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Abstract—In the field of data science, a huge amount
of data, generally represented as graphs, needs to be
processed and analyzed. It is of utmost importance that
this data be processed swiftly and efficiently to save time
and energy. The volume and velocity of data, along with
irregular access patterns in graph data structures, pose
challenges in terms of analysis and processing. Further, a
big chunk of time and energy is spent on analyzing these
graphs on large compute clusters and/or data-centers.
Filtering and refining of data using graph sampling tech-
niques are one of the most effective ways to speed up
the analysis. Efficient accelerators, such as FPGAs, have
proven to significantly lower the energy cost of running
an algorithm. To this end, we present the design and
implementation of a parallel graph sampling technique, for
a large number of input graphs streaming into a FPGA. A
parallel approach using OpenCL for FPGAs was adopted
to come up with a solution that is both time- and energy-
efficient. We introduce a novel graph data structure,
suitable for streaming graphs on FPGAs, that allows
time- and memory-efficient representation of graphs. Our
experiments show that our proposed technique is 3x faster
and 2x more energy efficient as compared to serial CPU
version of the algorithm.

I. INTRODUCTION

Graphs, due to their inter-connecting nature, are one
of the most commonly used data structures to represent
large complex data. Graphical representation makes it
possible to interpret and process the data using graph
analysis techniques [4]. High throughput data generation
technologies in the field of bioinformatics e.g. Next Gen-
eration Sequencing in Genomics [23], De novo Peptide
Sequencing in Proteomics [21], [30] and fMRI scans
in Connectomics [32] are the norm now a days. A big
majority of algorithms that run on this data for sequence
alignment, protein identification or investigating brain
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networks, require this data to be represented in the form
of graphs. Graph data structures are also the backbone
of storing and processing huge amounts of data in Social
Networks, IoT Networks, and the World Wide Web.
These huge data-sets tend to be in the form of a large
number of graphs with each graph representing a subset.

Unfortunately, due to the extremely large size of
data it’s nearly impossible to run an algorithm on the
entire data set at least in a reasonable amount of time.
Moreover, it might not be possible to access data in its
entirety e.g. the Facebook graph or it might be only
available through crawling e.g. world wide web [6].
Graph sampling can be an excellent solution to speed
up the process by reducing the amount of data or make
up for its unavailability. Sometimes, it is inadvisable
to run an algorithm on a complete dataset as it might
be noisy and yield incorrect results [2], [22]. In cases
like this, sampling becomes a necessary task to filter
out the noise and only keep valuable data points. For
example, in the field of proteogenomics, the intermediate
protein database created via six-frame translation con-
tains identifiable proteins in less than 1% of its size [26].
In proteomics, MS/MS spectra generated through mass-
spectrometry are highly noisy or contain peaks that don’t
contribute towards peptide identification and only less
than 10% of the total peaks are useful [2]. It is absolutely
necessary to remove the noisy or useless peaks from the
original data to get good quality results as well as speed
up the process.

Graph sampling is a process where we randomly (or
systematically) select a subset of nodes and/or edges to
build a subgraph that represents the original graph in a
certain set of properties. By preserving these properties
we can accelerate a big class of algorithms that rely on
or determine these properties [15]. This also allows a
reduction in the amount of data that needs to be pro-



cessed while maintaining application specific properties
e.g. degree distribution, betweenness centrality, degree
exponent, rank exponent etc. Graph sampling literature
is extensive and includes sampling techniques like Se-
lection Based Sampling [1], Traversal Based Sampling
[12] [14] [27] and Reduction Based Sampling [17].

Sequential techniques are inadequate even for the sam-
pling of big data. Existing parallel sampling techniques
are either application specific [7] [8] or they are too
inaccurate [25] to be used in real applications. Moreover,
there exists no sampling technique, sequential or parallel,
that addresses the issue of sampling multiple graphs at
the same time. One can argue that these techniques can
get the job done by sampling one graph at a time but as
we’ll see later on, this becomes impractical for very large
data sets where most of the time will be wasted on read-
ing the input graph from the data storage device. On top
of that, allocating power hungry resources for sampling,
such as GPU or Intel Phi, can result in significant cost
for large data centers. In addition, conventional “One
Size Fits All” devices like CPUs are no longer desired
as they can lead to underutilization of resources which
in turn can also waste a lot of energy [11]. Majority of
large-scale efforts focus on conventional devices since
dedicated accelerators are difficult to program. In the
past, FPGAs have had a drawback over other accelerators
because of time-consuming implementations of proposed
architecture using HDLs like Verilog or VHDL [28].

