Computational Materials Science 146 (2018) 220-229

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Simple data and workflow management with the signac framework R

Check for
updates

Carl S. Adorf?, Paul M. Dodd ¢, Vyas Ramasubramani ¢, Sharon C. Glotzer *><*

2 Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
b Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
€ Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States

ARTICLE INFO ABSTRACT

Article history:

Received 18 October 2017

Received in revised form 14 January 2018
Accepted 15 January 2018

Researchers in the fields of materials science, chemistry, and computational physics are regularly posed
with the challenge of managing large and heterogeneous data spaces. The amount of data increases in
lockstep with computational efficiency multiplied by the amount of available computational resources,
which shifts the bottleneck in the scientific process from data acquisition to data processing and analysis.
We present a framework designed to aid in the integration of various specialized data formats, tools and
workflows. The signac framework provides all basic components required to create a well-defined and

gz{:\’(r)rrlgls'l:agement thus collectively accessible and searchable data space, simplifying data access and modification through a
Database homogeneous data interface that is largely agnostic to the data source, i.e., computation or experiment.
Data sharing The framework’s data model is designed to not require absolute commitment to the presented imple-
Provenance mentation, simplifying adaption into existing data sets and workflows. This approach not only increases

Computational workflow the efficiency with which scientific results can be produced, but also significantly lowers barriers for col-

laborations requiring shared data access.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Improved software [1-5] and increased resources available to
computational researchers [6,7] have led to significant increases
in the quantities of data generated [8]. This makes a highly system-
atic data management approach crucial to preserving data prove-
nance and ensuring reproducibility. To address this problem,
researchers often employ data organization practices such as using
human-readable file-naming conventions. Although such solutions
address the problem at a superficial level, they suffer from numer-
ous drawbacks with respect to efficiency and flexibility. Here, we
introduce signac, named after Paul Signac (see Fig. 1), a simple
and robust framework for the management of complex and hetero-
geneous data spaces as well as the efficient implementation of
workflows. Data spaces managed with signac are immediately
searchable and sharable.

The capabilities of signac are best illustrated by example. Con-
sider a typical, albeit trivial, research task in which we are given
data about the pressure, volume, and temperature of a noble gas
and wish to develop a simple theory to explain these data. As a first

* Corresponding author at: Department of Chemical Engineering, University of
Michigan, Ann Arbor, MI 48109, United States.
E-mail addresses: csadorf@umich.edu (C.S. Adorf), pdodd@umich.edu
(P.M. Dodd), vramasub@umich.edu (V. Ramasubramani), sglotzer@umich.edu
(S.C. Glotzer).

https://doi.org/10.1016/j.commatsci.2018.01.035
0927-0256/© 2018 Elsevier B.V. All rights reserved.

hypothesis, we might test Boyle’s law, pV = const., by iterating
over values of p and storing the corresponding values for V in text
files named for those values of p. Upon finding that the data
appears to be temperature-dependent, we then could choose to
test a more general equation, pV = NKT.

We are now faced with a dilemma: how do we efficiently adapt
our data space for this extension? We could provide the existing
files with new names incorporating temperature, but this could
quickly become intractable if we had to further increase the com-
plexity of our equation of state. Alternatively, we might determine
that storing data in a (relational) database would be a more flexible
solution to accommodate any future schema changes; however,
that could be much less efficient for a generally file-based work-
flow and could introduce a significant bottleneck in downstream
data processing and analysis.

The signac framework resolves this by abstracting away the
details of file-based data storage while simultaneously functioning
like a lightweight, semi-structured database. Using signac, files
are directly stored on the file system along with the associated
metadata in a well-defined storage layout. The metadata is parsed
and indexed on-the-fly whenever we use signac’s interface to
access and search for data. By using signac to manage the data
in the above example, the tasks of adding a parameter such as tem-
perature and searching for data associated with a particular p,T
pair can both be easily realized with only a few commands.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2018.01.035&domain=pdf
https://doi.org/10.1016/j.commatsci.2018.01.035
mailto:csadorf@umich.edu
mailto:pdodd@umich.edu
mailto:vramasub@umich.edu
mailto:sglotzer@umich.edu
https://doi.org/10.1016/j.commatsci.2018.01.035
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci

C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229 221

Fig. 1. The Pointillist style was invented by Paul Signac (1863-1935) and Georges
Seurat (1895-1891) and describes paintings in which images are composed from
collections of individual dots, each containing a single color. This style serves as a
metaphor for signac’s data model, in which the data is dependent on both
individual data points and their position within the larger parameter space. The
painting underlying this artistic illustration Cassis, Cap Lombard was created by Paul
Signac in 1889 and is owned by the Gemeentemuseum Den Haag.

This paper is organized as follows. First, the general design prin-
ciples of signac are presented. We then delve into greater detail
about how the core signac functionality is implemented in keep-
ing with these principles, followed by a more in-depth comparison
to closely related solutions. Finally, the practicality of this system
is demonstrated through numerous examples indicating how sig-
nac can be used to manage a variety of disparate, heterogeneous
data sets.

2. Overview
2.1. Design

In the following section we lay out the core design principles
behind signac, which necessitates making a clear distinction
between the signac framework and the signac application. The
primary focus of this paper is the signac application (henceforth
simply signac), which implements the core data management
functions discussed throughout this paper. The signac framework
is a collection of applications and modules that are built on top of
the core signac application, such as the signac-flow applica-
tion, which will be introduced in Section 3.3.

At its core, signac is a database built directly on top of the file
system, leveraging the many advantages of direct file system
access while also providing functions to efficiently index and
search the data space. As a database system, signac makes only
one central assumption: that all data may be discretized within a
high-dimensional parameter space (see Fig. 2). Once the user pro-
vides the parameters and associated data, signac is responsible
for managing both the storage of data and its association with
the parameters through the maintenance of metadata files
encoded in the open JavaScript Object Notation (JSON) format.
Through this division, signac can ensure both data integrity and
searchability.

