each voxel, by performing N − 1 matrix vector multiplication, upper triangle part of correlation
matrix (part a of Fig. 1.) is computed. Second approach is called GPU-PCC and is based on performing
vector dot product of normalized time series. In this technique each 16 consecutive GPU thread are
considered as a group and are responsible for performing vector dot product of two normalized time
series which results in computing correlation between two voxels. In order to compute correlation
coefficients in desired order, threads inside each group use the following mapping equations based
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on index of the group (k) to compute the index of two voxels (i and j) that their correlation should be
stored at location k. Using these equations assures that correlations are computed in order.

i = n− 2−
⌊√
−8× k + 4× n× (n− 1)− 7

2
− 0.5

⌋
(4)

j = k + i + 1− n× (n− 1)
2

+
(n− i)× ((n− i)− 1)

2
(5)

If total size of correlation matrix is larger than GPU memory, this approach computes correlations until32

there is no free space in GPU, transfers the results to CPU and starts computing the rest of correlations.33

Our experiments on synthetic and real fMRI data showed that this approach can compute correlations34

faster than the first other approach.35

1.1. GPU architecture, CUDA programming model and cuBLAS library36

Processing huge amount of data generated by fast and high-throughput instruments in the area37

of Bioinformatics, biomedical and health-care informatics is almost impossible using traditional and38

sequential CPU based techniques. Many algorithms based on parallel computing techniques have been39

proposed in different fields like Genomics, proteogenomics, clinical informatics, imaging informatics40

etc. [14–24]. Using Graphics Processing Unit (GPUs) for accelaring these type of problems has41

become very popular recently. The very first goal of GPUs was satisfying demands for higher quality42

graphics in video games and creating more relalistic 3D environment[25]. Nowadays, multitude of43

high-performance applications exploit high throughput of enormous number of GPU cores.[24,26].44

A GPU consists of an array of streaming multiprocessors (SMs) each having multiple streaming45

processors or cores. On each core hundreds of threads run based on SIMT (Single Instruction Multiple46

Thread) strategy. A warp is a group of 32 threads that follow the same execution path and run on at the47

same time on the same SM. CUDA or Compute Unified Device Architecture is NVIDIA’s programming48

model interface created for programming graphic cards. The function that executes by GPU threads49

on GPU device in parallel is called kernel function. Parallel invocations of kernel are grouped into50

blocks. A Block is a programming abstraction used by programmer to group a number of threads51

for running kernel. Maximum number of threads per block is 1024 which can be organized in 352

dimensions. Multiple blocks can be organized in one or two dimensions to form a grid. GPU contains53

different memory types such as global memory, shared memory, local memory and registers. Global54

memory is the main memory of GPU which is accessible by all threads. Data transferred from CPU to55

GPU resides on global memory. Shared memory on the other hand is on-chip memory which is shared56

among all threads within the same block and is not accessible by threads in other blocks. Accessing57

data from shared memory is much faster than global memory and is efficient in cases that threads need58

to access data more than once.59

Nividia has provided efficient CUDA libraries such as CUDA Basic Linear Algebra Subroutines60

(cuBLAS). which performs vector and matrix operations like matrix multiplication and matrix vector61

multiplication[27]. In this study we used a built in function from this library which is very efficient for62

performing matrix multiplication.63

2. Materials and methods64

As stated in the previous section, multiplying two vectors which are normalized by equation 365

results in Pearson’s correlation between them. Normalizing all time series vectors takes much less time66

compared to multiplying pairwise time series, so we leave the normalization part to be performed67

on CPU. For the rest of the paper lets assume time series of all voxels are stored in an N ×M matrix68

called U, which N corresponds to the number of voxels and M corresponds to the number of data69

points of each voxel (length of time series).70

After data is normalized on CPU, it is transfered to GPU global memory. Since the number of voxels71
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are much more than the length of time series of each voxels, size of correlation matrix is very large72

and sometimes cannot be fitted inside GPU memory. In this case, correlation computation must73

be performed in multiple rounds such that in each round part of correlation coefficients should be74

calculated and transferred to CPU memory to free GPU space for the rest of computation. Additionally,75

our approach needs some extra space in GPU for storing reordered coefficients before transferring76

them back to CPU. If the total space that our algorithm needs is smaller than whole GPU memory,77

the algorithm can be run in one round, other wise, multiple rounds are needed for completing the78

computations. In the next following sections, we first explain how to compute the space we need for79

computing correlation coefficients and reordering them inside GPU, then we go through two possible80

cases in which pairwise correlations can be computed in one round or several rounds.81