In this paper, we present an FPGA based parallel
version of the best performing reduction based algorithm
presented in [17]. These algorithms are geared toward
power-law graphs as this category of graphs can cor-
rectly simulate a vast and diverse class of real-world
graphs. FPGA is our choice of accelerator since FPGAs
are highly energy efficient, can provide speedups for
correctly designed strategy when compared with CPUs,
provide a custom-made solution, and their reconfigura-
bility allows them to be reprogrammed as per changing
requirements. We chose a higher level approach by
implementing our proposed strategy using Intel FPGA
SDK for OpenCL. We deploy a two-level pipeline to
parallelize different tasks within the sampling algorithm.
On the highest level, the pipeline stages include reading
graphs from the storage device and transferring them
to FPGA, perform parallel sampling on multiple graphs
using a lower level pipeline, and write back the sampled
graph to the storage device. The lower level pipeline,
for sampling multiple graphs at the same time, further
divides the sampling process into three different stage
which is explained in section IV. Using our novel graph

data structure and careful parallel design we show that
our proposed strategy is 3x faster than CPU based
versions of the sampling algorithms while reducing the
energy consumption by a factor of 2. We test our
implementation using synthetic power-law graphs [31]
that closely resemble the real world graphs.

Rest of this paper is organized as follows: We provide
a detailed literature review in section II. Our contri-
butions are outlined in section III. In section IV, we
describe our novel graph data structure and multi-layered
software pipeline for sampling in detail. Experimental
setup, data generation, and time and energy-consumption
analysis, for both FPGA and CPU, is given in section V.
In section VI, we conclude this paper.

II. BACKGROUND

Here we will discuss state-of-the-art graph sampling
algorithms that are most commonly used for sampling
of real-world graphs. Later in this section, we will give
a brief overview of OpenCL for FPGAs and why it is a
good choice for our problem.

A. Literature Review

Graph sampling algorithms can be divided into multi-
ple categories based on the type of sampling algorithms
or the architecture being used. Here we present the
categorization based on sequential vs. parallel sampling
techniques.

1) Sequential Algorithms: As we already mentioned,
most of the generic graph sampling algorithms are se-
quential. Two most basic approaches used are Vertex
Sampling and Edge Sampling. These approaches also
provide a basis for other sampling approaches like
Vertex Sampling with Escape or Graph Sparsification
[3]. Traversal Based Sampling is a much larger class
of algorithms. In this approach vertices or edges are
selected by traversing one vertex/edge at a time. Another
group of sampling algorithms is Sampling by Reduction
where instead of selecting vertices/edges we delete them
to get a subgraph that is representative of the original
graph.

Below we discuss some commonly used sequential

graph sampling techniques:
Vertex Sampling: In vertex sampling we pick a random
set of vertices V; such that V; C V. The sampled graph
is actually induced subgraph G of the original graph GG
where we only keep edges that connect the vertices in
the induced subgraph i.e. Es = (u,v|u € Vs, v € V).
Minimum information is required about the graph as the
vertex selection is made randomly.



Edge Sampling: In edge sampling we pick random set
of edge E; such that E; C E. The only vertices that we
keep are the ones that lie on either end of the edges in
Esie. Vi = u,v|(u,v) € Es.

Traversal Based Sampling: In this type of sampling, we
start at a random vertex and start exploring the graph by
selecting its neighbors and then recursively explore the
neighbors. The criteria for selecting neighbors is decided
by the specific sampling technique being used. Some of
the examples are Snow Ball Sampling [12], Forest Fire
Sampling [20] and Respondent Driven Sampling [14].
Reduction Based Sampling: These type of graph sam-
pling techniques go in the opposite direction of tradi-
tional ones as they remove vertices or edges from the
original graph. Some of the reduction based techniques
are presented in [17]. These include Deletion of Random
Vertex, Deletion of Random Edge, and Deletion of
Random Vertex-Edge. In contraction based techniques
there are Random Edge Contraction where an edge is
picked at random and contracted or Random Vertex Edge
Contraction where a random vertex edge is picked and
contracted.