The database functions of signac are modeled after those pro-
vided by well-tried database management systems (DBMS) such as
MongoDB [9] or MySQL [10]. Typically, such DBMS are very effi-
cient when it comes to the execution of complex query and

signac

| flow | ‘A \4 !
1 1
1 1
: L !
___________________________ g

Aggregated Results:

Fig. 2. This conceptual example demonstrates how we manage and operate on a
data space using the signac and the signac-flow applications. We use signac to
initialize a discrete data space (represented by dark grey dots), where each dot
represents a discrete data point and may be associated with anything from a single
number to a large set of data. The data space is coordinated within a higher-
dimensional parameter space (light grey shape), in this case spanned by the three
vectors a, b, and c¢. Manipulations of the data space (addition, modification, or
removal of data), can be divided into operations, where each operation must be a
function of one or more data points. The operations shown in the example deposit
and extract data (dashed arrows) and are organized into a specific workflow using
signac-flow. Specifically, after initialization, we first generate particle configura-
tions, then post-process these configurations to extract the root-mean squared
displacement (RMSD). Finally, we aggregate results via the analysis of a subset of
our data space that we find using a signac search query. This example shows the
clear division of responsibilities between the different applications. The signac
application manages and provides access to the data space and allows us to perform
complex search queries. The signac-flow application assists in the definition and
execution of reproducible workflows comprised of individual data space operations.

aggregation operations; however, there are two main issues that
render these tools suboptimal for managing the large amounts of
(binary) data typically generated by massively parallelized scien-
tific applications within high-performance computing (HPC). First,
unless a database is specifically set up to handle peak loads origi-
nating from many instances (potentially numbering in the thou-
sands) hitting them in parallel, reading and writing to files
distributed on the file system will usually scale more efficiently.
Setting up a partitioned or replicated database system to handle
higher loads is non-trivial, and this task becomes even more com-
plicated if we care about proper authentication and authorization
among different nodes. Secondly, data may need to be serialized
for ingestion into the database, which may pose another perfor-
mance bottleneck, particularly if the data are large binary files.
With signadc, files are managed directly on the file system and
performance is mainly determined by the latency and scalability of
the file system. This technique fully exploits the existing file sys-
tems on supercomputers, which are commonly designed to process
highly parallel, computationally intensive input/output (I/O)

222 C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229

operations, thereby avoiding all the above mentioned issues while
also allowing for the immediate execution of the previously men-
tioned query routines.

The signac data model assumes that all data associated with a
particular computational investigation is part of the same high-
dimensional data space and therefore adheres to roughly the same
semi-structured schema. Each such investigation is called a sig-
nac project, and the associated data is stored in a special directory,
the project workspace (Fig. 3). The data associated with any given
set of parameters within the project’s data space is sorted into a
distinct subdirectory within the workspace along with a JSON file
containing the associated metadata. In the introductory example,
each p, T pair represents a point within the larger parameter space,
so the data associated with each pair would be stored in a distinct
directory within the workspace along with a file containing the
corresponding pressure and temperature.

This storage mechanism not only enables efficient on-the-fly
indexing, it also ensures that parsing a signac managed data
space is straightforward even without signac since the parame-
ters associated with the data are stored at the same location. In
practice, however, signac users can ignore these details since
the software abstracts away the internal representation of the data
space. As described in signac’s public documentation,’ signac
enables users to easily access the high-level information required
to interpret the data space without ever inspecting the filesystem
directly.

None of this relieves the user of the burden of documenting
their data spaces, i.e., describing explicitly the processes used to
generate the data from the provided parameters; this procedure
is facilitated by using signac-f1ow. Combined with proper docu-
mentation of these processes, however, the use of signac ensures
that a data space is fully interpretable even for individuals who did
not create it.

This interpretability is critical because it makes the data acces-
sible to anyone, even individuals not using signac in their own
workflows. There is strong evidence that well-maintained public
databases, such as the Protein Data Bank (PDB) [11], the Cambridge
Structural Database (CSD) [12,13], The Materials Project [8] or Ima-
geNet [14] have a significant positive impact on their respective
fields. Promoting an open data culture among researchers within
one or across multiple organizations will likely result in similar
positive synergistic effects. The simplicity of signac facilitates this
open data culture, because it lowers the barrier to adopt a stan-
dardized data storage layout, even for small data spaces and simple
workflows that do not necessarily warrant a more sophisticated
solution. A data set managed with signac that is uploaded to a
repository such as the Materials Data Facility? (the National Insti-
tute of Standards and Technology (NIST) and the Center for Hierar-
chical Materials Design (CHiMaD)) or the NOMAD repository®
(funded by the European Union) is immediately easier to parse,
access, and search. A repository interface could be set up to directly
support signac, which would allow users to search the data by
metadata directly. Furthermore, any standardization of metadata
tracking facilitates the curation and export of data to public data-
bases such as the NRELMatDB* or the materials data base® managed
by NIST, since converting an existing schema is easier than starting
from scratch.

All of signac’s core functions are enabled through a highly effi-
cient, on-the-fly indexing of the data space. For all higher-level
functions, such as data searching and data selection, this indexing

www.signac.io.
https://www.materialsdatafacility.org/.
https://repository.nomad-coe.eu/.
https://materials.nrel.gov/.
https://materialsdata.nist.gov/.

TN - T - I

¢ Operate on active workspace

Workspdcé 1 Workspdcé 2

* Generate Index

E-0

Export to DB Publish

Fig. 3. The signac application manages a particular data space (illustrated in
Fig. 2) by allocating it to a distinct workspace (grey shaded space) on the file system.
Data space operations (blue shaded boxes) used for the curation of data are always
operating on one specific active workspace (black frame). Information about state
points, data location and data format may be compiled into an index using signac.
The index can be used for searching, aggregation, and even direct access to data. The
index as well as the data itself, can be exported into a database, which is especially
useful for the purpose of making data available to a wide range of subscribers, such
as the general public.

process is completely transparent to the user. As a result, signac
maintains an extremely low barrier to entry, enabling new users to
take immediate advantage of basic data management functions.
Meanwhile, more advanced users can access signac’s full range
of capabilities (including detailed control over indexing) for the
implementation of complex data-driven workflows.

To remain lightweight and focused, signac does not attempt to
solve all data management concerns. For example, we assume that
infrastructure-related issues such as the setup of and access to a
distributed file system are better addressed and solved by systems
such as the Integrated Rule-Oriented Data System (iRODS) [15] or
GLOBUS [16], both of which have a different scope than signac.