2.1. Space storage needed for computing correlations and reordering them82

Our approach is based on performing matrix multiplication and extracting the upper/lower83

triangle part. Multiplying matrix U (N × M) to its transpose (M × N) generates N2 Coefficients.84

Upper/lower triangle part of the correlation matrix can be stored in an array with length
N(N − 1)

2
.85

Normalized time series of voxels are transformed to GPU memory in the beginning of the algorithm86

and will stay there during the whole process. This will take an additional N ×M space. So the total87

space needed for storing data, computing the correlation matrix and reordered correlation array in88

GPU is N2 +
N(N − 1)

2
+ NM. If this value is smaller than GPU memory the whole computation can be89

done in one round, otherwise we first compute correlation of a block of data with B voxels to all other90

voxels, reorder and transfer them back to CPU and start a new block. Space needed for multiplying91

time series of B voxels to the rest of voxels is NB and extracted correlations belonging to upper triangle92

part of the correlation matrix corresponding to B blocks needs NB− B(B + 1)
2

. Fig. 2 shows an example93

of these elements.94

Figure 2. Space needed for computing correlation of first B voxels with the rest of voxels. Pairwise
correlation is computed by multiplying a matrix containing time series of B voxels to a matrix containing
time series of all voxels which results in a matrix containing N × B elements. This matrix has NB−
B(B + 1)/2 distinct correlation coefficients that need to be extracted and stored in resulting correlation
array.

The total space needed for the computation is equal to NM + NB + NB− B(B + 1)
2

. The value of B
should be chosen in such a way that the space needed for our computation is less than the free space in
GPU memory at the time. Let’s assume normalized time series of all voxels are already stored in GPU

memory and the free space left is equal to X. Since the value of NB− B(B + 1)
2

is smaller than NB, the
upper bound of space we need is 2NB and value of B can be computed using the following equation

B =
X

2N
(6)



Version February 18, 2018 submitted to MDPI 6 of 15

We compute the value of B in the beginning of our algorithm, if this value is greater than N, it means95

that the computation can be done in one round otherwise several rounds are needed for computation.96

In the next two subsections, we go through each case in detail.97

2.2. Case 1: Correlation computation can be done in one round98

If GPU has enough memory to store the whole correlation matrix and ordered correlation array,
by multiplying matrix U to its transpose the whole correlation matrix is computed at once and we
can extract the upper/lower triangle part of the matrix. The idea that we used for extracting the
upper/lower triangle part is to assign one GPU thread to each cell of correlation matrix, if the cell
is located in upper/lower triangle above/below the diagonal, thread will copy its value to specific
location in correlation array. Index of each thread can be computed based on its thread ID, block ID
and dimension of the block as follows:

idx = blockDim.x ∗ blockIdx.x + threadIDx.x (7)

After computing this index which is unique for each thread, we compute the row and column index of
the cell that the thread is assigned to it. Row index and column index of each cell can be computed as
quotient and remainder of dividing idx by n , i = idx/n and j = idx%n respectively. i and j are indices
of voxels which their correlation is stored at index (i,j) of the correlation matrix. In order to take the
elements in upper triangle part of the matrix, elements with i < j are selected and in order to take the
lower triangle part elements with j < i are selected. Threads which are pointing to upper triangle part
of the correlation matrix will save their corresponding correlations at index k of resulting correlation
array which can be calculated as follows:

k = i× n− i× (i + 1)
2

+ j− i (8)

Using this equation, coefficient will be saved in correlation array based on the pattern showed in part
a of Fig. 1. (row major order). In order to save correlation based on part b (column major order), the
following equation is used:

k =
i× (i + 1)

2
+ j− i (9)

Fig. 2. shows an example of extracting upper triangle part for a 5× 5 correlation matrix and algorithm99

1 shows the psudocode of this process.100
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Figure 3. Process of extracting upper triangle part of correlation matrix based on algorithm 1

The psudocode of reordering kernel is shown in Algorithm 1. After computing correlations and

Algorithm 1 Extracting ordered upper triangle part of correlation matrix
Input: N × N correlation matrix S
Output: Ordered correlation array C of size N(N − 1)/2