Exploration techniques can also be categorized as reduc-
tion based techniques. Two of these, presented in [17],
are Exploration by Breadth First Search and Exploration
by Depth First Search.

2) Parallel Algorithms: Very few studies have been
done on parallel graph sampling and the ones that exist
are application specific. Here we discuss few of those
sampling techniques.

Parallel Random Samplers: This graph sampling
technique, originally presented in [25], is the parallel
version of Respondent Driven Sampling [14] [27]. Here,
we start multiple random walkers from a starting vertex
that sample the graph in parallel. In addition to reduced
sampling time, this technique introduces some conflict-
ing effects. First, since multiple samplers are working at
the same time we get the desired sampled graph much
faster in a lesser number of hops. This reduces the effects
of changes in the graph if the graph is evolving in time.
On the other hand, there is some redundant sampling
of nodes near the starting point which leads to some
inaccurate results.

Extracting Quasi-Chordal Subgraphs: This is an ap-
plication specific graph sampling technique presented in
[7] [8] which extracts Quasi-Chordal Subgraphs from the
original graph. The original graph is distributed among
multiple processing units and each unit extracts a chordal
subgraph for its part of the graph. In the next step, all the
subgraphs are connected together. The targeted graphs

for this sampling method are gene correlation networks
where we have to maintain highly connected parts of
the graph since they indicate important functional units
of the gene product.

FPGA Techniques: In our previous publication [29],
we implemented a strategy to do parallel sampling for a
static graph using OpenCL for FPGAs. Though energy
efficient, this strategy only works for a single graph in
memory and does not consider the time to read the graph
from the storage device, which can be considerable de-
pending on the graph size. Therefore, sampling multiple
graphs using this strategy would yield impractical time
requirements.

B. OpenCL for FPGAs

OpenCL for FPGAs consists of 1) OpenCL compiler
for FPGA that converts the code into a binary file that
can be downloaded onto FPGA and 2) Runtime environ-
ment that lets host(CPU) program the FPGA using the
binary file through PCle, transfer data between CPU and
FPGA memory, and execute OpenCL kernels on FPGA.
In this host-device environment, the parallelizable part
of the program is written in OpenCL which will execute
on FPGA while the rest of the tasks are taken care
of by the CPU e.g. reading graphs into CPU memory
and transferring of data to and from FPGA. Since these
tasks are executing on different systems, they can be
parallelized using a software pipeline. In addition, since
each OpenCL kernel gets programmed onto the FPGA
fabric at the same time, it occupies its own resources
and can execute along with other kernels. This provides
the opportunity of creating a separate software pipeline
where multiple kernels are performing different tasks for
separate graphs. More information about OpenCL for
FPGA can be found at [28].

ITI. OUR CONTRIBUTION

The contribution of this paper is two folds i.e. design
of a novel data structure to represent graphs in memory
and implementation of a novel multi-layered pipelined
technique to sample multiple graphs using the above-
mentioned data structure.

A. Graph Data Structure

We develop a compact data structure to represent
multiple graphs in memory with the space complexity
of O(|V|+|E|), where V is the vertex set and E is the
edge set of graphs being represented. This data structure
allows for the removal of vertex in O(d) time where d is
the degree of the vertex being removed. Storing multiple



graphs in one data structures allows them to be processed
by the kernel at the same time.

B. Sampling Algorithm

Our sampling algorithm consists of two levels of
software pipelines that allow for sampling of multiple
graphs at the same time by overlapping the sampling
process of one batch of graphs with the reading of
next batch into the memory. Same is the case for
writing one batch of graphs to the storage device. The
sampling process consists of three parts: 1) Removing a
small portion of random vertices, 2) finding the largest
connected component using parallel BFS, and 3) deleting
the smaller components. Each of these tasks is performed
by a separate kernel. Since each kernel is programmed
onto FPGA fabric, it can execute concurrently with other
kernels. We take advantage of this by pipelining these
kernels for different sets of graphs to further speed up
the sampling process.