2.2. Workflow

In order to support generic file-based workflows, the signac
data model makes minimal assumptions about how these work-
flows generate and operate on the data; signac manages the file
paths, but the underlying files are stored directly on the file system
without modification or serialization. This design ensures that
existing tools may interact with a signac data repository without
the need to serialize or convert existing file formats, an advantage
shared by solutions like datreant [17]. Conversely, this design dis-
tinguishes signac from more domain-specific solutions that make
certain assumptions about data schema and format, such as DCMS
[18] and the AiiDA infrastructure [19]. See Section 4.1 for a more
detailed discussion. Hence, a signac workspace can be written
to or read from outside the context of any broader workflow, and
this framework can be used irrespective of how the data is gener-
ated or what must be done to process it as long as it is file-based. In
other words, whether data is generated through the evaluation of a
single equation, or by means of compute-intensive molecular
dynamics simulations, signac is used in exactly the same way.

https://www.materialsdatafacility.org/
https://repository.nomad-coe.eu/
https://materials.nrel.gov/
https://materialsdata.nist.gov/

C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229 223

While signac itself is workflow agnostic, the development of
robust workflows operating on data and their reproducible execu-
tion is a central component in any scientific investigation. To facil-
itate this process for users of signac, the signac-flow package
provides users with a flexible set of tools to implement workflows
operating on signac data spaces (see Section 3.3).

3. Implementation
3.1. Software architecture

The core signac data management application, as well as the
rest of the signac framework, is implemented in Python and
tested for versions 2.7.x and 3.x. The framework is designed to
be used in high-performance computing (HPC) environments,
and hard requirements besides the Python interpreter are avoided.
We employ continuous integrated testing to ensure high interoper-
ability between all main applications. Documentation is generated
via the Sphinx documentation tool [20] and made available
online.®

Although the primary interface is Python-centric, most core
signac functionality is available through a command-line inter-
face (CLI) to simplify the integration of workflows that are not
Python-oriented. Metadata is encoded in the open standard JSON
format, which is largely human-readable and can be easily parsed
in most programming languages. Relying on a simple, open format
ensures that the data remains accessible even without signac.
Furthermore, the JSON format is internally used by many non rela-
tional (NoSQL) database management systems (DBMS), allowing
an effortless integration of signac with these systems.

3.2. Software components

The main data management functions of the signac frame-
work are implemented as part of the core signac application. This
application is designed with modularity in mind, enabling its
extensibility via the implementation of additional components of
the signac framework. This layered structure minimizes the
interdependence of higher-level components, making the system
more robust against architectural changes [21]. Besides the main
application, we have implemented various other (partially not
yet published) tools to augment the signac ecosystem such as
the signac-dashboard, a web application to search and visualize
signac data spaces in the browser.

In this section, we first describe the three primary functions of
the core application: data storage and searching, which simplifies
the maintenance and access of complex and heterogeneous data
spaces; indexing, which enables efficient advanced post-
processing and analysis routines; and database integration, which
allows the export of indexes and data to external databases. We
then demonstrate this framework’s extensibility in Section 3.3,
where we discuss the signac-flow application that we have
developed for the management of workflows utilizing signac’s
data management capabilities.

3.2.1. Project data management

The data management component is the central component of
the signac model. The framework supports all typical data man-
agement related processes, including data curation, manipulation,
and analysis, by providing a consistent and homogeneous interface
for data access and storage within the workspace. The workspace
itself is project agnostic, i.e., the particular workspace associated

6 signac.readthedocs.io and signac-flow.readthedocs.io.

with a project may be swapped in and out at any time, and work-
spaces can be divided and merged as depicted in Fig. 3.

The main challenge of reliable long-term storage of data is to
ensure the proper association of data and metadata. To surmount
this obstacle, the signac application calculates a short numeric
hash value from the full parameter metadata to generate a unique
address, the signac id, which is a concise representation of the full
state point. The signac id serves as the primary index and consti-
tutes the basis for the file system path within the workspace where
associated data is stored. A JSON-encoded copy of the parameter
metadata is saved within these paths, which ensures that this asso-
ciation can be trivially identified. The use of a standard format such
as JSON ensures that access to the data is not dependent on
signac.

This methodology bypasses numerous issues common to file
system-based workflows. As the output of a hash function, the sig-
nac id is both short and non-ambiguous, making it a unique, reli-
able, and indexable address of the data in all contexts. The signac
id can also encode effectively arbitrary complexity, circumventing
file naming limitations inherent to most file systems while main-
taining great flexibility.

3.2.2. Indexing and database integration

The internal index that signac generates to support its main
functions is exposed to the user on demand. This can be used to
simplify the mapping between different, possibly heterogeneous
storage devices, such as a file system and a database system. For
example, we could use signac to generate files on the file system
and execute post-processing routines on the data, and then export
the data index into a database that is accessible to a wider group of
data subscribers.

To facilitate integration, the current implementation supports
export routines for the MongoDB NoSQL database, but in principle
any database system that provides a Python driver could be inte-
grated in the future. We chose to initially support MongoDB
because its internal data structure is already based on the JSON for-
mat and because we consider the semi-structured NoSQL approach
more flexible and intuitive to researchers, who are used to dynamic
schemas rather than the more rigidly defined table schema used in
relational DBMS. Using MongoDB also enables users to leverage
tools built for the MongoDB ecosystem for data inspection and
manipulation, e.g., Studio 3T [22].

The indexes in signac are generated by one or more crawlers,
which for our purposes are defined as any functions that generate
a series of JSON documents. In general, the index needs to contain
the metadata associated with the data and all information required
to allow access to the data. In the specific case of a file system
index, this is the metadata and information about file locations
and formats. The system is designed for simple customization,
e.g., for the extraction of additional metadata from the data (deep
indexing). The signac application provides templates for crawlers
specialized to crawl file systems.

The data processing and index creation steps are intentionally
decoupled in signac, allowing easy indexing of pre-existing data.
This approach is enormously powerful in providing a single homo-
geneous data interface for new and existing data, particularly
because crawlers can be used to index data spaces not generated
by signac. These indexes can be used to make data accessible to
individual researchers within and across organizations, whether
or not signac was used for their curation.