1: idx = blockDim.x ∗ blockIdx.x + threadIdx.x
2: i = idx/n
3: j = idx%n
4: if i < j and i < N and j < N then

5: k1 = i× n− i× (i + 1)
2

+ j− i
6: k2 = j× n + i
7: C[k1 − 1] = S[k2]
8: end if

101

storing distinct pairs in correlation array, it will be copied to CPU memory.102

2.3. case2: Correlation computation needs to performed in multiple rounds103

In cases that both correlation matrix and resulting array cannot be fitted inside GPU memory, the104

correlation of the first B voxels (B is computed using equation 6) to the rest of voxels are computed and105

reordered using algorithm 1. Results are transferred back to the CPU. A new block number should106

be calculated for computing the rest of coefficients. Since the correlation of the first B voxels with the107

rest of voxels are computed, new block number can be calculated using equation 6 but this time using108

N-B instead of N in denominator. By doing this process all correlation coefficients can be computed in109

multiple rounds.110
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2.4. Overall algorithm111

Considering both cases, algorithm 3 shows the overall scheme of our proposed method. Data is

Algorithm 2 Fast-GPU-PCC
Input: N ×M matrix U of time series data Output: Correlation array C of size N(N − 1)/2

1: Preprocess the fMRI data using equation 3
2: Copy normalized data to GPU global memory
3: B = X/2N
4: if B > N then
5: Multiply matrix U to its transpose UT

6: Extract upper/lower triangle part of the matrix using algorithm 1
7: Transfer the correlation array to CPU
8: else
9: f lag = 1, i = 0, N′ = N

10: while i < N do
11: Multiply rows i to i + B of matrix A to columns i to N of UT

12: Extract the upper/lower triangle using algorithm 1
13: Transfer the extracted correlations to CPU
14: i = i + B
15: N′ = N′− B
16: B = X/2N′

17: if B > N′ then
18: N′ = B
19: end if
20: end while
21: end if

112

preprocessed and copied to GPU memory (lines 1,2). Lines 4 to 7 runs when the total computation can113

be done in one round as explained in section 2.2. Lines 9 to 20 runs when computation cannot be done114

in one round (section 2.3). In this case correlation of B voxels (B is computed in line 3) to the rest of115

voxels are computed, reordered and copied back to CPU. In line 16, new size of B is computed using116

equation 7 this time ignoring the first B voxels. A new variable called N_prime stores the number of117

remaining voxels that their pairwise correlations to the rest of voxels should be computed. If block118

size B is greater than N′, shows the case that pairwise correlation of the rest of elements can be done in119

one round, otherwise this process should be continued for more rounds. The overall process of this120

algorithm is shown in in Fig. 4.121
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Figure 4. Overall process of Fast-GPU-PCC. In part A, fMRI time series is normalized in CPU and
transferred to GPU memory. Block size B is computed using equation 6. If B is larger than N means
that the whole computation can be performed in one round which is shown in part B. In part B the
whole normalized matrix is multiplied to its transpose and upper triangle is extracted and transferred
back to CPU. If block size is computed in part A is smaller than N means that only pairwise correlation
of B voxels with the rest of voxels can be computed which is shown in part C. In part C after correlation
of the first B voxels with the rest of voxels is computed and transferred back to CPU, new block size is
computed and this process is repeated multiple time until all pairwise correlations are computed.
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3. Experiments and results122

All the experiments reported in this section are performed on a Linux server with Ubuntu123

Operating System version 14.01. The server consists of two Intel Xeon E5 2620 processors with clock124

speed 2.4 GHz, 48 GBs RAM and NVIDIA Tesla K40c Graphic Processing Unit. This GPU contains125

15 Streaming Multiprocessors each consists of 192 CUDA cores and 11520 MBytes global memory.126

We have compared our method with three other methods. The first method is sequential version of127

computing Pairwise Pearson’s correlation coefficient. The second method is GPU-PCC [13] algorithm128

which is a GPU based technique able to compute Pearson correlations in order and the third method is129

proposed by Wang et al. [12]. In Wang’s method they compute pairwise correlations by performing130

matrix multiplications on GPU multiple times and in order to reorder the correlation coefficients and131

eliminate redundant ones, the results is post processed on CPU. We considered the time of both matrix132

multiplication and post-processing steps. All the experiments for each dataset are repeated multiple133

times and the minimum running time is reported. Optimization level O2 was used for compiling134