1V. PROPOSED METHODS
A. Graph Data Structure for Parallel Processing

The sampling methodologies that we design and im-
plement on FPGA require removing vertices and edges
from the original graph in parallel. Therefore, we need
a data structure which can deal with irregular memory
access patterns of graphs and allow multiple threads to
operate concurrently. Such a structure will be essential
for efficient bandwidth utilization on an FPGA. Keeping
these constraints in mind we introduce a novel data
structure, which is a modified version of Compressed
Sparse Row (CSR) to represent graphs in memory. We
will discuss our data structure and the process involved,
to remove multiple vertices and edges in detail.

Consider the graph shown in figure 1 (left) and its
Compressed Sparse Row (CSR) representation (right).
In CSR, vertices and edges are stored in two separate
arrays V' and E. Vertex numbers are represented by the
indexes of V' while the value stored at each index of V'
points to the starting location of edges of that vertex.
In edge array E, we store the vertex number, for each
edge, at its other end. In its simplest form, the space
complexity of CSR is O(V + E).

CSR represents graph data in a simple and compact
format but it has a huge drawback in terms of making
modifications in the graph especially deleting vertices
and edges. It will require multiple reads and writes to
memory and keeping track of edges for certain ver-
tices will become difficult. This, in turn, will consume
memory bandwidth essentially slowing down the entire
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Fig. 1: Graph representation using CSR data structure.

sampling process. Alternatives to CSR, e.g. adjacency
list or adjacency matrix are also not feasible. Adjacency
list uses linked list to store the graph which is sequential
in nature and cannot be used in a highly parallel envi-
ronment. On the other hand, the adjacency matrix is too
expensive in terms of space complexity i.e. O(|V|?), that
it becomes impractical for large graphs. To tackle these
issues, we present a novel data structure, shown in figure
2, which is space efficient i.e. O(|V| + |F|) and allows
for efficient removal of vertices in O(d) time where d is
the degree of the vertex, being removed.

1) Vertex Removal: In the original CSR data structure,
adjacent vertices the array are dependent on each other in
terms of knowing where the edges of current vertex end
and the next ones start. Hence, removing vertices will
become more and more expensive with sparsification of
the graph as we’ll have to traverse more entries of the
array. The introduction of the second array takes care of
this problem as each vertex stores its information sepa-
rately and no two vertices are dependent on each other
as shown in figure 2. Using two arrays, the subsequent
deletion of vertices will not incur any additional removal
cost.

B. Sampling Algorithm

Here we present different parts of our sampling algo-
rithm. First, we explain the outer and inner pipelines and
different stages within those pipelines. Later on, we give
the kernel pseudo code for deleting random vertices in
parallel (DRV) and parallel breadth-first search (BF'S).
The code for removing smaller components is similar
to DRV as we remove vertices that are not part of the
largest connected component. Simplified pseudo code for
our sampling algorithm using below-mentioned pipelines
and kernels is given in algorithm 2. The work-flow is
explained in figure 5.

1) Outer Pipeline: The outer pipeline, shown in figure
3 (left), executes at host level where we initialize three
different threads and assign each thread a different
responsibility. i.e. 1) Read graph from a storage device,
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Fig. 2: Our novel graph data structure to compactly store multiple graphs in a hierarchy of arrays. The smallest

array Start stores the indexes for each graph. Array V'

— Start represents vertices for each graph. Note that for

the first graph, the index numbers are the same as the vertex number. But for every graph afterward, we have to
subtract the starting point from the index to get the actual vertex number. This starting point value can be obtained
from the Start array. V — Start points to the starting point of edges, stored in E, for every vertex. The addition
of V — End allows for efficient removal of vertices by keeping track of the last edge, in F, for every vertex.

2) Execute the lower level/inner pipeline, and 3) Write
sampled graph to the storage device. To begin with,
graphs are divided into batches and one batch is read by
a separate thread at stage one and transferred to FPGA
memory. Next, the batch is further divided into three
sub-batches and each stage in the inner pipeline works
on a separate sub-batch. While stage two of the pipeline
is executing, stage one is reading the next batch from the
storage device. Finally, the batch sampled by the second
stage is written back to the storage device by stage three
while stage two is sampling the second batch and stage
one is reading the third batch. This process continues till
no graphs are left.