3.3. Implementation of workflows with signac-flow
Although signac is designed to be workflow agnostic, it is very

important for computational scientists to maintain a well-defined
workflow that interacts in predictable ways with data. To ease

224 C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229

Current Project Status

Job fb4 Job 3d5

i —12

A

Execution of Operations

EETT

incomplete
Job ¢82 [P
- next
1 completed
= active
=== nactive

Next Eligible

o B(fb4) - N C(fb4) se arate">
o C(fb4) e A(3d5)

e A(3d5)

Identify Eligible Operations

or

Generate Execution Scripts

Submit to Cluster

>

Fig. 4. In order to track and execute workflows on a signac workspace, signac-flow FlowProjects track the status of each job (top). This status tracking includes
information about which operations have been completed for a given job, which operations are next in line to run, and which operations are incomplete but are not ready to
run due to unfulfilled dependencies upstream in the workflow. The progression of each job through the workflow is always known to the FlowProject, as is whether a
particular job-operation pair is active, i.e., is either being executed on a high-performance computing cluster or is queued for execution. This information is used to determine
which job-operation pairs are eligible for submission to the cluster scheduler; pairs that are already queued or active are not resubmitted (bottom). For maximal flexibility, the
execution of job-operations may be bundled prior to submission, enabling, e.g., the execution of large numbers of compute-light operations on a single node in serial or

parallel.

the development of computational workflows using signac, we
developed the signac-flow package, which offers users the abil-
ity to design complex workflows around signac managed data
spaces (illustrated in Fig. 4). There are three critical elements of
signac-flow: jobs, each of which represents the data associated
with a single parameter combination; operations, which are sets
of procedures acting on jobs; and FlowProjects, which are collec-
tions of operations encapsulating a complete workflow associated
with a signac data space. Note that FlowProjects, which corre-
spond to a single workflow, are distinct from signac projects,
which correspond to a particular data space. The signac-flow
package supports multiple FlowProjects acting on a single signac
project to allow the implementation of multiple distinct workflows
on the same data space. An example of where this might be useful
would be to create separate FlowProjects to perform coarse-
grained and atomistic molecular dynamics simulations of the same
system to extract different sets of information.

To convert our original ideal gas workflow into a signac-flow
FlowProject, we could define an IdealGasEquationOfState
FlowProject with a single operation responsible for calculating
the volume from the parameters. If we desired, we could then
easily define additional operations, e.g., for the computation of
the free energy of the gas. For more complex workflows, the
sequence is controlled by a series of pre- and post-conditions for
each operation that determine the next set of operations that
should be executed. The FlowProject is entirely self-contained,
relying on signac to store and manage the generated data.

The signac-flow package is also designed to facilitate work-
ing with compute clusters. For this purpose, we define a job-
operation as an atomic task consisting of a FlowProject operation
acting on a specific job. The FlowProject interface enables the
packaging of sets of job-operations into cluster jobs by automat-
ically generating the requisite job scripts; each cluster job can
consist of an arbitrary number of job-operations running either
in serial or in parallel. At the time of writing, FlowProjects sup-
port submission to both Slurm and Torque PBS clusters, generat-
ing job scripts on-the-fly after detecting the types of job

schedulers present on a given cluster. The signac-flow package
allows users to configure their default submission behavior, both
globally and on the level of a single FlowProject. In addition, users
working in cluster environments with specific requirements, such
as submitting only to a specific partition, can encapsulate this
information into specific Python modules that signac-flow
can be configured to recognize, making it easier for users to share
common configuration information. By providing simple and
transparent APIs for cluster submission, signac-flow enables
users to streamline the large-scale execution of data space oper-
ations in cluster environments.

4. Practicality and scalability

To assess the practicality and scalability of our implementation,
specifically with respect to existing comparable solutions, we eval-
uated the following key metrics:

. Efficiency of setting up a new workflow for an existing tool set.
. Time needed to determine the data space size.

. Time needed to iterate through the data space.

. Time needed to search and select data sets.

N

Since the first item is difficult to quantify, we instead attempt to
demonstrate how easily any scriptable tool operating on input and
output files may be integrated into a signac- and signac-flow-
based workflow by means of the examples laid out in Section 5.
The remainder of this section is dedicated to a more in-depth com-
parison of signac with alternative solutions, including bench-
marks for the last three items in direct comparison with
datreant, which we identified as the most comparable tool in both
scope and approach.

4.1. Comparable solutions

The signac philosophy entails leaving the development of data
schemas and workflows largely up to the user, removing the need

C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229 225

for specialized input scripts and output parsers. In this way,
signac substantially differs from domain-specific tools such as
AiiDA [19] or pylada-light [23], which impose strict data and work-
flow restrictions. We believe that this relaxed structure decreases
the barrier for integrating new tools and developing new work-
flows; however, we also recognize that this less standardized
approach increases the chance of user error during the implemen-
tation and execution of workflows.

In the realm of workflow management, the FireWorks open-
source tool [24] stands out as a particularly mature and feature-
rich option. Its feature set largely overlaps with the one provided
by signac-flow, and in addition it offers more advanced job
management and monitoring capabilities. These additional fea-
tures are supported by a MongoDB database on the back-end. In
contrast, signac-flow relies purely on signac to store all run-
time and scheduling related metadata.

Integrating FireWorks and signac simply involves using sig-
nac to manage the data space while specifying and executing
workflows through the FireWorks interface, similar to how
signac-flow is currently integrated with signac. Yet, there is
a caveat: FireWorks’ data storage layout is strongly coupled to its
execution model, to the extent that Fireworks’ documentation
explicitly discourages users from manually controlling data storage
locations.” The tools operate on two different philosophies when it
comes to storage layout management, which poses a barrier for
integration.

The Sumatra tool [25] allows users to keep a detailed “auto-
mated electronic lab notebook”® of operations executed on a speci-
fic data space. It is not a job manager in the sense of FireWorks or
signac-flow, but primarily focuses on ensuring that computational
research is reproducible. We found it to integrate very well with
signac and signac-flow operations, enabling users to keep better
track of which operations have been executed, a feature which
signac-flow currently lacks.

The software we found to be most similar to signac in core
scope and functionality is datreant.core [17], which enables users
to associate specific directories with searchable metadata. Just like
signac, datreant.core is largely domain agnostic, does not require
a central server, and performs distributed data management
directly on the file system in distinct directories that are associated
with searchable metadata.

However, there are also some key differences. First, datreant.-
core is even more agnostic than signac with respect to the general
workflow, e.g., there is no need to confine data within a single pro-
ject entity. Instead, multiple directories may be dynamically orga-
nized in bundles, which loosely correspond to a signac workspace
but need not share a common root directory. These bundles can be
searched and grouped by metadata, just like signac jobs. Further-
more, datreant.core has no concept of a unique identifier like the
signac id, so the user is still required to choose a directory name
for each data set. While this methodology might provide more flex-
ibility in defining a general storage layout and make it easier to
combine different data spaces, we contend that it would make it
harder for novices to overcome the habit of encoding metadata
in file paths, reducing the homogeneity and flexibility of the overall
data space. Finally, datreant.core employs file locking mechanisms
to ensure that metadata may be safely manipulated in parallel
from multiple processes. While that might be advantageous under
some circumstances, in practice file locks do not work reliably on
the network file systems commonly employed in HPC environ-
ments, rendering this feature a liability in cases where it would
be most needed. For this reason, the signac implementation

7 https://materialsproject.github.io/fireworks/controlworker.html.
8 http://neuralensemble.org/sumatra/.