codes that run on CPU. We compared the scalability of our method with other methods by increasing135

the number of voxels and increasing the length of time series. The following sections explain the136

experiments in more details.137

3.1. Increasing number of voxels138

Today fMRI scanners are able to provide high resolution images in which we are dealing a huge139

amount of voxels. To assure our method is able to handle large number of voxels we performed an140

experiment considering different number of voxels from 20000 to 100000 each having a time series of141

length 100. We used synthetic dataset for this experiment. For each voxel, we generated a vector of 100142

uniformly random floating point numbers in range -2 and 2 as intensity of each voxel. Table 2 shows143

the running time of each method based on different number of voxels in seconds. We also plotted the144

running times of all GPU-based techniques in Fig. 5 and compared the running time of Fast-GPU-PCC145

and sequential version in Fig. 6 (we used a different figure for this comparison since having sequential146

version with other techniques in the same figure makes comparison of GPU based techniques difficult).147

As we see in figures, Fast-GPU-PCC runs faster than other techniques for all values of N. Speedup of148

Fast-GPU-PCC compared to other techniques are shown in table 2. The speed up over CPU version,149

GPU-PCC and Wang’s technique is about 30, 2 and 3 times respectively.150
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Figure 5. Running time comparison of Fast-GPU-PCC with other GPU-based techniques
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Figure 6. Running time comparison of Fast-GPU-PCC and CPU version

Table 1. Comparing running time (Seconds) of different approaches on synthetic fMRI data

Number of voxels (N) GPU-PCC Fast-GPU-PCC Wang et al [12] CPU-version

20000 0.97 0.44 1.86 15.65

30000 2.18 0.96 3.58 35.23

40000 3.87 2.40 6.28 62.81

50000 6.03 3.2 9.59 98.8

60000 8.68 4.7 13.46 143

70000 11.8 6.07 18.09 202

80000 15.59 7.82 23.82 270

90000 19.6 10.12 29.8 341

100000 24.28 11.01 36.7 424

Table 2. Speed up gained by Fast-GPU-PCC over other methods by increasing the number of voxels

Number of voxels (N) GPU-PCC Wang et al [12] CPU-version

20000 2.22 4.22 35.56

30000 2.27 3.7 36.69

40000 1.5 2.61 26.17

50000 1.88 2.99 30.8

60000 1.84 2.86 30.42

70000 1.94 2.98 33.27

80000 1.99 3.04 34.52

90000 1.99 2.94 33.69

100000 2.2 3.33 38.54

3.2. Increasing the length of time series151

We performed another experiment to measure the running time of our approach by increasing152

the length of time series. The data that we used in this section is also synthetic data. To observe153
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how increasing the length of time series affect the running time, we performed our experiment by154

considering fixed 60000 voxels and each time changed the length of time series. We measured the155

running time for 50, 100, 200, 300, 400 and 500 time point in each time series. Similar to last section,156

uniformly random floating point number in range -2 and 2 is used as intensity of each voxel.157
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Figure 7. Running time comparison of Fast-GPU-PCC with other GPU-based techniques
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Figure 8. Running time comparison of Fast-GPU-PCC with other GPU-based techniques

Table 3. Running time comparison of Fast-GPU-PCC with other GPU-based techniques

Length of time series (M) GPU-PCC Fast-GPU-PCC Wang et al. [12] CPU-version

50 7.81 4.06 13.45 62

100 8.68 4.7 13.43 143

200 10.73 5.07 13.76 335.97

300 14.8 5.4 13.98 514

400 19.05 5.67 14.21 689.329

500 26.8 5.89 14.43 862.417
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Table 4. Speed up gained by Fast-GPU-PCC over other methods by increasing length of time series

Length of time series (M) GPU-PCC Wang et al. [12] CPU-version

50 1.92 3.31 15.27

100 1.84 2.85 30.42

200 2.11 2.41 66.26

300 2.74 2.58 95.18

400 3.35 2.5 121.57

500 4.55 2.44 146.34

Like increasing the number of voxels, Fast-GPU-PCC runs faster than other techniques by158

increasing the length of time series. Speed up over Wang’s technique is about 2.5 times for all159

values of M. Speed up over GPU-PCC and CPU-version increases as we increase the length of time160

series. It starts from 1.92× and 15.27× for M = 50 and reaches to 4.55× and 146.34× for M = 500.161