2) Inner Pipeline: The inner pipeline, shown in figure
3 (right), executes at device/FPGA level, where we
execute different kernels simultaneously on different sub-
batches of graphs. This is a cyclic pipeline where each
graph (or sub-batch) needs to go through every stage
more than once, depending on the required size of the
sampled graph. At the DRV stage, a small portion of

vertices is randomly removed from all the graphs in
the sub-batch. Next, BF'S finds the largest connected
components for each graph in the current sub-batch and
the next sub-batch is brought in to be processed by
DRYV. Once, BF'S is done, it provides this information
to RC where it removes all the smaller components and
only keeps the largest one. If the size of the largest
connected component is within the error margin of the
desired sample size, we move the pipeline forward, i.e.
prepare the sub-batch to be written back to host memory.
Otherwise, we send it back to DRV stage for further
reduction of sample size. The pseudo code for different
kernels, DRV and BF'S, is given in algorithm 1 and
algorithm 3.

3) Delete Random Vertices: Each thread removes one
vertex by first deleting the entry for the given vertex
and traversing its neighbors to remove all the edges
connected to that vertex. The pseudo-code for the kernel
is given in Algorithm 1. Each work-group works of one
graph and the offset for each graph is stored in the input
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Fig. 3: Different steps during the execution of pipelines. Outer Pipeline: In the outer pipeline, a batch of graphs is
read into the host memory. A batch of size six is considered in this example but in reality, the batch size is decided
based on the device’s (FPGA) available memory. Once, the batch is ready, it is transferred to the device’s memory
where it is sampled in the inner pipeline. Inner Pipeline: In the inner pipeline, each stage processes two graphs
at the same time. The limit is imposed by the implementation of OpenCL for FPGA where only two work-groups
can execute at the same whenever threads might finish out-of-order. Each graph goes through every stage of inner
pipeline multiple time. Upon finishing, the sampled graphs are transferred back to the host where stage 3 of the
outer pipeline will write the sampled graphs back to the storage device.

array start.

As there are nested loops in our kernel, this can
degrade the performance of the kernel significantly. To
overcome this hurdle, the inner loop is unrolled to
reduce the number of iterations. Maximum performance
is gained by unrolling the inner loop 16 times. This loop
unrolling doesn’t add any overhead in terms of memory
accesses since the burst size of global memory used
(DDR3) is 64 bytes.

There is no guarantee that no two threads will access
the same memory location (rather it’s very likely that

two or more vertices will end up accessing the same
address). We ensure that data integrity, using our strategy,
is maintained by a simple observation that the value
being written to any location is —1 (to indicate removal).
Whenever a thread reads a value from memory, it can
check that the value is not —1. If it is, we know that it is
invalid i.e. the corresponding vertex or edge has already
been removed and we won’t perform any actions on that
data.

4) Parallel Breadth First Search: We use parallel
breadth-first search algorithm [13] which uses level



Algorithm 1 Delete Random Vertices (DRV)

Input: vStart,vEnd, edges, rands, start
1: tid < thread-id
wid < work-group-id
v« rands|tid]
0 « tart[wid]
sPos < vStart[v + o], vStart[v + o] < —1
ePos < vEnd[v + o], vEnd[v + o] < —1
for i = sPos to ePos do
nv < edgesli]
edges|i] + —1
sPosl « vStart[nv]
ePosl + vEnd[nv]
12:  for 5 = sPosl to ePosl do

R A A S i

[E—
—_ O

13: if edges[j] == v then
14: edges[j] = —1

15: end if

16:  end for

17: end for

synchronization. Starting with a single node, each level
is traversed in parallel. Instead of using a queue, the fron-
tier is maintained in an array of size |V'|. We initialize
|V| threads and each thread checks the corresponding
entry in the frontier array. If the vertex is marked as
the frontier, the thread loops through its neighbors (that
haven’t already been visited) and places them in the
frontier array. The level parallelism depends on the
number of vertices in the frontier at a given time. The
pseudo code for BF'S kernel is given in algorithm 3.