——
Select by ID — O(1)
lo N
A I
Search w/ rich filter — O(N) 4 910()
9 4
© ~
) e < o
Search w/ lean filter — O(N) o
7}
) e
Iterate (single pass) — O(N) ‘&’
a4
[L 5 3
Iterate — O(N) ®
kel
Determine N — O(N) - ——

T T T T
10° 102 104 106 108

Execution Time / Complexity (1|N) [us]

Fig. 5. We measured the time required for the execution of a set of data space
operations as a function of the number of directories N with signac and datreant.
All tests were executed with Python 3.6 on a network file system; reported values
are the minimum of 3 independent test sessions, where each one is averaged over
10 runs within one session, except for the 4th, which was run only once per session;
the 2nd test category was aborted for datreant at N = 10" due to very long
execution time. All values are normalized by the expected complexity, ie., they
must be multiplied with the respective order to obtain absolute values for a specific
data space size.

avoids any reliance on file locks. Overall, we have found datreant
to be the most comparable existing solution for the core problems
signac aims to solve.

4.2. Benchmarks

Since datreant.core most closely corresponds to signac’s scope
and approach for data management, we used it as a quantitative
benchmark for the performance and scalability of our implementa-
tion. Concretely, we measured the time each tool required

. to select a single data set by known id,

. to search and select with a rich filter (many keys),

. to search and select with a lean filter (one key),

. for the first iteration through the metadata space within one
session,

5. for multiple iterations within one session,

. to determine the data space size N.

AW N =

[«)]

We then used this data to estimate the time complexity of
each operation with respect to N. In signac, we expect all but
the first category to run with a time complexity of ¢(N), since
the largest bottleneck is likely to be the initial parsing of all meta-
data within one session. A selection by known id should be con-
stant time (©(1). The results of these measurements are plotted
in Fig. 5.

We are able to show that within our test environment® a data
space of N = 1000 directories and approximately 1 kB of metadata
per directory,'® all operations, even those that scale linearly with
the data space, are executed nearly instantaneously on a human
time scale. For example, the first iteration through the complete
metadata space within one session requires on the order of 1 ms
per directory. It is important to point out that none of these oper-
ations are in any way affected by the number or size of data files
within those directories since they only interact with the JSON
metadata files.

While both signac and datreant show very similar scaling
behavior, we can clearly show that signac is at least one order

9 A workstation with 20 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz cores running
Gentoo Linux (4.9.34).

10 That corresponds roughly to 10 keys of one character associated with 100
character long values.

https://materialsproject.github.io/fireworks/controlworker.html
http://neuralensemble.org/sumatra/

226 C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229

of magnitude faster than datreant in all tested categories despite
implementing very similar concepts. The maximum practical data
space size - at which users perceive the system response time
(SRT) acceptable for complex tasks - is therefore much larger.

Comparing our time measurements on a network file system
(~1 ms per directory for start-up) with the guidelines laid out
by Doherty and Sorenson [26], operating on data spaces with
up to 300 directories would be perceived as instantaneous
(<300 ms), 1000 directories as immediate (<1s) and up to
5000 directories as transient (<5s). Larger data spaces with
up to 300,000 directories may still be acceptable, but will
require multitasking and/or additional feedback on the progress
to not break the user flow.

In summary, while the only hard cap on the data space
size is the file system and main memory storage capacity,
interactive work may be significantly impaired by prolonged
session start-up times for data spaces with more than
300,000 directories. In this case users would be advised to
aggregate the working set of data prior to interactive work.
We consider data spaces with up to 10,000 directories very
practicable for interactive work even on network file systems.
All the code to generate these benchmarks is open source and
available online."’

5. Examples

In this section we introduce two representative conceptual
examples that demonstrate how to incorporate signac into com-
putational workflows. The first one is in reference to the case pre-
sented in Section 1, the evaluation of the equation of state of an
ideal gas. The second is a molecular dynamics study of the
Lennard-Jones potential, which is slightly more involved, but also
more realistic.

For brevity, some commands are omitted or shortened; how-
ever, fully functional examples, including additional demonstra-
tions for density functional theory (DFT) calculations and
GROMACS, can be found online.'? All Python examples are tested
for Python version 3.5.

5.1. Ideal gas example

This is a minimal demonstration for carrying out the example
described in the introduction. We intend to calculate and store
the volume V of an ideal gas within the three-dimensional param-
eter space spanned by p, N, and kT.

We start by creating an empty directory for our project and ini-
tializing the signac project:

$ mkdir idg_eos
$ cd idg_eos
$ signac init IdealGasEOS

The project initialization creates a small configuration file
within the current directory to mark it as the project’s root
directory.

5.1.1. Minimal ideal gas example

For our most basic demonstration, we implement a Python
script to calculate and store the volume in signac’s built-in JSON
storage for each state point of interest:

1 https://bitbucket.org/glotzer/signac-benchmarks.
12 https://bitbucket.org/glotzer/signac-examples.

import signac

project = signac.get_project ()

sp = {"p": p, "N": 1000, "KT": 1.0}
job = project.open_job(sp)
V = job.sp.N * job.sp.kT / job.sp.p

1
2
3
4
5| for p in 0.1, 1.0, 10.0:
6
7
8
9 job.document ["V"] = V

First, we import the signac Python package (1.1). Then we
obtain a handle on the project (1.3), which is the interface for
accessing and manipulating the project’s data space. To calculate
the phase diagram — here as a function of pressure — we simply
iterate over p (1.5) and construct the full state point sp associated
with each data point (1.6).

This state point is passed into the project.open_job()
function, which returns a job handle that represents this specific
data point (1.7). The volume is calculated from the state point
variables associated with the job, which we access via the
job.sp property (1.8). Being a single number, the volume natu-
rally lends itself to being stored in a very lightweight format.
Here, we leverage the job.document property of signac jobs,
which provides a lightweight, persistent, and immediately
searchable JSON storage option associated with each signac
job (1.9). However, we could store the data just as well in a file
with a format of our choosing, as will be shown in the next
example.