3.3. Experiment on real data162

We performed another experiment on real fMRI data and measured the running time of all163

techniques. The dataset we used is called Orangeburg dataset 1. It consists of resting state fMRI data164

of 20 healthy subjects, 5 male and 15 female with age range 20-55. We picked a random subject from165

this dataset for our experiment. Number of voxels in this dataset is equal to 90112 and length of time166

series is equal to 165. Table 5 and 6 show the running time comparison and speed up achieved by167

Fast-GPU-PCC over other methods.168

Table 5. Running time comparison of Fast-GPU-PCC with other techniques on real fMRI data

Fast-GPU-PCC GPU-PCC Wang et al [12] CPU-version

9.41 20.83 38.15 585.33

Table 6. Speed up gained by Fast-GPU-PCC over other methods on real fMRI data

GPU-PCC Wang et al [12] CPU-version

2.21 4.05 62.2

Similar to synthetic data, FAST-GPU-PCC runs faster than other techniques on real data. It runs169

4.05× faster than Wang’s technique, 2.21× faster than GPU-PCC and 62.2× faster than CPU-version.170

4. Conclusion and future direction171

Pearson’s correlation coefficient is a very well used technique in fMRI data analysis for studying172

functional connectivities of the brain. fMRI images contain thousands of voxels and using traditional173

techniques for computing pairwise Pearson’s correlation is very time consuming and not efficient.174

Therefore, using parallel computing techniques is essential for processing data- and compute-intensive175

operations like computing correlation for big brain research. Based on symmetric property of Pearson’s176

correlation, the entire correlation matrix can be stored in an N(N-1)/2 array which stores the element177

in strictly upper or lower triangle of correlation. Storing correlations in this array with a meaningful178

order makes it easier for future applications. In this paper, we proposed a GPU-based technique called179

Fast-GPU-PCC which computes correlation coefficients and reorders them in two possible ways. Both180

1 www.nitrc.org/projects/fcon_1000/
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correlation computation and reordering steps are performed on GPU. We used an efficient CUDA181

built-in function for performing matrix multiplication. The size of the correlation matrix usually182

exceeds the GPU memory specially for large datasets. Therefore, we performed the multiplication in183

multiple steps, where in each step, we multiply time series of a block of B voxels to the remaining184

voxels. The post processing step is performed right after each matrix multiplication, then we reorder185

the computed correlations and store them in the resulting correlation array. In order to compute the186

block size B, we considered both sizes of resulting matrix multiplication and the correlation array187

into account. We performed several experiments on synthetic and real fMRI data and compared it188

with two other GPU based technique and CPU-version of computing Pearson’s correlation coefficient.189

During our experiments on synthetic data, we investigated the effects of increasing the number of190

voxels and length of time series on scalability of Fast-GPU-PCC. To see how scalable Fast-GPU-PCC is191

in terms of number of voxels, we began by using 20000 voxels and continued our process to 100000192

voxels. Fast-GPU-PCC outperformed all other techniques for all sizes and achieved about 2× and 3×193

speed up compared to other GPU-based techniques and more than 30× compared to CPU-version. In194

another experiment, we checked the effect of increasing the length of time series on our approach by195

increasing it from 50 to 200. Fast-GPU-PCC out performed other techniques such that its speed up196

increased over CPU-version and one of GPU-based techniques and ran about 2.5× faster compared to197

another GPU-based technique when increasing the length of time series. Experiments on real data198

containing about 90000 voxels also showed promising result for Fast-GPU-PCC such that it ran 2×199

and 4× faster than other GPU-based techniques and 62.2× faster than CPU-version. Scalability of200

Fast-GPU-PCC shows that it can can be used in many fMRI-based applications. This technique has the201

flexibility to work with correlation coefficients inside the GPU memory, meaning that after reordering202

the elements and before transferring data to CPU any computation can be performed on coefficients203

using GPU threads, for example comparing it with a predefined threshold to detect activated voxels,204

performing compression techniques, etc.205

For future direction of this study we focus our attention on dynamic functional networks which206

are becoming popular in fMRI studies. Constructing dynamic functional networks are very time207

consuming since pairwise correlations for multiple time windows should be computed so an efficient208

GPU based algorithm can accelerate this process significantly. We also focus on storage space of209

correlation array which is becoming challenging for large datasets specifically for the cases in which210

several correlation arrays need to be computed.211
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