Algorithm 2 Parallel Breadth First Search

Input: vStart,vEnd, edges, frontier, visited,
component, continue
1: tid < thread-id
2: if frontier[tid] == 1 then

3:  frontier[tid] < 0

4:  wisited[tid] =1

5: component[tid] = 1

6: for all v € N(tid) {Neighbors of vertex tid} do
7: if visited[v] == 0 then

8 frontier[v] =1

9: continue = true

10: end if

11:  end for

12: end if

Different states of the pipeline are controlled by a
controller program that runs on CPU and controls which

Empty Slot
in Pipeline .
Sampling
Finished

Pipeline
Steady Full
Pipeline State

Full

No More
No More
Graphs Graphs
Pipeline
Partially
C Full
Graphs in
Pipeline

Fig. 4: Controller design for the pipeline.

TABLE I: Specifications of FPGA and CPU used in our
experiments.

DES-Net | xeon W3s65

Stratix V
Base Frequency - 3.20 GHz
# Logical Cores 1 8
Memory 4 GB 6 GB

kernel executes which batch of graphs and keeps kernels
in sync. The controller state machine is shown in figure
4.

V. RESULTS
A. Experimental Setup

Reduction based sampling by removing random ver-
tices is best suited for power-law graphs. Power-law
graph can be described as a graph where degree dis-
tribution = follows the exponential curve with a certain
constant « as the exponent. Power-law has been proven
to fit real world graphs accurately on numerous occa-
sions. Different studies have shown that degree sequence
of World Wide Web [19] [18] [16] and Internet router
graph [10] follow power-law distributions among other
applications [9] [5] [24]. For evaluation of our proposed
strategy we generate different number of random graphs
each on 1 million vertices in size. These graphs follow
the power-law degree distribution with the exponent
of 2.7 and average degree of 5. The random graph
generation tool that we used is described at [31].

We implemented the sampling algorithms on Xeon
W3565 and parallel version is implemented using
OpenCL 1.2 on DE5-Net Stratix V GX FPGA Devel-
opment Kit. Specifications of these devices are shown in
Table I.



Algorithm 3 Parallel Graph Sampling

1: while There are graphs to be sampled do

2:  Wait for any incomplete threads to join.

3:  Initialize a thread to read the next batch into the pipeline.

4:  Initialize a thread to write sampled graphs (if there are any) to the storage device.
5:  while There are graphs in the pipeline do

6 Launch Kernel to remove vertices for stage 1.

7 Launch Kernel to perform BFS for stage 2.

8 Launch Kernel to perform component removal for stage 3.

9 if Stage 3 complete then

10: Shift pipeline and insert new batch at stage 1.
11: else

12: Rotate pipeline clockwise.

13: end if

14:  end while
15: end while
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Fig. 5: Workflow for parallel sampling pipeline.
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B. Timing Analysis

We implemented sampling strategies on CPU and
FPGA. The results in Fig. 6 show that our FPGA based
technique is faster by more than 3x as compared to
algorithms running on the CPU.

C. Energy Efficiency Analysis

We measure the power consumption of our algorithm
using a Watt-meter connected to the CPU and FPGA
power supply. The energy consumption is then calculated
by multiplying the time it takes to execute the algorithm
by the power consumption. In our experiments, we found
that CPU runs on the average power of 100 Watts
during the execution of our algorithm while FPGA runs

of 25 Watts power. Energy consumption for different
techniques is given in figure 7.

D. Quality Assessment

We measure the quality of sampled graph using graph
parameters such as Degree Exponent and Rank Expo-
nent. Our analysis shows that the sampled graphs using
our technique only show a difference of less than 1%
when compared with the original graphs in terms of
above-mentioned qualities. The two qualities are defined
below:

VI. CONCLUSION

This paper presents a multi-layered software pipeline
for the sampling of streaming multiple graphs using
OpenCL for FPGAs. Upper-level pipeline parallelizes the
task of reading graphs from the device storage, sampling
the graphs and writing the graph back the storage device.
On the other hand, the lower level pipeline consists
of three stages as well i.e. deleting random vertices
(DRV), running breadth-first search (BFS) algorithm to
find the largest connected component, and removing the
smaller components. Our results show that pipelining
these processes can speed up the sampling algorithm
by a factor of 3 when compared to the CPU version
while being 2x more energy efficient. This is a significant
energy-reduction when considered in the context of very
large data-centers. Quality assessment of our sampled
graphs shows that they closely match with the original
graphs with the error value of less than 1%.
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