Once the data space is initialized, we can immediately start
searching it. For example, to find all state points, where p is greater
than 1.0, we would execute:

jobs = project.find_jobs({"p.$gt": 1.0})

The jobs variable is the result cursor that we can use to iterate
over all jobs that match the given criterion. We can execute the
same kind of queries directly on the command line:

$ signac find p.\$gt 1.0

In this case the ids of all matching jobs will be output for further
processing. The query language supports a variety of operators,
including, but not limited to, arithmetic and logical operators,
and represents a subset of the MongoDB query language, making
it easy to transition between the two systems. More details can
be found in the online documentation.

5.1.2. Ideal gas with a bash terminal script

In many cases parts of our workflow will rely on precompiled
programs or other scripts that can be interfaced on the command
line, but not directly through Python. For example, we might have
a program called idg, that accepts parameters N, kT, and p as the
first three arguments and outputs the resulting volume V:

$ idg 1000 2.0 1.0
2000.0

The signac application provides a command-line interface
(CLI) to simplify the integration of such tools. The following exam-

https://bitbucket.org/glotzer/signac-benchmarks
https://bitbucket.org/glotzer/signac-examples

C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229 227

ple script replicates the first example, but in bash instead of Python
and storing the volume in a file called v.txt instead of the job doc-
ument.

1| #!/bin/bash

2| N=1000

3| kT=1.0

4|/ for p in 0.1 1.0 10.0; do

5 SP={\"N\": $N, \"kT\": $kT, \"p\": $p}"
6 WS="signac job -wc "$SP""

7 ./idg $N $kT $p > $WS/V.txt

8| done

After storing parameters as constants at the beginning of the
script (1.2-3), we again iterate over the variable of interest (1.4)
and construct the full state point SP in JSON formatting'® (1.5).
We then provide the state point as argument to the signac job -
we command, which creates the corresponding job and returns the
full workspace path ws (1.6). Finally, we execute the idg program
and pipe its output into the v.txt file within the job’s workspace
(1.7). This approach reliably couples the job’s data and the parame-
ters used to generate them.

An alternative approach for the incorporation of command line
tools is the construction of the required bash commands within a
Python script:

import signac
from subprocess import run

IDG = "./idg {job.sp.N} {job.sp.kT} {job.sp.p}"\
">{job.ws}/V.txt"

project = signac.get_project ()

0 O U W

9| for p in 0.1, 1.0, 10.0:

10 sp = {"N": 1000, "kT": 1.0, "p": p}

11 job = project.open_job (sp)

12 job.init ()

13 if not job.isfile("V.txt"):

14 run (IDG. format (job=job), shell=True)

This approach can be more flexible, especially in cases where
users are already familiar with Python. The crucial point is that
input parameters and location of the output data are always auto-
matically and unambiguously linked.

5.2. Molecular dynamics with HOOMD-blue

Similar to the first example, we again calculate the equation of
state of a gas, this time using molecular dynamics with a Lennard-
Jones potential. This means that instead of merely evaluating a sin-
gle analytic function, we need to set up initial and boundary con-
ditions of the simulated system, load the interaction potential,
define the simulation protocol, and possibly store significant
amounts of output data.

5.2.1. Basic example

For this example we will use the HOOMD-blue [2,27,28] parti-
cle simulation toolkit which provides a native Python interface.
This means we can interface with the signac project directly

13 The JSON format expects all keys to be enclosed in double quotes, which need to
be escaped within the bash script. We recommend using here-docs for larger state
point definitions.

within the input script. If there was no Python interface, we
would follow the approach shown in the previous (CLI) example
(Section 5.1.2).

1| import signac

2| import hoomd

3| import hoomd.md

4

5| def setup_and_simulate(job):

6 # [...] Setup intitial conditions

7 hoomd.md.integrate.langevin(

8 kT=job.sp.kT, seed=job.sp.seed, ...)
9 hoomd . dump . gsd (

10 filename="trajectory.gsd", period=2e3, ...)
11 hoomd.run(steps=1e4)

12

13| project = signac.get_project ()

14

15| for kT in 0.1, 1.0, 2.0:

16 sp = {"kT": kT, "seed": 42}

17| with project.open_job(sp) as job:

18 setup_and_simulate (job)

We start by importing all required packages (1.1-3) and con-
tinue by defining a function for the execution of our simulation
as function of the job (1.5). We skip HOOMD-specific commands
needed for the setup of the simulation, but lines 7 and 8 show
how we use the job.sp interface to directly set the simulation
parameters.

The iteration over the data space (1.15) and the definition of
the full state point (1.16) are analogous to the previous exam-
ples. Instead of wrapping all input and output filenames wher-
ever they appear (such as in line 10), we use signac’s built-in
context manager to change into the job’s workspace for all
commands that are within the scope of the with clause
(1.17). That means signac will change into the correct direc-
tory for the duration of the execution of the setup_and_simu-
late() function and return to the previous directory after
completion.

In this example, the data space operations that we execute are
still very simple: simulations are executed sequentially by iterat-
ing over the variable of interest, kT. However, for more complex
workflows, especially those involving more compute-intensive
operations, it is advantageous to break things up into smaller steps
that can be executed in parallel and possibly be submitted to an
HPC cluster. One possible approach for doing so is shown in the
next example, utilizing the previously introduced signac-flow
application (see Section 3.3).

5.3. Workflow management with signac-flow

While users are encouraged to integrate the signac data
management application into existing workflows or develop
new ones that fit their specific applications, here we demonstrate
the use of the signac-flow application for the rapid develop-
ment of workflows for users that are so inclined. The application
is quite general, and is simply designed around the sequential or
parallel execution of operations in well-defined order. Splitting
the overall workflow into such self-contained operations
increases flexibility and reproducibility and is especially benefi-
cial for larger studies.

We demonstrate the concept by adapting the previous exam-
ple. First, we move the initialization logic into a separate script
to initialize the data space prior to executing any data space
operations:

228 C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229

intt.py
import signac

project = signac.init_project("LJ-E0S")

sp = {
"kT": kT, "seed": 42,
"epsilon": 1.0,
"r_cut": 3.0}
project.open_job(sp).init ()

1

2

3

4

5

6| for kT in (0.1, 1.0, 2.0):
7

8

9 "sigma": 1.0,
0

1

This initializes the complete data space with the essential
parameters required for the execution of our molecular dynamics
simulations.

Second, we split the setup_and_simulate () step into setup
() and simulate (). These two operations are defined within an
operations.py module:

1| # operations.py

2| import hoomd

3| import hoomd.md

4

5| def setup(job):

6 """Setup the initial conditions """

7 hoomd.init.create_lattice(

8 unitcell=hoomd.lattice.sc(a=1.0), n=16)
9 hoomd . dump . gsd (

10 filename=job.fn("init.gsd"), ...)

11

12| def simulate(job):

13 """Execute MD simulation"""

14 with job:

15 hoomd.init.read_gsd("init.gsd")

16 # [...]

17 1j = hoomd.md.pair.lj(r_cut=job.sp.r_cut, ...)
18 1lj.pair_coeff.set(

19 IIA"’ “All’

20 epsilon=job.sp.epsilon,

21 sigma=job.sp.sigma)

22 hoomd.md. integrate.langevin (

23 kT=job.sp.kT, seed=job.sp.seed, ...)
24 hoomd . dump . gsd (

25 "trajectory.gsd", period=2e3, ...)
26 hoomd.run(tsteps=1e6)

27 job.document ["step"] = hoomd.get_step ()
28

29/ if __name__ == "__main__":

30 import flow

31 flow.run ()

The last three lines (1.29-31) leverage signac-flow's function
to equip this module with a command line interface that allows us
to execute all operations directly from the command line:

$ python operations.py setup
$ python operations.py simulate

To further automate the execution of operations and their sub-
mission to an HPC cluster, we can implement a workflow as part of
a FlowProject as described in Section 3.3. The workflow is defined
by adding operations to the FlowProject class with add_opera-
tion() during its construction. Each operation can be associated
with pre- and post-conditions to determine their order of execu-
tion. An operation is eligible to be executed when all pre-
conditions are met and at least one of the post-conditions is not
met. The execution conditions associated with each operation are
implemented as methods, which are then passed as arguments to
the pre and post parameters of the add_operation() method.

For this example, we would want to execute the setup opera-
tion first, and then assuming that was successful, the simulate
operation. A simple condition for successful setup would therefore
be the existence of the init.gsd file, which contains the system’s
initial configuration, so we set that as the post condition via the
initialized function. We also keep track of the simulation pro-
gress by storing the current simulation time step within the persis-
tent JSON storage associated with the job (job.document).

1| # project.py

2| import flow

3

4| class MyProject(flow.FlowProject):

5

6 def initialized(self, job):

7 return job.isfile("init.gsd")

8

9 def simulated(self, job):

10 return job.document["step"] >= 1e6
11

12 def __init__(self, *args, **kwargs):
13 super (). __init__(*args, **kwargs)
14

15 # Add the "setup"” operation

16 self.add_operation(

17 name="setup",

18 cmd="python operations.py setup {job._idl}",
19 post=[self.initialized])

20

21 # Add the "simulate" operation

22 self.add_operation(

23 name="simulate",

24 cmd=\

25 "python operations.py simulate {job._id}",
26 pre=[self.initialized],

27 post=[self.simulated])

28

29| if __name__ == "__main__":

30 MyProject.main ()

In addition to clearly defining the status of each individual
operation, this FlowProject implementation also describes all valid
sequences of operations. For example, because the setup opera-
tion has no pre-conditions, it is the only operation eligible for exe-
cution immediately after data space initialization. Since the
FlowProject encapsulates this logic, we can trivially execute our
workflow by leveraging the FlowProject’s run capabilities, which
take the simple run functionality from our operations.py script
one step further. Rather than specifying operations to run, we can
now simply execute $ python project.py run, which will auto-
matically run the next eligible operation for each job. To submit
these job-operations to a job scheduler on a HPC cluster, we could
instead use signac-flow’s submission tool by typing $ python
project.py submit. The objective of dividing the implementa-
tion of operations and the definition of workflows as part of the
FlowProject is to avoid the conflation of responsibilities and to
ensure a very clear path for the integration of operations that are
not Python-based.

Complete versions of the examples presented here, as well as
some additional ones, can be found online.'*

6. Conclusions

The development of signac is motivated by the increased need
for the management of heterogeneous and complex data spaces in
computational materials science, specifically in work requiring
HPC resources. Researchers in computational fields are frequently

14 https://bitbucket.org/glotzer/signac-examples.

https://bitbucket.org/glotzer/signac-examples

C.S. Adorf et al./ Computational Materials Science 146 (2018) 220-229 229

required to manage such data spaces and account for the various
issues associated with this task. The signac framework provides
non-intrusive solutions to many data management and workflow
challenges in environments scaling from desktops to HPC clusters.
The simple file-centric data model and the use of standard file for-
mats such as JSON ensure easy access and portability of both the
data and the associated workflows. This portability is particularly
critical for sustainable long-term storage, since it allows the use
of signac without tying users to future use of the platform or
specific file formats in order to be able to access the data. The
indexing functionality eases the transition from data acquisition
to curation and analysis, and the simplicity of export to databases
allows the integration of existing DBMS into HPC workflows. These
functions allow signac to combine the advanced metadata han-
dling capabilities of modern DBMS with the performance of pure
file system-based solutions. By providing a lightweight, high-
performance solution to common data management and workflow
challenges in HPC, the signac framework frees researchers from
solving these problems themselves and enables more effective
and efficient scientific research.

Acknowledgments

We would like to thank all contributors to the development of
the framework’s components, J.A. Anderson, M.E. Irrgang and P.F.
Damasceno for fruitful discussion, feedback and support, and B.
Swerdlow for his contributions and feedback and coming up with
the name. Finally, we would like to thank all early adopters that
provided feedback and thus helped in guiding and improving the
development process. Development and deployment supported
by MICCoM, as part of the Computational Materials Sciences Pro-
gram funded by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, Materials Sciences and Engineering Division,
under Subcontract No. 6F-30844. Project conceptualization and
implementation supported by the National Science Foundation,
Award # DMR 1409620.

References

[1] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J.
Comput. Phys. 117 (1995) 1-19, https://doi.org/10.1006/jcph.1995.1039.

[2] J.A. Anderson, S.C. Glotzer, The development and expansion of HOOMD-blue
through six years of GPU proliferation, arXiv, 2013, 1308.5587. Available from:
arXiv:1308.5587.

[3] J.A. Anderson, E. Jankowski, T.L. Grubb, M. Engel, S.C. Glotzer, Massively
parallel Monte Carlo for many-particle simulations on GPUs, J. Comput. Phys.
254 (2013) 27-38, https://doi.org/10.1016/j.jcp.2013.07.023.

[4] J.A. Anderson, M.E. Irrgang, S.C. Glotzer, Scalable Metropolis Monte Carlo for
simulation of hard shapes, Comput. Phys. Commun. 204 (2016) 21-30, https://
doi.org/10.1016/j.cpc.2016.02.024.

[5] MJ. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl,
GROMACS: high performance molecular simulations through multi-level
parallelism from laptops to supercomputers, SoftwareX 1-2 (2015) 19-25,
https://doi.org/10.1016/j.s0ftx.2015.06.001.

[6] M. Shirts, V.S. Pande, Screen savers of the world unite!, Science 290 (2000)
1903-1904, https://doiorg/10.1126/science.290.5498.1903.

[7] J. Towns, T. Cockerill, M. Dahan, 1. Foster, K. Gaither, A. Grimshaw, V.
Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, N.
Wilkins-Diehr, XSEDE: accelerating scientific discovery, Comput. Sci. Eng. 16
(2014) 62-74, https://doi.org/10.1109/MCSE.2014.80.

[8] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project:
a materials genome approach to accelerating materials innovation, APL Mater.
1(2013) 011002, https://doi.org/10.1063/1.4812323.

[9] MongoDB, Inc., MongoDB, 2016. <https://www.mongodb.com/> (Accessed on
2017/09/29).

[10] Oracle Corporation, MySQL, 2016. <https://www.mysql.com> (Accessed on
2017/09/29).

[11] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, L.N.
Shindyalov, P.E. Bourne, The protein data bank, Nucl. Acids Res. 28 (2000) 235-
242, https://doi.org/10.1093/nar/28.1.235.

[12] E.H. Allen, The Cambridge structural database: a quarter of a million crystal
structures and rising, Acta Crystallogr. Sect. B Struct. Sci. 58 (2002) 380-388,
https://doi.org/10.1107/S0108768102003890.

[13] C.R. Groom, F.H. Allen, The Cambridge structural database in retrospect and
prospect, Angew. Chem. Int. Ed. 53 (2014) 662-671, https://doi.org/10.1002/
anie.201306438.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale
hierarchical image database, in: 2009 IEEE Conf. Comput. Vis. Pattern
Recognit., IEEE, 2009, pp- 248-255, https://doi.org/10.1109/
CVPR.2009.5206848.

[15] The iRODS Consortium, Integrated Rule-Oriented System (iRODS), 2016.
<http://irods.org> (Accessed on 2017/09/29).

[16] 1. Foster, Globus online: accelerating and democratizing science through
cloud-based services, IEEE Intern. Comput. 15 (2011) 70-73, https://doi.org/
10.1109/MIC.2011.64.

[17] D.L. Dotson, S.L. Seyler, M. Linke, RJ. Gowers, O. Beckstein, Datreant:
persistent, pythonic trees for heterogeneous data, in: S. Benthall, S. Rostrup
(Eds.), Proceedings of the 15th Python in Science Conference, Austin, TX, 2016,
pp. 51-56.

[18] A. Kumar, V. Grupcev, M. Berrada,].C. Fogarty, Y.-C. Tu, X. Zhu, S.A. Pandit, Y.
Xia, DCMS: a data analytics and management system for molecular simulation,
J. Big Data 2 (2014) 9, https://doi.org/10.1186/540537-014-0009-5.

[19] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, AiiDA: automated
interactive infrastructure and database for computational science, Comput.
Mater. Sci. 111 (2016) 218-230, https://doi.org/10.1016/
j.commatsci.2015.09.013.

[20] G.Brandl and the Sphinx team, The Pocoo Team, Sphinx Documentation, 2016.
<http://www.sphinx-doc.org> (Accessed on 2017/09/29).

[21] R. Martin, The Clean Architecture, 2012. <https://blog.8thlight.com/uncle-bob/
2012/08/13/the-clean-architecture.html> (Accessed on 2017/09/29).

[22] 3T Software Labs GmbH, Studio 3T, 2017. <https://studio3t.com> (Accessed on
2017/09/29).

[23] Mayeul d’Avezac, pylada-light documentation, 2017. <http://pylada.github.io/
pylada-light> (Accessed on 2017/12/18).

[24] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G.
Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, K.A. Persson, Fireworks: a
dynamic workflow system designed for high-throughput applications,
Concurr. Comput.: Pract. Exp. 27 (2015) 5037-5059, https://doi.org/10.1002/
cpe.3505.

[25] A.P. Davison, Automated capture of experiment context for easier
reproducibility in computational research, Comput. Sci. Eng. 14 (2012) 48-
56, https://doi.org/10.1109/MCSE.2012.41.

[26] R.A. Doherty, P. Sorenson, Keeping users in the flow: mapping system
responsiveness with user experience, Proc. Manuf. 3 (2015) 4384-4391,
https://doi.org/10.1016/j.promfg.2015.07.436.

[27] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics
simulations fully implemented on graphics processing units,]. Comput. Phys.
227 (2008) 5342-5359, https://doi.org/10.1016/j.jcp.2008.01.047.

[28] J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga,].A. Millan, D.C. Morse, S.C.
Glotzer, Strong scaling of general-purpose molecular dynamics simulations on
GPUs, Comput. Phys. Commun. 192 (2015) 97-107, https://doi.org/10.1016/].
cpc.2015.02.028.

https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.jcp.2013.07.023
https://doi.org/10.1016/j.cpc.2016.02.024
https://doi.org/10.1016/j.cpc.2016.02.024
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1126/science.290.5498.1903
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1063/1.4812323
https://www.mongodb.com/
https://www.mysql.com
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1107/S0108768102003890
https://doi.org/10.1002/anie.201306438
https://doi.org/10.1002/anie.201306438
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://irods.org
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1186/s40537-014-0009-5
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.commatsci.2015.09.013
http://www.sphinx-doc.org
https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://studio3t.com
http://pylada.github.io/pylada-light
http://pylada.github.io/pylada-light
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1109/MCSE.2012.41
https://doi.org/10.1016/j.promfg.2015.07.436
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1016/j.cpc.2015.02.028

	Simple data and workflow management with the signac framework
	1 Introduction
	2 Overview
	2.1 Design
	2.2 Workflow

	3 Implementation
	3.1 Software architecture
	3.2 Software components
	3.2.1 Project data management
	3.2.2 Indexing and database integration

	3.3 Implementation of workflows with signac-flow

	4 Practicality and scalability
	4.1 Comparable solutions
	4.2 Benchmarks

	5 Examples
	5.1 Ideal gas example
	5.1.1 Minimal ideal gas example
	5.1.2 Ideal gas with a bash terminal script

	5.2 Molecular dynamics with HOOMD-blue
	5.2.1 Basic example

	5.3 Workflow management with signac-flow

	6 Conclusions
	Acknowledgments
	References

